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Abstract: The present research had two aims. The first was to evaluate the effect of height and
exposure on the vegetative response of olive canopies’ vertical axis studied through a multispectral
sensor and on the qualitative and quantitative product characteristics. The second was to examine
the relationship between multispectral data and productive characteristics. Six olive plants were
sampled, and their canopy’s vertical axis was subdivided into four sectors based on two heights (Top
and Low) and two exposures (West and East). A ground-vehicle-mounted multispectral proximal
sensor (OptRx from AgLeader®) was used to investigate the different behaviours of the olive canopy
vegetation index (VI) responses in each sector. A selective harvest was performed, in which each
plant and sector were harvested separately. Product characterisation was conducted to investigate
the response of the products (both olives and oils) in each sector. The results of Tukey’s test (p > 0.05)
showed a significant effect of height for the VI responses, with the Low sector obtaining higher values
than the Top sector. The olive product showed some height and exposure effect, particularly for the
olives’ dimension and resistance to detachment, which was statistically higher in the upper part of
the canopies. The regression studies highlighted some relationships between the VIs and product
characteristics, particularly for resistance to detachments (R2 = 0.44–0.63), which can affect harvest
management. In conclusion, the results showed the complexity of the olive canopies’ response to
multispectral data collection, highlighting the need to study the vertical axis to assess the variability
of the canopy itself. The relationship between multispectral data and product characteristics must be
further investigated.

Keywords: proximal sensor; precision olive growing; vegetation index

1. Introduction

Precision agriculture techniques are spread across all farming systems in various
sectors, giving significant advantages in allowing higher production with higher sustain-
ability [1–4]. Precision agriculture is based on data collection through multiple systems,
such as remote sensing, unmanned aerial vehicles (UAVs), yield monitoring, weather sta-
tions, and ground-based sensors [5]. Those devices monitor and assess in-field variability,
a critical element of precision agriculture management [6]. The olive growing sector is the
most extended perennial growing in the Mediterranean basin, and it plays a fundamental
economic and environmental role [7–10]. Still, this sector presents constraints and limita-
tions due to structural characteristics and climate change [11]. Precision agriculture can
be a viable solution to these problems [12,13]. In the olive growing sector, the application
of sensor and precision agriculture techniques is already widely studied, with the vast
majority of studies concentrating on using multispectral sensors mounted on UAV systems.
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UAV solutions are spread across all the sectors for precision agriculture data gathering,
considering their availability, high-spatial-resolution data, and limited time consumption
for in-field data gathering [14–16], giving optimum results for precision agriculture man-
agement in olive orchards [17]. However, UAV solutions (as well as satellite solutions) have
some constraints in collecting data from canopies with vertical development, as they can
only study the canopy from a top-down view [18], potentially losing information related to
variability in the vertical axis of canopies. Consequently, it can be necessary to study the
vertical axis separately using proximal sensors from the ground, particularly in traditional
olive trees. Nonetheless, applying proximal sensors mounted on ground vehicles in the
olive growing sector is still a subject scarcely investigated [19]. Still, it should be considered
to better understand the behaviour of different parts of the canopies [20]. Canopy position
can also affect olives’ and oils’ quality and quantity characteristics [21–24]. Considering
those aspects, the present study has the following objectives:

1. To study on the vertical axis of olive tree canopies the effect of height and exposure
on vegetation index results using a proximal multispectral sensor;

2. To investigate how height and exposure can affect the quantitative and qualitative
characteristics of the olive product;

3. To study the relationship between vegetation indices obtained from a proximal multi-
spectral sensor and olive product characteristics to assess whether this information
can be useful for applying precision agriculture management strategies.

2. Materials and Methods
2.1. Experimental Site

The experimentation was carried out in the Ente Terre Regionali Toscane (Tuscany
Region unit for agriculture) Centre for Innovation Testing and Transfer in Tenuta di Cesa
farm, located in the municipality of Marciano della Chiana (Arezzo), in the centre-west of
Tuscany, Italy (43◦19′9′′ N, 11◦ 47′51′′ E, altitude 328.312 m AMSL).

The climate is classified in the Köppen and Geiger system as Csa, i.e., Mediterranean
climate, characterised as being temperate and dry, with a hot summer. The average
temperature of the coldest month is above 0 ◦C, with at least one month having an average
temperature above 22 ◦C and at least four months having an average temperature above
10 ◦C. The mean annual temperature is 13◦ C, and the average yearly precipitation is
871 mm (Consorzio LaMMA c/o CNR-IBE Florence research area). The area is mainly
identifiable as USDA Hydrologic Group C, with soils that present moderately high runoff
potential when wholly wet, and water transmission through the soil is restricted.

