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Abstract
In this article we fully describe the domain of the infinitesimal generator of the optimal
state semigroupwhich arises in the theory of the linear-quadratic problem for a specific
class of boundary control systems. This represents an improvement over earlier work
of the authors, joint with I. Lasiecka, where a set inclusion was established, but not an
equality. The novel part of the proof of this result develops through appropriate asymp-
totic estimates that take advantage of the regularity analysis carried out in the study
of the optimization problem, while the powers of positive operators and interpolation
are still key tools. We also attest to the validity of an assumed relation between two
significant parameters in the case of distinct systems of coupled hyperbolic–parabolic
partial differential equations which are pertinent to the underlying framework.

Keywords Linear-quadratic regulator problem · Optimal state · Strongly continuous
semigroup · Infinitesimal generator · Powers of positive operators

1 Introduction

The linear-quadratic problem is among the most renowned as well as successful
research topics within control theory. We recall briefly that by infinite horizon linear-
quadratic (LQ) problem it is meant the search of a control function û(·) minimizing a
quadratic functional such as
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J (u) :=
∫ ∞

0

(
‖Ry(t)‖2Z + ‖u(t)‖2U

)
dt, (1)

within a given classU of admissible controls, where y(·) = y(·; y0, u) is the solution
to an initial-value problem for the linear (control) system y′ = Ay + Bu on (0,∞),
that corresponds to u(·) ∈ U and to an arbitrary initial state y0 ∈ Y . Assuming that
such optimal control û(·) does exist, then

ŷ(·) = y(·; y0, û)

is termed optimal state, and the ensemble (ŷ, û) optimal pair. To frame the discussion
that follows, we initially omit the functional-analytic details pertaining to the spaces
Y , U , Z and the linear operators A, B and R; the reader may think of the latter as
they all were bounded operators (acting between respective Hilbert spaces), just for
the sake of simplicity. However, it should be kept in mind that A : D(A) ⊂ Y −→ Y
will be always the generator of a C0-semigroup eAt in Y , t ≥ 0; in addition it is
assumed that eAt is uniformly stable (see the basic Assumption 1.1). And also, it will
be U = L2(0,∞;U ).

As it will be made apparent later on, the optimal state satisfies a semigroup prop-
erty; to wit, ŷ(t) = �(t)y0, where �(t) is a C0-semigroup on Y , t ≥ 0. With the
focus on a class of abstract control systems which has proven effective to describe
systems of coupled hyperbolic–parabolic partial differential equations (PDE), subject
to a boundary control action on its parabolic component, our goal in this paper is to
provide a complete description of the infinitesimal generator of the said semigroup.
This by means of a full characterization of its domain, thus answering to a ques-
tion that had remained open in our previous works [4] (joint with Lasiecka) and [1]
(cf. [1, Section 1.1]).

As it is well known, once the existence of a unique optimal control minimizing the
cost functional is ascertained—which may follow easily by using classical variational
arguments—, the property which is sought and identified as the actual solution of the
LQ problem is a (pointwise in time) feedback representation of the optimal control
û(·) in terms of the corresponding optimal state ŷ(·). This turns out to be

û(t) = −B∗P ŷ(t) a.e. in [0,∞),

where the operator P solves the quadratic algebraic equation

PA + A∗P − PBB∗P + R∗R = 0,

known as Riccati equation (to be interpreted appropriately, when B is an unbounded
operator; see (11)). The above Riccati equation is well-posed in a finite dimensional
context (where A, B, R are matrices), and also in the case the abstract state equation
describes a boundary value problem for a partial differential equation in a bounded
domain with smooth boundary, in the presence of distributed control (which naturally
yields a bounded control operator B, i.e. such that B ∈ L (U ,Y )). A historical syn-
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opsis on Riccati equations, along with relevant bibliographical information, is offered
in [1, Section 1.2].

Thewell-posedness of the Riccati equation is key for the (so-called) synthesis of the
optimal control. Indeed, the latter is accomplished starting from the Riccati equation
corresponding to the optimal control problem and singling out its unique solution P;
next, solving the closed-loop equation

{
y′ = (A − BB∗P)y, t > 0

y(0) = y0 ∈ Y

that is obtained taking into account the above feedback form of û(·). Its solution ŷ(·)
allows to finally determine the optimal control û(·).

It was discovered during the eighties of the last century—thanks to the work of Da
Prato and Ichikawa, Flandoli, Lasiecka and Triggiani—that the above process can be
extended to control systemswhich yield an (intrinsically) unbounded B, and yet satisfy
the following assumptions. These are characteristic of parabolic (and parabolic-like)
PDE with boundary or point control; see [9, 19].

Parabolic class. Let Y , U be separable complex Hilbert spaces.

• The closed linear operator A : D(A) ⊂ Y → Y is the infinitesimal generator of
a strongly continous semigroup {eAt }t≥0 on Y , of type ω0, which in addition is
analytic;

• B ∈ L (U , [D(A∗)]′); there exist λ0 > ω0 and γ ∈ (0, 1) such that

(λ0 − A)−γ B ∈ L (U ,Y ).

We note that if the semigroup eAt underlying the free dynamics is uniformly
(exponentially) stable, then in particular we may take λ0 = 0. We highlight sev-
eral significant features of the (by now, classical) theory of the LQ problem and of
Riccati equations devised within the framework defined by the above hypotheses:

(i) the optimal state ŷ(t) satisfies a semigroup property, that is, ŷ(t) = �(t)y0,
where�(t) is aC0-semigroup on Y , t ≥ 0 (which is exponentially stable as well,
and in addition analytic here);

(ii) there exists a self-adjoint, non-negative definite operator P ∈ L (Y ) which sat-
isfies B∗P ∈ L (Y ,U ) and solves the algebraic Riccati equation, that is (11)
below;

(iii) the Riccati operator P satisfies (−A∗)1−δP ∈ L (Y ), for any δ ∈ (0, 1), a
property which is central to the proof of ii);

(iv) the generator of �(t) is the operator AP = A − BB∗P , whose domain is

D(AP ) = {
x ∈ D((−A)1−γ ) : (−A)1−γ x − (−A)−γ BB∗Px ∈ D((−A)γ )

} ;

in particular, D(AP ) ⊂ D((−A)1−γ ).

(See the monographs [9, 19], the latter providing an in-depth treatment).
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When it comes to PDE of hyperbolic type things change dramatically in the worse.
Indeed, the issue which is the most delicate from a theoretical viewpoint, and may
be out of reach, is that of obtaining a gain operator B∗P which is well-defined or at
least densely defined on Y , besides than on the optimal trajectory (as the feedback
formula requires by itself). See, e.g., the discussion in [1, Section 1.2.4] and the cited
references.

The case of coupled systems of hyperbolic–parabolic PDE sets itself at the boundary
of the two classical (parabolic and hyperbolic, respectively) classes. Because signifi-
cant physical interactions are described by evolutionary PDE systems which comprise
dynamics of different nature—notably, of hyperbolic and parabolic type—, the study
of the LQ problem and of the corresponding Riccati equations for these composite
PDE systems has received quite a bit of attention over the last twenty years. This
both at a functional-analytic level, and in the endeavours to pursue a clever regularity
analysis on a certain interconnected PDE problem (eventually, on a variety of them).
See [1, Section 1.2] and the pertinent references.

An abstract class of control systems broad enough to encompass a diverse range
of physical interactions has been devised by the authors, jointly with Lasiecka, under
well-structured assumptions on (the adjoint of) the kernel eAt B; these are detailed
in the next subsection as Assumption 1.4. A theory of the (finite and) infinite time
horizon LQ problem, along with a complex of results that combine to bring about
well-posedness of the corresponding (differential and) algebraic Riccati equations—
thereby attaining the actual synthesis of the optimal control—, has been developed in
[4] and the recent [1], following the former study [3]. A distinguishing feature of the
Riccati theory developed in [3, 4] is that the gain operator is bounded on D((−A)ε)

(with a suitable ε > 0), which is dense in the state space Y ; see the statement A4. of
Theorem 1.5. Furthermore, it should be noted that the algebraic Riccati equation (11),
with x, y ∈ D(A), actually extends to be meaningful with x, y ∈ D(AP ); see the
statement A7. of Theorem 1.5, based on [4, Lemma 5.15 and Theorem 5.16].

