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In the underwater domain, guaranteeing accurate navigation for an Autonomous
Underwater Vehicle (AUV) is a complex but fundamental task to be achieved.

As a matter of fact, only by ensuring a correct AUV localization it is possible
to accomplish surveillance, monitoring, and inspection missions.
Firstly, focusing on the attitude estimation filters, a strategy based on Extended
Kalman Filter (EKF) and Lie groups theory for AUVs orientation initialization
has been developed to face the presence of magnetic disturbances, which makes
magnetometer measurements unreliable. The procedure is performed when the
vehicle is on the sea surface to replace the magnetometer measurements and to
evaluate the offset caused by the unknown disturbances. The strategy has been
validated and evaluated with real data acquired during experimental campaigns
at sea.
Turning to position estimation algorithms, most of the navigation filters for
AUVs are based on Bayesian estimators, such as the Kalman Filter (KF), the
EKF, or the Unscented Kalman Filter (UKF), and employ different instruments,
often including the Doppler Velocity Log (DVL) to perform the localization
task. Recently, the use of payload sensors, such as cameras or Forward Look-
ing SONARs (FLSs), in navigation-aiding has arisen as an interesting research
field in the attempt to reduce localization error drift. Such sensors, if used
simultaneously, can provide multiple observations, which can be combined in
a Kalman filtering framework to increase navigation robustness against noise
sources. Navigation techniques that employ multiple devices can provide a high
improvement in the estimation quality, but they can also cause an increase in
terms of computational load. Consequently, strategies representing a trade-off
between these two conflicting goals have been investigated. Using an augmented
set of devices able to provide navigation information represents an intrinsic boost
in redundancy: DVL-denied scenarios, such as very close to the seafloor or other
surfaces or when a substantial number of gaseous bubbles is present, could thus
be managed.
Two different UKF-based frameworks have been implemented and compared:
on the one hand, a centralized iterative UKF-based navigation approach and
on the other hand, a sensor fusion framework with parallel local UKFs. To the
author’s best knowledge, the fusion of inertial, acoustic, and optical data in a
UKF algorithm and the application of the presented sensor fusion strategies to
AUV navigation is novel. It is necessary to highlight that while the central-
ized strategy guarantees the best improvements in terms of estimation quality,
decentralized strategies provide an increase of robustness against measurement
reduction.
To overcome the limitation of the Kalman filtering strategies and to accomplish
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the mapping task during vehicle navigation, a factor graph-based Simultaneous
Localization And Mapping (SLAM) strategy, which relies on DVL and optical
measurements, has been developed and tested. The strategy has been imple-
mented to fuse the data coming from these onboard sensors and to provide a
reconstruction of the seabed inspected by the AUV.
The proposed solutions have been firstly validated with realistic simulations
made through the Unmanned Underwater Vehicle Simulator (UUV Simulator),
where a dynamic model of FeelHippo AUV was implemented. Moreover, both
the UKF and the SLAM strategies have been tested with real experimental data
acquired during several experimental campaigns at sea.
Operating on both the orientation and the position estimation filters, the pre-
sented works propose advances to improve underwater vehicles’ localization and
mapping capabilities.
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Chapter 1

Introduction and thesis
motivation

From geology to exploration and surveillance of archaeological sites and from
Oil and Gas industry to reconnaissance for military purposes, exploring and

understanding seas and oceans is a matter of primary importance. Considering
their human hostile nature, since the 1960s, seas and oceans have been explored
with the aid of robots. The first Unmanned Underwater Vehicles (UUVs) were
teleoperated ones and are referred in the technical literature as Remotely Oper-
ated Vehicles (ROVs). A cable, usually called umbilical cable, acts as a constant
connection providing power and communications, and specialised operators are
thus able to control the vehicle using the feedback forwarded by the on-board
sensors. In the last decades Autonomous Underwater Vehicles (AUVs), which
are completely autonomous, have gained interest with respect to ROVs. In-
deed, such vehicles do not require human intervention (except for deployment
and recovery), are usually equipped with electric batteries, and possess dedi-
cated systems used to control their motion. Since the demanded tasks of un-
derwater vehicles have become more and more challenging [1], [2], researchers
and scientists are following the tide of change and are pushing the boundaries of
AUVs capabilities by integrating cutting-edge technologies. Indeed, autonomous
inspection [3], and intervention [4] strategies for underwater installations, ex-
ploration planning solutions [5], and autonomous coverage approaches [6], have
become essential tools to execute demanding and hazardous subsea operations.
One of the most significant and complex tasks in autonomous underwater ex-

1



2 CHAPTER 1. INTRODUCTION AND THESIS MOTIVATION

ploration is to retrieve the vehicle’s pose within the surrounding environment,
making use of precise and reliable navigation and localization systems, which
are necessary regardless of the kind of mission or task the underwater vehicle
is required to perform. In addition to this, perceptual devices (such as optical
cameras and acoustic devices) able to sense the surrounding environment have
been earning attention throughout the last decades to acquire data for moni-
toring and inspection purposes. The use of optical and acoustic equipment to
aid navigation has emerged as a relevant alternative or support to traditional
navigation sensors.
Consequently, the research carried out during the Ph.D. period aimed at push-
ing forward the use of multisensor approaches in underwater navigation-aiding,
developing and validating a novel solution tailored to the underwater environ-
ment.

1.1 Overall framework

The research activity described in this work has been carried out at the Mecha-
tronics and Dynamic Modeling Laboratory (MDM Lab), a research laboratory
that belongs to the Department of Industrial Engineering in Florence (DIEF) of
the University of Florence (UNIFI). UNIFI DIEF has been operative in the field
of underwater robotics since 2010 thanks to the participation in the Tuscany-
funded project TecnicHe per l’Esplorazione Sottomarina Archeologica mediante
l’Utilizzo di Robot aUtonomi in Sciami (THESAURUS), where the main goal
was the development of a swarm of AUVs for underwater archaeology. Since
then, the MDM Lab research group has taken part in several cutting-edge na-
tional and international projects in the marine robotics field. In 2013, the MDM
Lab joined as the coordinating partner of the European FP7 project ARcheo-
logical RObot systems for the World’s Seas (ARROWS).
Since 2014, the University of Florence has joined the Interuniversity Center of
Integrated Systems for the Marine Environment (ISME), which gathers Univer-
sities from all over Italy and whose main goal is to act as a common platform
for joint operations for what concerns marine robotics and, generally speaking,
marine field. As a result of the support of the Naval Support and Experimen-
tation Center (Centro di Supporto e Sperimentazione Navale) (CSSN) of the
Italian Navy (formalized as the SEALab joint laboratory), several tests at sea,
with the aiming of trying out the vehicles of the UNIFI DIEF MDM Lab fleet,
have been performed during the Ph.D. in La Spezia, Italy.

Together with the official spin-off company MDM Team S.r.l. of UNIFI
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Figure 1.1: Logos of the main projects joined by the MDM Lab.

DIEF, the MDM Lab took part in the Autonomous underwater Robotic and
sensing systems for Cultural HEritage discovery COnservation and in sitU val-
orization (ARCHEOSUb) European project in 2018 to realize technologies for
underwater archaeology. The group joined the H2020 EUMarineRobots (EUMR)
and Operational Platform managing a fleet of semi-autonomous drones exploit-
ing GNSS high Accuracy and Authentication to improve Security Safety in port
areas (PASSport) projects in 2019. While the EUMR project opens transna-
tional access to national and regional marine robotics research infrastructures
to all European researchers, ensuring their optimal use and joint development
to establish a world-class marine robotics integrated infrastructure, the PASS-
port project aims to improve security in port areas through the combined use of
Unmanned Aerial Vehicles (UAVs) and AUVs. In the framework of the EUMR
project, underwater missions were performed by UNIFI DIEF at Vulcano Is-
land, Messina (Italy) with FeelHippo AUV. The main goal was to detect carbon
dioxide bubbles in the sea, which are responsible for negative effects on under-
water fauna and flora. Several data employed to reach the main goals of this
thesis have been acquired during this experimental campaign.
In 2020, the MDM Lab joined the military research project reconfiguraBle au-
tOnOmous systeMs for undErwater waRfare (BOOMER), whose main goal is to
perform acoustic measurements in challenging underwater environment through
the employment of a fleet composed of autonomous underwater vehicles and au-
tonomous surface vessels. In the context of this project, the MDM Lab realizes
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a gateway buoy for underwater localization and a module to perform precise
navigation tasks by employing high-quality cameras.
Finally, in 2021, the PATHfinder project proposes a solution based on a fleet
of multi-domain (aerial, terrestrial and underwater) drones for emergency sce-
nario management, where the MDM Lab manages the underwater inspection
with FeelHippo AUV. To emphasize the potential utility of the PATHfinder
proposed solution, the case study of Stromboli Island, Messina (Italy) is pro-
posed as an optimal case history of multi-hazard occurrences that impacted
the communities and the territory. This experimental campaign, carried out
in September 2022, has been employed to perform the final tests of the main
navigation strategies developed during the Ph.D. period.

Figure 1.2: Logos of ISME and SEALab.

In addition to the participation in regional, national, and European projects,
UNIFI DIEF took part in many non-student and student robotics competitions
during the last few years. Just to name a few examples, a team of UNIFI
DIEF participated to Student Autonomous Underwater Vehicles Challenge -
Europe (SAUC-E) competition in 2012, 2013, 2016, and European Robotics
League (ERL) SAUC-E in 2018, and 2019. Furthermore, in 2015 euRathlon
competition was joined, whereas a team took part in ERL in 2017. Throughout
the years, the teams of UNIFI DIEF have gained expertise and proficiency. In
2013 and 2016, the third place was obtained, while in 2017, the participating
team was awarded Second-in-Class in “Pipe inspection and search for search for
missing workers (Sea+Air)” during ERL Emergency Robots 2017. In 2018 and
2019, the team won the competition in the sea domain, and it was awarded “Best
Marine Team” during ERL SAUC-E 2018, and ERL SAUC-E 2019. Finally, in
2022, the team reached the maximum number of points during the tests at sea
at the international competition Robotics for Asset Maintenance and Inspection
(RAMI).
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1.2 FeelHippo AUV

FeelHippo AUV, whose last version is depicted in Fig. 1.3, is a compact and
lightweight AUV developed by the MDM Lab in 2013 for joining student and
non-student robotics competitions [7]. In recent years, it has faced several hard-
ware and software upgrades that have made FeelHippo AUV a reliable and ver-
satile platform for conducting research activities and project-related tasks. Feel-
Hippo AUV is composed of a central body made of a Plexiglass® hull, where the
hardware and electronics are housed, and two aluminum pipes attached under
the main body, which contain the batteries. At the time of writing, FeelHippo
AUV propulsion is realized through six thrusters (two at the stern, two at the
bow, and one each on both sides inclined at 45°) arranged in a vectored config-
uration that allows for the control of all the Degree of Freedom (DOF) of the
vehicle, except for the pitch motion that depends entirely on the inner mass
distribution and the vehicle configuration. FeelHippo AUV main characteristics
are summarized in Tab. 1.1.

Table 1.1: FeelHippo AUV physical data and performance.

FeelHippo AUV main features
Dry mass [kg] 35
Dimensions [m] 0.6× 0.64× 0.5
Controlled DOFs 5

Thrusters 6
Battery life [h] 4

Maximum depth [m] 30.0
Maximum longitudinal speed [m/s] 1.0

The list of the primary electronic components and the sensor sets with which
FeelHippo AUV is equipped are reported below:

• Intel i7-based LP-175-Commel motherboard (main computer);

• NVIDIA Jetson Nano (payload computer);

• U-blox 7P precision Global Navigation Satellite System (GNSS), capable
to acquire data from the satellites of the United States’ Global Positioning
System (GPS) and the European Galileo system;
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• Orientus Advanced Navigation Attitude and Heading Reference System
(AHRS);

• KVH DSP 1760 single-axis high precision Fiber Optic Gyroscope (FOG);

• Nortek DVL1000 Doppler Velocity Log (DVL), measuring linear velocity
and acting as Depth Sensor (DS);

• EvoLogics S2CR 18/34 acoustic modem;

• Teledyne BlueView M900 2D Forward Looking SONAR (FLS);

• one Microsoft Lifecam Cinema forward-looking camera;

• one Microsoft Lifecam Cinema bottom-looking cameras;

Figure 1.3: FeelHippo AUV before an on-field underwater mission.

The main computer (Intel i7-based LP-175-Commel motherboard) runs the
software architecture based on the Robot Operating System (ROS) framework
[8], and it is used for onboard processing of guidance, navigation, and control
algorithms, for supervising the state of the vehicle, and for managing the com-
munication channels. The payload computers, an NVIDIA Jetson Nano con-
nected to the main computer, is exploited for running onboard machine learning
algorithms and Automatic Target Recognition (ATR) solutions [9].
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1.3 Thesis structure

This thesis is organized as follows.
Chapter 2 reviews the state-of-the-art in navigation strategies for the underwa-
ter domain. Kalman filtering approaches and Simultaneous Localization And
Mapping (SLAM) algorithms based on inertial and payload sensors are ana-
lyzed. Chapter 2 also focuses on the main contributions of this thesis.
Chapter 3 is dedicated to the definition of the notation employed in this work,
introducing the main theoretical concepts regarding AUV and sensor modeling
and navigation strategies.
Chapter 4 introduces and discusses an orientation initialization algorithm to
be employed in the presence of unknown magnetic disturbance. The proposed
solution has been accurately validated during several experimental campaigns.
Chapter 5 is dedicated to the testing and comparison of Unscented Kalman
Filter (UKF) solutions for multisensor navigation. A systematic analysis of the
developed algorithms has been performed on both simulated and experimental
data. All the proposed solutions have been tested in an all against all compari-
son.
In Chapter 6 advances for enhancing the performance of the position estima-
tion filter are proposed. In particular, Chapter 6 introduces a SLAM strategy
to employ the onboard sensors for navigation and mapping the surrounding
environment. This strategy has been tested by exploiting simulated and exper-
imental data to verify its performance in both navigation and mapping tasks.
In particular, in the experimental results the main findings obtained during the
Ph.D. period for the orientation and the position algorithms are fused in a new
navigation framework.
Finally, Chapter 7 concludes the thesis by providing an analysis of the obtained
results and discussing possible future developments.
Appendix A contains the description of developed automatic tools for point
cloud post-processing. The data obtained from the SLAM algorithm can be
elaborated to generate a simplified 3D geo-referenced textured reconstruction
of the seabed.





Chapter 2

Related works and thesis
contribution

This chapter reviews the related works that inspired this Ph.D. research work.
Firstly, state-of-the-art in navigation strategies for the underwater domain

are presented. Then, Maximum A Posteriori (MAP) and SLAM strategies that
influenced the solution developed during the Ph.D. period are reviewed. Lastly,
the main contribution of this thesis are highlighted.

2.1 State-of-the-art of Kalman filtering for un-
derwater navigation

AUVs are now used for a wide variety of missions, and consequently, an accu-
rate localization and navigation strategy is essential to ensure that objectives
are achieved. AUV localization is a challenging task due to all the difficulties
introduced by the underwater environment, such as the lack of GPS and the re-
duced visibility. As the simplest solution, Dead Reckoning (DR) strategies have
proven satisfyingly reliable if the available sensors are sufficiently accurate. A
common approach is to integrate over time measurements from a DVL combined
with an attitude reference (obtained, e.g., from an Inertial Measurement Unit
(IMU) together with a FOG), often leading to good navigational accuracy [10].
In some working scenarios, such as when the AUV is near to the seafloor or to
other surfaces or when gaseous bubbles are present [11], the DVL operability re-

9
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sults limited. Consequently, the development of sensor fusion strategies, capable
of exploiting all the measurement information acquired by the AUV during its
mission, has been an active and interesting research field. Focusing on under-
water navigation applications, Visual Inertial Odometry (VIO) strategies have
been appropriately investigated as a combination of inertial and optical data to
overcome both sensors’ limitations. This choice can be highly fruitful thanks
to the complementarity of the employed sensor properties. While cameras suf-
fer highly rapid movements and textureless environments, inertial sensors, as
the IMUs, are independent of the observed scene and can be a useful support
to the image-based navigation data. VIO strategies for underwater navigation
have been addressed in [12] and [13]. While in [12] the feasibility of a stereo
visual-inertial approach for AUV trajectory estimation is shown, the algorithm
proposed in [13] combines information from an IMU in the form of linear ac-
celerations and angular velocities, depth data from a DS, and feature tracking
from a monocular downward facing camera to estimate the pose of the vehicle.
Following the approaches introduced in the VIO field, Acoustic Inertial Odome-
try (AIO) has been explored in the last few years but still is in a more embryonic
stage; some promising results can be found in [14], and [15]. On the one hand,
the approach proposed in [14] efficiently fuses the acoustic observations from
a 2D imaging SONAR and the inertial measurements from an IMU; on the
other hand, the strategy presented in [15] is dedicated to the development of
an underwater navigation system that does not rely on a DVL and where linear
speed estimations are obtained exploiting data from a FLS. A more elaborate
approach for both position and attitude estimation, usually exploited in marine
robotics, is based on the Kalman Filter (KF) [16], on the Extended Kalman
Filter (EKF) [17], [18] or the UKF [19], [20], [21] typically employed when non-
linearities in the dynamic description of the system arise. Generally speaking,
all require knowledge of the linear speed of the AUV, which is (for the majority
of times) obtained using specialized and underwater sensors, such as the DVL,
or exploiting optical or acoustic payload. It is worth nothing that in the AUV
navigation context, fusion strategy for redundant information as in the presence
of acoustic, optical and inertial sensors is still a niche and open problem; prelim-
inary works can be found in [22]. It is necessary to notice that in the algorithm
proposed in [22], the AUV switches the utilizing sensor in appropriate case in
real-time, and always navigates with the most useful sensor. A feature-based
reliability value of each acquired optical and acoustic image is defined to decide
which strategy can be employed, but the estimated speed values are not fused
in a unique framework and only a switching strategy is adopted.
Turning to fusion strategies in the presence of redundant information, a first
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categorization can be made between centralized and decentralized methods.
Historically, the former solutions represent the standard approach, and they
advocate the usage of a single central filter devoted to estimation (a detailed
discussion can be found in [23] and [24]). When compared with centralized
solutions, decentralized methods significantly reduce the computational effort
and increase the fault-tolerant capability of the overall navigation system [25],
[26], [27], and [28]. Within the decentralized filtering realm, the federated fil-
ters introduced by Carlson in [25] and [26] represent one of the first developed
solutions, which have been initially tested through simulations. In [27] and
[28], some experimental results show that applying a fusion algorithm based on
Kalman filtering can avoid the limitations of a single sensor, reduce its uncer-
tainty impact and increase the confidence level of data. Besides, Information
Kalman Filters (IKFs) are fused in a central processor unit in [29], [30]. Finally,
consensus-based works [31], [32] typically involve a sensor network constituted
of several AUV platforms [33], [34], but can also be considered in a single vehicle
context.
As a consequence, historically, the vast majority of contributions concerning fu-
sion strategies in navigation algorithms have been focused on constraining the
navigational drift of the AUV; thus, particular emphasis has been paid to the
use of multiple devices complementary to each other.

2.2 Related works on MAP and SLAM strate-
gies for underwater navigation and mapping

Many estimation problems in robotics have an underlying optimization problem
[35]. In most of these optimization problems, the objective to be maximized or
minimized is composed of many different factors (e.g., a GPS measurement is
applied to the pose of the vehicle at a particular time and can be referred as
an unary factor, an IMU measurement can be related to two vehicle states at
adjacent times and can represent an odometry factor). The use of factorial
graphs in the design of algorithms for robotic applications has three main ad-
vantages. First, since many optimization problems in robotics have the property
of locality, factorial graphs can model a wide variety of problems in all robotics
domains, such as tracking, navigation, and mapping. Secondly, by clearly ex-
posing the structure of the problem, reflection on factorial graphs offers many
opportunities to improve the performance of key algorithms. Many classical
algorithms can be viewed as the application of the elimination algorithm to a
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particular type of factorial graph. Still, this algorithm is only optimal for a small
class of problems. In many applications, knowledge of the specific structure of
the problem domain can improve the execution time of inference by orders of
magnitude. Similarly, well-known algorithmic ideas from linear algebra can be
generalized to factorial graphs, leading, for example, to incremental inference al-
gorithms. Thirdly, apart from performance considerations, factorial graphs are
useful when designing and thinking about how to model a problem, providing
a common language to express ideas to collaborators and users of a particular
algorithm. After working with factor graphs for a while, one begins to iden-
tify factor types as a particularly useful design unit. A factor type specifies
how many variables a factor is related to and the semantics associated with the
function to be calculated.
MAP estimation has recently become the standard approach for modern SLAM
strategies [36]. Indeed, while fixed-lag smoothers and filtering solutions restrict
the inference within a window of the latest states or to the latest state, respec-
tively, MAP strategies estimate the entire history of the system by solving a non-
linear optimization problem. Both fixed-lag smoothers and filters marginalize
older states, collapsing the corresponding information (usually) in a Gaussian
prior. This approach can lead to reduced robustness against outlier data [37].
Since MAP strategies can quickly lead to an unsuitable approach for real-time
applications, the development of incremental smoothing techniques has arisen
as the state-of-the-art approach. Such techniques can reuse previously calcu-
lated quantities when new measurements or variables are added [38], [39]. In
particular, in [39] a Bayes tree data structure is employed to perform incremen-
tal optimization on the factor graph. Also, the adopted solution possesses the
ability to identify and update only a small subset of variables by accurately
selecting the ones affected by the new measurement. A complete review can be
found in [40] and the references therein.
Considering the underwater domain, two works have been taken as inspiration
for the development of the factor graph employed in the proposed SLAM strat-
egy. [41] proposes an algorithm to generate pose-to-pose constraints for pairs
of SONAR images and to fuse these resulting pose constraints with the vehicle
odometry in a pose graph optimization framework. In [42] Ultra-Short BaseLine
(USBL) measurements are exploited as observations within the on-board navi-
gation filter, where the localization task is solved as a MAP estimation problem.
Both these solutions rely on Incremental Smoothing and Mapping 2 (iSAM2),
which is the last evolution of the incremental smoothing and mapping solution
developed in Georgia Tech Smoothing And Mapping (GTSAM). Furthermore,
other graph-based SLAM strategies have been proposed to fuse the data ob-
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tained by the navigation sensors and the perception sensors, both acoustic and
optical. In [43] this approach is used in an AUV for mine counter measurement
and localization. While the graph is initialized by pose node from a GPS, a
non-linear least square optimization is performed with the DVL and IMU-based
DR estimations and the SONAR images. In [44] an acoustic structure from
motion algorithm for recovering 3D scene structure from multiple 2D SONAR
images while at the same time localizing the SONAR is presented.
Turning to visual SLAM, ORB-SLAM [45] is one of the most complete and sim-
ple algorithms, and the whole system is calculated around Oriented FAST and
Rotated BRIEF (ORB) feature points, with features such as rotational scale
invariance and fast detection. ORB-SLAM2 [46] is upgraded from ORB-SLAM,
supporting monocular, binocular, and RGB-D modes, and has good adaptabil-
ity. Finally, the latest ORB-SLAM3 [47] algorithm fuses optical images with
inertial sensors. The excellent characteristics of the ORB-SLAM2 algorithm,
which can achieve centimeter-level precision on the ground, represent an incen-
tive for its application in underwater environments. Consequently, the visual
part of the developed SLAM algorithm takes inspiration from the ORB-SLAM2
framework. Referring to the vision-based SLAM algorithm for underwater navi-
gation and mapping, [48] addresses a visual mapping method for precise camera
trajectory estimation and 3D reconstruction of underwater ship hull surface us-
ing a monocular camera as the primary sensor. [49] proposes an underwater
visual SLAM system using a stereo camera, which has been tested in a circular
pool.
Finally, an acoustic-visual-inertial SLAM strategy has been proposed in [50]
and [51]. Data coming from a mechanical scanning SONAR, a stereo camera,
and proprioceptive inertial sensors are fused in a tightly coupled non-linear op-
timization to estimate the vehicle trajectory and reconstruct the surrounding
environment. There are few works where the DVL measurements are fused with
other perception sensors in a SLAM strategies. In [52] a SLAM method, which
uses a very sparse point cloud derived from a DVL to add constraints to a
piecewise-planar framework, is proposed. A camera is also employed to bound
drifts of odometry fused by a DVL, IMU and pressure DS [53]. Fiducial markers
are also integrated into a visual SLAM framework with DVL, IMU, and DS in
[54].
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Figure 2.1: Overall navigation filter framework, where the advances developed
during the Ph.D. period for both the attitude and position estimation filters
are depicted in red. The acronym LM stands for landmark and it indicates the
landmark positions estimated with the SLAM algorithm.

