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A B S T R A C T   

Many studies have documented the important role of the gut microbiota (GM) in the regulation of several central 
nervous system (CNS) processes through the microbiota-gut-brain (MGB) axis. This latter represents the 
connection between the CNS, the enteric nervous system, the gut and its microbiota through several ascending 
and descending pathways. The variation of the GM composition is associated with the pathogenesis and/or 
progression as well as severity of various neuropsychiatric/neurological diseases such as depression, autism 
spectrum disorder, multiple sclerosis, Parkinson’s, and Alzheimer’s diseases. Recently, changes in the bacterial 
composition of the GM have also been linked to epilepsy and seizures, with some studies exploring the potential 
role of GM in the regulation of neuronal hyperexcitability, seizure occurrence and epileptogenesis. Accordingly, 
there are potential novel treatments which are currently being investigated such as probiotics, prebiotics and 
symbiotic that may represent innovative therapeutic approaches. The aim of this review is to explore the effect of 
gut microbiota manipulation as a therapeutic strategy in epilepsy and the methodological challenges to design 
(translational) clinical trial investigating the gut microbiota.   

1. Introduction 

A large amount of preclinical and clinical studies documented the 
crucial role of the gut microbiota (GM), the complex of microorganisms 
colonizing the intestinal tract, in regulating the central nervous system 
(CNS) homeostasis, cognitive development, and behaviour through the 
microbiota-gut-brain (MGB) axis, beginning a new frontier for neuro-
logical disorders. The role of GM composition in the genesis or pro-
gression of a variety of neurological disorders (Chatzikonstantinou et al., 
2021) such as autism spectrum disorder (Coretti et al., 2017), multiple 
sclerosis (Jangi et al., 2016), Parkinson’s and Alzheimer’s (Jiang et al., 
2017) diseases has been recently highlighted. Changes in the gut bac-
terial composition have also been linked to epilepsy (Citraro et al., 
2021). Epilepsy is one of the most common neurological disorders 
affecting about 50 million people worldwide (Devinsky et al., 2018). 
About 35% of epilepsy cases are directly linked to a genetic background, 
whereas in the remaining cases genetic risk in addition to acquired and 
environmental factors contribute to epileptogenesis. Among environ-
mental causes there are trauma, tumours, strokes, traumatic brain 
injury, or infections. Epilepsy treatment involves the use of antiseizure 
medications (ASMs), surgery, vagus nerve stimulator (VNS), and keto-
genic diet (KD). Notwithstanding the availability of several ASMs, about 

30% of patients will not respond to an appropriate pharmacological 
treatment, being then classified as drug or treatment resistant (Chen 
et al., 2018). 

Novel scientific approaches, such as metabolomics, metagenomics 
and even faecal microbiota transplantation (FMT) have deeply 
contributed to a better understanding of the potential impact under-
pinned by the gut microbiota on neuroinflammation, metabolic and 
neuroendocrine signalling pathways among others (Cryan et al., 2020). 
It is assumed and widely scientifically supported that, the intestinal 
microbiota might exert changes on the CNS via the MGB axis (Wang 
et al., 2018). During the last decade, numerous researchers and clini-
cians keenly investigated the potential role of the microbiota to regulate 
hyperexcitability, seizures and its impact on epileptogenesis. Further-
more, the possibility to control seizures modifying directly and/or 
indirectly MGB axis (Sandhu et al., 2017) using supplements (e.g., pre-
biotics, probiotics and symbiotic), diets (e.g., ketogenic diet) and FMT 
has been explored. The administration of probiotics, prebiotics and their 
combination called symbiotic, is increasingly used in clinical practice for 
several conditions such as inflammatory bowel disorders (Naidoo et al., 
2011; Rolfe et al., 2006), systemic diseases (e.g., diabetes (Zhang et al., 
2016), hypertension (Khalesi et al., 2014)) but also for neuropsychiatric 
conditions (e.g., depression (Huang et al., 2016) and autism spectrum 
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disorders (Shaaban et al., 2018)); however, in comparison, only few 
studies in the field of epilepsy are available. Moreover, it is well known 
that also antibiotics modify GM community clearly representing the 
most direct and effective way of targeting intestinal microbes (Smaga 
et al., 2020). This review aims to explore the effect of GM manipulation 
as a novel therapeutic strategy in epilepsy focusing on human findings 
and the methodological challenges to design (translational) clinical trial 
investigating this approach. 