An olive orchard was selected for the experimentation. The orchard was 1.95 ha,
designed as a germplasm trail orchard, with five different cultivars (Pendolino, Colombino,
Scarlinese, San Francesco, Piangente). The olive trees were planted in June 2009 with a
5 × 6 m planting layout; the primary orientation was north–south, and the plants were
managed with a multi-branched (polyconic) vase pruning management (Figure 1). A drip
irrigation system could allow the irrigation of the orchard, but it was not used during the
experimentation season.

The results of a soil survey on electrical resistivity conducted in 2019 identified zones
with similar resistivity, and site-specific soil samples and analysis were carried out for
each zone. The experimentation site had a limited soil electrical resistivity variability
with the following main characteristics: a medium clay content (41%), lower silt and sand
content—33 and 26%, respectively; the pH was moderately alkaline (8.1), and the organic
matter content was 2.53%. In general, no restrictions on macro- and micronutrients were
present. The plants for the experimentation were selected within the same soil sub-zone.
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Figure 1. The two studied olives cultivars, Piangente (a) and Scarlinese (b). 
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A UAV flight performed by Pisa CNR allowed us to obtain a high-definition image 
of the experimental field and the digital terrain model (DTM) and digital surface model 
(DSM) of the fields. A DJI Phantom M4 (SZ DJI Technology Co., Ltd., Shenzhen, China) 
was used, mounted with a Six 1/2.9″ CMOS sensor: one RGB sensor and five monochrome 
sensors (spectral response in the blue, green, red, red edge, and NIR bands). Data were 
acquired from 11:30 to 12:30 on August 5th, with an 85% overlap in both directions. This 
allowed the creation of an orthophoto and a DSM, allowing us to measure the maximum 
height and area of the plants. The process followed for image elaboration is the same as 
in [25].  

Six plants were selected for the characterisation: three plants of the Piangente (PT) 
variety and three of the Scarlinese (SC) variety. This way, three replicas for each cultivar 
were obtained. The two cultivars presented a different development, with the PT variety 
characterised by a vertically developed canopy. Instead, the SC plants were more 
horizontally developed (Figure 1a,b). The plants for each cultivar were selected for their 
similar canopy development and crop load. The six plants were divided into sectors, 
considering two heights and exposures. The heights, namely Top and Low, subdivided 
the plant into two sectors: from 0.90 m from the ground to 2 m (Low) and from 2 m from 
the ground to the maximum height (Top). The different exposures, namely East and West, 
subdivided the plants into two more sectors. So, a total of four sectors were created: Low–
West (LW), Low–East (LE), Top–West (TW), and Top–East (TE).  

During the 2022 season, VI data were collected with a multispectral sensor mounted 
on a ground vehicle for each of the four sectors. In November 2022, a selective harvest was 
performed to harvest each plant and sector separately. At the time of the harvest, both 
quantitative and qualitative characterisation was performed.  

2.2. Vegetation Index Measurement 
For the canopy and vegetation index (VI) characterisation at different heights and 
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A UAV flight performed by Pisa CNR allowed us to obtain a high-definition image
of the experimental field and the digital terrain model (DTM) and digital surface model
(DSM) of the fields. A DJI Phantom M4 (SZ DJI Technology Co., Ltd., Shenzhen, China)
was used, mounted with a Six 1/2.9′′ CMOS sensor: one RGB sensor and five monochrome
sensors (spectral response in the blue, green, red, red edge, and NIR bands). Data were
acquired from 11:30 to 12:30 on August 5th, with an 85% overlap in both directions. This
allowed the creation of an orthophoto and a DSM, allowing us to measure the maximum
height and area of the plants. The process followed for image elaboration is the same as
in [25].

Six plants were selected for the characterisation: three plants of the Piangente (PT)
variety and three of the Scarlinese (SC) variety. This way, three replicas for each cultivar
were obtained. The two cultivars presented a different development, with the PT variety
characterised by a vertically developed canopy. Instead, the SC plants were more horizon-
tally developed (Figure 1a,b). The plants for each cultivar were selected for their similar
canopy development and crop load. The six plants were divided into sectors, considering
two heights and exposures. The heights, namely Top and Low, subdivided the plant into
two sectors: from 0.90 m from the ground to 2 m (Low) and from 2 m from the ground to
the maximum height (Top). The different exposures, namely East and West, subdivided
the plants into two more sectors. So, a total of four sectors were created: Low–West (LW),
Low–East (LE), Top–West (TW), and Top–East (TE).

During the 2022 season, VI data were collected with a multispectral sensor mounted
on a ground vehicle for each of the four sectors. In November 2022, a selective harvest
was performed to harvest each plant and sector separately. At the time of the harvest, both
quantitative and qualitative characterisation was performed.