An element which had remained unresolved in [1, 4] was a full characterization
of the domain of the optimal state semigroup’s generator AP . Indeed the information
achieved in [4] with regard to D(AP ) was the refined set inclusion which follows
combining the statement S5. in [4, Theorem 1.5] (recalled as (10) later on) with
the property (asserted in [4, Proposition 5.5]) D(AP ) ⊆ D((−A)ϑ ), valid for any
ϑ ∈ (0, 1 − γ ). This is

D(AP ) ⊆ E :=
⋂

θ∈(0,1−γ )

Eϑ ,

having set

Eϑ := {
x ∈ D((−A)ϑ ) : x − A−1B B∗Px ∈ D(A)

}
. (2)

The following question then arises:
Question. Does the converse D(AP ) ⊇ E hold?

Our main result, i.e. Theorem 1.9, shows that this is indeed the case, provided that
the parameters γ and ε which occur in the Assumption 1.4 fulfil ε < 1 − γ . This
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relation is feasible: to support the assertion, we revisit the actual values of γ and ε

brought about by the (model-specific) trace regularity results established in [2, 11–13]
in regard to distinct PDE problems, in the process of establishing that these fall into
the present underlying framework.

The structure of the paper is as follows: in the next subsection we recall the class of
control systems under consideration, together with the outcome of our prior work in
[1, 4], summarized as Theorem 1.5. The statements of Theorem 1.9 (that is our main
result) and of the preliminary Lemma 1.8—which clarifies a first set inclusion—are
highlighted in the separate Sect. 1.2.

Section 2 ismainly devoted to the proof of Theorem1.9. A neat proof of Lemma 1.8,
which was not given explicitly in [4] and in addition settles a confusing abuse of
notation occurred in [4, Proposition 5.5], is also provided.

Finally, in the last section we review three coupled systems of hyperbolic–parabolic
PDE describing just as many physical interactions, which attest to the validity of the
constraint on the significant parameters γ and ε (presupposed in Theorem 1.9).

1.1 Underlying framework: genesis of the optimal state semigroup

Let Y andU be two separable Hilbert spaces, viz. the state and control spaces, respec-
tively. We consider the infinite-dimensional (linear) control system y′ = Ay + Bu
on the half-line [0,∞). The operator A (which describes the free dynamics) and the
control operator B are initially characterized by the following basic hypotheses.

Assumptions 1.1 (Basic hypotheses on the control system) Let Y , U be separable
complex Hilbert spaces.

• The closed linear operator A : D(A) ⊂ Y → Y is the infinitesimal generator of
a strongly continuous semigroup {eAt }t≥0 on Y , which is exponentially stable, i.e.
there exist constants M ≥ 1 and ω > 0 such that

‖eAt‖L (Y ) ≤ M e−ωt ∀t ≥ 0.

• B ∈ L (U , [D(A∗)]′); equivalently, A−1B ∈ L (U ,Y ).

Then for any given y0 ∈ Y and any control function u ∈ L2(0,∞;U ) the Cauchy
problem

{
y′(t) = Ay(t) + Bu(t), t > 0

y(0) = y0 ∈ Y
(3)

possesses a unique mild solution given by

y(t) = eAt y0 +
∫ t

0
eA(t−s)Bu(s) ds, t ≥ 0. (4)

The formula (4) makes sense in the extrapolation space [D(A∗)]′: it yields more
specifically y ∈ L2(0,∞; [D(A∗)]′); see [19, §0.3, p. 6, and Remark 7.1.2, p. 646].
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Remark 1.2 We note that owing to the first of the Assumption 1.1, the operator −A is
a positive operator according to [22, Definition 4.1]. This allows to define the powers
with complex exponent (−A)α (in a first step for Reα < 0 via a Dunford integral and
then for Reα ≥ 0); see, e.g., [22, § 4.1]. The fractional powers (−A)ϑ , ϑ ∈ (0, 1),
will be critically (and repeatedly) used in the proofs of our results. We shall write Aϑ

in place of (−A)ϑ throughout the paper in order to make the notation lighter.

To the state equation in (3) we associate the quadratic functional J (u) defined in (1),
where the so called observations space Z is a third separable Hilbert space (possibly,
Z ≡ Y ). It is assumed that R ∈ L (Y , Z) throughout.

By optimal control problem (3)-(1) it is meant the following.

Problem 1.3 (Infinite horizon optimal control problem) Given y0 ∈ Y , seek a control
function u ∈ L2(0,∞;U ) which minimizes the cost functional (1), where y(·) =
y(· ; y0, u) is the solution to (3) corresponding to the control function u(·) (and with
initial state y0) given by (4).

With motivation coming from the optimal boundary control of partial differential
equations systems which comprise both hyperbolic and parabolic dynamics—such
as, e.g., the ones which describe certain mechanical-thermal, acoustic-structure, fluid-
elasticity interactions—a thorough study of Problem 1.3 and its complete solution
has been provided by the authors in [4] (jointly with Lasiecka), and in [1] (achieving
uniqueness for both differential and algebraic Riccati equations), under the following
distinguishing assumptions on the operators A, B, R. These assumptions were singled
out for the most part in [3], focused on the finite time horizon optimal control problem,
and subsequently strengthened in [4] to deal with the infinite time horizon one.

Assumptions 1.4 Let Y , U and Z be the state, control and observation spaces intro-
duced in the Assumption 1.1 and in (1), respectively.

The operator B∗eA∗t can be decomposed as

B∗eA∗t x = F(t)x + G(t)x, t ≥ 0, x ∈ D(A∗), (5)

where F(t) : Y −→ U and G(t) : D(A∗) −→ U, t > 0, are bounded linear operators
satisfying the following assumptions:

1. there exist constants γ ∈ (0, 1) and N , η > 0 such that

‖F(t)‖L (Y ,U ) ≤ N t−γ e−ηt ∀t > 0, (6)

2. there exists T > 0 such that the operator G(·) belongs toL (Y , L p(0, T ;U )) for
all p ∈ [1,∞);

3. with T as above, there exists ε > 0 such that:

(a) the operator G(·)A∗−ε belongs toL (Y ,C([0, T ];U )), with

sup
t∈[0,T ]

‖G(t)A∗−ε‖L (Y ,U ) < ∞;
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(b) the operator R∗R belongs toL (D(Aε),D(A∗ε)), i.e.

‖A∗εR∗RA−ε‖L (Y ) ≤ c < ∞;

(c) there exists q ∈ (1, 2) (depending, in general, on ε) such that the map x �−→
B∗eA∗t A∗εx has an extension which belongs toL (Y , Lq(0, T ;U )).

As already pointed out in the Introduction, the asserted complete solution to Prob-
lem 1.3 embodies several major achievements. We recall that the existence of a unique
optimal pair (û, ŷ) follows readily from convex optimization arguments. The sought-
after closed loop form of the unique optimal control û, i.e. (9) below, holds true, as
well. However, its proof is far from being straightforward: it requires further analytical
work than the classical argument based on the optimality conditions. Indeed, the tricky
bit has been to ascertain that given the optimal cost operator P ∈ L (Y )—intrinsically
defined in terms of the optimal state ŷ(t) = �(t)y0 (just like in previous theories, see
(8) below)—, then the gain operator B∗P is meaningful and bounded at least on a
suitable dense subset of the state space Y (which turns out to be D(Aε)), and then to
prove that P does solve the algebraic Riccati equation corresponding to Problem 1.3,
displayed below as (11). All this

• in the absence of the smoothing properties inherited by both the optimal evolution
and the Riccati operator in the fully parabolic case (highlighted in Sect. 1 inside
(i) and as (iii), respectively), and also

• under a very minimal additional assumption on the observation operator R (that
is (3b) of the Assumption 1.4).