2. Overview of MGB axis in epilepsy 

The MGB axis, among others, is formed by the CNS, the enteric 
nervous system, and the GM communicating by ascending and 
descending routes (Ambrosini et al., 2019). More specifically, the 
ascending pathway of the axis is involved in neural changes including 
microglia’s functions (Abdel-Haq et al., 2019); this reflects its impor-
tance in neurogenesis, synapse modelling, and prevention of excitotox-
icity (Kettenmann et al., 2013). Accordingly, several studies on GM and 
MGB axis evidenced their role in neural development (Warner, 2019), 
neuroinflammation (Sundman et al., 2017), stress response and neuro-
transmission (Foster et al., 2017). On the other hand, the brain regulates 
gut peristalsis, sensory and secretion function, mainly acting on the 
enteric nervous system through the vagus nerve (Bonaz et al., 2018); all 
of them impacting on GM composition. 

Overall, many clinical and experimental studies investigated the role 
played by GM in several pathologies such as cancer (Ianiro et al., 2020), 
obesity (Lu et al., 2020) diabetes (Lecronier et al., 2020), and neuro-
logical diseases such as Alzheimer’s (Sun et al., 2019), Parkinson’s (Xue 
et al., 2020) and epilepsy (De Caro et al., 2019a; Iannone et al., 2019). 

Regarding the brain, It was shown that GM’s alterations can interfere in 
the development and maintenance of some neurological/neuropsychi-
atric disorders (Cryan et al., 2019; Cryan and Dinan, 2012). More spe-
cifically for epilepsy, seizures and epileptogenesis could be influenced 
by GM through: 1) the intestinal production of neurotransmitters such as 
γ-aminobutyric acid (GABA), glutamate and serotonin (5-HT) (Mittal 
et al., 2017); 2) by pro-inflammatory effects mediated by the immune 
system with the release of cytokines and chemokines, and an increase in 
lipopolysaccharide (LPS) levels contributing to gut- and blood-brain 
barrier increased permeability and increased neuroinflammation 
(Blander et al., 2017; Riazi et al., 2008, 2010); 3) by modifying the 
amount of gut-derived metabolites (Olson et al., 2018) such as short 
chain fatty acids (SCFAs) mainly known for CNS protective effects (De 
Caro et al., 2019b; Stilling et al., 2016). Furthermore, neural and 
neuroendocrine hypothalamic-pituitary-adrenal (HPA) axis (Sudo et al., 
2004), as well as the endocannabinoid system and the levels of brain- 
derived neurotrophic factor (BDNF) (Maqsood and Stone, 2016) can 
be influenced by GM interfering with seizures mechanisms (Fig. 1). 

Some studies have already demonstrated that the GM and even 
gastrointestinal functions are altered in epilepsy (Avorio et al., 2021; 
Russo, 2022). As an example, Xie and colleagues published the first 
paper sequencing and comparing faecal samples of 14 drug-resistant 
epilepsy (DRE) children and 30 healthy controls (Xie et al., 2017) 
highlighting a reduction of the Bacteroidetes phylum in DRE patients. 
This was later confirmed by Peng and colleagues comparing 42 DRE 
patients with 49 patients with drug-sensitive epilepsy and 65 healthy 
controls (Peng et al., 2018). In this study, it was evidenced that DRE 
patients had higher levels of rare microbial genera, including Clostridium 
XVIII, Atopobium, Holdemania, Dorea, Saccharibacteria, Delftia, 