2.2. Vegetation Index Measurement

For the canopy and vegetation index (VI) characterisation at different heights and
exposures, the OptRx® crop sensor (AgLeader Technologies, Ames, IO, USA) was used. Op-
tRx is an active sensor; i.e., it emits a light beam that hits the plants’ canopies, recording the
response by measuring the reflectance in the 630–685 nm (red), 695–750 nm (RE—red edge),
and 760–850 nm (NIR—near infrared) wavebands. The sensor stores canopy response
wavelengths as points and automatically processes and calculates NDVI and NDRE indices
using these wavebands. Each point measured by the sensor then contains information on
the values of the three wavelengths and the vegetation indices. Those vegetative indices
are obtained from the red, RE, and NIR wavebands with Formulas (1) and (2):

NDVI = NIR − RED/NIR + RED (1)
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NDRE = NIR − RE/NIR + RE (2)

OptRx was developed for open-field crops (such as wheat or corn); consequently, this
sensor is usually placed parallel to the ground at an average height of 1.2 m from plant
crowns. For this experiment, however, the sensor was placed perpendicular to the ground
and parallel to the crown of the plants. Therefore, it was deemed necessary to evaluate
the correct positioning of the sensor. In particular, it was necessary to determine at what
distance from the canopies the sensor had to be placed to acquire data, as this distance is a
crucial element for proper data collection, as suggested by [26]. Different positions were
evaluated from a literature review, as shown in Table 1.

Table 1. Literature references for sensor positioning classified based on the distance from the objective,
the different heights, and the kind of cultivation on which the measurements were performed.

Reference Distance from Canopy Crop

[27] 80 cm Vine
[28] 50–80 cm Potato
[29] 1.2–1.6 m Winter wheat
[30] ≈1 m Peach

[31]
0.75 m above the ground (about 0.5 m above
the pasture, considering an average pasture
height of 0.25 m)

Pasture

[32] 0.6–0.7 m Peanut

Reference Different Heights Crop

[33] 3, but not specified which Lab test, no crop specified
[34] 0.8, 1.6, and 2.4 m from the ground Apple

Considering the various positions employed by the previous studies, it was deemed
necessary to evaluate, for proper sensor placement, the height of the light beam emitted at
different distances from a target. For this evaluation, the sensor was placed on a pole in a
dark room in front of a smooth white wall at four distances (d)—1.5, 1.2, 0.9, and 0.7 m. For
each distance, the beam height (h) was measured. (Figure 2a). For each measurement, the
orthogonal position of the sensor relative to the target was evaluated, and the symmetry
of the emitted light beam was assumed. The angle (α) between the emitted light beam’s
starting point and the light beam’s height for each distance from the target was obtained
by a simple trigonometric calculation. The measure of the sensor’s emitted light beam
resulted in a mean angle between the light beam height and the distance of the sensor from
the objective of 120◦. Based on the result, it was possible to choose the sensor setting, as
explained below.

The multispectral sensor was mounted on a ground vehicle, a Kubota B2420 tractor
(Kubota, Osaka, Japan), to collect data automatically. The sensor was paired with a GNSS
receiver, GPS 6500 from AgLeader Technology (Ames, IO, USA), mounted atop the tractor’s
roll-over protective structure (ROPS), allowing a georeferentiation for every point collected
by the OptRX sensor. The instrumentation was coupled with the hardware and the rough
book (Panasonic ToughPad FG-Z1, Panasonic Corporation, Kadoma, Japan) for data collec-
tion and storage, and the point data were stored in .csv format. A 3 m graduated steel pole
was installed on the side of the ROPS structure to collect data at different heights (Figure 3).
The sensor was placed 1.6 and 2.5 m from the ground, and the tractor maintained a 1 m
distance from the canopies. The distance was chosen from the results of the light-emitted
beam height and angle from the objective as described before. This way, the emitted light
beam height was 1.2 m, which was considered optimal for assessing the entirety of the
canopy through the two different measures. This way, the assessment of the VIs at two
heights corresponded to the same partition of the plants as described before (Figure 2b).
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Figure 3. Multispectral data collection setting: on the roll-over structure is positioned the GNSS
receiver; on the left is it possible to see the steel pole on which the multispectral sensor is mounted. The
red and white strip allowed the same distance from the plants to be maintained for each replication.

Three replications were collected for each height, exposure, and plant. To maintain the
same distance from the canopies for each replication, a signal (i.e., a red and white strip
tied to two poles) was placed 1 m from the most overhanging part of the canopy, indicating
the correct path. The multispectral sensor, coupled with the GNSS receiver, collected and
recorded data every 0.2 m, and the tractor maintained an average speed of 1.38 m. As a
result, the points collected for each plant differed according to canopy length. Data were
collected on August 8, at noon, to limit direct canopy irradiance.