2.3 Thesis contribution

The present work’s main contribution focuses on developing navigation and
mapping strategies that, exploiting all the available inertial, acoustic, and opti-
cal sensors, can guarantee a precise and robust localization of the AUV during
the whole underwater mission (see Fig. 2.1 and Fig. 2.2). Working with a
DVL, a monocular camera, and an FLS, more linear speed estimation could be
obtained simultaneously to exclude possible outliers and to fuse the retrieved
information optimally. Indeed, using multiple sensors to provide navigation in-
formation represents an intrinsic advantage in terms of redundancy, preventing
failures due, for example, to underwater sensor-denied scenarios. DVL-denied
scenarios are verified when the AUV is near to the seafloor or to other surfaces
or when gaseous bubbles are present. While optical camera functioning is re-
lated to visibility conditions and texturing of the seafloor, acoustic sensors like
FLSs are not influenced by these issues, but acoustic noise sources can reduce
their operability.

Firstly, a strategy based on Extended Kalman Filter on Lie groups (LG-
EKF) for AUVs orientation initialization in the presence of magnetic distur-
bances, making magnetometer measurements unreliable, has been developed.
An initialization procedure to be performed when the vehicle is on the sea sur-
face is necessary to replace the magnetometer measurements and to evaluate
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Figure 2.2: Locations of the sea trials, where the data employed to compute the
experimental results presented in this thesis have been acquired. In particular,
FeelHippo AUV has been employed in experimental campaigns in La Spezia
(Italy), in Cecina, Livorno (Italy), in Vulcano Island, Messina (Italy), and in
Stromboli Island, Messina (Italy).

the offset caused by the unknown disturbances.
A set of novel UKF-based sensor fusion strategies for autonomous underwater
navigation is thus shown and compared. Increasing the navigation performance
is a complex but essential target to be achieved because it guarantees that the
AUV can correctly perform its mission and accomplish its tasks. The proposed
strategies have been adapted to be inserted in an UKF-based framework. To
the author’s best knowledge, the fusion of inertial, acoustic, and optical data in
an UKF algorithm and the application of the presented sensor fusion strategies
to AUV navigation is novel.
Finally, to overcome the limitations introduced by the Kalman filter strategies,
which condense all the history into the last estimation, a sensor fusion MAP
algorithm has been developed. Due to the complexity of retrieving navigation
information in the underwater environment, a sensor fusion approach has been
used. The performance and robustness of the visual SLAM algorithm heavily
rely on the quality of the images and salient features. Consequently, the visual
SLAM system has been fused with other sensing algorithms, such as the DVL.
As shown previously, very few works still exist on underwater SLAM fusing
data from a monocular camera and a DVL. Despite that, fusing an optical and
an acoustic sensor in a MAP-based framework can take advantages from both
sensors, which have an excellent complement to each other. This developed
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solution can be employed to locate the vehicle and map the seabed at the same
time in a unified framework.
In conclusion, the main contributions of this work are summarized in the fol-
lowing:

• The development of an initialization strategy to compensate orientation
offset caused by unknown magnetic disturbances. The proposed algorithm,
which relies on a LG-EKF approach, has been validated during several
experimental campaigns to evaluate its capabilities and robustness.

• The adaptation of several Kalman filtering sensor fusion algorithms to
be combined with an UKF framework and the testing with previously
acquired inertial, optical and acoustic data.

• A systematic and complete comparison of the proposed UKF-based solu-
tions for underwater navigation. Centralized and decentralized strategies
have been evaluated to determine the best approach regarding localiza-
tion accuracy, robustness against outliers, and measurement reduction and
consistency.

• The development of a sensor fusion algorithm relying on a MAP technique
to fuse information coming from a monocular camera and a DVL and to
consider the landmark points in the navigation framework. After validat-
ing the solution through realistic simulations, an experimental campaign
at sea was conducted.

• An automatic tool to post-process the point cloud estimated through the
SLAM algorithm. The seabed point cloud can be processed to obtain a 3D
textured reconstruction, a geo-referenced depth map, and an error map of
the performed reconstruction if a bathymetric ground truth is available.



Chapter 3

Preliminaries and notation

This chapter covers the notation employed in the rest of the work and pro-
vides a complete review of the fundamental theoretical and mathematical

concepts used throughout this thesis.

3.1 Preliminaries on orientation initialization

3.1.1 Introduction to Lie group theory

A Lie group G is a manifold whose elements satisfy the group axioms. On one
hand, the manifold is differentiable (or smooth), as it is a topological space that
locally resembles linear space. On the other hand, considering the elements
X ,Y,Z ∈ G and defining the composition operation ◦, the group satisfies the
following axioms:

• closure under ◦, as the composition of elements of the manifold remains
on the manifold

X ◦ Y ∈ G (3.1)

• existence of the identity element E

E ◦ X = X ◦ E = X (3.2)

• existence of the inverse element in the manifold

X−1 ◦ X = X ◦ X−1 = E (3.3)

17
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• associativity properties

(X ◦ Y) ◦ Z = X ◦ (Y ◦ Z) (3.4)

In summary, a manifold is a mathematical object that can be locally approxi-
mated to a piece of Rn and G is smooth if an appropriate dimension tangent
space can be defined at each point.
The tangent space at the identity is called Lie algebra of G and noted as

g ≜ TEG . (3.5)

Every Lie group has and associated Lie algebra and it is possible to relate the
Lie group with the Lie algebra through the following properties:

• the Lie algebra g is a vector space and its elements can be identified with
vectors in Rm, whose dimension m is the number of DOFs of G ;

• the exponential map expG : g → G exactly converts elements of the Lie
algebra into elements of the group and the logarithmic map logG : G → g
perform the inverse operation;

• vectors of the tangent space at X can be transformed to the tangent
space at the identity E through a linear transform, which is called adjoint
transform.

The real matrix Lie group G ⊂ GL(n,Rn) is a particular Lie group where each
element of the group is a square n× n invertible matrix with real elements, the
group operations are the matrix multiplication and inversion and the identity
element is In×n.
A Lie algebra g is an open neighborhood of 0n×n in the tangent space of G at the
identity In×n. The matrix exponential map expG : g → G and its inverse map,
as the matrix logarithm map logG : G → g, establish a local diffeomorphism
between Lie groups and Lie algebra.
As the Lie algebra g associated to a p-dimensional matrix Lie group G ⊂ Rn×n
is a vector space, a linear isomorphism between g and Rp is given by

[·]∨G : g → Rp
[·]∧G : Rp → g

. (3.6)

The adjoint representation of G on Rp

AdG : AdG(X)x =
[
X[x]∧GX

−1
]∨
G

(3.7)
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and the adjoint representation of Rp on Rp

adG : adG(x)y = [[x]∧G [y]∧G − [y]∧G [x]∧G ]
∨
G (3.8)

where x, y ∈ Rp and X ∈ G , allow to assert that the Lie groups are not necessar-
ily commutative. Finally, it is necessary to introduce the left-Jacobian matrix
for Lie groups, which can be defined as

J lG ([X]∨G) =

[ [
∂g
∂x1

g−1
]∨
G

...
[
∂g
∂xp

g−1
]∨
G

]
. (3.9)

The SO(2) group is the group of special orthogonal matrices in the plane, i.e.
rotation matrices. The Lie group and Lie algebra can be respectively defined as

Rθ =

[
cos θ − sin θ
sin θ cos θ

]
(3.10)

[θ]∧SO(2) =

[
0 −θ
θ 0

]
. (3.11)

Inversion can be achieved by transposition, i.e. R−1
θ = R⊤

θ , and the product
Rα ◦Rβ = RαRβ is also member of the Lie group SO(2).
The exponential and logarithmic maps can be easily defined as

Rθ = exp θ =

[
cos θ − sin θ
sin θ cos θ

]
(3.12)

θ = logRθ = atan2(r21, r11). (3.13)

Considering the definitions and the equations above introduced, the following
derivative blocks, which are useful for the LG-EKF design, are trivial.

Ad(Rθ) = 1 (3.14)

J
R−1
θ

Rθ
= −1 (3.15)

J
RαRβ
Rα

= J
RαRβ
Rβ

= 1 (3.16)

JRθvRθ
= Rθ[1]

∧
SO(2)v = Rθ

[
0 −1
1 0

]
v (3.17)

Eq. 3.17 represents the Jacobian of a rotation matrix action on a vector v ∈ R2
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and will be useful in the following. Further information regarding the Lie groups
theory and its application to the SO(2) group can be found in [55].

3.1.2 Extended Kalman Filter on Lie groups

The LG-EKF is a generalization of the standard EKF [17], where the estimated
state and the measurements have the structure of a Lie group [56], [57]. As
in the classical Kalman filtering strategies, a system model has to be defined
for the prediction step. Considering a p-dimensional matrix Lie group G , the
system dynamics can be defined as

Xk+1 = f(Xk,uk,nk) = Xk expG

([
Ω̂k + nk

]∧
G

)
(3.18)

where Xk ∈ G is the system state at time k, uk ∈ Rw is the control input at
time k, nk ∼ NRp

(
0p×1, Qk

)
is a white Gaussian noise and Ω̂k = Ω(Xk, uk) :

G × Rw → Rp is the non-linear system state equation which describes how the
model operates on the state and control input to compute the displacement.
The measurement model can be provided by the following equation, where the
available measurements are considered as part of a q-dimensional matrix Lie
group G ′.

zk = hk(Xk) expG′
(
[mk]

∧
G′
)

(3.19)

where zk ∈ G ′ is the measurement at time k, hk(·) : G → G ′ defines the
measurement map and mk ∼ NRq

(
0q×1, Rk

)
is a white Gaussian noise. It

is worth noting that a different group G ′ is used since the system state and
measurements might belong to different groups.
Assuming that the posterior state distribution after the (k−1)-th measurement
is a concentrated Gaussian variable Xk−1|k−1 ∼ NG

(
µk−1|k−1, Pk−1|k−1

)
, the

prediction step of the LG-EKF to propagate the state mean and covariance is
defined as

µk|k−1 = µk−1|k−1 expG

(
[Ω̂k−1]

∧
G

)
(3.20)

Pk|k−1 = Fk−1Pk−1|k−1F⊤
k−1 +ΦG(Ω̂k−1)Qk−1ΦG(Ω̂k−1)

⊤ (3.21)

where
Fk−1 = AdG

(
expG

(
[−Ω̂k−1]

∧
G

))
+Φ(Ω̂k−1)Ck−1 (3.22)

Ck−1 =
∂

∂ϵ
Ω
(
µk−1|k−1 expG ([ϵ]∧G)

)∣∣∣∣
ϵ=0

(3.23)
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ΦG(ν) =

∞∑

m=0

(−1)m

(m+ 1)!
adG(ν)m = J lG(−ν). (3.24)

It is necessary to notice that the parameter ϵ ∈ Rp represents a sort of Lie
algebraic error, which can be approximated with a classical Euclidean Gaussian
distribution, i.e. ϵ ∼ NRp

(
0p×1, Pk

)
.

To proceed with the update step, it is necessary to compute the Kalman gain
with the following equation:

Kk = Pk|k−1H⊤
k

(
HkPk|k−1H⊤

k +Rk
)−1

(3.25)

where the measurement matrix Hk can be defined as

Hk =
∂

∂ϵ

[
logG′

(
hk(µk|k−1)

−1hk
(
µk|k−1 expG ([ϵ]∧G)

))]∨
G

∣∣∣∣
ϵ=0

. (3.26)

Subsequently, the innovation vector multiplied by the Kalman gain can be com-
puted as

νk = Kk

[
logG′

(
hk(µk|k−1)

−1zk
)]∨

G′ . (3.27)

Finally, the update of the system state and its covariance matrix can be per-
formed as follows:

µk|k = µk|k−1 expG ([νk]
∧
G) (3.28)

Pk|k = ΦG(νk)
(
Ip×p −KkHk

)
Pk|k−1ΦG(νk)

⊤. (3.29)

The LG-EKF equations are summarized in Algorithm 1.

3.2 Preliminaries on UKF-based fusion strate-
gies

3.2.1 Kinematic and dynamic modeling of the AUV

Firstly, the mathematical notation used in this thesis to describe the motion
of a general rigid body freely moving within a fluid is discussed in this section.
Further information can be found in [58]. The main assumptions, which form
the basis of the following discussion, consider any frame located on the Earth’s
surface as inertial (the rotation of the Earth is therefore neglected) and any
vehicle involved as a rigid body. The Society of Naval Architects and Marine
Engineers (SNAME) notation, commonly adopted for marine vehicles, is used
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Algorithm 1 LG-EKF algorithm

Function LGEKF():
/* prediction step */

Step Prediction():

Input : µk−1|k−1, Pk−1|k−1, Ω̂k−1

Output: µk|k−1, Pk|k−1

µk|k−1 = µk−1|k−1 expG

(
[Ω̂k−1]

∧
G

)
;

Pk|k−1 = Fk−1Pk−1|k−1F⊤
k−1 +ΦG(Ω̂k−1)Qk−1ΦG(Ω̂k−1)

⊤;

end
/* correction step */

Step Correction():
Input : µk|k−1, Pk|k−1, hk(·)
Output: µk|k, Pk|k
Sk = HkPk|k−1H⊤

k +Rk;

Kk = Pk|k−1H⊤
k S

−1
k ;

νk = Kk

[
logG′

(
hk(µk|k−1)

−1zk
)]∨

G′ ;
µk|k = µk|k−1 expG ([νk]

∧
G) ;

Pk|k = ΦG(νk) (Ip×p −KkHk)Pk|k−1ΦG(νk)
⊤;

end

end

throughout the thesis.
The pose of the AUV (in terms of position and attitude) is retrieved with respect
to two reference frames. The first one is a local Earth-fixed reference frame, as
theNorth, East, Down (NED) frame {ONxNyNzN}, whose axes point, respec-
tively, North, East, and Down. The second one, namely the body frame, is
usually centered on the Center of Gravity (CG) of the vehicle, with the forward
motion direction represented by the x-axis (surge) and the z-axis (heave) point-
ing down. Lastly, the y-axis (sway) completes a right-handed reference frame
{Obxbybzb}.
The AUV pose with respect to the NED frame is represented with the vector

η =
[
Nη⊤

1 η⊤
2

]⊤
, where Nη1 is the position of the CG of the vehicle with re-

spect to the NED frame and η2 is its orientation, as the rotation angles between
the body and the NED frames. In particular, a triplet of Euler angles expressed
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with respect to the fixed NED frame, namely Roll, Pitch and Yaw (RPY), is
used to define η2, where the roll, pitch, and yaw angles are respectively denoted

with ϕ, θ, and ψ. Moreover, the vector bν =
[
bν⊤

1
bν⊤

2

]⊤
contains the linear

and angular velocities of the AUV expressed in the body-fixed reference frame.
In particular, u, v, and w are the linear velocities along the axes of the body
frame (surge, sway, and heave), and p, q, and r are the angular counterparts of
the axes mentioned above. The AUV kinematic variables can be summarized
as:

η =
[
Nη⊤

1 η⊤
2

]⊤
,

bν =
[
bν⊤

1
bν⊤

2

]⊤ (3.30)

where
Nη1 = [x y z]⊤, η2 = [ϕ θ ψ]⊤,
bν1 = [u v w]⊤, bν2 = [p q r]⊤.

(3.31)

The complete kinematic model of the vehicle is reported in Eq. 3.32.

[
N η̇1

η̇2

]
=

[
RNb (η2) 03×3

03×3 TNb (η2)

] [
bν1
bν2

]
(3.32)

where RNb (η2) represents the rotation matrix between the body and the fixed
reference system (see Eq. 3.33) and TNb (η2) is the Euler matrix (see Eq. 3.34).

RNb (η2) =



cθcψ sϕsθcψ − cϕsψ cϕsθcψ + sϕcψ
cθsψ sϕsθsψ + cϕcψ cϕsθsψ − sϕcψ
−sθ sϕcθ cϕcθ


 (3.33)

TNb (η2) =




1 sϕtθ cϕtθ
0 cϕ −sϕ
0

sϕ
cθ

cϕ
cθ


 (3.34)

It can be noted that TNb (η2) is not defined for θ = ±90◦; however, the majority
of the AUVs does not operate close to this singularity. The compact form of
Eq. 3.32 is reported in Eq. 3.35, where the definition of J(η) is trivial.

η̇ = J(η)ν (3.35)

According to [58], the AUV complete dynamic model is:

M ν̇ + C(ν)ν +D(ν)ν + gη(η) = τ (ν,u) (3.36)
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where M is the mass and inertia matrix, C(ν) is the Coriolis and centripetal
matrix, D(ν) is the damping matrix, the vector gη(η) contains the buoyancy
and gravity effects and τ (ν,u) takes into account the thrust action on the AUV,
which depends on the vehicle speed ν and the rotational speed of each motor
u ∈ Rm, where m is the number of motors.
For the sake of clarity, each term in Eq. 3.36 is briefly described.
The vector of forces and moments acting on the vehicle τ (ν,u) (usually referred
in the body-fixed frame) can be represented as

τ (ν,u) =
[
bτ⊤

1
bτ⊤

2

]⊤
(3.37)

where bτ 1 =
[
X Y Z

]⊤
and bτ 2 =

[
K M N

]⊤
. The generalized

forces τ , the vector T ∈ Rm that collects the thrusts exerted by the m motors
of the vehicle and the rotational speed of the motors u ∈ Rm are linked using
the following relation:

τ (ν,u) = BT (ν,u), (3.38)

where B ∈ R6×m is a constant matrix that depends upon the thruster poses
with respect to the CG. B can be defined as:

B =

[
B1

B2

]
(3.39)

with
B1 =

[
... bnm,i ...

]

B2 =
[
...

(
bPm,i × bnm,i

)
...
] (3.40)

where bnm,i is the axis of the i-th motor expressed in the body frame {Obxbybzb}
and bPm,i is the position of the i-th motor with respect to the CG expressed in
the body frame.
The mass and inertia matrix M is constituted of two terms:

M =MRB +MA, (3.41)

where MRB depends upon vehicle geometry and material and MA is the added
mass matrix. Assuming that the body frame is centered on the CG of the vehicle
and that the body-fixed frame axes coincide with the principal axes of inertia,
it is possible to assert that MRB becomes:

MRB =

[
diag

{
m, m, m

}
03×3

03×3 diag
{
Ix, Iy, Iz

}
]
, (3.42)
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where m is the mass of the vehicle and Ix, Iy and Iz are the principal moments
of inertia (respectively about surge, sway and heave axes).
According to [58], added mass can be considered as forces and moments induced
by the motion of the vessel body proportional to its acceleration. In fact, any
motion of the AUV will produce motion in the surrounding fluid; hence, the
fluid motion possesses kinetic energy that it would lack otherwise. This phe-
nomenon is experienced as an additional inertia when the vehicle, and therefore
the surrounding fluid, accelerates. The general expression of MA presents 36
parameters but, under the assumptions stated in [59], the added mass matrix
becomes:

MA = −diag
{
Xu̇, Yv̇, Zẇ, Kṗ, Mq̇, Nṙ

}
(3.43)

where the SNAME notation is employed for forces, torques and accelerations.
To clarify, each element Aḃ =

∂A
∂ḃ

in Eq. 3.43 is the coefficient to compute the

force (torque) −Aḃḃ along (about) the body a-axis caused by an acceleration ḃ
that, according to the SNAME notation, is the acceleration along (about) the
body a-axis.
The matrix C(ν) is constituted of two terms:

C(ν) = CRB(ν) + CA(ν), (3.44)

where CRB(ν) is due to centripetal and Coriolis effects and CA(ν) takes into
account the motion of the vehicle within the fluid. Under the same assumptions
made previously for the computation of the mass and inertia matrix, it can be
shown that CRB(ν) can be represented as:

CRB(ν) =




0 −mr mq 0 0 0
mr 0 −mp 0 0 0
−mq mp 0 0 0 0
0 0 0 0 Izr −Iyq
0 0 0 −Izr 0 Ixp
0 0 0 Iyq −Ixp 0



. (3.45)
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Moreover, CA(ν) can be expressed as follows:

CA(ν) =




0 0 0 0 −Zẇw Yv̇v
0 0 0 Zẇw 0 −Xu̇u
0 0 0 −Yv̇v Xu̇u 0
0 −Zẇw Yv̇v 0 −Nṙr Mq̇q

Zẇw 0 −Xu̇u Nṙr 0 −Kṗp
−Yv̇v Xu̇u 0 −Mq̇q Kṗp 0



. (3.46)

Matrix D(ν) models the dissipative effects due to the motion within the fluid,
which are mainly caused by nonlinear skin friction due to turbulent boundary
layers and by viscous damping force due to vortex shedding. For an underwater
vehicle moving at low speed, D(ν) is often assumed as diagonal with quadratic
damping terms only, which dominate over linear terms. Coupling effects and
terms higher than the second order with respect to the body-fixed velocity can
be neglected. Consequently, D(ν) can be approximated with

D(ν) = −diag
{
Xu|u||u|, Yv|v||v|, Zw|w||w|, Kp|p||p|, Mq|q||q|, Nr|r||r|

}
.