Fig. 1. An overview of the microbiota gut brain axis in epilepsy. 
5-HT, serotonin; BBB, blood brain barrier; BDNF, brain-derived neurotrophic factor; FMT, faecal microbiota transplantation; GABA, γ-aminobutyric acid; HPA, 
hypothalamic-pituitary-adrenal; IL, interleukin; LPS, lipopolysaccharide; SCFAs, short chain fatty acids; TNF, tumour necrosis factor. Created with Biorender.com. 
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Coprobacillus, Paraprevotella, Ruminococcus, Gemmiger, Akkermansia, 
Neisseria, Coprococcus, Fusobacterium, Methanobrevibacter, Phascolarcto-
bacterium, and Roseburia. Some other subsequent studies identified dif-
ferences between patients with epilepsy and healthy controls, reviewed 
in Russo (2022). Similar results have been achieved in animal models 
although even less studies are yet available. For example, the first study 
in a genetic model was performed by Citraro et al. demonstrating that 
WAG/Rij rats, a genetic animal model of absence epilepsy, presented 
alterations in the GM composition when compared with control non 
epileptic Wistar rats. No changes in α-diversity were observed although 
β-diversity was influenced differently at different ages with decreased 
abundance of Bacteroidetes phylum and increased abundance of Firmi-
cutes and Proteobacteria phyla, and a reduction of intestinal level of 
SCFAs (Citraro et al., 2021). In agreement, a subsequent study found a 
difference in GM composition also in a genetic animal model of Dravet’s 
Syndrome (Miljanovic and Potschka, 2021). 

Very few studies investigated the impact of ASMs on the gut micro-
biota. In the large study by Maier et al. (2018) have shown that several 
non-antibiotic drugs (27% on 1197) inhibited at least one bacterial 
strain, although none ASMs have shown antimicrobial effects. However, 
other in vitro studies demonstrated that lamotrigine inhibit E. coli ribo-
somal biogenesis (Stokes et al., 2014) and can inhibit aerobic or facul-
tative aerobic strains as well as an antibacterial activity against some 
Gram-positive species (Qian et al., 2009). Valproate demonstrated to 
affects microbiota composition in an animal model and zonisamide is 
metabolized to 2-sulfamoylacetylphenol by gut microbiota (Kitamura 
et al., 1997). Recently, Ilhan et al. (2022) showed that carbamazepine, 
lamotrigine, and topiramate reduced the growth of more than ten strains 
(including E.coli and Lactobacillus reuteri). Altogether, we do not 
completely understand the mechanisms involved in the complex 
mechanisms on ASMs but indeed MGB axis represents a suitable target 
for the development of innovative therapeutic interventions for patients 
with epilepsy. 

3. Modulation of the gut microbiota through functional foods 

It has to be specified that the GM may have both a beneficial or 
detrimental effect on human health status contributing to different 
diseases; this depends on the ratio between protective and harmful 
species in the gut and its continuously maintained homeostasis (Aruls-
amy et al., 2020). Some Authors have hypothesized the possibility of 
preventing or improving the progression of certain diseases by re- 
establishing an altered microbiota towards beneficial flora or adding 
and increasing beneficial microbial species in the gut. Different methods 
have been used with the aim of altering gut microbiota improving 
dysbiosis and GM health such as ketogenic diet, functional foods (pro-
biotics, prebiotics, symbiotic, postbiotics), antibiotics and faecal mi-
crobial transplantation. 

3.1. Prebiotics and probiotics 

Functional foods can be defined as “any food that has a positive impact 
on an individual’s health, physical performance, or state of mind, in addition 
to its nutritious value” (Nataraj et al., 2020). Substantially, they should 
serve to regulate particular body process(es), such as enhancement of 
biological defense mechanisms, prevention of specific diseases, control 
of physical and mental disorders, and slowing of aging. Prebiotics and 
probiotics are included among functional food products. The World 
Health Organization (WHO) defines probiotics as “vital microorganisms 
that provide health advantages to their consumers when digested in sufficient 
quantity” (Morelli and Capurso, 2012). Prebiotic concept was first 
defined in 1995 as a “non-digestible food ingredient that beneficially affects 
the host by selectively stimulating the growth and/or activity of one or a 
limited number of bacteria already resident in the colon” (Gibson and 
Roberfroid, 1995). 