2.3. Qualitative and Quantitative Product Characterisation

Selective harvesting was carried out in November 2022. Each selected plant and
sector was harvested individually with a manual shaker. Before harvesting, 100 olives per
sector and plant were randomly selected; on that sample, the following measures were
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taken: resistance to detachment (RtD), measured with a dynamometer (0–1000 g, ARPO,
France); diameter of the fruit’s central section (Dmt), measured with a digital caliper (range
150 mm, resolution 0.01 mm) (METRICA, Milan, Italy); hardness of the fruit’s epicarp (Dur),
measured with a durometer (type O, Shore hardness measuring scale 0–100); maturation
index, measured following [35]; and weight of 100 olives (OW) measured with a digital
scale (KERN&SOHN digital balance, Balingen, Germany). A total of 300 samples per sector
per cultivar were analysed this way.

After the sampling, all the sectors and replicates were completely harvested, and the
weight of total olives per sector (ToW) was measured and collected for oil extraction.

It was possible to obtain a sample of olive oil from each sector for each plant through
micro-milling and microextraction. Studies by [36,37] were followed for the microextraction
procedure. The procedure consisted of a crusher, a lab-scale malaxator, and a laboratory
centrifuge (NEYA8, Neya centrifuges, Modena, Italy). After crushing, the total olive paste
obtained from each sample was mixed in a hermetically sealed cylindrical malaxator for
30 min, maintaining the temperature of the paste at 23 ◦C. Then, the paste was centrifugated
for 10 min at 6500 r.p.m. and recovered with a separatory glass funnel. In this way,
centrifugation separated the oil from vegetation water and solid fractions. After extraction,
the yield (Y) of each sample was measured and expressed as the percentage of oil weight
over olive paste weight. The samples were analysed by ISVEA s.r.l. laboratory (Istituto
per lo Sviluppo Viticolo Enologico ed Agroalimentare, Poggibonsi, Italy). Free fatty acid
content (FA) (by regulation: Reg CEE 2568/1991 11/07/1991 GU CEE L248 05/09/1991 All
II Reg UE 2016/1227 27/07/2016 GU UE L202/7 28/07/2016 All I), number of peroxides
(Prx) (by regulation: Reg CEE 2568/1991 11/07/1991 GU CEE L248 05/09/1991 All III Reg
UE 2016/1784 30/09/2016 GU UE L273/5 08/10/2016 All), and total polyphenols (Plyph)
(laboratory’s internal system of analysis: ML025 rev. 0 2006) were analysed. A total of
3 samples per sector per cultivar were analysed this way.

2.4. Statistical Analysis

VI and product characterisation data were stored in Excel sheets (Microsoft CO,
Washington, DC, USA). For VIs, cleaning the data from outliers or wrong values was
necessary. The multispectral data were in point form, with each point characterised by its
spatial location and the measured wavelength and VIs. Points with negative wavelength
values corresponding to empty areas (i.e., measurements taken between plants) were
considered erroneous, and values exceeding the VI threshold referring to vegetation (from
0 to 1) were considered outliers. After the cleaning, the multispectral sensor data were
sampled through GIS software (QGis 3.18 Zürich). One hundred values of the two VIs were
extracted for each sampled plant for every sector, creating a sample of 300 points per sector
per cultivar. After the sampling, statistical analysis was performed using RStudio (version
2023.06.0 Build 421) [38]. Some transformations were needed for olives’ and oils’ qualitative
and quantitative characterisation variables; logarithmic and Tukey transformations were
performed to achieve data normalisation. Tukey’s test for multiple comparisons was used
to estimate the difference between all parameters considering the effect of the different
heights, exposures, and cultivars, with a total of eight estimates. Bonferroni confident level
correction was applied to Tukey’s test, and p-values were considered significant at α = 0.05.
To apply the test, the “emmean” R package was used. Linear regressions were performed
to evaluate the relationship between the two VIs and the product characteristics. To create
the linear regression, the mean values of all the parameters collected per sector and plant
(i.e., a total of 12 values per parameter per cultivar) were used. The results were plotted in
a linear regression plot, and the R2 value and intercept were computed. The confidence
band, highlighting the confidence interval of 95% of the regression line, was also estimated.
To create the graph and calculate the R2 and the intercept, the “ggplot2” RStudio package
was used.

The process is summarised in the flow chart in Figure 4.
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3. Results
3.1. Plant Dimensions

Through the UAV data, specifically the orthophoto reconstruction and the DSM com-
puting, it was possible to obtain the maximum height and area of the six selected plants.
Data are shown in Table 2.

Table 2. Height and area calculated from UAV data.

Cultivar Plant Number H Max m Area Max m2

PT
1 4.00 5.39
2 4.11 4.99
3 3.75 6.30

SC
4 3.60 12.50
5 3.75 15.40
6 3.13 9.69

It was possible to see that the PT variety tends to have taller plants with limited
horizontal canopy development; instead, the SC plants had more evident horizontal de-
velopment and height similar to the PT. Consequently, the positioning at the two different
heights could be considered representative for both cultivars.