In the following Theorem we collect all the pertinent assertions; we refer the reader
to the part titled Present work in the Introduction of [4], for a synopsis of the analysis
carried out therein, as the paper is long and technical.

Theorem 1.5 ([4], Theorem 1.5; [1], Theorem 2.11) Under the Assumption 1.4, the
following statements are valid.

A1. For any y0 ∈ Y there exists a unique optimal pair (û(·), ŷ(·)) for Problem (3)–
(1), which satisfies the following regularity properties

û ∈
⋂

2≤p<∞
L p(0,∞;U ),

ŷ ∈ Cb([0,∞); Y ) ∩
⎡
⎣ ⋂
2≤p<∞

L p(0,∞; Y )

⎤
⎦ .

A2. The family of operators �(t), t ≥ 0, defined by

�(t)y0 := ŷ(t) = y(t, y0; û) (7)

is a C0-semigroup on Y , t ≥ 0, which is exponentially stable.
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A3. The operator P ∈ L (Y ) defined by

Py0 :=
∫ ∞

0
eA

∗t R∗R�(t)y0 dt, x ∈ Y , (8)

is the optimal cost operator; P is (self-adjoint and) non-negative.
A4. The following (pointwise in time) feedback representation of the optimal con-
trol is valid for any initial state y0 ∈ Y :

û(t) = −B∗P ŷ(t) for a.e. t ∈ (0,∞), (9)

where the gain operator satisfies B∗P ∈ L (D(Aε),U ) (that is, it is just densely
defined on Y and yet it is bounded on D(Aε)).
A5. The domain of the infinitesimal generator AP of the optimal evolution �(t)
(defined in (7)) satisfies

D(AP ) ⊂ {
x ∈ Y : x − A−1B B∗Px ∈ D(A)

}

⊂
{
x ∈ Y : ∃w-limt→0+

1

t

∫ t

0
eA(t−τ)A−1B B∗P�(τ)x dτ in Y

}

(10)

and AP ≡ A(I − A−1BB∗P) on D(AP ).
A6. The operator eAt B, defined in U and a priori with values in [D(A∗)]′, is such
that

eδ·eA·B ∈ L (U , L p(0,∞; [D(A∗ε
)]′) ∀p ∈ [1, 1/q)

for all δ ∈ [0, ω ∧ η); almost the very same regularity is inherited by the operator
�(t)B:

eδ·�(·)B ∈ L (U , L p(0,∞; [D(A∗ε
)]′) ∀p ∈ [1, 1/q),

provided δ ∈ [0, ω ∧ η) is sufficiently small.
A7. The optimal cost operator P defined in (8) is a solution to the algebraic Riccati
equation (ARE) corresponding to Problem (3)–(1), that is

(Px, Az)Y + (Ax, Pz)Y − (B∗Px, B∗Pz)U + (Rx, Rz)Z = 0,

x, z ∈ D(A) ; (11)

the ARE reads as

(A∗Px, z)Y + (x, A∗Pz)Y − (B∗Px, B∗Pz)U + (Rx, Rz)Z = 0

when x, z ∈ D(AP ).
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A8. The algebraic Riccati equation (11) has a unique solution P within the class

Q := {
Q ∈ L (Y ) : Q = Q∗ ≥ 0, B∗Q ∈ L (D(Aε),U )

} ; (12)

hence, the optimal cost operator P defined by (8) is precisely that solution.

1.2 The generator of the semigroup: statement of themain result

The assertionA5. in Theorem 1.5 is the onewhich specifically pertains to the generator
AP of the optimal state semigroup �(t). Although a full characterization of D(AP )

was not needed in [4] (and actually absent from it), the basic set inclusion (10) was
made more precise therein. Indeed, [4, Proposition 5.5] related the domain of AP (and
A∗
P ) to the domain of certain fractional powers of the positive operator −A (−A∗,

respectively). For the readers’ convenience we explicitly recall the aforesaid result
below.

Proposition 1.6 (Cf. [4], Proposition 5.5) With reference to the optimization Prob-
lem (3)–(1), let the Assumption 1.4 be in place. Accordingly, γ is the exponent in (6).
Then, the following inclusions are valid, for any ϑ ∈ (0, 1 − γ ):

D(AP ) ⊂ D(Aϑ), D(A∗
P ) ⊂ D(A∗ϑ

). (13)

Remarks 1.7 (i) We note that the letter ε utilized in (5.8) of [4, Proposition 5.5] to
indicate the fractional power of −A, in place of the chosen ϑ in (13) above, was
certainly misleading. This is because ε has a clear, specific meaning in 3a–3b–3c. of
theAssumption 1.4, and then in the statements A4. andA8. of Theorem 1.5 established
under those hypotheses.

(ii) It is important to emphasize that the inclusion in the right of (13) was crucially
employed in the proof of [4, Corollary 5.14], where we showed that �(t) = eAP t is
differentiable on D(A) (a result which is not expected, since D(A) is not a natural
domain of the strongly perturbed evolution �(t)). This regularity property, in turn,
was the key to proving that the optimal cost operator P does satisfy the algebraic
Riccati equation; see [4, Theorem 5.16].

Having recalled from [4] the findings stated above as Proposition 1.6, and more
specifically the first of the inclusions (13) therein, it becomes apparent that the original
information (10) onD(AP ) provided by Theorem 1.5 was already made more precise.
It isworth highlighting this result stemming from [4], bymeans of a separate statement.

Lemma 1.8 (Set inclusion)With reference to the optimization Problem (3)–(1), let the
Assumption 1.4 be in place; accordingly, γ is the exponent in (6). Let P ∈ L (Y ) and
AP : D(AP ) ⊂ Y −→ Y denote the corresponding optimal cost operator and the
generator of the optimal state semigroup {eAP t }t≥0, respectively. Then,

D(AP ) ⊆
⋂

ϑ∈(0,1−γ )

{
x ∈ D(Aϑ) : x − A−1B B∗Px ∈ D(A)

}
. (14)
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The question as to whether the set inclusion (14) might be enhanced to become an
equivalence was (wrongly) dismissed in the end of [4, Remark 5.4]. The present study
reveals that the answer is actually positive, provided ε is below a certain threshold
determined by γ .

Theorem 1.9 (Main result) With reference to the optimization Problem (3)–(1), let
the Assumption 1.4 be in place; accordingly, γ and ε are the exponents therein. Let
P ∈ L (Y ) and AP : D(AP ) ⊂ Y −→ Y denote the corresponding optimal cost
operator and the generator of the optimal state semigroup {eAP t }t≥0, respectively. If
ε < 1 − γ , then

D(AP ) ≡
⋂

ϑ∈(0,1−γ )

{
x ∈ D(Aϑ) : x − A−1B B∗Px ∈ D(A)

}
. (15)

The proof of Theorem 1.9, as well as the one of Lemma 1.8, are given in the next
section.

2 From a set inclusion to a set equality

This section is devoted to showing our main result. First we give a sketch of the proof
of Lemma 1.8, with focus on the first one of the inclusions (13). (We remind the reader
that the proof of [4, Proposition 5.5] pertained exclusively to the second one.) Thus
we take the chance of amending a few vague or imprecise assertions contained in the
proof of [4, Proposition 5.5]. Also, we find it worth emphasizing the powerful role
of the theory of interpolation spaces, which specifically provides the tools. Next, we
give the proof of Theorem 1.9, via a new inclusion (the converse), thereby achieving
the set equality (15).

It is useful to recall the notation L for the operator—also termed the “input-to-state
map”—defined by

L : u(·) −→ (Lu)(·) :=
∫ ·

0
eA(·−r)Bu(r) dr . (16)

The assumed decomposition (5) for the adjoint of the kernel eAt B yields the (consis-
tent) decomposition

Lu(t) =
∫ t

0
F(t − r)∗Bu(r) dr +

∫ t

0
G(t − r)∗u(r) dr =: L(1)u(t) + L(2)u(t),

(17)

which will be directly useful in the proof of Lemma 1.8. (The notation L(i) for the
above operators was introduced in [4]; see (3.10) therein; we will write L(i)u(t) in
place of (L(i)u(·))(t) for the sake of simplicity.)