Trials about probiotics and epilepsy are very limited although some 

are currently being performed (Tables 1 and 2) and the potential 
mechanisms of action proposed come mainly from animal studies (Fig. 2 
or graphical abstact and Table 3) (Tahmasebi et al., 2020). For example, 
one of the potential mechanisms is linked to increased brain GABA levels 
or improved antioxidant/oxidant ratio (total antioxidant capacity with 
decreasing nitric oxide and malondialdehyde) as observed in kindling 
model (Bagheri et al., 2019). 

To date, only two human studies have been concluded. The first one 
was ruled out in neonates (Yeom et al., 2019). The authors designed a 
prospective study enrolling 228 neonates who were admitted in inten-
sive care units. Rotavirus infection was found as an independent risk 
factor for neonatal seizures. Immediate administration of probiotics (i.e., 
Saccharomyces boulardii and only one Lactobacillus casei) after birth (for a 
non-specified reason reported) reduced rotavirus-associated neonatal 
seizures by 10-fold (OR 0.09; p < 0.001). They proposed that S. boulardii 
reduces seizures through inhibition of rotavirus structural protein 4 
(NSP4) or by anti-inflammatory effects, considering that NSP4 is a viral 
enterotoxin associated with neurological injury produced by rotavirus. 

was Another study conducted in adults with DRE (Gómez-Eguílaz 
et al., 2018). Probiotics was administered as a supplementation of their 
stable ASMs treatment for 4 months. After the probiotic was interrupted, 
patients were followed-up for a further 4 months. A higher than 50% 
reduction in seizures’ number was observed in 28.9% of the patients 
(ITT population). Quality of life significantly (QoL) improved in those in 
which probiotics were effective to reduce seizures (mean ± SD: 19.23 ±
6.04 vs 26.45 ± 9.7; p = 0.013). This latter improvement was observed 
both during probiotic supplementation and in the 4 months after sus-
pension, no data on seizures after discontinuation has been reported. 
The plasma levels of IL-6 (i.e., an inflammatory cytokine) decrease and 
GABA levels increase during treatment, without achieving statistical 
difference. It was proposed that both could be involved in seizure con-
trol and improved QoL, although the sample size was too small and 
further studies are needed to confirm this hypothesis. Ongoing clinical 
trials investigating supplementations/modulations in epilepsy are listed 
in Table 4. 

Prebiotics and probiotics are safely used, and safety outcomes are 
frequently reported in clinical trials, supporting the assumption that 
they are generally secure. However, probiotics could be not universally 
safe, above all in vulnerable populations (e.g., premature infants, severe 
clinical conditions and during immunosuppressive treatments), and 
potential risks have been described in experimental models, trials, and 
case series (Kothari et al., 2019). 

These risks include sepsis, localized infections, metabolic distur-
bance, excessive immune activations as well as gastrointestinal adverse 
effects (Doron and Snydman, 2015). Therefore, the production and 
distribution of probiotics need to be regulated and more research 
focused on safety need to be performed, with active surveillance for 
potential related-infections and other adverse events. 

3.2. Postbiotics 

Probiotics use has some limitations: 1) difficulty to achieve and use 
effective concentrations (Reid et al., 2011; Shenderov, 2013); 2) alter-
ations of the gastrointestinal tract (GIT) activating several bacterial 
genes for degradation and production of different nutrients by various 
metabolic pathways (Baugher and Klaenhammer, 2011; Bron et al., 
2004). To overcome these problems, postbiotic have been developed, 
being produced by probiotics and representing a promising alternative 
supplement for human health (Nataraj et al., 2020). Postbiotics may be 
defined as “non-viable bacterial products or metabolic products from mi-
croorganisms that have biological activity in the host” (Martín and Langella, 
2019). They are the complex mixture of healthy metabolic products or 
secreted components of probiotics in cell-free supernatants such as en-
zymes, secreted proteins, short chain fatty acids, vitamins, amino acids, 
peptides, organic acids, etc. (Nataraj et al., 2020). These have several 
advantages over the traditional probiotics such as a known molecular 
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structure, can be used in purified forms and possess a defined mecha-
nism of action. Greater and easier production along with easier storage 
are other advantages. The postbiotics benefits include, among others, 
anti-inflammatory, immunomodulatory, antihypertensive, hypo-
cholesterolemic, antiproliferative, and antioxidant effects. (Nataraj 
et al., 2020) but seem also to effect seizure occurrence in animal models 
of absence epilepsy (Citraro et al., 2020; De Caro et al., 2019a, 2019b; 