(3.47)
Gravitational and buoyancy effects acting on the vehicle can be computed sep-
arately and the combined into the vector gη(η). In particular, the gravitational
force, applied to the CG and expressed in the NED reference frame, can be
computed as

NW =




0
0
mg


 , (3.48)

where m is the dry mass of the vehicle and g = 9.806 m/s
2
is the gravitational

acceleration. Buoyancy, on the other side, is applied to the Center of Buoyancy
(CB) of the vehicle, that usually does not coincide with the CG, and is equal to

NB = −




0
0

ρgV


 , (3.49)

where ρ is the water density and V denotes the total volume of the vehicle.
Reporting the quantities in the body frame

bW = (RNb )⊤NW (3.50)
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bB = (RNb )⊤NB, (3.51)

the vector gη(η) can be expressed as follows:

gη(η) =

[
bW + bB
brb × bB

]
, (3.52)

where brb is the position of the CB with respect to the body frame centered in
the CG and × indicates the cross product.

3.2.2 Unscented Kalman Filter

Given a generic dyanamical system, it is possible to define a set of variables
(usually representing physical quantities) which completely describe its state.
Generally speaking, the evolution of a system is described by the following
nonlinear time-varying equation:

ẋ(t) = f (t,x(t),u(t),w(t)) , (3.53)

where x(t) ∈ Rn is the state vector, f(·) is a generic nonlinear, time-varying
function, u(t) ∈ Rm is the vector of the controlled inputs and w(t) ∈ Rn is the
process noise used to describe modeling uncertainties. The physical phenomena
describing the behavior of the state variables are not completely known and f(·)
only represents a model for the evolution of the system. As a consequence, the
process noise w(t) is employed.
Considering that the direct knowledge of the state variables might be unavail-
able, it is usually possible to dispose of a set of measurements, obtained from
sensors, which are related to the state variables themselves. A generic measure-
ment equation can be described as:

y(t) = h (t,x(t),v(t)) , (3.54)

where y(t) ∈ Rp is the measurement vector, h(·) is a generic nonlinear, time-
varying function and v(t) ∈ Rp is the measurement noise used to model sensor
accuracy. As stated before for the system evolution model, the sensor models
are not completely accurate and, thus, the measurement noise v(t) is employed.
Together, Eq. 3.53 and Eq. 3.54 are usually referred as state-space representa-
tion of the system.
The previous introduced treatment is verified for continuous system (where the
time t ∈ R), so it is necessary to introduce a discrete-time representation of Eq.
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3.53 and Eq. 3.54. Given a uniform sampling of the time-continuous variables
and functions, the state-space representation of the system can be rewritten as
follows: {

xk = fk−1 (xk−1,uk−1,wk−1)
yk = hk (xk,vk)

, (3.55)

where k indicates the iteration number.

Algorithm 2 UKF algorithm

Function UKF():
/* prediction step */

Step Prediction():
Input : x̂k−1|k−1, Pk−1|k−1,fk−1(·)
Output: x̂k|k−1, Pk|k−1(
x̂k|k−1, P̄k|k−1

)
= UT

(
x̂k−1|k−1, Pk−1|k−1,fk−1(·)

)
;

Pk|k−1 = P̄k|k−1 +Qk−1;

end
/* correction step */

Step Correction():
Input : x̂k|k−1, Pk|k−1,hk(·)
Output: x̂k|k, Pk|k(
ŷk|k−1, S̄k, P

xy
k

)
= UT

(
x̂k|k−1, Pk|k−1,hk(·)

)
;

Sk = S̄k +Rk;
Lk = P xyk S−1

k ;
ek = yk − yk|k−1;
x̂k|k = x̂k|k−1 + Lkek;

Pk|k = Pk|k−1 − LkSkL
⊤
k ;

end

end

When the system state is not available, suitable observers (or estimators)
need to be employed to obtain an accurate estimation of the system behavior.
The majority of state estimators for dynamical system are based on the Bayesian
statistics, such as on the KF [16] or its variants applied to nonlinear systems, as
the EKF [17] or the UKF [19], [60]. The KF or its variants rely on a recursive
observer based on the alternation of two steps:
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• prediction, where the behavior of the system at the subsequent iteration
is predicted exploiting the current estimate and the model;

• update (or correction), where the predicted state is corrected using the
available measurements to produce an improved state estimate.

During the Ph.D. period, the UKF-based navigation filter position estimation
of an AUV, already developed and validated by the UNIFI DIEF, has been
further enhanced to manage speed measurements from several available sensors
and to fuse them according to appropriate strategies. Therefore, its structure
and main features are described here below.
The UKF is based on the Unscented Transform (UT), a deterministic sampling
technique which allows the computation of the mean and the covariance matrix
of a Random Variable (RV) which undergoes a generic nonlinear transformation
by propagating a minimum set of its samples and exploiting the knowledge of
the mean and of the covariance of the starting variable. As reported in [60], [19],
the variable moments computed using the UT are accurate at least to the second
order of the Taylor series expansion of the considered nonlinear function.
The UT, in case of nonlinear state evolution and measurement functions, is
used for both the prediction and the correction steps. Assuming additive noise
with zero-mean, white Gaussian distribution, an implementation of the UKF
algorithm is reported in Algorithm 2, where x̂j|k and Pj|k are respectively the
state estimate and its covariance at iteration j given the information up to the
k-th iteration, Q is the process noise, R is the measurement noise and (x̂0|0, P0|0)
is the initial guess for the state and the state covariance.

3.2.3 Sensor modeling for UKF-based strategies

A brief treatment, from a Kalman filtering point of view, on the mathematical
modeling of sensors and devices that are usually used in marine robotics for
autonomous navigation and mapping is presented.

Global Positioning System. Although the GPS signal cannot be em-
ployed in underwater scenarios [61], it is usually mounted on almost all AUVs
for initialization and/or periodic position resets. A GPS measurement can be
modeled as in Eq. 3.56.

NPGPS = fGPS(PGPS + ϵ̃GPS ,O) = Nη1 + ϵGPS , (3.56)

where NPGPS is the position in the NED frame obtained after the use of fGPS ,
the function to convert geodetic coordinates to local NED ones, PGPS is the
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position obtained with the GPS, ϵ̃GPS is the noise term added to model sensor
accuracy, which is mapped into ϵGPS after the NED conversion, and O are
the geodetic coordinates of the point assumed as origin of the NED frame. It
is worth noting that, after the conversion into NED coordinates, the resulting
measurement noise ϵGPS is supposed to remain additive, but it possess different
spectral properties than those of the noise affecting raw data.

Depth Sensor. A DS uses pressure measurements in order to estimate
depth. The stochastic representation of a pressure measurement can be obtained
as:

pDS = p+ bp + ϵp, (3.57)

where pDS is the measured pressure, obtained as sum of the real pressure p,
the sensor bias bp and the measurement noise ϵp. The pressure measurement
can be converted into a depth measurement thanks to the hydrostatic relation
reported in Eq. 3.58.

pDS − p0 = ρgNdDS (3.58)

where p0 is the pressure measured during the initialization phase, ρ is the water
density and dDS is the measured depth, which can be expressed as:

NdDS = z + ϵDS , (3.59)

being z the real depth and ϵDS the noise. Note that the pressure bias bp cancels
in the subtraction in Eq. 3.58.

Doppler Velocity Log. A DVL is a device capable to measure, thanks
to the Doppler effect, a 3D linear velocity of the vehicle in the body reference
frame with respect to the sea bottom. As a consequence, a DVL measurement
can be modeled as in the following equation:

bvDV L = bν1 + bDV L + ϵDV L, (3.60)

where the measured velocity bvDV L is the sum of the true body-fixed velocity
of the sensor bias bDV L and of the measurement noise ϵDV L.

Inertial Measurement Unit. Despite the classical definition of IMU in-
dicates an instrument possessing accelerometers and gyroscopes only, it is not
uncommon for IMU to integrate a triaxial magnetometer, used to measure the
magnetic field surrounding the sensor. The following mathematical models have
been adopted for the accelerometers, the gyroscopes and the magnetometers,
where all the measured quantities are expressed in the body frame.
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• For what concern the accelerometers,

baIMU = (RNb )⊤ (η̈1 − g) + ba + ϵa, (3.61)

where ba is the accelerometer bias and ϵa is the measurement noise. When
the accelerometers are properly calibrated the bias term is usually ne-
glected.

• For what concern the gyroscopes,

bωIMU = bν2 + bg + ϵg, (3.62)

where the sum of the true angular velocity bν2, the bias bg and the noise
ϵg produces the sensed quantity bωIMU .

• For what concern the magnetometers,

bm =W (RNb )⊤(NH) +Hm + ϵm, (3.63)

where NH is the Earth’s magnetic field expressed in the fixed frame, W
and Hm are the disturbances caused by local magnetic interferences and
ϵm is the measurement noise.

Fiber Optic Gyroscope. A FOG is a device able to measure the angular
rate thanks to the Sagnac effect. For what concerns a single-axis device, the
employed mathematical model reported in Eq. 3.64 can be adopted.

ωmFOG = ωFOG + be + bf + ϵf , (3.64)

where ωmFOG is the measured quantity, ωFOG is the true value, be is the compo-
nent of Earth’s rotation sensed by the gyroscope, bf is an additional bias term
and ϵf is the measurement noise.

Forward Looking SONAR. A 2D FLS can provide a series of azimuth θ
and range R measurements with a scalar value that represents the intensity of

the returned echo (see Fig. 3.1). Considering a scene point
[
X Y Z

]⊤
,

the imaging projection model for an FLS can be obtained with the following
equation [14]:

[
mR
mθ

]
=

[
R
θ

]
+ b̃FLS+ ϵ̃FLS =

[ √
X2 + Y 2 + Z2

tan−1( YX )

]
+ b̃FLS+ ϵ̃FLS (3.65)
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Figure 3.1: FLS imaging model.

where mR is the measured range and R is its real value, mθ is the measured
azimuth and θ is its real value and b̃FLS and ϵ̃FLS are respectively the additional
bias term and the measurement noise for both the range and the azimuth angle.
Considering that the FLS is used to obtain linear speed estimations and that it
is not easy to predict the final noise statistics, a model with a measured value
that is the sum of a true one, a bias term and a noise can be adopted:

bvFLS = bν1 + bFLS + ϵFLS (3.66)

where the measured velocity bvFLS is assumed to be the sum of the true value
bν1, of the bias bFLS and of the measurement noise ϵFLS . Necessarily, the noise
statistics of the estimated speed will possess different spectral properties than
those of the noise affecting range and elevation angle.

Monocular Camera. A monocular camera can provide a two-dimensional

image, where to each pixel located in
[
x y

]⊤
on the image plane it is possible

to associate a scalar value that represents the lighting value (see Fig. 3.2).

Considering a scene point
[
X Y Z

]⊤
, the pinhole camera projection model

with focal length f can be retrieved [62]:

[
mx
my

]
=

[
x
y

]
+ b̃CAM + ϵ̃CAM =

f

Z

[
X
Y

]
+ b̃CAM + ϵ̃CAM (3.67)
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Figure 3.2: Camera projection model.

where
[
mx my

]⊤
is the measured pixel position and

[
x y

]⊤
is its real

value and b̃CAM and ϵ̃CAM are respectively the additional bias term and the
measurement noise for the x and y position. Considering that the camera is
used to obtain linear speed estimations and that it is convenient to standardize
the noise modeling, a model with a measured value that is the sum of a true
one, a bias term and a noise can be employed:

bvCAM = bν1 + bCAM + ϵCAM (3.68)

where the measured velocity bvCAM is assumed to be the sum of the true value
bν1, of the bias bCAM and of the measurement noise ϵCAM . Necessarily, the
noise statistics of the estimated speed will possess different spectral properties
than those of the noise affecting the pixel position.

3.3 Preliminaries on SLAM-based fusion strate-
gies

3.3.1 Factor graph for SLAM algorithms

Factor graphs are graphical models [63] that can adapt well to modeling complex
estimation problems, such as SLAM. Formally a factor graph is a bipartite graph
F = (U ,V, E) with two types of nodes, as the factors ϕi ∈ U and the variables
xj ∈ V. Referring to the navigation and mapping problems, while the variables
represent the unknown random variables in the estimation problem (e.g., robot
pose and landmark position), the factors represent probabilistic constraints on
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those variables derived from measurements or prior knowledge. Edges eij ∈ E
are connections between factor nodes and variable nodes. Defining as Xi the set
of variable nodes adjacent to a factor ϕi, the factorization of the global function
ϕ(X), where X contains all the adjacency set Xi, is

ϕ(X) =
∏

i

ϕi(Xi). (3.69)

Summarizing, the independence relationships are encoded by the edges eij of
the factor graph, where each factor ϕi is a function of only the variables Xi of
the adjacency set.
Focusing on the navigation and mapping applications [35], it is necessary to an-
alyze how tracking and SLAM problems can be defined and solved with factor
graphs. In tracking, the MAP estimate of the trajectory X given the measure-
ment Z can be obtained by maximizing the functional

p(X|Z) ∝ p(x1)l(z1|x1)
∏

i>1

p(xi|xi−1)l(zi|xi) (3.70)

where i is the index at which the measurements zi are observed. The pos-
terior density p(X|Z) has been factored into a set of unary likelihood factors
ϕ(xi) ∝ l(zi|xi) and binary odometry factors ϕ(xi, xi−1) ∝ p(xi|xi−1). In track-
ing problems, only one type of unknown variable is considered, as the robot’s
state. When the knowledge of the environment is also important, it is necessary
to introduce new variables related to surrounding landmarks, as in the SLAM
problem. When landmarks are introduced in the estimation problem, new vari-
ables lj and additional factors ϕ(xi, lj), one for each observation of a specific
landmark lj from a particular pose xi should be inserted in the factor graph.

3.3.2 Maximum A Posteriori estimation

A navigation and mapping problem is a problem where the unknown state
variables X = {x1, x2, ..., xM} constituted of poses and landmarks has to be
determined given the measurements Z = {z1, z2, ..., zN}. The MAP estimator
maximizes the posterior density p(X|Z) of the states X given the measurements
Z:

XMAP = argmax
X

p(X|Z) = argmax
X

p(Z|X)p(X)

p(Z)
(3.71)
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The second expression can be found thanks to the Bayes law and define the
posterior density as product of the measurement density p(Z|X) and the prior
density over the states p(X), normalized by the factor p(Z). Considering that
the measurements Z are given, the normalization factor p(Z) is irrelevant to the
maximization problem. In addition, the likelihood l(Z|X) of the states X given
the measurements Z is proportional to the probability p(Z|X). Thus, Eq. 3.71
becomes:

XMAP = argmax
X

p(X)l(Z|X) = p(X)

N∏

i=1

l(zi|X), (3.72)

where an additive Gaussian noise is assumed in all measurement models, as
reported in Eq. 3.73.

p(zi|X) = N (hi(X),Σi) ∝ exp

(
−1

2
∥hi(X)− zi∥2Σi

)
(3.73)

where hi(X) is the measurement function, which maps the state estimate X
into a predicted value ẑi of the measurement zi and Σi is the covariance matrix,
which summarizes the uncertainty of the measurement model. It is worth noting
that, in general, zi is conditioned on a subset of the variables belonging to X.
Summarizing, each factor associated to a measurement can be defined with
three components, as the measurement itself, the prediction function and the
noise model. By applying the monotonic logarithmic function and the Gaussian
model previously introduced, the optimization problem can be simplified into a
nonlinear least square problem:

XMAP = argmin
X

− log
N∏

i=1

l(zi|X) = argmin
X

N∑

i=1

∥hi(X)− zi∥2Σi (3.74)

where
∥hi(X)− zi∥2Σi = (hi(X)− zi)

⊤
Σ−1
i (hi(X)− zi) (3.75)

is the Mahalanobis distance.
The nonlinear problem can be solved through standard methods, such as the
Gauss-Newton or the Levenberg-Marquardt algorithms, which iteratively con-
verge to the solution by solving the linear approximation of the nonlinear system.
Given an initial state estimate X0, the linearized measurement equation is:

hi(X) = hi(X
0 +∆X) ≈ hi(X

0) +Hi∆X (3.76)
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Hi =
∂hi(X)

∂X

∣∣∣∣
X0

(3.77)

where ∆X = X −X0 is the state update. Substituting this approximation in
Eq. 3.74 and managing the terms, the system can be solved in function of the
variable ∆X.

∆X∗ = argmin
∆X

N∑

i=1

∥Ai∆X − bi∥2 (3.78)

where Ai = Σ
− 1

2
i Hi and bi = Σ

− 1
2

i

(
zi − hi(X

0)
)
. The current update ∆X∗ is

employed to propagate the estimation, whose value is used as linearization point
for the next algorithm step. More information can be found in [40], [64].

3.3.3 Sensor modeling for SLAM-based strategies

The mathematical modeling of the factors used to represent the measurement
constraints to solve the autonomous navigation and mapping problem is pre-
sented. It is necessary to highlight that, as opposed to the mathematical model-
ing employed in the UKF framework, the SLAM problem has not been modeled
by using a one-to-one correspondence between sensors and factors. Inspired by
[54], [65], the factors described below have been employed, where it is necessary
to consider that the information included in some factors can be derived from
measurements not coming from a single sensor. The state of the system at in-
stant i is defined as a complete pose belonging to SE(3), which can be expressed
mathematically as:

Txi =

[
Ri ti
01×3 1

]
(3.79)

where Ri ∈ SO(3) is the rotation matrix and ti ∈ R3 represents the trans-
lation vector. Defining the set of poses at time k with Xk, such that Xk =
{Txi}i=0,1,...,k, it is possible to define the optimization problem and, in partic-
ular, Eq. 3.75 on the smooth manifold SE(3). Considering a transformation
from the state xi to the state xj constrained with an odometry measurement
zi,j with covariance Σi,j , Eq. 3.75 becomes:

∥fij(xi, xj)⊖ zi,j∥2Σi,j = ∥ log(T−1
zi,jT

−1
xi Txj )∥2Σi,j (3.80)

The symbol ⊖ encodes the logarithmic map from the manifold to an element of
the SE(3) Lie algebra, where fij(·) represents the measurement function applied
to the poses Txi and Txj . For ease of explanation Txi can be represented with the
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vector
[
Xxi Yxi Zxi ϕxi θxi ψxi

]
∈ R6 and the measurement function

becomes

fij(xi, xj) =
[
Xxi,j Yxi,j Zxi,j ϕxi,j θxi,j ψxi,j

]⊤
(3.81)

In contrast, for a measurement zi that indicates a local information on the state
xi with covariance Σi, Eq. 3.75 is

∥fi(xi)⊖ zi∥2Σi = ∥ log(T−1
zi Txi)∥2Σi (3.82)

where the measurement function fi(·) applied to the pose Txi can be defined as:

fi(xi) =
[
Xxi Yxi Zxi ϕxi θxi ψxi

]⊤
(3.83)

Position and orientation binary 4D XYZ-Y factor. A relative 4D
pose-to-pose constraint has been defined on x, y, and z translation and yaw
rotation. The measurement information for the factor, which is denoted as
XYZ-Y factor, are derived from the DVL and from the attitude estimation filter
described in [66]. The function in the optimization problem can be defined as

fXY Z−Y (xi−1, xi) = ∥mXY Z−Y (xi−1, xi)⊖ oi−1,i∥2Σoi−1,i
(3.84)

where mXY Z−Y (·) and Σoi−1,i are respectively the measurement function and
the covariance associated with the XYZ-Y factor and oi−1,i represent, on SE(3),
the observation for the XYZ-Y part. In particular, the measurement function
can be defined as in Eq. 3.85.

mXY Z−Y (xi−1, xi) =
[
Xxi−1,i

Yxi−1,i
Zxi−1,i

ψxi−1,i

]⊤
(3.85)

Orientation unary 2D RP factor. An unary 2D factor, indicated as RP
factor, has been employed on roll and pitch rotations. As for the yaw data,
the measurement information are provided by the attitude estimator developed
in [66], where the data coming from an IMU and a FOG are fused, and the
function in the optimization problem can be defined as

fRP (xi) = ∥mRP (xi)⊖ ri∥2Σri (3.86)

wheremRP (·) and Σri are respectively the measurement function and the covari-
ance associated with the RP factor and ri represent, on SE(3), the observation
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for the RP part. In particular, the measurement function can be defined as in
Eq. 3.87.

mRP (xi) =
[
ϕxi θxi

]⊤
(3.87)

Position unary 1D Z factor. An unary 1D factor has been employed on
z translation. The measurement is provided by the DS and the function in the
optimization problem can be defined as

fZ(xi) = ∥mZ(xi)− zi∥2Σzi (3.88)

where mZ(·) and Σzi are respectively the measurement function and the covari-
ance associated with the Z factor and zi ∈ R is the depth measurement. In
particular, the measurement function can be defined as in Eq. 3.89.

mZ(xi) = [Zxi ] (3.89)

Position unary 2D XY factor. An unary 2D factor has been employed
as constraint on x and y translation exploiting the GPS observations, when the
vehicle in on the sea surface. The function to be optimized can be defined as

fXY (xi) = ∥mXY (xi)− gi∥2Σgi (3.90)

where mXY (·) and Σgi are respectively the measurement function and the co-
variance associated with the XY factor and gi ∈ R2 is the GPS measurement.
In particular, the measurement function can be defined as in Eq. 3.91.

mXY (xi) =
[
Xxi Yxi

]⊤
(3.91)

Position and orientation binary 6D XYZ-RPY factor. A relative
6D complete pose-to-pose constraint has been defined on x, y and z translation
and on roll, pitch and yaw rotation thanks to the measurement coming from
the monocular camera. The measurement information for the factor, which is
denoted as XYZ-RPY factor, are derived from the comparison of the feature
translation induced on the image plane of two subsequent keyframes by the
robot motion. The function in the optimization problem can be defined as

fXY Z−RPY (xi, xj) = ∥mXY Z−RPY (xi, xj)⊖ pi,j∥2Σpi,j (3.92)

where mXY Z−RPY (·) and Σpi,j are respectively the measurement function and
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the covariance associated with the XYZ-RPY factor and pi,j represent, on SE(3),
the observation for the XYZ-RPY part. In particular, the measurement function
can be defined as in Eq. 3.93.

mXY Z−RPY (xi, xj) =
[
Xxi,j Yxi,j Zxi,j ϕxi,j θxi,j ψxi,j

]⊤
(3.93)

Camera-based landmark factor. Thanks to the features extracted from
optical images and matched through multiple keyframes, it is possible to opti-
mize map point locations P j ∈ R3 and keyframe poses Txi ∈ SE(3) minimizing
the reprojection error with respect to the matched keypoints pij ∈ R2. The
error term for the observation of a map point j in a keyframe i is

eij = pij − πi(TxiP j) (3.94)

where πi(·) is the projection function:

πi(TxiP j) =

[
fx

xij
zij

+ cx
fy

yij
zij

+ cy

]
(3.95)

where (fx, fy) and (cx, cy) are respectively the focal length and the principal

point of the camera and
[
xij yij zij

]⊤
are the coordinates of the point.