Proof of Lemma 1.8. The inclusion (14) that we are asked to show requires that we
compare the domain of the optimal state generator AP with the domain of a fractional
power Aϑ . Here the key tool is interpolation. More specifically,
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(i) we will use the following relation between interpolation spaces and domains of
fractional powers:

(Y ,D(A))ϑ,1 ⊆ D(Aϑ) ⊆ (Y ,D(A))ϑ,∞, ϑ ∈ (0, 1), (18)

whose validity is ensured here by the exponential stability of the semigroup eAt ;
see the statement (d) in [24, § 1.15.2], or [22, Prop. 4.7, p. 92].

(ii) In turn, the driving idea is to relate D(AP ) to an appropriate interpolation space
(Y ,D(A))α,∞, first. This is because the characterization ([24, Theorem 1.13.2],
[22, Prop. 5.7])

(Y ,D(A))α,∞ =
{
x ∈ Y : sup

t∈(0,1]
t−α‖eAt x − x‖Y < ∞

}
(19)

is especially suited for the task at hand.
(iii) The conclusive argument relies on the series of set inclusions

(Y , D(A))α,1 ⊆ (Y , D(A))α,p ⊆ (Y , D(A))α,∞ ⊆ (Y , D(A))ϑ,1, (20)

which hold true for any α, ϑ, p such that 0 < ϑ < α < 1 and 1 < p < ∞; see
[24, § 1.3.3] or [22, Propositions 1.3 and 1.4].

Let x ∈ D(AP ) be given. As pointed out in ii), wewill show that x ∈ (Y ,D(A))α,∞
for any α ∈ (0, 1 − γ ). By (4) with x as initial state, we know that

(eAt − I )x = (�(t) − I )x − (Lû(·, x))(t), (21)

where �(t)x is the optimal state and û(·, x) is the optimal control, respectively. Since
the asymptotic estimate (�(t) − I )x = O(t), as t → 0+, is trivial, we focus on the
subsequent integral term Lû(t). For this we need the splitting (17). The computations
leading to the estimates for L(1)û(t) and L(2)û(t) are essentially the ones in (5.11)
and (5.14) of [4, Proposition 5.5], respectively. We omit most part of the details and
only highlight the principal tools and possible constraints on the parameters’ values.

Toproduce an estimate of L(1)û(t), we recall the (singular) estimate (6) pertaining to
the component F(t) of B∗eA∗t (i.e. 1. of the Assumption 1.4), as well as the regularity
property

‖û‖L p(0,∞;U ) ≤ cp ‖x‖Y ∀p ∈ [2,∞)

for the optimal control (that is (4.3b) in [4, Proposition 4.1], proved therein). The
above estimate actually extends to any p ≥ 1 if we limit ourselves to L p(0, T ;U ),
with T as in 2.-3. of the Assumption 1.4. This makes sense since we are interested in
the behaviour of L(i)û(t), i = 1, 2, only in a neighbourhood of t = 0. Then we have

‖L(1)û(t))‖Y ≤
∫ t

0

C1

(t − s)γ
‖û(s)‖U ds ≤ C1t

1/p′−γ ‖x‖Y , (22)
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via the Hölder inequality in the latter bound, where p′ is the conjugate exponent of p.
We note that in order to have 1/p′ − γ > 0 in (22), one needs p > 1/(1 − γ ). This
is allowed, because p can be taken arbitrarily large; accordingly, p′ will be arbitrarily
close to 1, which yields the upper threshold 1− γ for the powers of t . Therefore, (22)
establishes

‖L(1)û(t)‖Y ≤ C1t
α1‖x‖Y (23)

for any α1 ∈ (0, 1 − γ ).
The analysis of the summand L(2)û(t) is slightly more delicate, while leading to a

better estimate. We take the inner product with an arbitrary z ∈ Y , use once more that
û ∈ L p(0, T ;U ) for any finite p ≥ 1, this time combined with the basic regularity of
the component G(t) of B∗eA∗t , that is 2a. of the Assumption 1.4. An application of
the Hölder and Young inequalities gives

|(L(2)û(t), z)Y | =
∣∣∣
∫ t

0
(û(s),G(t − s)z)U ds

∣∣∣
≤ C2 t

1/r‖x‖Y ‖z‖Y , z ∈ Y , t ∈ [0, T ],
(24)

with r ∈ (1,∞) that can be taken arbitrarily close to 1. Then (24) establishes

‖L(2)û(t)‖Y ≤ C2 t
α2‖x‖Y (25)

for any positive α2 < 1.
We return to (21) with the information provided by the estimates (23) and (25) to

find

‖(eAt − I )x‖Y = O(t) − O(tα) = O(tα), t → 0+,

valid for α := α1 ∧ α2, and hence for any α ∈ (0, 1 − γ ). By (19), we have so far
proved the membership

x ∈ (Y ,D(A))α,∞ ∀α ∈ (0, 1 − γ ).

Now we recall (20) and (18) to deduce that

x ∈ (Y ,D(A))ϑ,1 ⊆ D(Aϑ)

for any ϑ ∈ (0, α) (and any α ∈ (0, 1 − γ )). Since x was given and yet arbitrary,
then D(AP ) ⊆ D(Aϑ) fo any ϑ ∈ (0, 1 − γ ). Finally, the inclusion (10) formerly
established in [4] ensures that any x ∈ D(AP ) fulfils x− A−1BB∗Px ∈ D(A), which
confirms the full inclusion (14), thus concluding the proof of the Lemma. ��

The proof of the reverse inclusion requires a different argument, with the definition
of infinitesimal generator of a C0-semigroup as natural starting point [23]. The proof
develops through several distinct steps, with a bootstrap argument playing a key role
among them.
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Proof of Theorem 1.9 In view of Lemma 1.8, in order to attain the full characterization
(15) we need to prove the converse of (14).
0.The beginning of the proof is based upon the following observation: sinceD(Aϑ1 ) ⊆
D(Aϑ2) for θ1 ≥ θ2, then Eϑ1 ⊆ Eϑ2 as well (the notation Eθ has been introduced in
(2)). Therefore, if ε < 1 − γ , we have

E :=
⋂

θ∈(0,1−γ )

Eϑ ≡
⋂

θ∈[ε,1−γ )

Eϑ =: F .

Thus, proving

D(AP ) ⊇ Eϑ ∀ϑ ∈ [ε, 1 − γ ) (26)

will yield D(AP ) ⊇ F ≡ E , as desired.
Now if ϑ ≥ ε we know that D(Aϑ) ⊆ D(Aε), which gives a meaning to the

element A−1BB∗Px for x ∈ D(Aϑ), since B∗P ∈ L (D(Aε),U ) (by the statement
A4. of Theorem 1.5), while A−1B ∈ L (U ,Y ) (by the Assumption 1.1).
1. Let ϑ ∈ [ε, 1 − γ ) be given, and let x ∈ Eϑ . By the very definition of Eϑ , we
have x ∈ D(Aϑ) and x − A−1BB∗Px ∈ D(A). To infer that x ∈ D(AP ), we need
to address the existence of the limit of

�(t) − I

t
x

in Y , as t → 0+, where�(t)x = ŷ(t) is the optimal state of theminimization problem.
By the representation (4) of any mild solution to the Cauchy problem (3), with x (in
place of y0) as initial state and û(·) in its feedback form (9) as the (optimal) control,
we know that the optimal state semigroup �(t) satisfies the integral equation

�(t)x = eAt x −
∫ t

0
eA(t−s)BB∗P�(s)x ds, t ≥ 0.

Then,

(�(t) − I )x = (eAt − I )x −
∫ t

0
eA(t−s)BB∗P�(s)x ds

= (eAt − I )(x − A−1BB∗Px)︸ ︷︷ ︸
T1(t,x)

+
∫ t

0
eA(t−s)BB∗P(�(s) − I )x ds

︸ ︷︷ ︸
T2(t,x)

(27)

for any t ≥ 0. The identity (27) yields, for t > 0,

�(t) − I

t
x = eAt − I

t
(x − A−1BB∗Px) + 1

t

∫ t

0
eA(t−s)BB∗P(�(s) − I )x ds.