Leo et al., 2021). These attributes suggest the potentiality of postbiotic 
molecules to improve the host health by modulating the host physiology. 
But human/clinical trials are needed to confirm these results. At present, 
there are no published clinical studies on postbiotics in epilepsy. 

Table 1 
Preclinical and clinical studies on epilepsy and probiotics.  

Title Year Population Outcomes Strength Limitations References 

Probiotics and Nigella sativa extract supplementation 
improved behavioral and electrophysiological 
effects of PTZ-induced chemical kindling in rats 

2020 Epileptic 
models rats 

Probiotics and Nigella sativa extract 
supplementation had inhibitory 
effects on kindling 

High sample 
size and model 
of kindling  

(Tahmasebi 
et al., 2020) 

Effect of probiotic supplementation on seizure 
activity and cognitive performance in PTZ- 
induced chemical kindling 

2019 Epileptic 
models rats 

Probiotics diminish epileptic activity Model of 
kindling 

Limited 
sample size 

(Bagheri et al., 
2019) 

Neonatal seizures and white matter injury: Role of 
rotavirus infection and probiotics 

2018 Neonates Immediate administration of 
probiotics after birth may reduce 
rotavirus-associated neonatal seizures 

High sample 
size  

(Yeom et al., 
2019) 

The beneficial effect of probiotics as a 
supplementary treatment in drug-resistant 
epilepsy: a pilot study. 

2018 Drug-resistant 
epilepsy 
patients 

Improve frequency of seizures and 
quality of life 

Paired samples Not placebo 
arm 

(Gómez-Eguílaz 
et al., 2018) 

PTZ, Pentylenetetrazol. 

Table 2 
Different probiotics used in epilepsy and related studies.  

Article Tipe of product Composition Commercialized References 

Probiotics and Nigella sativa extract supplementation 
improved behavioral and electrophysiological effects 
of PTZ-induced chemical kindling in rats 

Probiotics and 
Nigella sativa 

Lactobacillus (L. casei, L. acidophilus) and Bifidobacterium (B. 
bifidum) 

Provita© (Tahmasebi 
et al., 2020) 

Effect of probiotic supplementation on seizure activity 
and cognitive performance in PTZ-induced chemical 
kindling 

Probiotics Lactobacillus rhamnosus, Lactobacillus reuteri and 
Bifidobacterium infantis 

Pedilact© (Bagheri et al., 
2019) 

Neonatal seizures and white matter injury: Role of 
rotavirus infection and probiotics 

Probiotics Saccharomyces boulardii and only one took Lactobacillus casei Not 
Commercialized 

(Yeom et al., 
2019) 

The beneficial effect of probiotics as a supplementary 
treatment in drug-resistant epilepsy: a pilot study 

Probiotics Lactobacillus acidophilus DSM32241, Lactobacillus plantarum 
DSM32244, Lactobacillus casei DSM32243, Lactobacillus 
helveticus DSM32242, Lactobacillus brevis DSM11988, 
Bifidobacterium lactis DSM32246, B. lactis DSM32247 and 
Streptococcus salivarius subsp. thermophilus DSM32245. 

Sivoy© (Gómez-Eguílaz 
et al., 2018) 

PTZ, Pentylenetetrazol. 