3.2. Vegetation Index Results

Multiple comparisons between the different sectors and cultivars for the VI data
highlighted different patterns, particularly between the cultivars. In Figures 5 and 6, the
boxplot graphs for the two VIs show the results for each sector, where the two cultivars are
evaluated separately.

Considering the NDVI for the PT plants (Figure 5a), it was possible to see median
values varying around 0.675 and 0.775, with the highest median value registered for the
LW sector. Some differences could be determined: NDVI values significantly differed
between the LW and LE areas, with LE recording higher values than LW. In the West
exposure, values in the Low areas were statistically higher than those in the Top sectors, but
in the East exposure, an inverse trend can be seen, with Low values lower than Top values.
Consequently, the influence of exposure and height could be observed. For plants of the SC
cultivar (Figure 5b), the median values of the NDVI index were slightly higher than those
of the PT, extending from 0.725 to 0.785. The LE sector displayed the greatest variability.
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Multiple-comparison analysis showed significant differences between the heights, with
higher values in the Low sector than in the corresponding Top sector. In this case, no
significant differences were observed between the exposures, although the values recorded
for the East exposure at both heights were slightly higher than those for the corresponding
West exposure.
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Different trends were observed in the NDRE index. Compared with the NDVI results,
for NDRE, the values aggregated around a narrower range in both cultivars: for the cultivar
PT (Figure 6a), median values ranged from 0.200 to 0.225, and values fluctuated around
the threshold of 0.255 for the cultivar SC (Figure 6b). There were no statistical differences
between LW and LE for the cultivar PT, which had values between 0.12 and 0.35 in both
cases. The Top sector had lower values than the corresponding Low sector, and TE recorded
higher values than TW. Consequently, a height effect was present for the NDRE of the
cultivar PT (Low values higher than Top values). For the cultivar SC, the distribution
pattern of NDRE was identical to that of NDVI for the same cultivar: the Low sectors
showed higher values than the corresponding Top sectors, and the East exposure recorded
slightly higher values than the West exposure. However, the statistics did not confirm the
latter difference.
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3.3. Qualitative and Quantitative Product Characterisation Results

Tables 3 and 4 show the mean values and standard deviation of the quantitative and
qualitative characteristics of olives and oils and Tukey’s test results, divided among different
sectors and cultivars. The Dmt measurement presented a substantial difference between
the cultivars; PT recorded bigger fruits, with diameters ranging between 14 ± 1 mm. SC
registered dimensions ranging between 10 ± 1 mm. Additionally, in both cultivars, the
Top sectors registered significantly higher Dmt values than the corresponding Low sectors.
Exposure, on the contrary, seemed to have no effect. The RtD variable showed differences
among both cultivars and sectors. Cultivar PT had lower RtD values, ranging from 380 to
460 g; SC, on the other hand, recorded values from 510 to 560 g. RtD was statistically higher
for each cultivar in the Top sector. Exposure seemed to have a weaker effect on the variable,
although it was possible to observe that PT values were slightly higher in the East exposure
than in the West exposure. However, these differences were not validated by statistics.
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Table 3. Mean and standard deviation for olives’ characterisation variables: fruit diameter expressed
in mm, resistance to detachment expressed as gf, fruit resistance to penetration expressed as Shore
hardness scale value, total harvest weight expressed in g, hundred olives’ weight expressed in g and
maturation index expressed in a scale from 0 to 7, where 0 indicates not ripe and 7 extremely ripe.
The values are classified based on the cultivar (PT and SC) and the sectors (LE, LW, TE, and TW).
The letters between the brackets state the differences between the values; different letters indicate a
statistically significant difference (p ≤ 0.05) in Tukey’s test. 1 Is the mean value of 300 samples. 2 Is
the mean value of 3 samples.

Dmt 1 RtD 1 Dur 1 ToW 2 OW 2 MI 1

µ ± σ µ ± σ µ ± σ µ ± σ µ ± σ µ ± σ

PT

LE 14.78 ± 1.08 (b) 428.50 ± 144.33 (ef) 38.03 ± 8.00 (c) 923.06 ± 391.38 (c) 261.54 ± 38.96 (a) 2.986 ± 0.301 (a)
LW 15.24 ± 1.12 (b) 383.83 ± 166.10 (f) 40.28 ± 7.68 (abc) 930.07 ±403.51 (c) 236.30 ± 13.05 (a) 2.93 ± 0.122 (a)
TE 15.38 ± 1.37 (a) 464.67 ± 154.81 (d) 42.88 ± 8.12 (ab) 3084.99 ± 695.70 (bc) 282.60 ± 21.47 (a) 2.616 ± 0.48 (a)
TW 15.40 ± 1.41 (a) 429.01 ± 160.16 (de) 41.03 ± 8.10 (ab) 3035.88 ± 299.53 (bc) 281.21 ± 13.13 (a) 2.59 ± 0.455 (a)