(28)
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Because x − A−1BB∗Px ∈ D(A), the first summand in the right hand side of (28)
tends to A(x− A−1BB∗Px), as t → 0+. If we can establish that the second summand
is such that

lim
t→0+

T2(t, x)

t
= 0,

then from (28) it will follow x ∈ D(AP ), APx = A(x − A−1BB∗Px).
The goal of the argument that follows is to show that T2(t, x) defined in (27) is an

O(tα) with α > 1, as t → 0+.
2. We begin with some preliminary considerations, which in particular highlight the
space regularity of the incremental ratio. Based on [4, Proposition 4.7], from x ∈
D(Aϑ) ⊆ D(Aε) it follows �(t)x ∈ D(Aε), which gives (�(t) − I )x ∈ D(Aε) as
well.

As for the right hand side of (27), it is readily seen that the first summand T1(t, x)
belongs toD(A), since x− A−1BB∗Px ∈ D(A) (just use a basic property of operator
semigroups). Therefore, clearly the term T2(t, x) belongs to D(Aε) as well, for any
t ≥ 0. However, for the purposes of the estimates we are about to carry out, we rewrite
T2(t, x) more cleanly as

T2(t, x) = L(B∗P(�(·) − I )x)(t),

and observe that

• the property B∗P ∈ L (D(Aε),U ) combined with the exponential stability of
�(t) (cf. the assertions A4. and A2. of Theorem 1.5) ensure in particular that

B∗P(�(·) − I )x ∈ Cb([0,∞),U ) ∩ Lq ′
(0,∞;U ) ;

• L ∈ L (Lq ′
(0,∞;U ),Cb([0,∞),D(Aε)) by [4, Proposition 3.6(v)].

These regularity properties are somewhat excessive. Indeed, with respect to the time
regularity, what matters is the behaviour in a right neighbourhood of t = 0.

In the next step we move on to produce (successively enhanced) asymptotic esti-
mates for (�(t)− I )x . Since we are interested in the asymptotic behaviour of the said
function (of t), as t → 0+, we are allowed to assume t ≤ T , where T is as in 2. of
the Assumption 1.4. We will denote by c any positive constant not depending on the
variable t .
3.We begin with the derivation of a first estimate for (�(t) − I )x around t = 0. The
considerations above justify the use of the stronger topology of the space D(Aε).

Claim 1 The following estimate is valid:

‖(�(t) − I )x‖D(Aε ) ≤ c
(
t1−ε ∨ t1/q

′)
, 0 ≤ t ≤ T , (29)

where q ′ is the conjugate exponent of q in (3c) of the Assumption 1.4.
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To confirm Claim 1, let us examine either term Ti (t, x), i = 1, 2, in the right hand
side of (27). We estimate

∥∥T1(t, x)∥∥D(Aε )
= ∥∥(eAt − I )(x − A−1BB∗Px)

∥∥
D(Aε )

= ∥∥(eAt − I ) Aε(x − A−1BB∗Px)
∥∥
Y ≤ c t1−ε,

(30)

with the bound following by interpolation, since Aε(x − A−1BB∗Px) ∈ D(A1−ε).
Next, in view of B∗P ∈ L (D(Aε),U ) (already recalled in the step 2.), we have

B∗P(�(·) − I )x ∈ C([0, T ],U ) ⊂ Lq ′
(0, T ;U ),

so that

T2(·, x) = [L(B∗P(�(·) − I )x)](·) ∈ C([0, T ],D(Aε)),

along with the estimate

∥∥T2(t, x)∥∥D(Aε )
=

∥∥∥∥Aε

∫ t

0
eA(t−s)BB∗P(�(s) − I )x ds

∥∥∥∥
Y

≤ ‖(�(·) − I )x‖Lq′
(0,t;D(Aε ))

≤ ‖(�(·) − I )x‖C([0,t],D(Aε ))t
1/q ′

(31)

for any t ∈ [0, T ]. Combining (31) with (30) we attain the estimate (29) for the left
hand side of (27), as needed.
4. Let now n0 = [q ′(1− ε)] be the largest integer not exceeding q ′(1− ε). If n0 = 0,
i.e. q ′ < 1

1−ε
, then from (29) it follows

‖(�(t) − I )x‖D(Aε ) ≤ c t1−ε, 0 ≤ t ≤ T .

If n0 > 0 instead, we use a bootstrap argument, based on the following fact.

Claim 2 Let α be a positive real number. If

∥∥Aε(�(t) − I )x
∥∥
Y ≤ c tα, 0 ≤ t ≤ T ,

then we have

∥∥∥∥Aε

∫ t

0
eA(t−s)BB∗P(�(s) − I )x ds

∥∥∥∥
Y

≤ c t
α+ 1

q′ , 0 ≤ t ≤ T .

To show that Claim 2 holds true, we return to the right hand side of (27). Still with
the bound (30) for T1(t, x), we aim to improve the estimate (31) for T2(t, x). We argue
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by duality, using (3c) of the Assumption 1.4. Let z ∈ Y be given: then, for 0 ≤ t ≤ T ,
we have

∣∣∣∣
(
Aε

∫ t

0
eA(t−s)BB∗P(�(s) − I )x ds, z

)
Y

∣∣∣∣
=

∣∣∣∣
∫ t

0
(B∗P(�(s) − I )x, B∗eA∗(t−s)A∗εz)Y ds

∣∣∣∣

≤ c

[∫ t

0
‖B∗P(�(s) − I )x‖q ′

U ds

] 1
q′ [∫ t

0
‖B∗eA∗σ A∗εz‖qU dσ

] 1
q

≤ c

[∫ t

0
‖(�(s) − I )x‖q ′

D(Aε )
ds

] 1
q′

‖z‖Y

≤ c

[∫ t

0
sαq ′

ds

] 1
q′

‖z‖Y ≤ c ‖z‖Y tα+1/q ′
.

Since z is arbitrary, the claimed enhanced estimate follows.
Thus, still in the case n0 > 0, we apply successively Claim 2 with

α = 1

q ′ ,
2

q ′ , , . . . ,
n0
q ′ ,

until we obtain

∥∥∥∥Aε

∫ t

0
eA(t−s)BB∗P(�(s) − I )x ds

∥∥∥∥
Y

≤ c t (n0+1)/q ′
, 0 ≤ t ≤ T . (32)

Combining (32) with (30) and noting that n0 + 1 > q ′(1− ε) by definition of n0, we
finally attain

‖(�(t) − I )x‖D(Aε ) ≤ c
(
t (n0+1)/q ′ ∨ t1−ε

) = c t1−ε, 0 ≤ t ≤ T . (33)

We note that the estimate (33) subsumes the case n0 = 0 discussed separately in the
beginning of this step.
4.We can now perform the final step. Suppose that ε < 1/q ′ ∧ (1−γ ). Then, a further
use of Claim 2 with α = 1 − ε yields (from (33))

∥∥∥∥Aε

∫ t

0
eA(t−s)BB∗P(�(s) − I )x ds

∥∥∥∥
Y

≤ c t
1−ε+ 1

q′ , 0 ≤ t ≤ T ,

where now 1− ε + 1/q ′ > 1, owing to the assumed relation εq ′ < 1. This implies, a
fortiori, that

lim
t→0+

1

t

∥∥∥∥
∫ t

0
eA(t−s)BB∗P(�(s) − I )x ds

∥∥∥∥
Y

= 0. (34)
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If 1/q ′ ≤ ε < 1−γ instead, a more careful analysis is called for. For a given z ∈ Y
and any t ∈ [0, T ] we have

(∫ t

0
eA(t−s)BB∗P(�(s) − I )x ds, z

)
Y

=
∫ t

0

(
B∗P(�(s) − I )x, B∗eA∗(t−s)z

)
Y ds

=
∫ t

0

(
B∗P(�(s) − I )x, F(t − s)z

)
Y ds

+
∫ t

0

(
B∗P(�(s) − I )x,G(t − s)z

)
Y ds,

where in the last equality we have introduced the decomposition (5) of the adjoint of
the kernel eAt B. To estimate the first summand in the last row, we exploit the (singular,
close to 0) estimate (6) pertaining to the component F(t) of B∗eA∗t , and recall once
more the bound (33), to find

∣∣∣∣
∫ t

0

(
B∗P(�(s) − I )x, F(t − s)z

)
Y ds

∣∣∣∣
≤ c

∫ t

0
‖(�(s) − I )x‖D(Aε )‖F(t − s)‖L (Y ,U ) ds ‖z‖Y

≤ c
∫ t

0

s1−ε

(t − s)γ
e−η(t−s) ds ‖z‖Y ≤ c t2−ε−γ ‖z‖Y .