The cost function to be minimized can be defined as:

fLM (xi) = ρ
(
∥pij − πi(TxiP j)∥2Σlmi

)
(3.96)

where ρ(·) is the Huber robust cost function and Σlmi is the covariance matrix
associated to the scale at which the keypoint i was detected.





Chapter 4

Orientation initialization
algorithm

A three-axis magnetometer measures the direction and strength of the total
magnetic field around the device. However, it cannot distinguish between

the Earth’s magnetic field and additive magnetic disturbances. The direction of
the terrestrial magnetic field vector depends on the geographic location; how-
ever, in the operational area of an underwater vehicle, it can be considered
constant with respect to the NED frame. Magnetic disturbances conceptually
fall into two different categories: external (environmental) disturbances and dis-
turbances that rotate with the sensor. With regard to the latter, they can be
further characterized as hard iron or soft iron disturbances. Permanent mag-
nets and magnetized objects, such as electronic subsystems in the proximity of
the sensor, give rise to the hard iron effect. These objects are the source of a
permanent magnetic field, constant in all directions, whose effect is the addition
of a constant bias on the magnetometer output of the error model. The soft
iron effect is caused by ferromagnetic materials close to the sensor, such as iron
and nickel, which produce a local magnetic field whose magnitude is related to
the angle of incidence of Earth’s magnetic field on the material itself.
The navigation filter works according to two parallel structures, where the first
part, used for attitude estimation, is used as input for the second part, dedicated
to position estimation. Specifically, the attitude estimation filter estimates roll,
pitch, and yaw angles and their derivatives [66], [67], then sends the orientation
values to the filter responsible for vehicle position estimation [20], [68]. The

41
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Figure 4.1: Overall navigation filter framework, where the introduced heading
error estimation filter is depicted in red.

heading error estimation filter works as part of the attitude estimation filter
and estimates the heading error ψ∗ and the heading value ψ. Only disturbances
caused by objects which rigidly rotate with the sensor can be compensated,
regardless of the calibration technique adopted. External metal objects are in-
evitably a source of magnetic disturbance that affects the yaw estimate. Their
presence is not uncommon, especially in the field of underwater robotics: many
AUVs are indeed used for inspection tasks of modern wrecks, mainly composed
of metal parts and debris. Since these disturbances cannot be corrected, the pro-
posed LG-EKF can provide an initial estimation of the heading error, reducing
the external disturbances’ effects. While at first, the only possible counter-
measure was to readily detect corrupted readings and to avoid the use of the
magnetometer measurements in such situations, the LG-EKF permits to con-
tinue using those measurements by introducing a corrective additive term. The
proposed methods basically aims at estimating the local difference between the
Magnetic North and the Geographic North directions. The Magnetic North di-
rection is significantly deviated from the one related to the Earth magnetic field
due to environmental disturbances. Supposing that, in the area of interest, the
magnetic field is locally uniform, is a strong hypothesis, but, considering that
the vehicle perform survey missions over the noise sources, this can be consid-
ered as acceptable. Of course, during inspection and manipulation underwater
missions, where the vehicle is near to the magnetic noise sources and interacts
with the surrounding environment, the assumption of uniform magnetic field
cannot be exploited. Some preliminary findings of the results reported in this
chapter were published in [69].
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4.1 Framework development

The IMU, if the orientation is correctly initialized thanks to its magnetome-
ters, and the FOG can provide the rotation matrix between the body and the
NED frames during the whole mission. As shown in Fig. 4.1, the attitude can
be computed through dedicated filters, where the IMU and the FOG measure-
ments are appropriately combined. Considering the vehicle on the sea surface
(i.e., supposing the AUV lies on a plane of the NED reference system, where
the Down axis is identically equal to zero), it is possible to simplify the initial-
ization procedure to the estimation of the yaw angle offset. This hypothesis
does not reduce the generality of the proposed algorithm, thanks to the fact
that the roll and pitch angle are generally estimated directly through the IMU
accelerometers, which do not suffer magnetic disturbances.

The rotation matrix between the body and the NED reference systems rep-
resents the rotation to be applied to the DVL-based speed measurement, which
is acquired in the body frame, to be superimposed to the GPS-based speed
measurement, which is directly acquired in the NED frame. This sentence can
be summarized as

NvGPS = Rψ
bvDV L, (4.1)

where NvGPS and bvDV L are the velocities respectively measured by the GPS
and the DVL and ψ is the yaw angle between the body and the NED reference
frames.
When the magnetometers are not well initialized and the vehicle is on the sea
surface, a rotation error between the rotated DVL speed and the GPS speed
occurs, caused by an incorrect yaw estimation. Consequently, the following
expression between the yaw angles can be defined:

RIMU = RψRψ∗ , (4.2)

where RIMU is the rotation matrix where the yaw is estimated through the at-
titude filter based on the IMU and FOG measurements and ψ∗ is the yaw offset
caused by the magnetic disturbances. The effects of the magnetic disturbances
have been modeled as a constant offset on the yaw angle. It can be considered
an acceptable approximation due to the implementation of the attitude filter,
described in [66], [67], where the roll and pitch angles are computed through the
accelerometers, which are not affected by magnetic disturbances. The magne-
tometer measurements are employed only in the yaw angle computation, thanks
to a two-step orientation estimation algorithm. As reported in [70] and [71], by
employing this algorithm framework, roll and pitch have no relationship with
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the magnetometer readings.
The state X is modeled to evolve on the matrix Lie group G = SO(2)2 × R,
which can be represented as

X =



Rψ
Rψ∗

ω




G

=




Rψ 02×2 02×2

02×2 Rψ∗ 02×2

02×2 02×2

[
1 ω
0 1

]


 (4.3)

where ψ is the exact vehicle yaw angle, ψ∗ is the yaw angle error caused by the
magnetic disturbances and ω is the yaw angular rate. ω is an approximated
value of the components r of the vector bν2, where it is supposed that the
vehicle is moving on a two-dimensional space, as the sea surface. The Lie
algebra associated to the Lie group G is denoted as g = so(2)2×R. For a vector

x =
[
ψ ψ∗ ω

]⊤
, the following holds

[x]∧G =




[ψ]∧SO(2)

[ψ∗]∧SO(2)

ω




g

=



[ψ]∧SO(2)

[ψ∗]∧SO(2)

[ω]∧R


 . (4.4)

The exponential map for such defined G is

expG ([x]∧G) =



Rψ
Rψ∗

ω




G

=




expSO(2)

(
[ψ]∧SO(2)

)

expSO(2)

(
[ψ∗]∧SO(2)

)

ω




G

. (4.5)

Since SO(2) and R are abelian and the Cartesian product of abelian groups is
abelian, the adjoint operators are trivial

adG(x) = 03×3 (4.6)

AdG (expG ([x]∧G)) = I3×3 (4.7)

Given the previously introduced state representation, it is possible to define
the system model. A constant angular rate model Ω̂k = Ω(Xk) : G → R3 is
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employed and can be defined as

Ω(Xk) =



Tωk
0
0


 (4.8)

The prediction step can be performed through the following equations for the
state and covariance evolution. It is possible to retrieve that

µk+1|k = µk|k



RTωk

I2×2

I2×2


 (4.9)

Pk+1|k = FkPk|kF⊤
k +ΦG(Ω̂k)QkΦG(Ω̂k)

⊤ (4.10)

with

Fk = I3×3 + Ck =



1 0 T
0 1 0
0 0 1


 (4.11)

ΦG(Ω̂k) = I3×3. (4.12)

The measurement equation can be defined by considering the on board available
sensors. In particular, the GPS and the DVL-based speed measurements are
compared to estimate the yaw orientation error. To constrain the yaw error
estimation the measurements coming from an IMU, which suffers the magnetic
disturbances, and a single-axis FOG are employed. Due to their high precision,
the DVL speed measurements are considered as non-stochastic input to the
dynamic system, while the uncertainty of the GPS speed measurements is taken
into account in the measurement covariance matrix. We define as bvDV L and
NvGPS the speed measured by the DVL and the GPS respectively, RIMU the
rotation matrix computed with the yaw angle estimated by the IMU under
magnetic disturbances and ωFOG the angular rate measured by the FOG.
The measurement map h : G → G ′ is given as

h(X) =




1 0 (Rψ
bvDV L)x

0 1 (Rψ
bvDV L)y

0 0 1
RψRψ∗

1 ω
0 1




(4.13)
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Following the update equations introduced in the previous sections, the mea-
surement matrix Hk+1 can be computed as (see from Eq. 3.15 to Eq. 3.17):

Hk+1 =



Rψk+1

[1]∧SO(2)
bvDV L 0 0

1 1 0
0 0 1


 (4.14)

and it guarantees to easily evaluate the Kalman gain thanks to Eq. 3.25. The
state and covariance update can be computed as:

µk+1|k+1 = µk+1|k




Rνψ
Rνψ∗ [

1 νω
0 1

]


 (4.15)

Pk+1|k+1 =
(
I3×3 −Kk+1Hk+1

)
Pk+1|k (4.16)

where
ΦG(νk+1) = I3×3 (4.17)

νk+1 =



νψ
νψ∗

νω


 = Kk+1




NvGPS −Rψk+1
bvDV L

atan2(R⊤
ψ∗
k+1

R⊤
ψk+1

RIMU )

ωFOG − ωk+1


 (4.18)

4.2 Algorithm validation

To provide evidence that the heading estimator filter can be applied in arbitrary
directions, multiple straight lines in different directions, at different distances to
targets causing potential disturbances, have been performed. This validation is
necessary to assert that the basic idea of the filter, where it is assumed that the
magnetic disturbance effect can be simplified with an offset in the heading, is an
acceptable approximation. From a theoretical point of view, the implementation
of the LG-EKF algorithm has been justified in light of the implementation
of the attitude filter, where roll and pitch angles are computed through the
accelerometers, which have no relationship with the magnetometer readings
[70], [71]. Turning to the practice, a validation test was performed during an
underwater mission accomplished in La Spezia (Italy) in April 2022. FeelHippo
AUV, after a straight line over the sea surface to initialize the heading offset
value, has performed four underwater straight lines at different depths, of various
lengths and along different directions. Fig. 4.2 reports the trajectory followed
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Figure 4.2: Comparison of the estimated underwater trajectories with and with-
out the initialization procedure during the validation test performed in La Spezia
(Italy). The GPS fix is employed as proof of the correctness of the estimated
yaw offset.

during the initialization procedure and the underwater estimated trajectories
with and without the heading correction. To guarantee the graph readability,
the path followed by the vehicle over the sea surface to return to the starting
point is not reported. The resurfacing error obtained thanks to a comparison
between the first GPS fix and the last underwater estimated position guarantees
to evaluate the goodness of the proposed strategy and its independence from
parameters, as the moving direction and the depth, which influence the distance
from the magnetic disturbance sources. The threshold value on the heading
offset covariance to apply the heading correction to the navigation filter has
been empirically set equal to 0.003 rad. When the heading offset covariance
estimated through the filter is lower than the threshold value, the correction is
applied to the attitude estimation filter. Fig. 4.3 reports the heading error ψ∗

estimate over time and highlights the moment in which the estimated heading
offset has been applied to the navigation filter. The results regarding the filter
validation are summarized in Tab. 4.1.
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Figure 4.3: On the left, heading offset estimated through the LG-EKF during
the validation test performed in La Spezia (Italy). On the right, 3σ evaluation
of the heading offset estimated through the LG-EKF during the validation test
performed in La Spezia (Italy). The red line indicates when the heading cor-
rection is applied to the navigation filter.

Table 4.1: LG-EKF-based initialization procedure validation experiment results.

Resurfacing error Resurfacing error Filter
with initialization without initialization convergence
procedure [m] procedure [m] time [s]

First
0.65 43.57

79.14

straight line

Second
0.30 12.71

straight line

Third
0.64 37.81

straight line

Fourth
0.29 23.94

straight line
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4.3 Experimental results

The data obtained during two test campaigns have been used to evaluate the
proposed LG-EKF as an initialization procedure. In particular, while the first
acquisition was conducted near Cecina, Livorno (Italy), in September 2021, the
second was performed at the CSSN basin in La Spezia (Italy), in April 2022.
During the sea trials near Cecina, FeelHippo AUV has been employed to inspect
the shipwreck of the Melania, a ship that sank about fifty years ago. Due to
the presence of the shipwreck, the magnetometer data have been influenced by
unknown magnetic disturbances, and consequently, the vehicle yaw has been
characterized by an unknown offset. On the contrary, the sea trials conducted
at the CSSN basin have been performed in a harbor, where several docked ships
and submerged metal objects modify the magnetometer measurements.
During the first step of the initialization procedure to estimate the heading off-
set, the AUV navigated over the sea surface to acquire the sensor data for the
LG-EKF. During this phase, an operator can manually guide the vehicle, or it
can follow a fixed trajectory. To verify the robustness of the LG-EKF against
random vehicle movements, both options have been investigated: the vehicle
has been moved as ROV during the initialization procedure during the Melania
monitoring mission and as AUV over a straight line during the mission accom-
plished in La Spezia. When the heading offset covariance estimated through the
LG-EKF was lower than a fixed threshold, the AUV yaw angle was corrected.
During the mission in the Cecina sea, the vehicle has been switched from ROV
to AUV modality and has autonomously performed the desired underwater mis-
sion. The trajectories estimated with and without the heading offset have been
compared. GPS readings were collected before FeelHippo AUV dove and after
it resurfaced. They have been employed as ground truth to compute the resur-
facing error and evaluate the proposed strategy. The resurfacing error value,
representing an estimation of the navigation drift, has been analyzed to assess
the improvements obtained thanks to the initialization procedure.
Fig. 4.4 and Fig. 4.6 report the trajectory followed during the initialization pro-
cedure and the underwater estimated trajectories with and without the heading
correction. In Fig. 4.4, it can be immediately noticed that the presence of the
shipwreck strongly influences the magnetometer measurements, making them
unusable for attitude initialization. The resurfacing error computed by compar-
ing the first GPS fix and the last underwater estimated position guarantees to
evaluate the goodness of the proposed strategy. Analyzing the data acquired
during the mission performed in La Spezia, the error caused by the magnetic
disturbances is appreciable, but it is limited. On the contrary, it is necessary to
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notice that, during the mission in Cecina, only with the initialization procedure,
the resurfacing error reaches an acceptable value, where only the drift caused
by the DVL measurements integration is taken into account. The initializa-
tion procedure becomes fundamental to inspect the shipwreck autonomously,
otherwise, the vehicle is unaware of its position when submerged. As for the
validation experiment, the threshold value on the heading offset covariance to
apply the heading correction to the navigation filter has been empirically set
equal to 0.003 rad. Fig. 4.5 and Fig. 4.7 report the heading error ψ∗ estimate
over time for both missions. It can be noticed that when the initialization pro-
cedure is manually conducted, the requested covariance value is reached for the
first time after about a minute of navigation. On the contrary, when the vehicle
performs an autonomous straight line over the sea surface, the convergence is
more rapid and requires about 25 seconds. In the presented results, the ini-
tialization procedure lasted more than four times of the convergence necessary
time to evaluate the filter’s consistency. In fact, in both cases, the LG-EKF
settles on the heading error value, which is passed to the navigation filter. The
main results regarding the filter convergence and consistency are reported in
Tab. 4.2.

Table 4.2: LG-EKF-based initialization procedure results.

Resurfacing error Resurfacing error Filter
with initialization without initialization convergence
procedure [m] procedure [m] time [s]

Cecina
1.76 66.03 60.37

sea trial

La Spezia
0.38 5.87 22.69

sea trial

4.4 Main contributions

A strategy based on LG-EKF for AUVs orientation initialization in the pres-
ence of magnetic disturbances, making magnetometer measurements unreliable,
has been developed and tested. The filter has been designed to work with the
available on board navigation sensors to estimate the heading angle. An initial-
ization systematic procedure, to be performed when the vehicle is on the sea
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Figure 4.4: Comparison of the estimated underwater trajectories with and with-
out the initialization procedure during the test performed in Cecina, Livorno
(Italy). The GPS fix is employed as proof of the correctness of the estimated
yaw offset.

Figure 4.5: On the left, heading offset estimated through the LG-EKF during the
validation test performed in Cecina, Livorno (Italy). On the right, 3σ evaluation
of the heading offset estimated through the LG-EKF during the validation test
performed in Cecina, Italy. The red line indicates when the heading correction
is applied to the navigation filter.
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Figure 4.6: Comparison of the estimated underwater trajectories with and with-
out the initialization procedure during the test performed in La Spezia (Italy).
The GPS fix is employed as proof of the correctness of the estimated yaw offset.

Figure 4.7: On the left, heading offset estimated through the LG-EKF during
the validation test performed in La Spezia (Italy). On the right, 3σ evaluation
of the heading offset estimated through the LG-EKF during the validation test
performed in La Spezia (Italy). The red line indicates when the heading cor-
rection is applied to the navigation filter.
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surface, has been proposed to replace the magnetometer measurements and to
evaluate the offset caused by the unknown disturbances.





Chapter 5

UKF-based fusion strategies
for multisensor navigation

Navigation techniques that employ multiple devices can provide a high im-
provement in the estimation quality, but they can also cause an increase

in terms of computational load. Consequently, strategies that can represent a
trade-off between these two conflicting goals have been investigated. In particu-
lar, two different frameworks have been implemented and compared: on the one
hand, a centralized iterative UKF-based navigation approach and, on the other
hand, a sensor fusion framework with parallel local UKFs. The main findings
reported in this chapter were published in [72].

5.1 Strategies for AUV speed computation

5.1.1 DVL-based dead reckoning

Standard DR strategies usually estimate the AUV position by integrating the
linear velocity measured through highly-accurate instruments, as DVLs. As-
suming a discrete-time system, the mathematical equation that can be extracted
from the previously introduced statement is reported below:

η1,k = η1,k−1 +RNb (η2,k−1)ν1,k−1∆T (5.1)

55



56 CHAPTER 5. UKF-BASED FUSION STRATEGIES

where η1,k and η1,k−1 are respectively the current and previous position esti-
mation output of the DR navigation system expressed in the NED reference
system, RNb (η2,k−1) represents the rotation matrix between the NED and the
body-fixed frames, ν1,k−1 contains the body-fixed frame linear velocities and
∆T is the fixed sampling time.

5.1.2 Visual odometry

Optical sensors are commonly employed in several underwater monitoring and
patrolling tasks, such as 2D mosaicing [73], automatic target recognition [74],
3D mapping, and sea bottom reconstruction [75], but, nowadays, their exploita-
tion in navigation strategies is widely investigated to guarantee a multitasking
use of the available payload and a reduction of the required on-board sensors.
Mono Visual Odometry (VO) is a navigation technique that employs one camera
rigidly attached to a vehicle for its motion estimation by analyzing the induced
motion on the acquired images. For its nature, a VO strategy works well only
if particular conditions are verified, such as a scene uniformly illuminated and
with a high number of features. As input for the UKF algorithms, it has been
used the linear speed computed through the VO strategy proposed in [76] and
[77]. Giving as input to the VO algorithm a pair of images, it returns the
transformation matrix reconstructed from the displacements of their features
that can be employed, supposing known the absolute image acquisition times,
to compute the body speed estimation.

5.1.3 Acoustic odometry

As for optical cameras, the FLS main application fields are 2D and 3D recon-
structions [78], [79], [80], automatic target recognition [81], seabed mapping
[82] and navigation aiding. Focusing the attention on navigation aiding, FLS-
based DR strategies have been carefully investigated. These strategies, also
called Acoustic Odometry (AO), can be defined as a navigation technique that
employs a FLS rigidly attached to a vehicle for motion estimation. The algo-
rithm’s core is the registration of a pair of overlapped images obtained from
different viewpoints, which is performed through a phase correlation method.
Considering that a generic underwater environment can present areas with high
informative content and regions where the seafloor is unaltered, the solution
proposed in [15] and [83] and here briefly described is suited to face mutable
underwater scenarios.
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5.2 UKF-based navigation filter framework

The complete pose estimation filter works by following two parallel structures,
where the first part, employed for attitude estimation, is employed as input in
the second part, which is dedicated to position estimation. In particular, the
attitude estimation filter is based on a compass, IMU and FOG data and it
estimates the roll, pitch and yaw angles and their derivatives to send then the
orientation values to the filter in charge of estimating the vehicle position [66],
[67]. An UKF-based estimator with a mixed kinematic-dynamic vehicle model is
employed as core of the position estimation filter. In particular, by taking into
account only the longitudinal dynamics, the processing unit’s computational
cost is strongly reduced. An exhaustive analysis of the position estimation filter
is detailed in [20], [68]. As introduced in Section 3.2, the kinematic-dynamic
model formulation is based on the standard notation from the SNAME [58].
According to the assumptions exploited in [20], the dynamic model presented in
Eq. 3.36 can be strongly simplified, leading to Eq. 5.2 for the dynamics along
the surge axis:

mν̇1x = τ1x(ν,u) +Dx(ν) (5.2)

where τ1x(ν,u) is the component of τ (ν,u) along the surge-axis of the vehicle,
m is the AUV dry mass and Dx(ν) is the damping term along the surge-axis.
In particular, Dx(ν) can be represented as follows:

Dx(ν) = −CDν21xsgn(ν1x) (5.3)

where CD is the surge-axis drag coefficient, that depends on the parameters in-
volved in the longitudinal drag. By following the previously introduced notation,
the kinematic-dynamic model is described with the following state variables:

x =
[
Nη⊤

1
bν⊤

1

]⊤
(5.4)

with x ∈ R6. Considering the discrete state evolution, a mixed kinematic-
dynamic model is employed to describe the AUV behavior and it can be repre-
sented as reported in Eq. 5.5:

[
Nη1
bν1

]

k

=

[
Nη1
bν1

]

k−1

+∆T




RNb ((η2)k−1)(
bν1)k−1

τ1x(νk−1,uk−1)
m − CDν

2
1xsgn(ν1x)
m

0
0


+wk (5.5)
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where k is the current iteration step, ∆T is the fixed sampling time of the filter
and wk is the additive process noise (assumed zero-mean Gaussian white noise).
At the k-th instant, the measurement vector yk can employ the following mea-
surements coming from the available sensors:

yk =
{
NPGPS ,

NdDS ,
bvDV L,

bvFLS ,
bvCAM

}
, (5.6)

where each employed variable is defined in Section 3.2.3. The position filter can
use GPS fixes (available before the vehicle dives or during resurfacings) depth
measurements from a DS, as well as linear speed estimations, which can be pro-
vided from multiple sensors, as the DVL, the FLS through AO strategies and
the camera trough VO approaches. As explained in Section 5.1, acoustic and
visual odometry strategies provide a two-dimensional speed estimation vector,
which belongs to the xy-plane of the body reference frame. To guarantee uni-
formity, only the body-fixed frame surge and sway velocities provided by the
DVL are taken into account in the algorithms. For the sake of completeness,
it is necessary to highlight that the depth may be independently estimated us-
ing the DVL itself or a distinct depth sensor. In the context of this work, since
the current navigation system exploits a depth sensor to estimate the depth, the
proposed algorithms take into account just the AUV motion along the xy-plane.
In conclusion, the measurement equation can be expressed as follows:

yk = Hkxk + lk (5.7)

where matrix Hk is time-variant and it contains only 1 or 0 elements according
to the presence of the corresponding measurement at the current iteration time
and

lk = {ϵGPS , ϵDS , ϵDV L, ϵFLS , ϵCAM} , (5.8)

where each employed variable is defined in Section 3.2.3. Furthermore, it is
assumed that the biases of the position and speed measurements are negligible.
Supposing that lk ∼ N (0, Rk), the matrix Rk can be defined as a diagonal
matrix composed of the following submatrices:

Rk = {RGPS , RDS , RDV L, RFLS , RCAM} , (5.9)

where RGPS , RDS , RDV L, RCAM and RFLS are respectively the measurement
covariances related to GPS, DS, DVL, camera and FLS.
Since the navigation filter works at a fixed sampling time of ∆T = 0.1 s, or, in
other words, at an operative frequency of 10 Hz, due to the various sampling rate
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of the available sensors and due to the various working frequency of the odometry
strategies, the structure of the measurement matrix Hk might change during
each iteration and might be different for the parallel local filters. This issue has
been solved in both the iterative and the parallel filtering approaches. Regarding
the speed sources, it is finally necessary to highlight that the measurements
are provided according to the sensor acquisition and elaboration rate and, for
the odometry strategies, to the local environment properties. Due to these
constraints, visual and acoustic odometries can respectively acquire images with
a 10 Hz and 2 Hz rate, but speed measurements are computed with a lower rate.
In particular, while the acoustic odometry can work with almost all the available
acoustic images, the visual odometry algorithm’s maximum work frequency is
approximately 4 Hz. Finally, the DVL measurements have been guaranteed
with a 5 Hz rate.