Fig. 2. Supposed mechanisms and effects of prebiotics and probiotics in epilepsy. 
BBB, blood brain barrier; GABA, γ-aminobutyric acid; SCFAs, short chain fatty acids. Created with Biorender.com. 
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4. Antibiotics and seizures/epilepsy 

Findings from preclinical models have studied potential pathways by 
which antibiotics regulate seizure susceptibility (Lum et al., 2020) that 
could be directly or indirectly related to GM modulation. However, no 
specific studies have been performed so far to investigate if antibiotics 
pro/anti-seizures effects are related to GM. Overall, several mechanisms 
have been related to antibiotics neurotoxicity and seizure induction. 

β-lactams are the class of antibiotics most widely used (Esposito 
et al., 2017), including penicillins, cephalosporins, carbapenems and 
monobactams (Raposo et al., 2016). The neurotoxicity of penicillin was 
first reported in 1945 by Johnson and Walker, who observed myoclonic 
twitching after intravenous administration (Walker et al., 1945). The 
theory of epileptogenesis related with the β-lactams is due to the inter-
ference in the inhibitory effect on GABA binding to GABA-A receptors. 
The ring structure of β-lactams is similar to the architecture of GABA 
neurotransmitters. The inhibition of GABA led to hyperexcitability of 
neurons and depolarization of the postsynaptic membrane, lowering the 
seizure threshold. The molecular structure of the β-lactams is not the 
same, that could explain the different risk of epileptogenesis among 
them. 

One study reports the effect of ceftriaxone and cefepime (β-lactam 
antibiotics) on the seizures (Amakhin et al., 2018). The authors 
demonstrate in rats, that cefepime and ceftriaxone have different 
mechanisms of action on GABA-A receptors. Cefepime blocks GABA-A 
receptors in a competitive manner, while ceftriaxone has a non- 
competitive mechanism of GABA receptor inhibition. Both antibiotics 
decrease the amplitude of evoked inhibitory postsynaptic currents 
(IPSCs), but with high concentrations that do not use in normal pre-
scription. The direct inhibitory synaptic transmission blockade may not 
be the primary mechanism underlying cephalosporin-induced seizures. 
Nevertheless, they analyzed the side-effects of cephalosporins on epi-
leptogenesis and hypothesize that they could be related with renal 
insufficiency, increasing circulating cephalosporin concentrations and 
results in an electrolyte disturbance. Hikida and colleagues showed that 
the interaction with carbapenems and GABAA receptors depends 

primarily on the side chain on the second carbon atom in the carbape-
nem nucleus (Hikida et al., 1993). Imipenem has a basic C-2 side chains, 
instead of a less basic side chain of meropenem, that led to increased risk 
of seizures (Sunagawa et al., 1995). Furthermore, carbapenems due to 
their greater ability to cross the blood brain barrier (BBB) and reduction 
of the action of ASMs, have an elevated potential to promote seizures 
(Lum et al., 2020). 

The neurotoxic effects of the different β-lactams could be explained 
by the molecular characteristics, though other factors may further in-
fluence their occurrence and severity as age (infants and elderly pa-
tients) or renal insufficiency that could led an increased levels of 
antibiotics. Fluroquinolones could produce seizures, but usually in 
subjects who already suffer from a neurological disease. The mechanism 
of action in similar to β-lactams, the inhibition of GABA-A receptors. 
Moreover, it has been postulated that these antibiotics activate N- 
methyl-D-aspartate (NMDA) receptors, causing excitotoxicity and dam-
age to neuronal cells (Takayama et al., 1995). There is no evidence about 
the implications of aminoglycosides, tetracycline polymyxins, or mac-
rolides in epileptogenesis (Esposito et al., 2017). 

On the other hand, Braakman et al., in a small case series, reported 
that six patients with DRE become seizures free during the administra-
tion of antibiotics. The Authors hypothesize that the effect of the anti-
biotics on the gut microbiota could be the explanation of the seizure 
freedom achievement in these patients. The mechanism by which anti-
biotics could decrease seizure frequency is not known (Braakman and 
van Ingen, 2018). 