(35)

It is here that the constraint ε < 1−γ arises, owing to the requirement 2− ε −γ > 1.
As for the second summand, the basic regularity (in time) of the component G(t)

of B∗eA∗t (see the item 2. of the Assumption 1.4) combined with (33) brings about

∣∣∣∣
∫ t

0

(
B∗P(�(s) − I )x,G(t − s)z

)
Y ds

∣∣∣∣
≤ c

∫ t

0
‖(�(s) − I )x‖D(Aε )‖G(t − s)z‖U ds

≤ c

[∫ t

0
s(1−ε)p′

ds

]1/p′

‖G(·)‖L (Y ,L p(0,T ,U ))‖z‖Y
≤ c t1−ε+1/p′ ‖z‖Y

(36)

for any t ∈ [0, T ], and with the summability exponent p ∈ [1,∞). Because p ≥ 1 is
finite and yet arbitrarily large, 1/p′ can be taken arbitrarily close to 1, which implies
that 1− ε + 1/p′ > 1. Since z ∈ Y is also arbitrary, the estimates (35) and (36) yield

∥∥∥∥
∫ t

0
eA(t−s)BB∗P(�(s) − I )x ds

∥∥∥∥
Y

≤ c tα, 0 ≤ t ≤ T ,
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with α > 1, and hence the limit (34) holds true, even in the case 1/q ′ ≤ ε < 1 − γ .
5. We resume the representation (28) of the incremental ratio for the optimal state
semigroup, and combine the limit

lim
t→0+

eAt − I

t
(x − A−1BB∗Px) = A(x − A−1BB∗Px) in Y

(pointed out already in the step 1.) with (34), to obtain that

lim
t→0+

�(t) − I

t
x = A(x − A−1BB∗Px),

whose meaning is x ∈ D(AP ) and APx = A(I − A−1BB∗P)x . The set inclusion
(26) is established, thus concluding the proof of Theorem 1.9. ��

3 The �-� constraint: PDE illustrations

We have seen in the previous section that we are able to characterize the domain of
the optimal state semigroup’s generator AP , in the case the values of the (indepen-
dent) parameters γ and ε that occur in the standing Assumption 1.4 fulfil the relation
ε < 1 − γ . One may wonder whether this constraint is plausible, and actually met
by significant boundary control systems which comprise hyperbolic and parabolic
components and whose abstract formulation yields a kernel eAt B (in fact, its adjoint)
satisfying theAssumption 1.4. Because the very requirement 3a) of theAssumption 1.4
may be satisfied for a certain ε0 > 0, while being false (at least a priori) for ε < ε0,
the property ε < 1 − γ cannot be taken for granted.

In this sectionwe show that the answer to the said question is positive.We recall and
discuss briefly three distinct PDE problems describing distinct physical interactions:
from mechanical-thermal and acoustic-structure ones (in 2D and 3D, respectively) to
fluid-elasticity ones in 3D. Each of these illustrations does fall into the class of abstract
control systems defined by the Assumption 1.4. The values of γ and ε specifically
suited for either case arise explicitly during the proofs of the soughtafter (respec-
tive) trace regularity results that pertain to a certain component of the solution to the
uncontrolled PDE problem.

The full analyses carried out to show the solvability of infinite time horizon optimal
control problems associated with

• the thermoelastic system (37), and
• the PDE model of a fluid-elasticity interaction (39)

are found in [4, Section 2.1] and [12], respectively. Checking that all the Assump-
tion 1.4 hold true for the abstract formulation of

• the PDE model for acoustic-structure interactions (with thermal effects) (38)

essentially requires the recovery of the regularity results obtained in [11] in the study
of the associated optimal control problems on a finite time interval, along with the
validity of the improved estimate (6); see Sect. 3.2.
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3.1 A thermoelastic system

As our first example, we consider a classical PDE model which describes the dis-
placements of an elastic (thin) plate, in the presence of thermal effects; in regard to the
modeling, see [16]. This very system of coupled hyperbolic–parabolic PDE provided
motivation for the distinctive abstract framework introduced in [3], along with the
linear-quadratic theory devised therein, subsequently continued in [1, 4] with focus
on the infinite time horizon problem.

The PDE problem. Let � ⊂ R
2 be a bounded domain with smooth boundary � :=

∂�; the symbol ν will denote the outward unit normal to the curve �. The linear PDE
model comprises aKirchhoff equation for the vertical displacementw(t, x) of the plate
(and hence, ρ > 0 below) and a simple diffusion equation for the temperature θ(t, x),
with the coupling occurring in the interior. The system is supplemented with clamped
(mechanical) boundary conditions and is subject to a thermal boundary control action
g.

Aiming to study the associated quadratic optimal control problem on an infinite
time horizon, we will have here t ∈ (0,∞). Thus, the initial-boundary value problem
(IBVP) is as follows:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

wt t − ρ�wt t + �2w + �θ = 0 in Q∞ := (0,∞) × �

θt − �θ − �wt = 0 in Q∞
w = ∂w

∂ν
= 0 on �∞ := (0,∞) × �

θ = g on �∞
w(0, ·) = w0, wt (0, ·) = w1; θ(0, ·) = θ0 in �.

(37)

Functional setup, abstract formulation. The natural energy/state space is

Y = H2
0 (�) × H1

0 (�) × L2(�).

With U = L2(�), we take U := L2(0,∞;U ) as the space of admissible controls.
The PDE problem (37) admits a reformulation as the Cauchy problem (3), after

having set

y(t) := y(t, ·) ≡ (w(t, ·), wt (t, ·), θ(t, ·)), g(t) = g(t, ·),

and where A and B are suitable operators which can be detailed explicitly; see [19,
Appendix 3J, p. 402] and [13].We retrace below the various steps and analytical results
which combine to bring about the conclusion that the PDE problem (37) falls within
the abstract framework defined by the Assumption 1.4.1

Verification of the basic Assumptions 1.1. (a) It is pretty well-known that the present
(free) dynamics operator A is the generator of a C0-semigroup of contractions eAt in
Y , t ≥ 0; this semigroup is not analytic, as opposed to the case when the thermoelastic

1 Here we make reference to all the hypotheses with the only exception of (3b), that pertains to the
observation operator R.
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system comprises the Euler-Bernoulli plate model (ρ = 0), in place of the hyperbolic
Kirchhoff one (ρ > 0).

(b) In addition, the semigroup eAt is exponentially stable, as proved in [5] by
energy methods. (We note that the introduction of a novel (operatorial) multiplier is
the decisive element in the proof therein.)

We recall that the study of well-posedness of initial-boundary value problems for
(uncontrolled) linear thermoelastic systems has developed throughout the nineties
of the last century, with initial focus on the case k = 0 and hinged BC; see [19,
Chapter 3] for an historical overview on the subject, along with a list of pertinent
references. It is worth noting that the analysis in [18] offers a unified treatment of
linear thermoelasticity under different BC, via an insightful decomposition of the
underlying semigroup eAt (which in particular covers the problem at hand here).

(c) As for the controlled thermoelastic problem (37), the explicit computation of B
and A−1B performed in [13]—combined with the aforementioned results—confirms
that the basic Assumption 1.1 are satisfied.