5.3 Filtering strategies

Handling several available measurements can be done by following multiple
ways, but, necessarily, some of them need to be compliant for robotics ap-
plications due to the limitations imposed by the required computational cost
that compromise the real-time action. As a matter of fact, there were better
strategies to be followed than a standard UKF filter with a measurement vector
containing all the available data provided by the onboard sensors. Increasing
the measurement vector dimension causes the rise of the computational time
requested for each filter iteration due to its effect on the filter matrices’ size to
be inverted and multiplied between each other [84].
The first proposed solution to overcome this issue is an iterative filtering strat-
egy. While the iterative approach does not modify the prediction step, the
correction step is performed one or more times depending on the available mea-
surements. This approach, usually named sequential UKF, is desirable when a
trade-off between the computational load and the reduction of discarded mea-
surements is required.
The second proposed solution is a parallel filtering strategy. The position esti-
mation filter is divided into two separate structures: the first one is a group of
local filters, where each of them is dedicated to each single speed measurement
source, and the second one is a master filter, which deals with the fusion of
the estimates and covariances provided by the local filters to compute as out-
put an optimized estimate and covariance. This approach guarantees, on the
one hand, that all the available speed measurements are employed and, on the
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other hand, that the local estimates and covariances can be fused into a global
estimate and covariance according to a chosen criterion imposed by the mas-
ter filter. To guarantee the local filter parallelism and avoid one diverging due
to the lack of measures, a reset function is applied at the end of each master
filer iteration. The reset procedure guarantees that the local filters a-priori es-
timates and covariances are accorded to the master filter a-posteriori estimate
and covariance, and it is necessary for the filter convergence. This approach will
be deeply analyzed in the following, where the federated and the decentralized
UKF strategies are explained. Even the global behavior of these strategies is
similar, the internal functioning is markedly different. While in the federated
UKF approach the state estimations are fused and weighted through the state
covariances, in the decentralized UKF the state estimations and covariances are
iteratively forced to converge to a common value depending on the accordance
between each other.
For completeness, even the correction step in the sequential UKF is iteratively
performed N times, where N is equal to the available velocity measurements,
all the data coming from the sensors are provided as input directly into a single
filter. This approach is usually referred to as centralized Kalman filtering. On
the contrary, the federated UKF, as the decentralized UKF, is a decentralized
Kalman filter, where the global filtering job is divided among a bank of subfil-
ters, each of which is operating on a separate subset of the complete measure-
ment suite. In both the federated and the decentralized UKFs four fundamental
assumptions are taken into account for the filter framework development:

• the state vector x is the same for all local filters and the master filter;

• there is no information sharing among the local filters;

• the errors in each measurement vector are mutually uncorrelated and,
thus, the global matrix R is block diagonal;

• none of the measurement vectors are fed to the master filter directly.

It is necessary to note that there are no constraints on the dimensionality of each
measurement vector passed to the local filters. This missing constraint is very
helpful in a filter for underwater navigation. The measurement’s availability is
not guaranteed at each iteration due to unpredictable external conditions, such
as bubbles, an untextured environment, or acoustic noise. The main properties
of the analyzed filters, which will be described in the following subsections, are
summarized in Tab. 5.1.
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Table 5.1: Summary of the main properties of the filters, which will be analyzed
and compared. The letter C stands for centralized strategy, the letter D stands
for decentralized strategy.
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5.3.1 Reduced UKF

In the reduced UKF (Fig. 5.1) the computational burden is limited by reducing
the measurements that have been employed during each correction step of the
filter. At the k-th instant, the measurement vector yk ∈ R5 is:

yk =
[
(NPGPS)

⊤ NdDS (bvDV L)
⊤ ∨ (bvFLS)

⊤ ∨ (bvCAM )⊤
]⊤
k
. (5.10)

Following this framework, several speed measurements can be discarded due to
their redundancy at each filter iteration. As shown in Eq. 5.10 only one speed
measurement is employed in the vector yk and, if multiple ones are available,
only one of them is chosen by following the chronological acquisition order. The
matrix Rk depends on the actual dimension and composition of the measure-
ment vector. This property is necessarily determined by the measurement data
availability during the in progress iteration. Considering the presence of all the
measurements that can be provided by the on-board sensors, the matrix Rk can
be defined as:

Rk = diag
{
RGPS , RDS , RDV L ∨RFLS ∨RCAM

}
=

=



RGPS 02×1 02×2

01×2 RDS 01×2

02×2 02×1 RDV L ∨RFLS ∨RCAM


 , (5.11)

where the employed symbols have been defined previously. As a matter of fact,
measurement redundancy is not handled and every new speed measurement,
regardless of the sensor that bought it, is overwritten on the previous one. This
approach can cause the loss of helpful information and, consequently, a growth
of the uncertainty on the AUV state knowledge, which results in an increase of
the covariance matrix.

5.3.2 Standard UKF

The standard UKF centrally fuses all the valid measurements during each filter
step. By considering the measurement equation Eq. 5.7 and supposing that all
the measurements (provided by GPS, DS, DVL, FLS and camera) are available,
the measurement vector yk can be expressed as a vector belonging to the R9

space:

yk =
[
(NPGPS)

⊤ NdDS (bvDV L)
⊤ (bvFLS)

⊤ (bvCAM )⊤
]⊤
k
. (5.12)
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Figure 5.1: Framework of the existing navigation filter employed by the AUVs
developed by the UNIFI DIEF.

All the measurements are processed at the same time, which can influence the
required computational time due to the inversion of matrices with higher sizes.
Considering the presence of all the measurements that can be provided by the
on-board sensors, the matrix Rk can be defined as:

Rk = diag
{
RGPS , RDS , RDV L, RFLS , RCAM

}
. (5.13)

5.3.3 Sequential UKF

The sequential (or iterated) UKF (Fig. 5.2 and Fig. 5.3) approach aims to
minimize the dimension of the innovation covariance matrix. This can be an
important advantage for applications where the computational load is limited
by the available hardware, such as in mobile underwater robotics, since such a
matrix is inverted during every correction step. Suppose that instead of employ-
ing the entire measurement vector yk ∈ R9 (see Eq. 5.12), Nm measurement

vectors y
(i)
k ∈ {R1,R2} are passed to the filter, where Nm is the number of the

available measurements, i = 1, 2, ..., Nm and k is the current iteration step. The
measurement vectors that are compared are the following:

yk =
[
(NPGPS)

⊤ NdDS (bvDV L)
⊤ (bvFLS)

⊤ (bvCAM )⊤
]⊤
k
∈ R9

(5.14)

y
(i)
k =

[
(NPGPS)

⊤ ∨ NdDS ∨ (bvDV L)
⊤ ∨ (bvFLS)

⊤ ∨ (bvCAM )⊤
]⊤
k
. (5.15)
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The employed symbols have been defined previously. Instead of processing all
the measurements at time k as a greater dimension single vector, a Kalman filter
that can elaborate smaller dimension multiple vectors has been implemented.
Considering the presence of all the measurements that the on-board sensors can

provide, the matrix R
(i)
k ∈ {R1×1,R2×2} can be defined as:

R
(i)
k = RGPS ∨RDS ∨RDV L ∨RFLS ∨RCAM . (5.16)

Turning to the filter framework, it is necessary to underline that the sequential

Figure 5.2: Framework of the navigation filter, where the modification intro-
duced by the proposed sequential UKF, depicted in red, can be noticed in the
position estimation filter.

UKF prediction step is performed as in the standard UKF. The main changes
can be observed in the correction stage, where the onboard sensors’ measure-

ments are employed. As for the measurement vector y
(i)
k , in the following of

this section, the here reported notation will be employed: x̂
(i)
k|k is the optimal

state estimate after the i-th measurement has been processed at time k and

P
(i)
k|k is the correspondent covariance matrix. From these definitions, it is possi-

ble to retrieve that the following equalities can be employed for correction step
initialization:

x̂
(0)
k|k−1 = x̂k|k−1

P
(0)
k|k−1 = Pk|k−1

(5.17)
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Figure 5.3: Flowchart of the proposed sequential UKF.

where x̂
(0)
k|k−1 is the estimate after zero measurements have been processed and

P
(0)
k|k−1 is its covariance matrix. The estimate x̂

(i)
k|k and the covariance P

(i)
k|k

are computed by using the traditional UKF correction equations, which are
repeated Nm times. After each iteration, the updated estimate and covariance
are employed as initialization for the subsequent one. After all Nm measurement
vectors are processed, the corrected estimate and covariance can be retrieved
as:

x̂k|k = x̂
(Nm)
k|k

Pk|k = P
(Nm)
k|k

. (5.18)

The sequential UKF filter is summarized in Algorithm 3.

5.3.4 Consensus-based Decentralized UKF

Distributed Kalman filtering algorithms are generally employed for sensor net-
works, where each node can share the information flow only with its neighbors on
the network. Distributed Kalman filtering strategies for fully connected sensor
networks, or consensus-based decentralized Kalman filtering strategies, involve
state estimation using a set of local Kalman filters that communicate with all
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Algorithm 3 Sequential (or Iterated) UKF.

Function SEQUENTIAL UKF():
/* prediction step */

Step Prediction():
Input : x̂k−1|k−1, Pk−1|k−1, fk−1(·)
Output: x̂k|k−1, Pk|k−1

(x̂k|k−1, P k|k−1) = UT (x̂k−1|k−1, Pk−1|k−1, fk−1(·));
Pk|k−1 = P k|k−1 +Qk−1;

end
/* correction step */

Step Correction():
Input : x̂k|k−1, Pk|k−1, h(·)k
Output: x̂k|k, Pk|k
x̂
(0)
k|k−1 = x̂k|k−1;

P
(0)
k|k−1 = Pk|k−1;

for i = 1, ..., Nm do(
yk|k−1, S̄k, P

xy
k

)
= UT

(
x̂
(i)
k|k−1, P

(i)
k|k−1, hk (·)

)
;

Sk = S̄k +Rk;
Lk = P xyk S−1

k ;

e
(i)
k = y

(i)
k − yk|k−1;

x̂
(i)
k|k = x̂

(i)
k|k−1 + Lke

(i)
k ;

P
(i)
k|k = P

(i)
k|k−1 − LkSkL

⊤
k ;

x̂
(i+1)
k|k−1 = x̂

(i)
k|k;

P
(i+1)
k|k−1 = P

(i)
k|k;

end

x̂k|k = x̂
(Nm)
k|k ;

Pk|k = P
(Nm)
k|k ;

end

end

other nodes. The distributed and decentralized Kalman filters generally use a
static or dynamic consensus algorithm, which permits the fusion of estimate
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and covariance data obtained by each node. The distributed filtering theory,
which has been largely employed for multi-agent system applications, has been
here adapted to work with a sensor network composed of the sensors devoted
to speed measurement.
Within the consensus-based decentralized Kalman filter approach (Fig. 5.4 and
Fig. 5.5), the information form of a single central filter for a sensor network
observing a process (i.e., the AUV localization process), boils down to a proper
number of local filters that collectively calculate the same state estimate. The
sensor network dedicated to the speed measurement can be represented as a
simple fully-connected triangular graph G(N , E), where

N = {DVL,CAM,FLS} (5.19)

is the node set composed by the DVL, the camera and the FLS and

E = {{DVL,CAM}, {DVL,FLS}, {CAM,FLS}} (5.20)

is the edge set. In the following, the generic edge that connects the i-th and
the j-th sensor, chosen from the set composed of the DVL, the FLS and the
camera, will be referred to as {i, j}, where {i, j} ∈ E , i ∈ N and j ∈ N . The
employed consensus algorithm is reported in the information form and is based
on the following discrete-time iterative equation:

ϕ̂
(t)

i,k|k = ϕ̂
(t−1)

i,k|k − ϵ
∑

j ̸=i
aij

(
ϕ̂

(t−1)

i,k|k − ϕ̂
(t−1)

j,k|k
)

(5.21)

Ω
(t)
i,k|k = Ω

(t−1)
i,k|k − ϵ

∑

j ̸=i
aij

(
Ω

(t−1)
i,k|k − Ω

(t−1)
j,k|k

)
(5.22)

where ϵ is the discretization step, which has to necessary be sufficiently reduced
to guarantee the algorithm convergence, aij is the consensus coefficient between

each sensors couple {i, j}, ϕ̂(t)

i,k|k = P−1
i,k|kx̂i,k|k and Ωi,k|k = P−1

i,k|k are respec-

tively the information vector and the information matrix after the correction
step of the i-th filter and after the t-th iteration of the consensus algorithm.
Eq. 5.21 and Eq. 5.22 can be manipulated to obtain an equivalent structure,
where the autonomous and the consensus parts of the algorithm is highlighted:

ϕ̂
(t)

i,k|k =


1−

∑

j ̸=i
ϵaij


 ϕ̂

(t−1)

i,k|k +
∑

j ̸=i
ϵaijϕ̂

(t−1)

j,k|k (5.23)
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Ω
(t)
i,k|k =


1−

∑

j ̸=i
ϵaij


Ω

(t−1)
i,k|k +

∑

j ̸=i
ϵaijΩ

(t−1)
j,k|k . (5.24)

The discrete-time collective dynamics of the network driven by Eq. 5.23 and
Eq. 5.24 can be written as:

ϕ̂
(t)

k|k = Pϕ̂
(t−1)

k|k (5.25)

Ω
(t)
k|k = PΩ

(t−1)
k|k (5.26)

with P = I−ϵL Perron matrix of a graph G with parameter ϵ, which component
can be retrieved with

Pij =
{
1− ϵ

∑
j ̸=i aij , if i = j

ϵaij , if i ̸= j
. (5.27)

The matrix L is the weighted Laplacian matrix. The consensus coefficient aij is a
weight coefficient that is updated after each consensus iteration, which has been
designed to consider not only the covariance matrix, but also the accordance
between each local state estimation for the global one computation. Practically,
each aij coefficient is defined through Eq. 5.28.

aij =
1

1 + nij
(5.28)

with
nij = ∥x̂i − x̂j∥. (5.29)

It is immediate to notice that more the estimates x̂i and x̂j are similar, more
the coefficient aij is near to one, which is the upper limit for the weight factor.
The value of the coefficient aij influences the estimate convergence to a common
value, by weighting more the estimates with a reduced covariance and a high
consensus coefficient.
In the consensus-based decentralized UKF approach, as in the federated UKF,
the i-th local filter state vector is full-order and, at step k, is assumed to have
the availability of its respective corrected estimate x̂i,k|k and its associated error
covariance Pi,k|k, which are employed in the master filter. The input measure-
ment vector provided to the i-th filter at time k is yi,k and the measurement
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equation of the local filter is, as in the federated UKF:

yi,k = Hi,kxk + li,k (5.30)

where li,k is a zero mean random variables with covariance Ri,k. Two stop crite-
rion has been chosen for the consensus-based decentralized UKF. The algorithm
could work until:

• it reaches a fixed maximum number of iterations Niter;

• the mean distance between the state vector estimates provided by each
node of the graph is lower than a fixed threshold γ.

In the first case, while the global covariance matrix is retrieved by computing
the inverse matrix of the sum of all the local information matrices, the global
state estimate is retrieved by computing a covariance-based weighted mean. Eq.
5.31 and Eq. 5.32 summarizes the previous sentence.

Pm,k|k =

(
N∑

i=1

P−1
i,k|k

)−1

(5.31)

x̂m,k|k = Pk|k

(
N∑

i=1

P−1
i,k|kx̂i,k|k

)
. (5.32)

In the second stop condition, which is the most frequent due to the convergence
speed of the consensus algorithm, the global state estimate and its covariance
matrix can be set equal to one of the correspondent value taken from one local
filter. It is not important the chosen local filter employed during this step,
because all the local estimates and covariances converged to the same values
under a threshold, which value has been a-priori set with the aim of guaranteeing
at least a fifth order convergence. The reset procedure is not necessary for the
consensus-based UKF. The consensus algorithm guarantees the convergence of
all the local estimates and covariances, which are employed as initialization
data for the following step. The consensus-based decentralized UKF filter is
summarized in Algorithm 4.

5.3.5 Federated UKF

The federated UKF scheme employs the principle of information sharing among
the local filters handled by the master filter. As introduced before, the federated
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Figure 5.4: Framework of the navigation filter, where the modification intro-
duced by the proposed consensus-based decentralized UKF, depicted in red,
can be noticed in the position estimation filter.

Figure 5.5: Flowchart of the proposed consensus-based decentralized UKF.
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Algorithm 4 Consensus-based Decentralized UKF.

/* Consensus step of the decentralized UKF */

Step Consensus():

Input : {x̂(i)
k|k}i=1,2,...,N , {P (i)

k|k}i=1,2,...,N

Output: x̂m,k|k, Pm,k|k
ParametersUpdate()

while t ≤ Niter do
for i = 1, ..., N do

Ω
(t)
i,k|k = Ω

(t−1)
i,k|k − ϵ

∑
j ̸=i aij

(
Ω

(t−1)
i,k|k − Ω

(t−1)
j,k|k

)
;

Pi,k|k = Ω−1
i,k|k;

ϕ̂
(t)

i,k|k = ϕ̂
(t−1)

i,k|k − ϵ
∑
j ̸=i aij

(
ϕ̂

(t−1)

i,k|k − ϕ̂
(t−1)

j,k|k
)
;

x̂i,k|k = Pi,k|kϕ̂i,k|k;

end
ParametersUpdate()

Stop()

end

end

UKF approach is based on a double-step data processing architecture, in which a
master filter subsequently combines the outputs of the sensor-related local filters
(Fig. 5.6 and Fig. 5.7). In the federated UKF approach, the i-th local filter is
assumed to implement the full-order state vector and, at step k, is assumed to
have the availability of its respective prior estimate x̂i,k|k−1 and its associated
error covariance Pi,k|k−1. The input measurement vector provided to the i-th
filter at time k is yi,k and, as explained in Eq. 5.33, the measurement equation
of the local filter is:

yi,k = Hi,kxk + li,k (5.33)

where li,k is a zero-mean random variables with covariance Ri,k. By assuming
that the local filters do not have access to each other measurements, they form
their respective corrected estimates and covariances according to the traditional
UKF equations. It is important to notice that the local estimates are optimal
for the locally provided measurements, but not with respect to all the available
measurements, due to the local filter independence hypothesis.
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Algorithm 5 Stop criterion and parameters update.

/* Stop criterion */

Function Stop():

Input: {x̂(i)
k|k}i=1,2,...,N , t

if t = Niter then

Pm,k|k =
(∑N

i=1 P
−1
i,k|k

)−1

;

x̂m,k|k = Pk|k
(∑N

i=1 P
−1
i,k|kx̂i,k|k

)
;

return
end

if
∑

{i,j} ∥x̂
(t)
i,k|k − x̂

(t)
j,k|k∥ ≤ γ then

Pm,k|k = Pi,k|k;
x̂m,k|k = x̂i,k|k;
return

end

end
/* Consensus parameters update */

Function ParametersUpdate():

Input: {x̂(i)
k|k}i=1,2,...,N

for i = 2, ..., N do
for j = 1, ..., i− 1 do

nij = ∥x̂i,k|k − x̂j,k|k∥;
aij =

1
1+nij

;

end

end

end

Turning the attention to the master filter, which is an UKF dedicated to the
computation of an optimal global estimate of the state vector x, the following
notation is employed: x̂m,k|k−1 is the optimal estimate of x conditioned on all
the measurement vector provided to the local filters up to but not including yi,k
and Pm,k|k−1 is the associated covariance matrix. The optimal global estimate
and the corresponding error covariance, which are reported in the information
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form of the Kalman filter, can be retrieved as:

P−1
m,k|k = P−1

m,k|k−1 +
N∑

i=1

(
H⊤
i,kRi,kHi,k

)
(5.34)

x̂m,k|k = Pm,k|k

(
P−1
m,k|k−1x̂m,k|k−1 +

N∑

i=1

(
H⊤
i,kRi,kyi,k

)
)

(5.35)

where the incorrelation of the measurement vectors hypothesis is employed.
However, Eq. 5.34 and Eq. 5.35 have to be modified in light of one of the master
filter properties, which implies that the master filter does not have directly access
to the measurement vectors yi,k. As consequence, Eq. 5.34 and Eq. 5.35 have
to be rewritten in terms of the local filters estimates and covariances. It results
that:

P−1
m,k|k = P−1

m,k|k−1 +

N∑

i=1

(
P−1
i,k|k − P−1

i,k|k−1

)
(5.36)

x̂m,k|k = Pm,k|k

(
P−1
m,k|k−1x̂m,k|k−1 +

N∑

i=1

(
P−1
i,k|kx̂i,k|k − P−1

i,k|k−1x̂i,k|k−1

))
.