SC

LE 10.80 ± 0.82 (d) 513.50 ± 126.48 (bc) 41.49 ± 9.77 (bc) 6006.81 ± 2146.18 (ab) 122.40 ± 13.87 (b) 4.386 ± 0.778 (b)
LW 10.64 ± 0.70 (d) 531.34 ± 126.44 (c) 42.31 ± 9.09 (ab) 4471.79 ± 1230.90 (ab) 133.36 ± 19.99 (b) 4.733 ± 0.89 (b)
TE 11.17 ± 0.84 (c) 549.33 ± 154.10 (a) 40.56 ± 10.41 (a) 6976.11 ± 3055.33 (a) 133.09 ± 12.83 (b) 4.85 ± 1.368 (b)
TW 11.07 ± 0.84 (c) 558.83 ± 136.48 (ab) 42.14 ± 10.62 (a) 5393.84 ± 979.03 (a) 137.23 ± 19.96 (b) 4.753 ± 0.235 (b)

Table 4. Mean and standard deviation for oils’ characterisation variables: fatty acids expressed as
percentage of oleic acid, peroxide content expressed as milliequivalents of O2 Kg−1, polyphenols
expressed as mg Kg−1 of gallic acid, and yield expressed as percentage of extracted oil. The values
are classified based on the cultivar (PT and SC) and the sectors (LE, LW, TE, and TW). The letters
between the brackets state the differences between the values; different letters indicate a statistically
significant difference (p ≤ 0.05) in Tukey’s test. Each value for the parameters is the mean value of
3 samples.

FA Prx Plyph Y

µ ± σ µ ± σ µ ± σ µ ± σ

PT

LE 0.230 ± 0.017 (a) 6.000 ± 1.411 (a) 1012.00 ± 186.840 (a) 12.210 ± 1.206 (a)
LW 0.230 ± 0.017 (a) 5.833 ± 1.474 (a) 1068.667 ± 153.728 (a) 11.673 ± 1.958 (a)
TE 0.297 ± 0.042 (a) 6.867 ± 0.666 (a) 1033.667 ± 157.052 (a) 13.603 ± 0.719 (a)
TW 0.277 ± 0.040 (a) 6.133 ± 0.603 (a) 1030.33 ± 123.062 (a) 10.940 ± 1.202 (a)

SC

LE 0.153 ± 0.015 (b) 5.567 ± 1.159 (a) 561.00 ± 115.00 (b) 4.230 ±1.000 (b)
LW 0.143 ± 0.012 (b) 4.80 ± 0.52 (a) 562.333 ± 19.553 (b) 4.237 ± 0.538 (b)
TE 0.143 ± 0.012 (b) 6.067 ± 0.306 (a) 443.333 ± 71.842 (b) 4.890 ± 0.512 (b)
TW 0.147 ± 0.015 (b) 5.733 ± 0.252 (a) 496.333 ± 93.565 (b) 4.853 ±1.406 (b)

No particular differences were obtained for the Dur variable. PT registered values
ranging from 38 to 42 on the Shore scale. Instead, SC registered values from 40 to 42.
Tukey’s test did not highlight any significant differences. Values of the ToW variable were
substantially higher for the cultivar SC (4500–7000 g) and lower for PT (900–3000 g). There
were no statistically significant differences between the sectors, although the Top sectors
recorded higher values than the corresponding Low sectors in both cultivars. For SC, East
exposure recorded higher values than West exposure. OWs showed substantial differences
between cultivars, with PT recording higher values than SC (260–280 and 122–137 g).
Although there were no significant differences between the sectors, for both cultivars, the
Low sector values were slightly higher than the corresponding Top values. This trend was
similar to that of the Dmt variable. MI results were statistically different among cultivars
but were homogeneous across sectors, and no clear patterns or statistical differences were
present. The differences between cultivars showed a higher degree of maturity for SC than
for PT, with the former obtaining values around 4 and the latter closer to 2.

FA content values of the extracted olive oil still did not show significant differences
between the sectors but did show significant differences between the cultivars. The PT
cultivar recorded values between 0.23% and 0.30% oleic acid, and the SC variety between
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0.14% and 0.15%. For Prx content, the results were not statistically different, with the
PT cultivar raging between 5.5 and 6.8 Meq O2 Kg−1 and SC between 4.8 and 6.0. It
was possible only to identify slightly higher values for the East exposure, but they were
not statistically significant. Regarding Plyph values, statistically significant differences
were obtained only between cultivars. PT recorded higher values, ranging from 1012
to 1068 mg Kg−1 gallic acid, compared to SC, which recorded 443 to 561 mg Kg−1 gallic
acid. Y results differed substantially between cultivars, with PT recording higher values
(10.9–13%) than SC (4.23–4.98%). The cultivar PT obtained results in Y slightly higher for
East exposure than for West, but statistics did not confirm the difference. This trend was
not present for the SC cultivar, which recorded more similar values among the sectors.