Verification of the Assumption 1.4. The applicability of the theory of the quadratic
optimal control problem on an infinite time horizon devised in [4] is discussed in
full detail in [4, S2.1], as the end point in a series of steps carried out in the earlier
[13] and [2]. We recall specifically that the decomposition (5) of B∗eA∗t , along with
a local (in time) version of the estimate (6) for the component F(t) (valid in a right
neighbourhood of t = 0, with η = 0), as well as the statements 2. and 3a) of the
Assumption 1.4 were shown to be valid in [13].

The boundary regularity result that yields 3c)was subsequently sought and achieved
in [2, Theorem 1.1]. Finally, the enhanced estimate (6) (for all t > 0 and with η > 0)
was proved in [4, §2.1].

It is important to emphasize that the conditions 1., 2., 3a) on B∗eA∗t and 3c) on
B∗eA∗t A∗ε have respective PDE counterparts; these are always regularity (in time
and space) results for certain boundary traces.2 In the case of the thermoelastic system
(37), they specifically pertain to the normal traces (on �) of the thermal component
of the uncontrolled system (i.e. (37) with g ≡ 0), as synthesized below:

• regularity of the operator B∗eA∗· � regularity of ∂θ
∂ν

∣∣
�
,

• regularity of the operator B∗eA∗·A∗ε � regularity of ∂θt
∂ν

∣∣
�
.

Values of γ and ε. The outcome of [13, Theorem 3.3], [2, Theorem 1.1] and [4,
§2.1] allows to conclude that the values of γ and ε are as follows:

γ = 3

4
+ σ, 0 < ε <

1

4
,

where σ ∈ (0, 1/4) may be arbitrarily close to 0, while ε can be taken freely in the
specified range. Thus, since 1 − γ ≡ 1/4 − σ , the constraint ε < 1 − γ is satisfied.

2 Below and later on we will utilize the symbol � to make explicit the said correspondence.

123



On the infinitesimal generator of an optimal state…

3.2 A PDEmodel for acoustic–structure interactions with thermal effects

One may interpret the two dimensional plate dealt with in the previous paragraph as a
flat, elastic portion �0 of the boundary of a three dimensional, bounded domain �—
representing an acoustic chamber—, with the interactions between the acoustic waves
in � and the vibrations of the flexible wall taking place on �0. Hence, differently
than in the case of the thermoelastic system, the resulting structural acoustic model
displays a strong coupling, as it occurs by means of boundary traces on �0. Optimal
control problems arise naturally within this context, motivated by the goal of reducing
the noise within the chamber and/or the vibrations of the elastic wall.

An archetypical PDE model for acoustic-structure interactions which couples
equations of different type (a hyperbolic wave equation and a parabolic-like elastic
equation) acting on manifolds of different dimensions, further subject to point control,
has been the object of extensive research work during the nineties. Point control math-
ematically describes—via a combination of derivatives of Dirac delta functions—the
action of piezoelectric patches for the noise attenuation, as proposed by Dimitriadis et
al. The work [6] by Avalos and Lasiecka studies the quadratic optimal control prob-
lem associated with the said linear problem. It provides the first contribution to the
mathematical analysis of Riccati equations (with unbounded operator coefficients) that
arise from the optimal boundary control of systems of coupled hyperbolic–parabolic
PDE—recast as abstract systems in the usual form y′ = Ay + Bg—, by exploiting
(thus revealing) the central role of certain regularity estimates for the kernel eAt B,
even in the absence of analiticity of the semigroup eAt .

Here we consider a PDE system which is a variant of the aforementioned structural
acousticmodel.With the same basic equation for the acoustic waves propagation in the
chamber, the equation describing the vertical displacements of the elastic wall changes
to embed rotational forces (which account for the term −ρ�wt t in (38) below, ρ > 0
being proportional to the thickness of the plate). And yet, the thermal effects—which
are present—bring about an additional diffusion equation on �0. Thus, the resulting
system comprises three evoutionary PDE, of different type: precisely, a hyperbolic
equation and a system of coupled hyperbolic–parabolic PDE.

The PDE problem. Let � ⊂ R
3 be a bounded domain, with boundary

∂� =: � = �0 ∪ �1,

where �i ⊂ R
2, i = 0, 1, are open, simply connected and disjoint; �1 is the so called

hard wall. The PDE problem comprises a wave equation for the acoustic velocity
potential z = z(t, x), x ∈ �, and a thermoelastic system for the pair of the plate’s ver-
tical displacement and the temperature (w(t, x), θ(t, x)), x ∈ �0. The wave equation
is supplemented with Neumann BC, while the thermoelastic system (is supplemented)
with clamped BC and is subject to Dirichlet boundary control. Thus, the IBVP is as
follows:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ztt = �z in (0,∞) × � =: Q∞
∂z
∂ν̃

+ d1z = 0 on (0,∞) × �1 =: �1
∂z
∂ν̃

= wt on (0,∞) × �0 =: �0

wt t − ρ�wt t + �2w + �θ + zt = 0 in �0

θt − �θ − �wt = 0 in �0

w = ∂w
∂ν

= 0, θ = g on (0,∞) × ∂�0

z(·, 0) = z0, zt (·, 0) = z1 in �

w(·, 0) = w0, wt (·, 0) = w1; θ(·, 0) = θ0 in �0.

(38)

We note that symbols ν̃ and ν above denote the outward unit normals to � and to
the curve ∂�0, respectively; d1 and ρ are positive constants (ρ is proportional to the
thickness of the plate).

Functional setup, abstract formulation. We recall briefly that the natural (finite
energy) state space for the PDE problem (38) is

Y = H1(�) × L2(�) × H2
0 (�0) × H1

0 (�0) × L2(�0) ;

with U = L2(∂�0), we take U := L2(0,∞;U ) as the space of admissible controls.
Indeed, the IBVP (38) can be recast as the Cauchy problem (3), having set

y(t) := y(t, ·) ≡ (z(t, ·), w(t, ·), wt (t, ·), θ(t, ·)), g(t) = g(t, ·),

and with the operators A and B explicitly identified; see (2.13) and (2.15) in [10,
Section 2]. Now, the complex of results—be they functional-analytic or in the PDE
realm—showing that the control-theoretic properties listed as Assumption 1.4 hold
true (for the time being and as before, excluding the assumption 3b) on the observation
operator R), are highlighted and properly attributed below.

Verification of the basic Assumptions 1.1. (a) The study of well-posedness of the
abstract Cauchy problem

{
y′ = Ay

y(0) = y0 ∈ Y

corresponding to the IBVP (38) with homogeneous boundary data (i.e., with g ≡ 0),
as well as of the uniform stability of the corresponding dynamics, has been pursued
successfully by Lebiedzik in [21]. This work establishes that the said operator A is
the generator of a C0-semigroup of contractions eAt in Y , t ≥ 0. Classical semigroup
theory provides the tool. (b) Furthermore, by using energymethods and a compactness-
uniqueness argument, eAt is shown to be exponentially stable. (c) In the presence of
nontrivial boundary data g, the control operator B arises. This and A−1B are explicitly
computed by the second (named) author in [11], thereby concluding that the basic
Assumption 1.1 on (A, B) are satisfied.

Verification of the Assumption 1.4. The analysis performed in [11] pertains to the
optimal control problem on a finite time horizon, meaning that t varies on [0, T ) rather
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than on [0,∞); consequently, the asymptotic behaviour of eAt—as well as the one
of the component F(t) of B∗eA∗t—does not play any role therein. However, [11]
provides essentially the appropriate boundary regularity estimates that allow for the
invocation of the theory in [4], besides the one in [3] focused on the case T is finite.
We remind the reader that these pertain to the regularity (in time and space) of the
boundary traces of the thermal component, as summarized below:

• regularity of the operator B∗eA∗· � regularity of ∂θ
∂ν

∣∣
∂�0

,

• regularity of the operator B∗eA∗·A∗ε � regularity of ∂θt
∂ν

∣∣
∂�0

.