(5.37)
The federated UKF filter is summarized in Algorithm 6, where the correction
step is performed by following the information Kalman filtering approach, which
is based on the definition of the information matrix Ωm,k|k = P−1

m,k|k vector

ϕ̂m,k|k = P−1
m,k|kx̂m,k|k.

A reset procedure is applied to guarantee the information transfer from the
master filter to the local filters. At the end of each iteration, the local filter
estimates and covariances are updated with the global estimate and covariance.
This last step is performed by using the equations:

x̂i,k|k = x̂m,k|k (5.38)

Pi,k|k = γiPm,k|k (5.39)

for i = 1, 2, ..., N and with γi such that
∑N
i=1 γ

−1
i = 1. As no information to

weight the local filters are available, the γi factors have been set equal for all the
local filters [85]. As the local filters can make their own local projections and
repeat the cycle at step k+1, the master filter projects the global estimate and
covariance to obtain the a-priori information for the following iteration. Thus,
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Figure 5.6: Framework of the navigation filter, where the modification intro-
duced by the proposed federated UKF, depicted in red, can be noticed in the
position estimation filter.

the multiple filters architecture permits complete autonomy of local filters and
yields optimal local estimates with respect to the available local measurements.
Furthermore, the master filter achieves optimality in the global estimate. This
solution permits maintaining the independence of the local filters between each
other and simultaneously achieving the optimal global solution.

5.4 Validation in simulated environment

Some experiments in a simulated environment have been performed to highlight
the properties of the proposed filters. The main goal of these simulations is to
evaluate the consistency of the analyzed strategies and how they propagate the
estimated covariances. The position filter was fed with GPS position measure-
ments during the simulations, when the vehicle was higher than a fixed depth,
depth measurements, and multiple speed measurements. To increase adherence
to the real dataset, the speed measurements have been generated at a different
fixed rate for each sensor, by employing frequency values for DVL-based DR,
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Figure 5.7: Flowchart of the proposed federated UKF.

VO and AO adherent to reality. Following the frequency values obtained as an
approximate availability rate for the speed data in the real-world experiments,
the DVL measurements have been generated with a 5 Hz rate, the camera-based
and FLS-based speed estimation, respectively, at 2 Hz and 1 Hz. To focus the
attention only on the filter capabilities, instead of applying the VO and AO
algorithms to estimate the camera and FLS-based velocities, all the speed mea-
surements have been generated as random variables defined as:

bvDV L = bν1 +N (0, δ)
bvCAM = bν1 +N (0, δ)
bvFLS = bν1 +N (0, δ)

(5.40)

where bν1 is the speed true value and N (0, δ) is the uncertainty defined as a
normal distribution with zero-mean and covariance δ = diag

{
0.1, 0.05

}
.

The surge speed has been set equal to 0.5 m/s, and the covariance values have
been chosen as a consequence. The proposed strategies have been tested on
a vehicle whose dynamic behavior has been simulated by using the equations
defined in [58] and that has traveled a rectangular path at a fixed depth of
2 m. For each filter, a Monte Carlo simulation with 100 iterations has been
performed. The noise affecting the three sensors has been modeled to have the
same characterisation from a statistical point of view. This hypothesis, which
has been employed only for the simulation experiments, has been assumed to
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Algorithm 6 Federated UKF.

Function FEDERATED UKF():
/* prediction step */

Step Prediction():
Input : x̂m,k−1|k−1, Pm,k−1|k−1, fk−1(·)
Output: x̂m,k|k−1, Pm,k|k−1

(x̂m,k|k−1, Pm,k|k−1) = UT (x̂m,k−1|k−1, Pm,k−1|k−1, fk−1(·));
Pm,k|k−1 = Pm,k|k−1 +Qk−1;

end
/* fusion step */

Step Fusion():
Input : x̂m,k|k−1, Pm,k|k−1, {x̂i,k|k−1}i=1,2,...,N , {Pi,k|k−1}i=1,2,...,N ,

{x̂i,k|k}i=1,2,...,N , {Pi,k|k}i=1,2,...,N

Output: x̂m,k|k, Pm,k|k

Ωm,k|k = P−1
m,k|k−1 +

∑N
i=1

(
P−1
i,k|k − P−1

i,k|k−1

)
;

Pm,k|k = Ω−1
m,k|k;

ϕ̂m,k|k = P−1
m,k|k−1x̂m,k|k−1 +

∑N
i=1

(
P−1
i,k|kx̂i,k|k − P−1

i,k|k−1x̂i,k|k−1

)
;

x̂m,k|k = Pm,k|kϕ̂m,k|k;

end
/* reset procedure */

Step Reset():
Input : x̂m,k|k, Pm,k|k
Output: {x̂i,k|k}i=1,2,...,N , {Pi,k|k}i=1,2,...,N

x̂i,k|k = x̂m,k|k;
Pi,k|k = γiPm,k|k;

end

end

focus the analysis only on the filter properties. Following this idea, the influence
of the particular strategy used to evaluate the speed measurements to feed the
filter has been removed and the analyzed filters have been compared for their
intrinsic properties. The position errors and the estimated 3σ bounds along
the East and North directions are reported from Fig. 5.8 to Fig. 5.12. All
the 3σ bounds continuously diverge when the vehicle is under the sea surface
and no position measurements are available. It correctly represents the behav-
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ior of the AUV, which has no access to any new absolute position information
until it resurfaces. Furthermore, it can be noticed that all the filters, except
the consensus-based distributed UKF, (e.g., reduced UKF, standard UKF, se-
quential UKF and federated UKF) have a similar 3σ bound propagation. The
consensus-based distributed UKF 3σ bounds have the same behavior as the
other filters, but its divergence is reduced. This can be related to the particular
fusion strategy employed in the filter, which is dependent on the accordance
between each local estimation. Comparing the 3σ bounds estimated through
the filter and the standard deviation computed from the data, it is possible to
assert that the all the filters have a conservative behaviour. Indeed, except for
consensus-based distributed UKF, where the filter and data-based covariance is
similar, the estimated 3σ bounds diverge more than the computed covariance
during the underwater phase of the simulations. Furthermore, the estimated
resurfacing position has been compared with the theoretical first GPS fix and
its 3σ bound (Fig. 5.13). It is necessary to notice that the resurfacing positions
estimated in all the Monte Carlo simulations fall inside the 3σ bound, guaran-
teeing acceptable estimations. Furthermore, it is possible to compare the 3σ
bound estimation obtained from the filters and the 3σ bound estimation ob-
tained from the simulated data. The latter has been evaluated by computing
the best normal distribution approximating the estimated resurfacing positions
with respect to the theoretical ones (Fig. 5.14). Comparing the filter and the
data-based estimated covariances, which have been reported for the whole mis-
sion and, in particular, for the resurfacing time, it is possible to notice that all
the filters are consistent with their estimations, but the best results from this
point of view can be obtained with the consensus-based decentralized UKF.

Figure 5.8: East and North position estimation errors versus their 3σ bounds ob-
tained from 100 simulation analysis with the reduced UKF. While the sampled
standard deviation is calculated from the data, the filter σ values are computed
as the square-root of the corresponding diagonal element of the estimated co-
variance matrix.
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Figure 5.9: East and North position estimation errors versus their 3σ bounds ob-
tained from 100 simulation analysis with the standard UKF. While the sampled
standard deviation is calculated from the data, the filter σ values are computed
as the square-root of the corresponding diagonal element of the estimated co-
variance matrix.

Figure 5.10: East and North position estimation errors versus their 3σ bounds
obtained from 100 simulation analysis with the sequential UKF. While the sam-
pled standard deviation is calculated from the data, the filter σ values are com-
puted as the square-root of the corresponding diagonal element of the estimated
covariance matrix.

Figure 5.11: East and North position estimation errors versus their 3σ bounds
obtained from 100 simulation analysis with the consensus-based decentralized
UKF. While the sampled standard deviation is calculated from the data, the
filter σ values are computed as the square-root of the corresponding diagonal
element of the estimated covariance matrix.
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Figure 5.12: East and North position estimation errors versus their 3σ bounds
obtained from 100 simulation analysis with the federated UKF. While the sam-
pled standard deviation is calculated from the data, the filter σ values are com-
puted as the square-root of the corresponding diagonal element of the estimated
covariance matrix.

Indeed, this filter provides data-based and filter-based 3σ bounds similar esti-
mations. Besides that, it is necessary to note that in all cases, the filter-based
3σ bounds estimations are larger than the data-based ones and, consequently,
all the filters have a conservative behavior.
Turning to the speed errors and the related 3σ bounds, it can be noticed from
Fig. 5.15 and Fig. 5.16 that the estimation errors remain for all the time within
the bounds. It is necessary to highlight that only the output of one iteration of
the Monte Carlo simulation has been reported for the speed estimations.

5.5 Experimental results

The presented navigation strategies have been tested and validated offline by em-
ploying experimental data recorded in Vulcano Island, Messina (Italy), in June
2019, during two autonomous underwater missions performed in the framework
of the European project EUMR. The underwater mission was performed at a
constant advance speed of 0.5 m/s with a fixed depth of 2.5 m and an alti-
tude from the sea bottom between 2 and 4 m. In both missions, the payload
sensors were switched on, and the vehicle, during its autonomous navigation
along a pre-programmed path, acquired both acoustic and optical images. GPS
readings were collected before FeelHippo AUV dove and after it resurfaced and
they have been employed as ground truth to compute the resurfacing error and
to compare the proposed strategies. As reference path, the UKF-based esti-
mation, presented in [20], [68], is employed. Of course, considering that some
measurements are discarded, this reference path cannot be employed as ground
truth, but it can represent a reference whose navigation performance has to
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Figure 5.13: The estimated resurfacing positions versus the theoretical GPS fix
position obtained from 100 simulation analysis for each filter.
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Figure 5.14: Histograms containing the estimated resurfacing position errors
obtained from 100 simulation analysis for each filter.
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Figure 5.15: Surge speed estimation errors versus their 3σ bounds obtained
from a simulation analysis. The σ values are computed as the square-root of
the corresponding diagonal element of the estimated covariance matrix.
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Figure 5.16: Sway speed estimation errors versus their 3σ bounds obtained
from a simulation analysis. The σ values are computed as the square-root of
the corresponding diagonal element of the estimated covariance matrix.
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be overcome by the proposed novel approaches. The resurfacing error value,
representing an estimation of the navigation drift, has been analyzed to assess
the possible improvements of the presented strategies. Along the path, only the
waypoints employed to plan the autonomous underwater mission can be used
as a reference to evaluate the goodness of the navigation strategies.
Furthermore, an UKF which centrally employs all the available measurements
has been tested to provide a reference path estimation. Considering that a cen-
tralized filter that uses at the same time all the available measurements provides
the optimal estimate, the obtained trajectory can be considered as ground truth.
The first autonomous mission lasted around 260 s covering approximately 100
m. From Fig. 5.17 and Tab. 5.2, it is easily noticeable that all the proposed
strategies increase the navigation estimation quality, analyzing the results from
the GPS resurfacing error and the planned path error point of view. The path
employed for the second autonomous mission is approximately 150 m long and
it has been covered in about 390 s. As for the other mission, the proposed
strategies led to an improvement of the navigation performance, which can be
retrieved from Fig. 5.18 and Tab. 5.3.

To evaluate the agreement between estimation errors and estimated uncer-
tainty, the 3σ bounds of the estimated trajectories are presented. Both the
analyzed missions present the same structure. In the beginning, the vehicle is
on the surface and GPS fixes bound the position terms of the state covariance.
Subsequently, due to the absence of position measurements, the position terms
of the state covariance increase until the vehicle resurfaces. When above sur-
face, GPS fixes are available again and the covariance gets smaller due to GPS
corrections. This is summarized from Fig. 5.19 to Fig. 5.23, where, concerning
the first autonomous mission, the 3σ bounds for the filter and the GPS are
presented. In all the analyzed cases, the position provided by the filter (with its
confidence bounds) appears to guarantee a reasonable prediction of the vehicle’s
true position when it resurfaces. The employed GPS has an expected accuracy
on the order of meters and the 2D error can be represented as a 2D Gaussian
distribution whose components are independently distributed.

Finally, it is essential to evaluate the robustness of the proposed strategies
against reducing the available measurements. In the previously presented re-
sults, reported in Fig. 5.17 and Fig. 5.18, all the available speed measurements
have been passed to the navigation filters. A large amount of inertial, acoustic
and optical data necessarily determines the good performance of the employed
navigation strategy, reducing the importance of the particular technique used to
merge the measurements. To highlight the importance of a fusion-based filter as
a compromise between reduced computational load and navigation robustness,
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Figure 5.17: Comparison of the navigation results during mission #1. While
the first underwater point is labeled with START, the GPS position acquired
by the AUV after its resurfacing is identified with GPS Fix. Each waypoint of
the planned autonomous mission is referred with WP.

Table 5.2: Navigation performance for the mission #1: resurfacing error.

Navigation strategy Error [m]
Reduced UKF 2.44
Standard UKF 0.46
Sequential UKF 0.92

Consensus-based Distributed UKF 1.70
Federated UKF 1.80
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Figure 5.18: Comparison of the navigation results during mission #2. While
the first underwater point is labeled with START, the GPS position acquired
by the AUV after its resurfacing is identified with GPS Fix. Each waypoint of
the planned autonomous mission is referred with WP.

Table 5.3: Navigation performance for the mission #2: resurfacing error.

Navigation strategy Error [m]
Reduced UKF 1.68
Standard UKF 0.62
Sequential UKF 0.65

Consensus-based Distributed UKF 1.32
Federated UKF 1.48
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the proposed UKF-based algorithms have been applied to two different subsets
of the data acquired during the first mission; one reduced by 50%, the other
one reduced by 75%. The selection of the measurements passed to the filters
has been performed by applying a statistical selection function to each provided
speed measurement. The choice has been based on the Bernoulli distribution
test, whose probability mass function is reported in Eq. 5.41.

P (b|q) =
{

q if b = 1
1− q if b = 0

(5.41)

where q represents the probability to get b = 1 or, equivalently, a true and 1− q
represents the probability to get b = 0 or, equivalently, a false in a double-
choice experiment. In the following results, the coefficient q of the Bernoulli
distribution has been set to three different values, namely q = 1, which provides
the reference path for the algorithm robustness analysis and whose results have
been reported in Fig. 5.17, and q = 0.5 and q = 0.25, which impose the
employment of a half and a quarter of the available measurements (Fig. 5.24
and Fig. 5.25). To give a quantitative evaluation of the robustness of the
proposed algorithms, the navigation performance of the strategies applied to the

Figure 5.19: On the left and in the center, the position estimation with its 3σ
bound obtained with the reduced UKF algorithm respectively along the East
and North direction. On the right, the bound of the last position under the
sea surface and the first GPS fix measurement with its accuracy bound. Top
images refer to mission #1 and bottom images refer to mission #2.
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Figure 5.20: On the left and in the center, the position estimation with its 3σ
bound obtained with the standard UKF algorithm respectively along the East
and North direction. On the right, the bound of the last position under the
sea surface and the first GPS fix measurement with its accuracy bound. Top
images refer to mission #1 and bottom images refer to mission #2.

Figure 5.21: On the left and in the center, the position estimation with its 3σ
bound obtained with the sequential UKF algorithm respectively along the East
and North direction. On the right, the bound of the last position under the
sea surface and the first GPS fix measurement with its accuracy bound. Top
images refer to mission #1 and bottom images refer to mission #2.
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Figure 5.22: On the left and in the center, the position estimation with its 3σ
bound obtained with the consensus-based distributed UKF algorithm respec-
tively along the East and North direction. On the right, the bound of the last
position under the sea surface and the first GPS fix measurement with its accu-
racy bound. Top images refer to mission #1 and bottom images refer to mission
#2.

Figure 5.23: On the left and in the center, the position estimation with its 3σ
bound obtained with the federated UKF algorithm respectively along the East
and North direction. On the right, the bound of the last position under the
sea surface and the first GPS fix measurement with its accuracy bound. Top
images refer to mission #1 and bottom images refer to mission #2.
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Table 5.4: Mean error during mission #1: value at the last waypoint [m].

Navigation strategy Error (q = 0.5) Error (q = 0.25)
Reduced UKF 0.864 2.231
Standard UKF 0.285 0.865
Sequential UKF 0.320 1.118

Consensus-based Distributed UKF 0.254 0.909
Federated UKF 0.168 0.865

Table 5.5: Mean error during mission #2: value at the last waypoint [m].

Navigation strategy Error (q = 0.5) Error (q = 0.25)
Reduced UKF 1.231 1.94
Standard UKF 0.381 0.688
Sequential UKF 0.569 0.831

Consensus-based Distributed UKF 0.692 0.754
Federated UKF 0.637 0.899

reduced dataset has been compared to the one obtained with the full dataset.
The employed metrics are defined in Eq. 5.42 and Eq. 5.43.

ei = ∥ηRP1,i − ηTS1,i ∥ (5.42)

ek =

∑k
i=1 ei
k

(5.43)

where ei ∈ R+ represents, at the instant i ∈ N, the navigation error, ηRP1,i and

ηTS1,i denote, with respect to the NED reference system, the vehicle position
according to the reference path and to the current tested solution, respectively.
As introduced before, while the reference path is represented by the estimated
trajectory retrieved by applying one of the proposed strategies with a selection
test with q = 1, the tested path is obtained by estimating the vehicle position
with the same strategy of the reference path but with a selection coefficient
reduced to q = 0.5 or q = 0.25. In addition to this, ek ∈ R+ denotes the mean
of ei for i = 1, ..., k.

Regarding the computational burden, the Central Processing Unit (CPU)
burden and the execution time of the filters have been the subject of the analy-
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Figure 5.24: Comparison of the estimated trajectories during mission #1 with
q = {1, 0.5, 0.25}.
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Figure 5.25: Comparison of the estimated trajectories during mission #2 with
q = {1, 0.5, 0.25}.
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Figure 5.26: Comparison of the mean errors of the proposed strategies during
mission #1 with q = 0.5 (left image) and with q = 0.25 (right image). The error
value is computed with Eq. 5.43.

Figure 5.27: Comparison of the mean errors of the proposed strategies during
mission #2 with q = 0.5 (left image) and with q = 0.25 (right image). The error
value is computed with Eq. 5.43.

sis. The output of the command top, which is a task manager program available
in many Unix-like operating systems, has been recorded to store the data. Re-
garding the execution time, the sum of the requested time to perform both the
prediction and the correction steps has been taken into account. The results
can be found in Fig. 5.28 for what concern the CPU burden and in Fig. 5.29
for the execution time.
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Figure 5.28: CPU burden analysis. In red and green are respectively reported
the mean and the median.

Figure 5.29: Execution time of the filter, calculated at each iteration as sum of
the requested time for the prediction and the correction steps. In red and green
are respectively reported the mean and the median.

5.6 Analysis of the results

When compared to the reduced UKF, i.e., the filter currently on board Feel-
Hippo AUV, the obtained results, due to the employment of a more significant
number of speed measurements, show an advantage in terms of navigation es-
timation quality (see Fig. 5.17, Fig. 5.18, Tab. 5.2, Tab. 5.3). Moreover,
the obtained results from the proposed filters are comparable with the stan-
dard UKF, which centrally employs all the measurements simultaneously. As
a matter of fact, the iterative and parallel fusion strategies guarantee a solid
trade-off between localization accuracy and computational cost. More in de-
tail, the sequential UKF strategy provides the minor resurfacing error and the
best adherence to both missions’ reference trajectories. Furthermore, this strat-
egy guarantees the best adherence to the standard UKF estimated trajectory,
which can be considered as the benchmark path. Concerning the federated and
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the consensus-based decentralized, these strategies guarantee a performance in-
crease with respect to the reduced UKF strategy, thanks to their better ex-
ploitation of the available measurements in a framework based on parallel local
filtering.

Regarding robustness against the lack of measurements, trivially, the reduc-
tion of measurements leads to an increase in navigation error. However, the
proposed strategies guarantee better robustness against these issues, providing
results comparable with the standard UKF. By observing Fig. 5.26, which are
in the presence of 50% and 75% measurement reduction, it can be noticed that
both the decentralized and the centralized strategies are similarly insensitive
to measurement reduction. Only the reduced UKF, due to its strategy based
on the last acquired speed measurement in chronological order, is significantly
negatively affected by the measurement reduction (see Tab. 5.4 and Tab. 5.5).
Concerning the computational burden, it can be noticed that the sequential
UKF has a CPU burden and an execution time similar to the reduced UKF.
Still, it can provide a lower resurfacing error comparable with the standard UKF.
It is possible to assert that the sequential UKF can represent a solid trade-off
between computational complexity and estimation performance. The proposed
consensus-based decentralized UKF has the highest CPU burden and execution
time due to the particular adopted fusion strategy. Finally, it is necessary to
highlight that the federated UKF, despite being a decentralized strategy, has a
mean execution time slightly higher than the standard UKF. This last state-
ment highlights the not negligible burden requested by a centralized strategy
that, at the same time, processes all the available measurements.
Finally, it is necessary to summarize the pros and cons of each filtering strategy
proposed to overcome the limitations of the reduced UKF. The reduced UKF,
despite requiring the lowest CPU burden and execution time, provides estimated
trajectories whose estimation errors tend to diverge faster than the other filters.
Furthermore, this strategy is susceptible to the need for more measurements,
which can be limited when they are obtained from payload sensors that acquire
data from the surrounding environment. Consequently, the obtained results can
be summarized in the following sentences:

• the standard UKF centrally fuses at the same time all the available mea-
surements and it provides in both missions the lowest resurfacing error.
It requests a computational burden higher than the other centralized fil-
ters, i.e., sequential UKF and reduced UKF, but similar or lower than the
decentralized strategies;

• the sequential UKF can be the best solution to guarantee a solid trade-off
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between an increase of estimation properties and a reduction of computa-
tional load, which can be one of the major limitations in mobile robotics.
Reducing the available measurements, the sequential UKF remains much
better than the reduced UKF, but it provides the worst results if compared
with the other filters.

• the consensus-based decentralized UKF provides the lowest divergence of
the estimated covariance when the vehicle is under the sea surface, and no
position measurements are available. As illustrated by the Monte Carlo
simulations, it is possible to highlight that the filter provides the best
results from the consistency point of view and that the position 3σ bound
contains the position estimation errors. On the contrary, the employed
fusion strategy requires a not negligible execution time and CPU burden,
which could limit its applications when the hardware is not appropriate.

• the federated UKF is a decentralized strategy with a requested execution
time comparable with the standard UKF. From the results obtained by
reducing the measurement availability, the federated UKF is the most
insensitive strategy to the lack of measurements.