3.4. VI and Product Characterisation Regression

Figure 7 shows the linear regressions for cultivars PT and SC for the relationship
between NDVI and product characterisation. Figure 7A–H expose the results for PT. It
was possible to assess the absence of a relationship for each variable studied, as the R2

values recorded were too low to state a significative relationship. Only in the relationship
between NDVI and FA (Figure 7E) was it possible to see an R2 = 0.25, still a nonsignificant
value. A negative trend was present in all relationships in the cultivar PT, particularly
for the variables ToW, OW, and FA. In the case of SC (Figure 7I–P), the R2 values were
not statistically significant. RtD and OW (Figure 7J,L) had R2 values greater than 0.30
(R2 = 0.35, R2 = 0.38), and the trend was negative in both cases.
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between NDVI and product characterisation. Figure 7A–H expose the results for PT. It 
was possible to assess the absence of a relationship for each variable studied, as the R2 
values recorded were too low to state a significative relationship. Only in the relationship 
between NDVI and FA (Figure 7E) was it possible to see an R2 = 0.25, still a nonsignificant 
value. A negative trend was present in all relationships in the cultivar PT, particularly for 
the variables ToW, OW, and FA. In the case of SC (Figure 7I–P), the R2 values were not 
statistically significant. RtD and OW (Figures 7J,L) had R2 values greater than 0.30 (R2 = 
0.35, R2 = 0.38), and the trend was negative in both cases.  

Figure 8 shows the linear regression for cultivars PT and SC for the relationship 
between NDRE and product characterisation. Again, highly significant R2 values were not 
obtained, although the regression values were slightly higher for some variables than 
those measured for NDVI relationships. For PT, R2 values greater than 0.35 were recorded 
for RtD, ToW, and FA variables (R2 = 0.44, R2 = 0.37, and R2 = 0.51) (Figure 8B,C,E). For all 
these variables, the trend was negative, confirming the trend observed for the NDVI study. 
For NDVI and NDRE in cultivar PT, the linear regression for Plyph, Prx, and Y was essen-
tially insignificant. RtD linear regression (Figure 8J) measured a good R2 value (R2 = 0.63) 
with a negative trend for the cultivar SC. The R2 values were too small for the other vari-
ables to assess trends.  
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Figure 8 shows the linear regression for cultivars PT and SC for the relationship
between NDRE and product characterisation. Again, highly significant R2 values were
not obtained, although the regression values were slightly higher for some variables than
those measured for NDVI relationships. For PT, R2 values greater than 0.35 were recorded
for RtD, ToW, and FA variables (R2 = 0.44, R2 = 0.37, and R2 = 0.51) (Figure 8B,C,E). For
all these variables, the trend was negative, confirming the trend observed for the NDVI
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study. For NDVI and NDRE in cultivar PT, the linear regression for Plyph, Prx, and Y
was essentially insignificant. RtD linear regression (Figure 8J) measured a good R2 value
(R2 = 0.63) with a negative trend for the cultivar SC. The R2 values were too small for the
other variables to assess trends.
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Figure 9 shows the relationship between the two VIs and the MI variables for PT
(Figure 9A,B) and SC (Figure 9C,D). No significant R2 values were obtained, with the
highest value being for NDRE vs. MI for the SC cultivar (R2 = 0.48) (Figure 9C). Nonetheless,
two distinct trends were observed: for PT, the regression was positive; instead, the trend
was negative for SC.
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4. Discussion

Vegetation indices based on canopy reflectance are, to date, one of the key elements
for the application of variable-rate management practices and precision agronomic man-
agement of fields and orchards. However, the application of these indices and technologies
has not yet been implemented in the traditional olive sector. This may be due, in part, to
the complexity of olive tree canopy development and characteristics, elements that can
influence canopy reflectance and, consequently, vegetation index responses [39]. Taking
into account this element and the variability of the product characteristics and its distri-
bution in different canopy sectors [40], the present study had two main objectives: (a) to
study through a multispectral sensor the response of vegetation indices of the canopies of
two olive cultivars at different heights and exposures and, at the same time, to characterise
the product in the same different heights and exposures and (b) to study the possible
relationships between VIs and product characteristics. For this purpose, a ground vehicle
with a georeferenced proximal multispectral sensor was deployed, and data from two
VIs (NDVI and NDRE) were collected; canopy responses to the sensor were studied in
four sectors according to height (0.9–2 m, 2 m–max canopy height) and exposure (West
or East). The behaviour of VIs in the different sectors showed for each index, sector, and
cultivar—except for the East exposure in PT—higher values for both VIs in the lower
part of the canopies than in the corresponding upper part. For the present study, the
authors investigated if there were differences in the VI responses at different heights for
PA management purposes: the results showed that applying just one height when using a
multispectral sensor on the vertical axis of the canopy can be reductive, as it cannot show
all the variability thought all the canopy. This can lead to different needs for the canopies
in terms of localised fertilisation and canopy biomass management through pruning.