Precisely, Theorem 2.3 in [11] yields the sought decomposition (5) of the operator
B∗eA∗t , along with the validity of 2., 3a) and 3c) of the Assumption 1.4. A reworking
on the proof of the singular estimate

‖F(t)‖L (Y ,U ) ≤ C t−3/4−σ ∀t > 0

proved therein would allow to obtain the enhanced estimate (6) (with appropriate
constants N and η), so that 1. of the Assumption 1.4 holds true as well; the details are
omitted.

Remark 3.1 We point out that the complex of (regularity) results provided by [11,
Theorem 2.3] follows combining

– the sharp trace theory for the solutions to wave equations with nontrivial (Neu-
mann) boundary data (in particular the estimate (3.9) in [11], whose proof is found
e.g. in [17]), which in turn yields

– the improved boundary regularity of the elastic component of the (uncontrolled)
system: precisely,

∥∥�w|∂�0

∥∥
L2(0,T ;L2(∂�0))

≤ CT ‖y0‖Y , y0 ∈ Y

(see [11, Proposition 3.2]),
– the smoothing effect of the parabolic component.

Values of γ and ε. In conclusion, the analysis pursued in [10, 11] and more specif-
ically in [11, Theorem 2.3] bring about respective values of γ and ε which are akin to
the ones found for the uncoupled thermoelastic system; to wit,

γ = 3

4
+ σ, 0 < ε <

1

4
,

where σ ∈ (0, 1/4) may be arbitrarily close to 0, while ε can be taken freely in the
specified range. Thus, since 1 − γ ≡ 1/4 − σ , the constraint ε < 1 − γ is readily
satisfied.

3.3 A PDEmodel for a fluid–elasticity interaction

The PDE problem that serves as a last illustration of the feasibility of the relation
ε < 1 − γ (assumed in Theorem 1.9) originates from the mathematical description
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of a very different physical interaction, more precisely a fluid-elasticity one. The
PDE problem under consideration arises from the linearization of a recognized PDE
system that describes a fluid-structure interaction (FSI) in 3D, under the hypothesis
of stationary interface. The true nonlinear scenario is that of an elastic body fully
immersed in a viscous, incompressible fluid; the interface is the boundary of the
elastic body, where the interactions between the two media occur. We refer the reader
to the work of Barbu et al. [8] and its bibliography, in regard to the original FSI. As it
will become apparent below, the said linearization further includes a dissipation term
on the interface, which renders the coupled dynamics uniformly stable, as proved in
[7].

ThePDEproblem.Let� ⊂ R
3 be the bounded and smooth domain representing the

fluid-solid region. If we denote by� f and�s the (open, smooth) domains occupied by
the fluid and the solid, respectively, then� is the interior of� f ∪�s . The velocity field
of the fluid is represented by a vector-valued function u, which satisfies the equations
of Stokes flow in � f ; the scalar function p represents, as usual, the pressure. The
displacements of the solid region �s are described by the variable w, which satisfies
the Lamé system of dynamic elasticity. The interaction occurs at the interface, say,
�s = ∂�s , which is assumed stationary. Then, � f will denote the outer boundary of
� f instead: namely, � f = ∂� f \ ∂�s . Below, ν = ν(x) is the outward unit normal
for the fluid region � f and therefore it is pointing towards the interior of the solid
region �s .

Thus, we consider the following system of PDE in the unknowns (u, w):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut − div ε(u) + ∇ p = 0 in (0,∞) × � f =: Q f

div u = 0 in Q f

wt t − div σ(w) + w = 0 in (0,∞) × �s =: Qs

u = 0 on (0,∞) × � f =: � f

ε(u) · ν = σ(w) · ν + pν + g on (0,∞) × �s =: �s

wt − σ(w) · ν = u on �s

u(0, ·) = u0 in � f

w(0, ·) = w0, wt (0, ·) = w1 in �s .

(39)

The symbols σ and ε denote the elastic stress tensor and the strain tensor, respectively,
that are

εi j (w) = 1

2

(∂wi

∂x j
+ ∂w j

∂xi

)
, σi j (w) = λ

3∑
k=1

εkk(w)δi j + 2μεi j (w), (40)

where λ,μ are the Lamé constants and δi j is the Kronecker symbol. (We note the
abuse of notation determined by the use of the letter ε for the parameter in 3. of the
Assumption 1.4, and also for the elastic strain tensor defined in (40). However, as the
latter appears only in (39), no confusion is likely to arise.)

The PDE system in (39) shares with the previous illustrations the features that it
comprises both parabolic and hyperbolic equations, and moreover the parabolic com-
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ponent is subjected to a boundary control action. Notably, its abstract reformulation
falls into the framework characterized by the Assumption 1.4, as proved in [12].

Functional setup, abstract formulation. The functional setup for the IBVP (39)
follows—in its basic elements—the one introduced in [8] for the true nonlinear prob-
lem. Also, the perspective taken in [12] to attain the sought regularity results is akin
to the one adopted in [14, 15, 20] in the study of the optimal boundary control prob-
lem associated with its (undamped) linearization. We note that the regularity analysis
that has been carried out in the aforementioned works benefited from the enhanced
regularity of the boundary traces of the normal component of the stress tensor on the
interface, valid for weak as well as semigroup solutions.

The state (energy) space for the system is

Y := H × [H1(�s)]d × [L2(�s)]d ,

where H denotes the (null-div) space pertaining to the fluid component, that is

H := {
u ∈ [L2(� f )]d : div u = 0, u · ν|� f = 0

}
,

while [H1(�s)]3 × [L2(�s)]3 is the natural energy space for the Lamé system.
As before, the IBVP (39) can be recast as the abstract Cauchy problem (3), having

set

y(t) := y(t, ·) ≡ (u(t, ·), w(t, ·), wt (t, ·)), g(t) = g(t, ·),

and with suitable operators A and B explicitly identified; see [12, Section 2.1]. The
abstract setup introduced in [12] has provedwell-suited for the derivation of the bound-
ary regularity estimates that allow for the invocation of the theory of the infinite time
horizon optimal control problem devised in [4].

Verification of the basic Assumptions 1.1. The basic Assumptions 1.1 for the pair
of the (free) dynamics operator A and the control operator B are ascertained in [12,
Proposition 2.2]. The modified transmission condition

wt − σ(w) · ν = u

on the interface �s—in place of wt = u, which conveys the matching of the two
velocities—subsumes a source of dissipation,which renders thePDEsystemuniformly
(exponentially) stable, as proved in [7].

Verification of the Assumption 1.4. The requirements 1., 2., (3a) on B∗eA∗t and
(3c) on B∗eA∗t A∗ε of the Assumption 1.4 translate into appropriate regularity results
(in time and space) for the boundary traces of the fluid velocity field u on �s . More
specifically,

• regularity of the operator B∗eA∗· � regularity of ∂u
∂ν

∣∣
�s
,

• regularity of the operator B∗eA∗·A∗ε � regularity of ∂ut
∂ν

∣∣
�s
,

where (u, w,wt ) solves the uncontrolled problem, that is IBVP (39) with g ≡ 0.
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It was found in [12] that the sought boundary regularity results for the fluid velocity
field can be achieved exploiting and combining carefully the parabolic regularity of
the fluid variable with the exceptional regularity of certain normal traces of the elastic
component. The latter, enhanced by the presence of the boundary dissipation into the
coupled system, emerges from an energy equality obtained in [7], which in turn can
be proved with the only use of multiplier methods. In this respect it should be noted
that the prior work carried out in [14, 15, 20] on the (undamped) linearizations of
the original FSI necessitated arguments from microlocal analysis, instead; see [15,
Lemmas 2.3 and 2.4].

Values of γ and ε. The analysis pursued in [12] (whose core is the proof of Theo-
rem 1.2 given in Section 2.3 therein), yields the following values of γ and ε:

γ = 1

4
+ σ, 0 < ε <

1

2
,

where σ ∈ (0, 3/4) may be arbitrarily close to 0, while ε can be taken freely in the
specified range. Thus, since 1 − γ ≡ 3/4 − σ , the constraint ε < 1 − γ is readily
satisfied.
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