5.7 Main contributions

Handling redundant observations (e.g., speed information from different sources)
still represents an open problem for AUV navigation applications. Indeed, cen-
tralized and decentralized fusion strategies have been developed and analyzed
(both in terms of localization accuracy and computational burden). In particu-
lar, by means of validation with simulated data and real data acquired with an
AUV, a sequential (or iterated), a federated, and a consensus-based decentral-
ized technique have been subject of investigation and have been compared with
more traditional strategies, as a centralized standard UKF and the UKF pro-
posed in [20] and [68], which has been referred as reduced UKF. In conclusion,
the main contributions of this section are:

• the simultaneous employment of different sensing devices for AUV speed
measurement, namely a DVL, an optical camera, and an FLS;

• a systematic comparative study among different data fusion techniques
(both centralized and decentralized) for AUV navigation in the presence
of redundant speed observations;
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• a validation of the hereby presented techniques by means of navigation
data acquired during autonomous missions performed with an AUV.





Chapter 6

SLAM-based fusion
strategies for multisensor
navigation

While full smoothers (or batch nonlinear least-squares algorithms) estimate
the complete history of poses, fixed-lag smoothers (or sliding window es-

timators) consider a window of the latest poses, and filtering approaches only
estimate the latest state [35]. Both fixed-lag smoothers and filters marginalize
older states and absorb the corresponding information in a Gaussian prior. Fil-
tering algorithms enable efficient estimation by restricting the inference process
to the latest state of the system. The complexity of the SLAM strategies based
on Kalman filtering (e.g., EKF-SLAM) grows quadratically in the number of
estimated landmarks [86], [87]. Therefore, a small number of landmarks are
typically tracked to allow real-time operation. Full smoothing methods esti-
mate the entire history of the states (vehicle trajectory and 3D landmarks) by
solving a large nonlinear optimization problem. Full smoothing guarantees the
highest accuracy; however, the real-time operation quickly becomes infeasible
as the trajectory and the map grow over time. A breakthrough has been the
development of incremental smoothing techniques, which leverage the expres-
siveness of factor graphs to maintain sparsity and to identify and update only
the typically small subset of variables affected by a new measurement.
As for the UKF-based algorithm, the complete pose estimation filter works by
following two parallel structures. The first part, employed for attitude esti-

99
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Figure 6.1: Framework of the navigation filter, where the modification intro-
duced by the proposed SLAM algorithm, depicted in red, can be noticed in
the position estimation filter. Furthermore, the post-processing block, which is
described in Appendix A, is reported. The acronym LM stands for landmark
and it indicates the landmark positions estimated with the SLAM algorithm.

mation, is used as input in the second part, which is dedicated to position
estimation. The SLAM estimator based on DVL and optical measurements is
employed as the core of the position estimation filter (see Fig. 6.1).

6.1 Strategies for factor graph constraints com-
putation

6.1.1 DVL-based navigation and mapping

As introduced previously, a DVL-based DR strategy computes the AUV position
by integrating the measured linear velocity. Assuming a discrete-time system,
the mathematical equation that can be extracted from the previously introduced
statement is reported below:

∆ηk−1,k = RNb (η2,k−1)ν1,k−1∆T, (6.1)

where ∆ηk−1,k is the translation between the iteration times k − 1 and k ex-

pressed in the NED reference system, RNb (η2) represents the rotation matrix
between the NED and the body-fixed frames, ν1,k−1 contains the body-fixed
frame linear velocities and ∆T is the fixed sampling time. The output vector of
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Eq. 6.1 represents the first three components of mXY Z−Y (xi−1, xi) defined in
Eq. 3.85.
While the primary application field of a DVL is vehicle navigation, it can also
be employed to provide an approximated sea floor bathymetry. Indeed, a DVL
has four acoustic beams, each pointing in a different direction, which can be
employed to acquire the 3D location of 4 points of the sea bottom during each
speed measurement. One beam of the DVL is represented by the vector P and
goes from the DVL to the sea floor:

P =



X
Y
Z


 = Z




tan γ cosβ
tan γ sinβ

1


 (6.2)

where γ is the angle of the beam from the DVL z-axis, β is the angle from the
x-axis on the xy-plane, Z is the vertical component of P (see Fig. 6.2). It is
worth noting that P (whose module is the output of the DVL) is expressed in
terms of Z and the constant angles β and γ. The points located thanks to the
DVL beams cannot be employed as additional constraints in the navigation pose
graph because they do not link any node of the graph. Still, they can easily be
used to increase the number of points in the estimated map of the sea bottom.
Indeed, by knowing the vehicle’s actual position from the navigation algorithm,
the location of the four beams can be converted from the DVL frame to the
NED reference system.

6.1.2 Mono visual SLAM

The visual SLAM algorithm employed in the developed navigation framework
is a feature-based monocular SLAM system that operates to estimate the cam-
era trajectory and an environment map. The basic idea of the SLAM system
introduced in the navigation filter takes inspiration from the algorithms pro-
posed in [45], [46]. Following the results reported in [76], [77], where accurate
comparisons between several feature detectors are explained, ORB feature de-
tector has been chosen as the preferable solution instead of Scale Invariant Fea-
ture Transform (SIFT), Speeded Up Robust Features (SURF) and Accelerated-
KAZE (AKAZE). The SLAM framework works following two main processes:
tracking and local mapping. While the tracking is dedicated to locating the
camera by using every frame ad to decide when to insert a new keyframe, the
local mapping process employs the new keyframes to perform a local bundle
adjustment optimization to compute a reconstruction of the surrounding envi-
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Figure 6.2: The DVL beam vector components.

ronment.
The map initialization process, dedicated to the computation of the relative
pose between two frames and the triangulation of an initial set of map points,
is executed by exploiting the method reported in [45]. The initialization is per-
formed by employing only the data from the monocular camera; consequently,
the retrieved results are up to a scale factor. The scale factor estimation uses
additional onboard sensors and will be described in Section 6.2.2. The initial-
ization procedure computes two geometrical models in parallel: a homography
matrix, where a planar scene hypothesis is taken into account, and a funda-
mental matrix, which is supposed to have a non-planar scene. The algorithm
initializes the system when the estimated configuration is safe and a low num-
ber of matches or unstable correspondences does not corrupt the map. The
ORB features are extracted from the current and the reference frames and are
matched. If enough matches are found, the homography and the fundamental
matrix are computed in parallel by exploiting the Direct Linear Transformation
(DLT) and the 8-points algorithms, respectively. The RAndom SAmple Con-
sensus (RANSAC) outlier removal procedure has been adopted in both cases.
Two score values SH and SF have been computed for the homography and the
fundamental matrices, respectively, by employing the formulas reported in [45].
It is necessary to underline that if the scene is planar or with a low parallax, it
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can be correctly described with a homography and the retrieved fundamental
matrix is obtained from a not well-constrained problem, leading to erroneous
results. The coefficient

RH =
SH

SH + SF
(6.3)

is employed to select between homography and fundamental matrices. The
homography is selected if RH > 0.45, otherwise, the fundamental matrix is
chosen. The selected threshold value has been chosen empirically. Once a
model is selected, the associated motion hypothesis is retrieved, the map points
are triangulated, and a full bundle adjustment is performed.
The tracking algorithm is applied to every frame captured by the camera. ORB
features are extracted from each image, and a matching algorithm is employed
to retrieve map points in new images and to determine the camera motion.
After this step, the local map can be projected into the frame to increase the
number of point correspondences. Only the keyframes are inserted in the overall
factor graph to maintain bounded the global system complexity. To select a new
keyframe, three conditions have to be satisfied:

• more than 20 frames have been elaborated from the last keyframe inser-
tion;

• current frame tracks at least 50 points;

• current frame tracks less than 90% points than the last keyframe.

The parameter values have been chosen following the inputs provided by the
authors of [45]. When a new keyframe is selected, the covisibility graph is
updated. This step is accomplished by adding a new node and updating the
edges resulting from the shared map points with the last inserted keyframes. To
be passed to the global map, map points must be visible over three keyframes
to guarantee that they are correctly tracked and triangulation can be accurately
performed. Finally, the map points and the pose associated with the keyframe
are passed to the global navigation factor graph to perform the optimization
process.

6.2 Factor graph framework development

6.2.1 Overall factor graph

The information from the available onboard sensors has been encoded as mea-
surement factors to constrain the optimization, whose solution represents the
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MAP estimate. Inspired by [41], the following factors have been included:

• a relative 4D pose-to-pose constraint on x, y, and z translation and yaw
rotation, thanks to the measurements coming from the DVL and the yaw
estimated by the attitude estimator;

• a unary 2D constraint on pitch and roll rotations, obtained from the atti-
tude estimation filter;

• a unary 1D constraint on z translation thanks to the DS measurements;

• a unary constraint on x and y translation exploiting GPS observations;

• a relative 6D pose-to-pose constraint on x, y, and z translation and roll,
pitch, and yaw rotation, thanks to the relative pose estimated through the
monocular camera and properly scaled;

• a camera-based landmark constraint on the vehicle pose and the landmark
position for each feature seen with the monocular camera over multiple
images.

The implemented approach adds a new state only when at least one obser-
vation from GPS, DVL, DS, or when the visibility is acceptable, the camera
is available. The link between adjacent nodes is maintained by collapsing the
relative motion XYZ-Y in a single compound constraint, where simple DR is
performed between the two consecutive nodes with the last acquired DVL mea-
surements. As introduced in Section 3.3.3, the pose Txi can be represented with
a vector

[
Xxi Yxi Zxi ϕxi θxi ψxi

]
∈ R6 that encodes the state at the

generic instant. Mathematically, at time k, the optimization problem can be
written as

X ∗
k = argmax

X

∑k−1
i=1

(
∥mXY Z−Y (xi−1, xi)⊖ oi−1,i∥2Σoi−1,i

+ ∥mRP (xi)⊖ ri∥2Σri
)
+

+
∑
i∈Z ∥mZ(xi)− zi∥2Σzi+

+
∑
i∈G ∥mXY (xi)− gi∥2Σgi+

+
∑
i,j∈C ∥mXY Z−RPY (xi, xj)⊖ pi,j∥2Σpi,j+

+
∑
j∈LM,i∈C ρ

(
∥pij − πi(TxiP j)∥2Σlmi

)
+

+∥Tx0 ⊖ Txprior∥2Σlmi
(6.4)

{mXY Z−Y (·), oi−1,i,Σoi−1,i
}, {mRP (·), ri,Σri}, {mZ(·), zi,Σzi}, {mXY (·), gi,Σgi},

{mXY Z−RPY (·), pi,j ,Σoi,j} are the measurement functions, the measured val-
ues and covariances defined in Section 3.3.3 and associated to the previously
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Figure 6.3: Graphical representation of the constraints employed in the factor
graph for the developed navigation strategy. It is possible to notice the prior
factor (a), the RP unary constraint (b), the Z unary constraint (c), the XYZ-Y
pose-to-pose constraint (d), the XY unary constraint (e), the XYZ-RPY pose-
to-pose constraint (f), the visual landmark constraint (g).

introduced factors. While Z, G and C are the set of pose nodes for which DS,
GPS and camera measurements respectively occur, LM is the set of landmark
nodes. Txprior is the prior constraint on the first pose, which is necessary to
anchor the state evolution to a global coordinate frame (Fig. 6.4).

In terms of implementation, the GTSAM library [88] has been used as the
back-end for the localization solution. Further information can be found in [38],
[39]. iSAM2, which is the latest evolution of the incremental smoothing and
mapping solution developed in GTSAM, allows only the typical small subset of
variables affected by a new measurement, i.e., the measurement function and
associated covariances, to be identified and updated, thus limiting the com-
putational load of the estimation, offering a trade-off between accuracy and
efficiency. Several issues affect the vision in underwater environments, which
can negatively influence the employment of visual SLAM algorithms. Specifi-
cally, while scattering reduces light intensity causing a loss of contrast and haze
in underwater images, light absorption leads to a decrease in the color quality
of underwater images. Light attenuation in water introduces degradation in un-
derwater images, such as poor colors, decreased contrast, haziness, and blurring,
making them hardly usable for the filter. Thus it is necessary to guarantee that
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Figure 6.4: Example of the factor graph at the iteration i constrained with
vision-based landmarks and all the onboard sensors.

the visual part of the navigation framework, which is dependent on uncontrol-
lable external conditions, can be correctly inserted or removed from the factor
graph. Only when the visual SLAM algorithm is correctly initialized and the
current scale factor is computed, it is possible to insert keyframe poses and map
point locations in the factor graph. Edges computed thanks to other onboard
sensors, which do not suffer from visibility limitations, are inserted in the whole
factor graph during the entire mission. The developed system, through the map
points obtained from the vision system and the DVL beams, can build a map of
the surrounding environment independently from the visibility. Indeed, when
the reduced visibility impedes the usage of the visual-based features as map
points, DVL-based beams can be employed to build an approximated map of
the sea bottom. The quality and resolution of the produced map depend on the
availability of the visual landmarks. Still, thanks to the DVL measurements,
the reconstruction can be performed for the whole mission. Considering that,
when an AUV accomplishes an underwater mission, the sea bottom texture can
change very fast, and its depth can increase rapidly, the possibility to guarantee
reconstruction of the surrounding environment, even approximated, represents
a helpful advantage. Obviously, it is necessary to highlight that the DVL beams
cannot be employed as landmark nodes in the factor graph. Still, they can only
be added to the map utilizing the sensor geometrical model. It is necessary to
highlight that underwater SLAM fusing camera, and DVL sensors can increase
the localization accuracy and robustness thanks to the excellent complement
between these two sensors: DVL provides reliable motion estimates for under-
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water visual SLAM, extending SLAM’s robustness and operation even without
visual features, and vision, when applicable, helps the estimation process by
introducing visual landmarks which increase the constraints on the vehicle po-
sition.

6.2.2 Scale factor ambiguity resolution

This procedure, which is executed every time the visual SLAM algorithm is cor-
rectly initialized, has two main purposes, the scale factor ambiguity resolution
and accurate compensation of the fixed rototranslation between the camera and
the body frames. This transformation is represented as a similarity transforma-

tion composed of a scale factor s, a translation vector tc,b =
[
txc,b tyc,b tzc,b

]⊤

and a rotation matrix Rbc = Rz(ψ
b
c)Ry(θ

b
c)Rx(ϕ

b
c). It is based on comparing the

trajectories estimated through the DVL and the other inertial sensors and the
camera. It is necessary to notice that until the scale factor has not been esti-
mated, the measurements obtained thanks to the visual SLAM algorithm are
not inserted in the whole factor graph. Considering this algorithm’s two pur-
poses and that, usually, underwater vehicles for survey missions execute planar
trajectories at constant depth, the problem has been solved with a two-step
algorithm. In particular, while the first part of the algorithm determines a
closed-form solution for the x and y directions, yaw rotation, and the scale fac-
tor, the second part optimizes the whole scaled rototranslation with an iterative
algorithm. This framework has been adopted due to the limitations introduced
by the particular motion executed by the AUV. Indeed, on the one hand, the
optimal closed-form solution estimated with 3D points that almost lie on a plane
cannot correctly estimate the roll and pitch angles of the rigid transformation
between the two considered reference frames. On the other hand, the iterative
algorithm locally converges and requires an initial guess in the neighborhood of
the exact solution, which can be measured directly on the vehicle or evaluated
through the closed-form solution.
The two steps of the algorithm are described in detail. Firstly, the closed-form
solution is found by computing the trajectory alignment transformation with
translational component on the xy-plane of the trajectory estimated with the
DVL and the camera and with rotational component computed with respect to
the perpendicular axis to this plane. Given the DVL-based positions {pDV Li }Ni=1

and the camera-based positions {pCAMi }Ni=1, it is necessary to determine the
optimal similarity transformation S∗ = {s∗, Rb ∗c , t∗c,b} = {s∗, ψb ∗c , tx ∗

c,b , t
y ∗
c,b} that
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satisfies the minimization problem reported in Eq. 6.5.

S∗ = argmin
s,Rbc,tc,b

N∑

i=1

∥pDV Li − sRbcp
CAM
i − tc,b∥2 (6.5)

where it is necessary to suppose that

Rbc =



cψbc −sψbc 0
sψbc cψbc 0
0 0 1


 (6.6)

tc,b =



txc,b
tyc,b
0


 (6.7)

The solution of this least squares problem can be found using the method ex-
plained in [89].

The second step works with Ceres Solver, an open-source library that pro-
vides a rich set of tools to construct and solve an optimization problem. Ceres
solves robustified bounds constrained non-linear least squares problems of the
form:

min
x

lj ≤ xj ≤ uj

1

2

∑

i

ρi
(
∥fi(xi1 , ..., xik)∥2

)
. (6.8)

The expression ρi
(
∥fi(xi1 , ..., xik)∥2

)
represents the residual block, where ρi(·)

is the loss function used to reduce the influence of outliers on the solution and
fi(·) is the cost function that depends on the parameters block {xi1 , ..., xik}. lj
and uj are the lower and upper bounds on the parameter block xj .

Defining the state x =
[
s ϕbc θbc ψbc txc,b tyc,b tzc,b

]⊤
, the loss function

is assumed to be the identity function, the cost function is the same as in the
first step of the algorithm

f(x) = pDV Li − sRbcp
CAM
i − tc,b (6.9)

where, unlike the previous case, it is supposed that

Rbc =



cθbccψbc sϕbcsθbccψbc − cϕbcsψbc cϕbcsθbccψbc + sϕbccψbc
cθbcsψbc sϕbcsθbcsψbc + cϕbccψbc cϕbcsθbcsψbc − sϕbccψbc
−sθbc sϕbccθbc cϕbccθbc


 (6.10)
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Figure 6.5: Comparison of the two factor graphs (e.g., the DVL-based graph
on the top and the camera-based graph on the bottom of the image) employed
for the scale factor ambiguity resolution. The dashed lines in the bottom graph
are the edges which are not reported in the whole graph. For ease of reading, a
one-to-one association between the two graphs is considered.

tc,b =



txc,b
tyc,b
tzc,b


 . (6.11)

The initial guess and the upper and lower bounds are computed thanks to
the values estimated in the closed-form solution. Considering that this is a
small problem with few parameters and relatively dense Jacobians, dense QR
factorization is the method of choice [90].

6.2.3 Reset procedures

Although iSAM2 reduces the variables to be optimized to a small subset, it is
necessary to apply a reset procedure to maintain a limited factor graph and avoid
increasing nodes and edges. In particular, considering that the presence of visual
landmark nodes constrains several pose nodes, the computational burden tends
to increase at every iteration step, and the factor graph is more arduous to be
managed. Two factor graph reset procedures have been developed to avoid the
increase of the graph size, where the first is dedicated to compacting the factor
graph without reducing the visual landmark nodes, and the second operates on
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Figure 6.6: Last nodes of the factor graph g constrained with vision-based
landmarks and all the onboard sensors.

the whole factor graph reducing all the information to the ones contained in
the last node. While the first reset strategy will be called keyframe reset, the
second one will be referred as global reset. One of the two reset strategies is
applied when the number of pose nodes of the factor graph reaches a value equal
to N . The status of the factor graph is checked to decide which one of the two
strategies are applied. In particular, the keyframe reset procedure is recalled
only if the visual SLAM algorithm is active and for a maximum number of
consecutive times equal to p. The last condition is set to maintain control of the
increase of the execution time of each filter iteration. When the visual SLAM
part of the navigation algorithm is not working due to the external visibility
conditions or when the factor graph is reset for the (p + 1)-th time, the global
reset algorithm is employed. It is necessary to notice that the keyframe reset
procedure does not delete all the information contained in the previous pose
graph. Still, only the ones related to the IMU, DVL, and DS measurements are
removed. Indeed, this information is compressed in a new framework, which
contains all the properties to be transferred from the previous to the following
factor graph. On the contrary, the global factor reset reduces all the information
to be transferred to the new factor graph to the ones in the last node of the
previous factor graph.

Both the reset strategies are now analyzed in detail to outline which informa-
tion is passed from the previous to the actual graph and how these measurements
are compressed in the new framework. Considering the keyframe reset proce-
dure and referring to Fig. 6.6 and Fig. 6.7, the following actions are performed
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to obtain the graph g + 1 from the graph g.

• The i + 1 keyframe pose nodes are transferred from the previous to the
actual factor graph. The first keyframe node, as the one associated with

the state x
(g)
k , is constrained with a prior factor with the last estimated

value. All the subsequent i−1 keyframe nodes are determined by an XYZ-
RPY factor obtained from each last estimated value and the associated
covariance.

• All the m + 1 visual landmark points are transferred from the previous
to the actual factor graph. They are employed to maintain constraints
between all the keyframe pose nodes. Each landmark node is reported
in the current graph with its last estimate and covariance and all the
vision-based edges.

• The last pose node associated with the state x
(g)
N , even if it is not a

keyframe node, is transferred to the actual graph to be employed as start-
ing point to insert the acquired measurements as constraints. This node
is constrained to the last keyframe node with an XYZ-RPY odometry fac-
tor computed from the last pose estimated values of the two nodes. The
relative rototranslation transformation is thus computed and applied as a
constraint.

All the DVL-based landmarks are reported in the global NED reference frame
using the poses estimated with the graph g, and they are employed to build the
point cloud for the seabed reconstruction. Even though the whole graph has
been reset, the visual SLAM part, if the visibility is acceptable, continues to
compute poses and visual landmarks, which are inserted in the new graph and
connected to the keyframe nodes passed from the previous graph. Furthermore,
until a new keyframe is not computed, the new nodes are inserted thanks to
the DVL-based DR, the DS measurements, and the attitude estimator filter
outputs.

Considering the global reset procedure and referring to Fig. 6.6 and Fig. 6.8,
the following actions are performed to obtain the graph g+1 from the graph g.

• Only the last pose node associated with the state x
(g)
N is transferred to

the actual graph to be employed as starting point to insert the acquired
measurements as constraints. It is constrained with a prior factor with
the last estimated value.
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Figure 6.7: First nodes of the factor graph g + 1 after the employment of the
keyframe reset procedure. The values in the grey boxes represent the corre-
sponding states taken from the previous factor graph g and transferred to the
actual graph g + 1.

• The visual landmarks and the keyframe poses are not transferred from the
previous to the actual graph. All positions of the estimated DVL-based
and visual landmarks are saved as estimated in the last optimization of
the previous graph, and they are employed to build the point cloud for
the seabed reconstruction.

Even if the visibility is acceptable, the visual SLAM algorithm is reinitialized,
the scale factor is again computed, and no information is transferred from the
vision-based part of the previous graph. Despite the loss of some helpful informa-
tion, the global reset procedure is necessary to limit the algorithm’s computation
burden.