The product was selectively harvested based on the same four sectors applied in the
VI data collection. The obtained results confirmed what previous studies found. The higher
values obtained for both the total weight (ToW) and the 100-olive weight (OW) for the
upper part of the canopy follow the trend seen in previous research [40–42]. This behaviour
may be due to the influence of higher irradiance in the upper part of the canopy, resulting in
increased fruit size and weight [23,43]. This also justifies the behaviour of olive size (Dmt),
which is larger in the upper part of the canopy. In the case of resistance to detachment
(RtD), the influence of the cultivar is the main aspect to consider [44]. However, other
elements should also be considered: different irradiation levels may have an effect [40],
leading to a higher level of RtD with higher irradiation. Maturation index (MI) and epicarp
resistance to penetration (Dur) do not differ significantly between sectors, and only the
effect of the cultivar should be taken into account.

In oils’ qualitative characterisation analysis, particularly for the peroxide content, a
minor but nonsignificant difference was obtained between the sectors. This trend was
also obtained in previous research studying cultivars Arbequina, Manzanilla de Sevilla,
and Manzanilla Cacereña [40–42]. In the case of fatty acids, the lack of difference between
sectors confirms previously studied trends [45]. In the case of yield, the results were similar
between the sectors, with only slightly higher values in the upper part of the canopy, similar
to a previous study [41].

The results of the present study show that although product quality is not strictly
dependent on the positioning of fruit plants, certain elements are, particularly RtD, Dmt,
and ToW. These elements are of particular interest because they influence harvest effi-
ciency [46,47].

A linear regression was performed between the VI and product data to assess the
possibility of a relationship between these variables. The results showed no or poor
relationships between the parameters. Insignificant R2 values were obtained, with a
maximum value of R2 = 0.63, still a nonsignificant value. However, it was possible to
evaluate some trends, particularly between RtD and NDRE values for both cultivars
(R2 = 0.63 for PT and R2 = 0.44 for SC). The results showed a negative trend, i.e., a lower
RtD value in the presence of higher VI values, suggesting that a more vigorous area may
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reduce the fruit detachment strength. Another noteworthy feature is the different responses
of the two cultivars for some regressions. In particular, an inverse trend can be seen in
the MI and ToW regressions: in the first case, PT had a positive trend, while SC obtained
a negative trend. In the second case, ToW, cultivar PT obtained a negative trend. On the
other hand, SC showed a positive trend, confirming the results of previous studies [48,49].
The results show that the effect of cultivar must be considered in the use and study of VIs
in olive grove management. Cultivars can strongly influence the response and behaviour
of VIs [50], the product, and, consequently, their interaction.

5. Conclusions

Few studies have used a ground-mounted proximal multispectral sensor in olive
growing. To address differences in the response of vegetation indices, it is more common to
use a UAV-supported sensor. However, this type of data collection may lose information on
the vertical axis of canopies. The present study aimed to investigate the effect of height and
exposure on the response of vegetation indices, detected by a proximal multispectral sensor,
and product characteristics for two olive cultivars. The results show that height can affect
the VI response, which means that studying the vertical axis of the canopy by applying
only a height to the sensor may be reductive. In particular, the results showed higher VI
values in the lower part of the canopies. However, further studies are needed. In particular,
only one type of exposure (west–east exposure) was analysed in the present study, but a
north–south exposure study should be considered to confirm this trend. In addition, the
study evaluated only two cultivars, and considering the high variability among cultivars in
the results obtained, it is necessary to assess the behaviour of other olive varieties. However,
knowing that plants can have different results regarding vegetation index and vigour status
at different heights can be valuable information for managing olive groves with precision
agriculture techniques.

The product characterisation showed little height and exposure effects, with some
exceptions. In particular, for some characteristics (fruit resistance to detachment, diameter,
and total harvest weight) that can affect harvest efficiency, the results were statistically
higher in the upper part of the canopies. The linear regression between the vegetation
indices and the product characteristics did not show significant values, just some trends,
as in the case of the negative relationship between the NDRE and the fruit resistance to
detachment (R2 = 0.44–0.63). More studies are needed to assert with a reasonable degree
of certainty the relationship between VIs and olive production, particularly between the
VIs and the product characteristics that can influence harvest efficiency. Nonetheless,
other elements should be considered in investigating these relationships; in particular, the
cultivar effect should be replicated, and the seasonal and temporal impact should also
be examined.
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