Previously, Wang et al., published that minocycline and tetracycline- 
class antibiotics are protective against partial (focal) seizures in animal 
models (Wang et al., 2012) but they not relate this effect to GM modu-
lation. The authors postulate that the anti-inflammatory effect of min-
ocycline, doxycycline, and tetracycline was the putative antiseizures 
mechanism. 

5. Faecal microbiota transplantation and ketogenic diet 

No clinical trials have been performed with FMT in epilepsy so far. 
There is only one ongoing trial (NCT02889627) with recruitment in 
progress. Overall, FMT has only indication for the treatment of C.Diffi-
cile-intractable colitis. 

Only one case report was published (He et al., 2017) with FMT 
performed on a 20-year-old patient with Crohn’s disease and a 17-year 
history of epilepsy that led to a 20 months seizure-free period without 
concomitant ASMs. However, the report lacks several clinical details, 
and no gut microbiome analysis was realized as well as no confirmed 
focal pathology. On the other hand, ketogenic diet and its effect medi-
ated by the gut microbiota was more investigated, as recently summa-
rized in (Fan et al., 2019; Spinelli and Blackford, 2018; Tang et al., 
2021). Further studies are needed to define the potential of KD and FMT 
in epilepsy and to define a consensus on their use. 

Table 3 
Potential mechanisms/targets implicated in epilepsy of probiotics and prebiotics 
through gut brain-axis.  

Blood brain barrier Modification in BBB permeability (increasing occludin and 
claudin-5 expression) 

Neuromodulators GABA modulations directly in the brain 
5-HT and dopamine (influence brain function indirectly 
acting via the ENS and vagus nerve) 

SCFAs Acetate, propionate, and butyrate can influence microglia 
maturation, stimulate autonomic nervous system by enteric 
neurones or act as epigenetic modulators by histone 
deacetylases 

Endocannabinoid 
system 

Influencing endocannabinoids in the gut, reducing 
peripheral inflammation and seizure susceptibility 

5-HT, 5-hydroxytryptamine; BBB, blood brain barrier, GABA, gamma- 
aminobutyric acid; ENS, enteric nervous system; SCFAs, short chain fatty acids. 

Table 4 
Ongoing clinical trials investigating gut-microbiota modulation in epilepsy.  

Treatments and comparators Status Phase Diagnosis Age range 
(years) 

Primary endpoint Planned 
treatment 
duration 

Trial number 

Prebiotic or placebo 
(Oligofructose-enriched 
Inulin) 

Recruiting IV Paediatric 
refractory epilepsy 

2 to 18 -Change in alpha and beta 
bacterial diversity measures in 
stool 
-Change in Short Chain Fatty Acid 
(SCFA) levels in stool 

12 weeks NCT04705298 

Faecal microbiota suspension Recruiting III Epilepsy 3 to 70 Seizures frequency 3 months NCT02889627 
Ketogenic diet Withdrawn 

(sponsor decision) 
NA Paediatric 

refractory epilepsy 
1 to 18 Microbiome features associated 

with Ketogenic Diet response 
24 months NCT04311242 

NA, not applicable. 
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6. Challenges in translational clinical trials 

Nowadays, few human studies investigating the role of GM in epi-
lepsy have been performed, and the increasing number of preclinical 
evidence linking epilepsy with different GM compositions, changes 
during ASMs’ treatment, antibiotics or supplements need to be 
confirmed in translational clinical studies. Although pre- and probiotics 
are used in clinical routine for numerous GI and systemic disorders, no 
one can be considered “evidence based” in neurologic diseases (Ronda-
nelli et al., 2017). 

Designing appropriate clinical trials to address GM changes before/ 
after an intervention or highlighting differences among different pop-
ulations (e.g., patients with a disease and healthy controls) can be 
difficult. Indeed, the microbiome is a complex and dynamic system 
affected by multiple endogenous and exogenous influences, showing a 
significative intra- and inter-subjects variability (Cryan et al., 2019). 
Variations in lifestyle, diet, and medication use, as well as age and 
geographic background can lead to issues in data reproducibility and 
consistence, performing statistically underpowered studies, where 
treatment groups are significantly different in demographics, clinical 
and microbiological features. Furthermore, several techniques for 
microbiome measurement and analysis, as well as sampling timing and 
storage, are available, each with different limitations and advantages 
while some others may appear (Qian et al., 2020; Shankar, 2017). 

Given the complexity of diseases and their relationship with GM, it is 
predictable that populations of patients are heterogeneous in their 
clinical phenotypes, tempering the effect size of the microbiome, with an 
even more acute attenuation for diseases with several complex pheno-
types (Qian et al., 2020; Shankar, 2017; Swann et al., 2020). Epilepsy per 
se provides several variables and risk of biases in design and evaluating 
the results of clinical studies. Indeed, epilepsy cannot be considered as a 
homogenous disorder due to differences in pathogenesis, age of onset, 
clinical manifestations, and different neuropsychiatric/systemic 
comorbidities (Devinsky et al., 2018). Therefore, if a substantial het-
erogeneity is known a priori, could be useful to recruit a relatively ho-
mogeneous study population, using well-defined inclusion and exclusion 
criteria, increasing the power of the study. 

The choice of the control group is also essential for an appropriate 
study design. In studies that investigate microbiome-host interactions to 
identify differences in pathways and small-molecules, a control group 
could be one with healthy, age-related controls. Multiple control groups 
based on different criteria and methods could offer a better under-
standing of the heterogeneous effects of the microbiota compared to 
studies with only a single control group (Shankar, 2017; Swann et al., 
2020). 

Regarding methods of profiling, the 16 s RNA and metagenomic 
sequencing are the most common measurements for GM (Durazzi et al., 
2021; Lloyd-Price et al., 2017). The choice between 16S and meta-
genomic sequencing is determined by the aims of the study and more 
often the resources available. If the purpose is an in-depth character-
ization of the most abundant bacterial species or strains along with their 
functional and metabolic profiles, metagenome sequencing could be 
more useful. However, if the objective is to monitor changes in the entire 
microbiome community, 16S sequencing could be a better alternative 
(Shankar, 2017). Moreover, translational studies can also combine 
measurements such as metabolomics and proteomics to enhance find-
ings. Indeed, every bacteria strain seems to have a role in the 
microbiota-host association and in the production of specific metabo-
lites. However, these characteristics are not unique and different bac-
teria can produce redundant metabolites and exert the same role in 
pathophysiology. 

It is worth noticing that all the studies on epilepsy and GM have been 
focused on bacteria populations, but the GM also includes fungi, yeasts, 
viruses, archaea, and protozoa; all microorganisms with a potential role 
in MGB axis that need further investigations (Cryan et al., 2020). Un-
derstanding the microbiome might be the central focus of the study, but 

concomitant clinical, laboratory and “-omics” measurements can in-
crease the scope of microbiome-related findings. 

Rigorous testing and RCTs can determine whether differences of gut 
microbial compositions are a cause or consequence of a disease. The 
cause-effect relationship has important implications from an efficacy 
and a safety perspective but understanding what correlates and what is 
causative has shown to be challenging. Indeed, correlation does not 
imply necessarily causation and if epilepsy outlines the microbiota, or if 
differences in microbiota-composition can have a role in seizures onset 
and maintenance is not known yet. 

7. Conclusions 

Rising evidence are linking GM with epilepsy and other neurological 
diseases. In the next years, clinical studies assessing the differences in 
GM in patients with epilepsy, the mechanisms involved in the MGB axis, 
the role of ASMs and antibiotics and the effects of pre- and probiotics, 
will be performed. New therapeutic options and a better understanding 
of the pathophysiology of epilepsy is needed, and the gut microbiota 
could be an important component. Randomized clinical trials are 
mandatory to establish if microbiota-based treatments can be effectively 
and safely used for clinical improvement of seizure frequencies, severity 
and epilepsy-related disorders. 
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