6.3 Validation in simulated environment

To validate the developed DVL and camera-based SLAM algorithm, realistic
simulations were performed by means of the Unmanned Underwater Vehicle
Simulator (UUV Simulator). In particular, while navigation performance has
been evaluated thanks to a Monte Carlo simulation similar to the one described
in Chapter 5, mapping capabilities have been analyzed with a lawnmower survey



6.3. VALIDATION IN SIMULATED ENVIRONMENT 113

Figure 6.8: First nodes of the factor graph g + 1 after the employment of the
global reset procedure. The values in the grey boxes represent the corresponding
states taken from the previous factor graph g and transferred to the actual graph
g + 1.

at a constant depth over a simulated seabed generated with a known mathemat-
ical function z = f(x, y). The obtained results have been employed to evaluate
the goodness of the whole algorithm and some of its main features, such as
the reset procedure and the scale factor computation algorithm. To focus at-
tention on the navigation and mapping capabilities of the filter, the DVL and
the camera have been modeled thanks to the simulator features. The realistic
simulations were based on the dynamic model of FeelHippo AUV implemented
in the UUV Simulator and on modeling all the onboard sensors. In particular,
the DVL beams have been modeled by applying a noise in the measured value,
which determines a noise in the measured velocity. The camera has been mod-
eled with a noise in the pixel position of the acquired image, which influences
both the vehicle and landmark position estimation.

During the Monte Carlo simulations, the position filter was fed with the data
coming from the simulated sensors, as the GPS, when the vehicle was higher
than a fixed depth, depth sensor, DVL and camera. To increase adherence
to the real dataset, the DVL speed measurements have been published with a
5 Hz rate, and the camera acquired images with a frequency of 10 Hz. The
proposed strategies have been tested on a vehicle whose dynamic behavior has
been simulated using the model implemented in UUV Simulator, which has
traveled a rectangular path at a fixed depth of 2 m. A Monte Carlo simulation
with 100 iterations has been performed. The position errors and the estimated



114 CHAPTER 6. SLAM-BASED FUSION STRATEGIES

3σ bounds along the East and North directions are reported in Fig. 6.9. The
covariance trend follows the trajectory described by the vehicle. Still, globally
it is possible to highlight an increase in performance in terms of divergence
with respect to the UKF filters. Indeed, while in the UKF-based filters the 3σ
bounds are characterized by a circular shape, the SLAM algorithm, due to the
presence of visual landmarks which constrains the vehicle position, provides an
elliptic 3σ bound with major axis perpendicular to the direction followed by the
vehicle. Despite its particular shape, the 3σ bound continuously diverges when
the vehicle is under the sea surface, and no position measurements are available,
correctly representing the behavior of the AUV.
Furthermore, as in the previous section, the estimated resurfacing position has
been compared with the theoretical first GPS fix and its 3σ bound (Fig. 6.10).
The resurfacing positions estimated in all the Monte Carlo simulations fall inside
the 3σ bound, guaranteeing reasonable estimations. Furthermore, it is possible
to compare the 3σ bound estimation obtained from the filter and the 3σ bound
estimation obtained from the simulated data, evaluating the latter by computing
the best normal distribution approximating the estimated resurfacing positions
with respect to the theoretical ones (Fig. 6.11).

Analyzing the results obtained from the lawnmower survey at a constant
depth of 5 meters and comparing the estimated trajectory with the ground
truth provided by the simulator, it is possible to notice that the divergence
over time of the navigation error is reduced (see Fig. 6.12). Indeed, even if
a global loop closure on the visual keyframes is not performed, the presence
of the highly accurate DVL measurements can maintain a low estimation error
drift. Furthermore, Fig. 6.12 shows the estimated trajectory on the NED frame,
where it is possible to notice the points where the system has been reset. Con-
sidering that the simulated seabed has been textured with a feature-rich image,
it is necessary to see that the visual part of the SLAM algorithm continues to
work for the whole trajectory. Thus, both reset strategies have been employed
to limit the computational burden. Fig. 6.13 reports the estimated trajectory
and the generated point cloud. It is possible to evaluate the algorithm mapping
capabilities by comparing the estimated point cloud and the function employed
to simulate the seabed. Considering that several outliers are kept in the point
cloud during the SLAM algorithm, which negatively influences the seabed re-
construction, the estimated landmarks are elaborated to eliminate the wrong
points and to downsample the cloud. Consequently, the seabed reconstruction
capabilities of the developed algorithm are analyzed in Appendix A, where the
employed post-processing strategies are described.
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Figure 6.9: East and North position estimation errors versus their 3σ bounds
obtained from 100 simulation analysis with the SLAM algorithm. The σ values
are computed as the square-root of the corresponding diagonal element of the
estimated covariance matrix.

Figure 6.10: The estimated resurfacing positions versus the theoretical GPS fix
position obtained from 100 simulation analysis for the SLAM algorithm.
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Figure 6.11: Histograms containing the estimated resurfacing position errors
obtained from 100 simulation analysis for the SLAM algorithm.

Figure 6.12: 3D plot of the estimated trajectory in the NED reference system,
where the reset points and the areas where vision is not working are highlighted.
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Figure 6.13: Representation of the point cloud and the travelled trajectory
estimated through the SLAM algorithm. While on the top image the entire
point cloud is reported and, due to the presence of outliers, the depth scale is
too extended, on the bottom image a zoom on the region of interest is performed.
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Figure 6.14: Comparison between the trajectories estimated with the SLAM
algorithm and the UKF algorithm during the mission accomplished in Stromboli
Island, Messina (Italy). A ground truth, when the vehicle was under the sea
surface, is not available, but the first GNSS fix when the vehicle resurfaces can
be employed as reference to evaluate the resurfacing error.

6.4 Experimental results

The presented navigation and mapping strategy has been tested and validated
by employing experimental data recorded in Stromboli Island, Messina (Italy),
in September 2022, during an autonomous underwater mission performed in
the framework of the project PATHFinder. During its autonomous navigation
along a pre-programmed path, the payload sensors were switched on, and the
vehicle acquired both acoustic and optical data. GNSS readings obtained from
the satellites of the Galileo system were collected before FeelHippo AUV dove
and after it resurfaced. They have been employed as ground truth to compute
the resurfacing error and to globally reference the trajectory and the map.

The developed SLAM strategy has been compared with the UKF algorithm
proposed in Section 5.3.2, which has been employed as a reference filter for the
previous analysis. In particular, to ensure uniformity of the employed sensors
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Figure 6.15: 3σ bound of the last positions under the sea surface estimated with
the SLAM and UKF algorithms and the first GNSS fix measurement with its
accuracy 3σ bound.

between the two filters, the FLS readings have not been employed as speed
measurement sources in the UKF. As shown in Fig 6.14, firstly, the AUV nav-
igated over the sea surface to acquire the sensor data for the LG-EKF for the
orientation initialization procedure. During this phase, the vehicle followed a
straight line from the starting point to the diving point, and when the heading
offset covariance estimated through the LG-EKF reached the fixed threshold,
the AUV yaw angle was corrected. The goodness of the initialization procedure
can be evaluated by comparing the resurfacing error in the presence or absence
of the heading correction. Indeed, it is necessary to highlight that the resur-
facing error is reduced from 12.07 to 0.899 meters thanks to the initialization
procedure.
The position resurfacing error values and covariances have been evaluated on
the North-East plane. Fig. 6.14 and Fig. 6.15 respectively report the estimated
trajectories and an analysis of the resurfacing errors with their 3σ bound. From
Tab. 6.1, analyzing the results from the GNSS resurfacing error, it is easily
noticeable that both the proposed strategies are acceptable in terms of naviga-
tion estimation quality. To evaluate the agreement between estimation errors
and estimated uncertainty, the 3σ bounds during the resurfacing phase are pre-
sented. This is summarized in Fig. 6.15, where the 3σ bounds for the filters and
the GNSS are presented. In all the analyzed cases, the position provided by the
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Figure 6.16: Representation of the point cloud and the travelled trajectory
estimated through the SLAM algorithm during the mission in Stromboli Island,
Messina (Italy). While on the top image the entire point cloud is reported and,
due to the presence of outliers, the depth scale is too extended, on the bottom
image a zoom on the region of interest is performed.
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filter (with its confidence bounds) appears to guarantee a reasonable prediction
of the vehicle’s true position when it resurfaces. The employed GNSS has an
expected accuracy on the order of meters and the 2D error can be represented
as a 2D Gaussian distribution whose components are independently distributed.

Table 6.1: Navigation performance for the mission accomplished in Stromboli
Island, Messina (Italy): resurfacing error.

Navigation strategy Error [m]
UKF algorithm 1.943
SLAM algorithm 0.899

Focusing the attention on the SLAM algorithm and its mapping capabilities,
Fig. 6.16 reports the SLAM-based estimated trajectory and the generated point
cloud. It is possible to evaluate the algorithm mapping capabilities by comparing
the estimated point cloud with a bathymetry of the region around the island.
As for the test in simulated environments, several outliers are kept in the point
cloud during the SLAM algorithm operation, which negatively influences the
seabed reconstruction. Consequently, the seabed reconstruction capabilities of
the developed algorithm and the comparison with the ground truth bathymetry
are reported in Appendix A, where the employed post-processing strategies are
described.

Table 6.2: Estimated scale factor and rototranslation transform between DVL
and camera reference systems.

Parameter Initial guess Value after step 1 Value after step 2
s 0.0 5.448 5.529

ϕbc [deg] 0.0 0.0 −0.005
θbc [deg] 90.0 90.0 89.477
ψbc [deg] 0.0 10.119 8.43
txc,b [m] 0.24 0.24 0.233

tyc,b [m] 0.07 0.06 0.076

tzc,b [m] 0.05 0.05 0.049

The scale factor computation procedure has been applied to estimate the
scale factor between the DVL-based trajectory and the visual part of the algo-
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Figure 6.17: On the left, execution time of the SLAM filter, calculated at each
iteration as the sum of the requested time for measurement insertion in the factor
graph and for the optimization process. On the right, CPU burden analysis. In
red and green are respectively reported the mean and the median.

rithm before fusing them in the whole factor graph. In particular, approximate
values of the relative position and orientation between the DVL and the camera
has been provided as input to the algorithm, but their values have been kept as
variables in the optimization process. The scale factor between the DVL-based
trajectory and the visual SLAM has been solved with the developed algorithm,
and the results have been reported in Tab. 6.2. It is necessary to highlight that
the proposed strategy can compensate the alignment error between the camera
and the DVL frames. Indeed, due to uncontrollable external conditions (e.g.,
loosening of the screws during the vehicle preparation, collisions during the div-
ing procedure), the camera rotated around its z-axis during the autonomous
mission of an unknown quantity which has been estimated and compensated by
the algorithm. The resurfacing error value is equal to 0.899 meters, indicating
a high navigation accuracy of the proposed strategy with respect to the GNSS
fixes obtained when the vehicle resurfaced.

Finally, regarding the computational burden, the execution time of the filter
has been subject of the analysis. The sum of the requested time to perform the
measurement insertion in the factor graph and the optimization process has been
considered. For what concern the CPU analysis, the output of the command
top has been recorded to store the data. The results can be found in Fig. 6.17.
It is necessary to notice that the instants where the visual part of the algorithm
is initialized and stopped can be easily highlighted thanks to its influence on the
execution time of each iteration. Indeed, despite the SLAM algorithm optimizes
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only the last nodes thanks to the properties of the iSAM2 library, handling a
continuously growing point cloud increases the required computational cost.
When the vehicle resurfaces and the visual part of the algorithm is excluded
due to visibility limitations, the necessary computational burden drastically
decreases. Indeed, the point cloud is saved, and only the position nodes are
updated when new measurements are acquired.

6.5 Main contributions

An underwater visual acoustic SLAM strategy which integrates DVL with a
visual SLAM system has been developed to perform accurate navigation and
mapping tasks at the same time. Particular attention has been focused on the
design of scale factor ambiguity resolution and extrinsic calibration optimization
procedure and on implementing a reset procedure to reduce the computational
burden. Furthermore, the proposed strategy has been tested with both sim-
ulated and experimental data to evaluate the navigation performance and has
been compared with the UKF-based algorithm discussed in the previous section.





Chapter 7

Conclusions

This thesis summarizes the results carried out during the Ph.D. period in the
years 2019-2022 for what concerns the research activity on underwater nav-

igation and mapping of the MDM Lab of the UNIFI DIEF. The main goal was
to improve and enhance the UNIFI DIEF navigation solutions developed dur-
ing the previous years and to implement novel algorithms to combine navigation
and mapping tasks. More in detail, including payload sensors as acoustic and
optical sensors in the navigation algorithms and finding the optimal solutions
to fuse their measurements, have arisen as the major development guideline.
Starting from the analysis of the state-of-the-art regarding the employment of
non-conventional sensors for underwater navigation purposes and fusion ap-
proaches in localization algorithms, novel strategies have been developed and
compared to evaluate the pros and cons. Indeed, how to suitably fuse the re-
search background of the UNIFI DIEF in underwater navigation with novel
requirements in terms of autonomous navigation and mapping has been ana-
lyzed.
Firstly, to face against orientation issues during experimental campaigns, an ini-
tialization procedure to be performed when the vehicle is on the sea surface to
replace the magnetometer measurements and to evaluate the offset caused by the
unknown disturbances has been implemented. The proposed solution has been
successfully applied to the navigation data acquired during missions performed
by FeelHippo AUV in Cecina, Livorno (Italy), where the vehicle was employed
for a surveillance mission near the Melania shipwreck, and in La Spezia (Italy),
where experimental tests in a harbor have been performed.
Subsequently, a set of novel UKF-based sensor fusion strategies for autonomous
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underwater navigation to increase the navigation performance and to guarantee
that the AUV can correctly perform its mission and accomplish its tasks has
been developed. The centralized strategies guarantee the best improvements
in terms of estimation quality, which can be retrieved by analyzing the resur-
facing error and the adherence to the reference input trajectory. Decentralized
strategies provide an increase of robustness against measurement reduction. In
particular, parallel local filtering approaches are less affected by the lack of
measurements than centralized algorithms. A preliminary research and testing
phase were performed, where simulated data have been employed for testing
and validation. Then, an experimental activity at sea, were two underwater
missions at Vulcano Island, Messina (Italy) have been accomplished, allowed
verifying the goodness of the proposed strategy during real underwater mis-
sions.
Kalman filtering condenses the vehicle’s history in the last estimate and covari-
ance. A MAP strategy based on factor graphs has been developed to overcome
these limitations and include visual landmarks in the estimation process. Visual
features are sometimes difficult to be found in underwater environments due to
visibility and texture issues. Consequently, the strategy fuses DVL measure-
ments with a visual SLAM system to simultaneously perform accurate naviga-
tion and mapping tasks. DVL beam data can be employed for speed measure-
ment and to obtain an approximated knowledge of the sea bottom. As for the
UKF-based filters, both simulated and experimental data have been employed
to evaluate the capabilities of the developed strategy. The experimental data
have been acquired during trials at Stromboli Island, Messina (Italy), using the
vehicle FeelHippo AUV.
In conclusion, this thesis presented the development of strategies to improve
the navigation algorithm of FeelHippo AUV, by exploiting also payload sensors
available onboard, with the aim of increasing the localization and mapping ca-
pabilities of the vehicle.
During the experimental campaign, FeelHippo AUV was the only vehicle in-
volved; nevertheless, since the proposed solutions are not tailored to a particular
vehicle, their outcomes can be deemed as general, and future developments will
include the testing of the navigation strategy on other vehicles. Furthermore,
progresses on the developed algorithms still needs to be made. Integrating
the developed estimation strategies within the attitude estimator could rep-
resent an important subject to be investigated. Indeed, developing a unique
filter that works on both the attitude and position estimation in a coupled way
could increase navigation precision. Concerning the SLAM-based algorithm, in-
cluding acoustic FLS images in the pose graph framework would push forward
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the performance of the navigation filter. Despite the intrinsic characteristic of
FLS (low resolution, influence of the viewpoint) images poses relevant issues
to face, the employment of an additional acoustic sensor can be useful to ap-
ply the developed strategy in scenarios with reduced visibility. Finally, from a
mapping-based point of view, a multi-vehicle solution for autonomously fusing
the underwater environment reconstructions could represent a coherent contin-
uation of the research activity carried out so far. The proposed SLAM strategy
could operate onboard of each vehicle and, by employing relative or absolute
position measurements, the estimated maps could be fused in a unique more
detailed reconstruction.





Appendix A

Seabed 3D reconstruction
and texture application

Mapping the surrounding environment is a common task in underwater ex-
ploration, and it is fundamental to enhance the vehicle capabilities to find

objects of potential interest. The point clouds obtained from the SLAM algo-
rithm have been processed with an automatic tool to obtain a 3D reconstruction
of the sea bottom. The developed reconstruction strategy takes as input the
estimated point cloud and the geographical coordinate of a reference point and
automatically generates a 3D reconstruction with a simple texturization proce-
dure and a georeferenced depth map, thanks to the employment of the functions
implemented in the open-source libraries Point Cloud Library (PCL) [91] and
Open3d [92].
Analyzing the point cloud obtained from the navigation algorithm applied in
both simulated and real environments, it is necessary to notice that some points
can be classified as outliers. Therefore the need arises to eliminate them as the
displayed graphs are excessively bulky and negatively influence the mesh re-
alization. For each point, a fixed number of neighbors is defined to estimate
the mean of the average distance, and a point is considered an outlier if the
average distance to its neighbors is above a specified threshold [93]. The outlier
eliminating process, therefore, leads to a significant decrease in points, making
the representations more uniform. Subsequently, the point cloud is processed
with a smoothing method to filter out the noise of the measurements on the
processed points. In particular, median filtering of the 3D point cloud data is
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performed.
The 3D mesh generation algorithm is applied to the filtered point cloud. The
Poisson algorithm [94] is applied, and its parameters have been set to optimize
the reconstruction process. It is necessary to note that the depth value and the
limit density of the points at which the reconstruction is cut have been chosen
to compromise reconstruction speed and estimation quality. The advantages of
the Poisson algorithm over other surface fitting methods are numerous. Many
implicit methods of surface fitting segment the data into regions for local fitting
and further combine these local approximations using blending functions. In
contrast, Poisson reconstruction is a global solution that considers all the data
simultaneously without resorting to heuristic partitioning or blending. In this
way, Poisson reconstruction creates very smooth surfaces that robustly approx-
imate noisy data.

Table A.1: Mean with the associated covariance and median values of the depth
error in presence and in absence of the filtering procedure.

Parameter Before filtering After filtering
Mean [m] 0.2767 0.2002

Covariance [m] 7.6212 0.0386
Median [m] 0.1469 0.1465

Finally, the texture is applied to the mesh. Providing as inputs the mesh
and the camera positions and directions obtained from the SLAM algorithm,
the acquired images are applied to the mesh thanks to the projection model
of the camera. To apply this algorithm, it is necessary to know the camera
projection model (as the focal length and the principal point coordinate, which
can be retrieved from the camera calibration procedure) and the image size.
Firstly, considering that in the simulated environment created with UUV Sim-
ulator the seabed can be generated with a mathematical function z = f(x, y),
it is possible to evaluate the performance of the filtering algorithm. It is also
necessary to notice that the simulated seabed has been textured with an image
rich in features to facilitate the correct behavior of the visual part of the SLAM
algorithm. Fig. A.1 reports the 3D filtered point cloud with the estimated
trajectory. It is necessary to compare this point cloud with the one directly
obtained from the SLAM algorithm and reported in Fig. 6.13. Two error maps
have been created with the point clouds, as before and after the filtering proce-
dure, to analyze the improvements in seabed reconstruction. It is necessary to
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notice that the outlier points are correctly removed, and the point cloud size is
reduced to increase its easiness of management by the reconstruction algorithm
(see Fig. A.2 and Fig. A.3). As can be retrieved from Tab. A.1, while the
outlier removal process does not influence the mean and the median values due
to the high number of points, the covariance associated with the mean value is
strongly reduced.

Figure A.1: Filtered point cloud and estimated trajectory travelled by the sim-
ulated vehicle.

Finally, the 3D point cloud has been processed with the Poisson reconstruc-
tion algorithm to build the 3D mesh. Thanks to the chosen reconstruction
algorithm, the obtained mesh is smoothed and correctly follows the shape of
the simulated sea bottom (see Fig. A.4). Furthermore, as shown in Fig. A.5, it
is possible to apply the texture on the reconstructed surface by saving images
and camera positions at a fixed sampling time.

Some of the results obtained during the mission performed in Stromboli
Island, Messina (Italy), in September 2022, are presented. In particular, a
3D reconstruction and a geo-localized map of the sea bottom are reported. The
reconstruction comprises around 240k points obtained as output from the SLAM
algorithm. Firstly, the outlier points have been removed (see Fig. A.7), and
then, the 3D point cloud has been processed with the Poisson reconstruction
algorithm to build the 3D mesh, which is shown in Fig. A.8. Looking at Fig.
A.11, the 3D reconstructed mesh has been converted into a depth map and
referenced to the island in Google Earth. During this step, the holes in the 3D
reconstruction have been filled by employing a natural neighbor interpolation
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Figure A.2: Representation of the error point clouds computed by comparing
the reference sea bed function and the estimated point cloud and generation
of the estimated error maps before (top image) and after (bottom image) the
filtering procedure.

Figure A.3: Comparison between the estimated error maps before (top image)
and after (bottom image) the filtering procedure with respect to the travelled
trajectory by the simulated vehicle.



133

Figure A.4: Resulting sea bottom 3D mesh reconstruction and estimated tra-
jectory travelled by the simulated vehicle.

Figure A.5: Resulting sea bottom 3D mesh reconstruction with texture appli-
cation.
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Figure A.6: Reference bathymetry of the sea bottom around Stromboli Island,
Messina (Italy). The test area, where FeelHippo AUV performed its autonomous
mission, is highlighted.

[95]. In addition, the good matching between the reference bathymetry, whose
data have mainly funded by the National Research Council and Presidenza del
Consiglio dei Ministri–Dipartimento della Protezione Civile, through specific
agreement (see Fig. A.6), and the estimated 3D reconstruction can also be
observed to prove the reconstruction’s goodness. The provided bathymetry has
a horizontal resolution of 5 meters. Thus only an approximate comparison can
be performed, but it can be sufficient to have a simple evaluation of the generated
point cloud. All the points of the cloud that lies in each square generated from
the ground truth bathymetry are employed to compute the mean point and
perform the comparison (Fig. A.10).
Finally, as shown in Fig. A.9, the texture has been applied to the reconstructed
surface by saving images and camera positions at a fixed sampling time.
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Figure A.7: Filtered point cloud and estimated trajectory travelled by the vehi-
cle during the autonomous mission accomplished in Stromboli Island, Messina
(Italy).

Figure A.8: Resulting sea bottom 3D mesh reconstruction and estimated tra-
jectory travelled by the vehicle during the autonomous mission accomplished in
Stromboli Island, Messina (Italy).
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Figure A.9: Resulting sea bottom 3D mesh reconstruction with texture appli-
cation of the area near Punta Labronzo in Stromboli Island, Messina (Italy).

Figure A.10: Estimated error bathymetry map with respect to the trajectory
travelled by the vehicle during the autonomous mission accomplished in Strom-
boli Island, Messina (Italy).
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Figure A.11: Google Earth image of the Punta Labronzo area in Stromboli
Island, Messina (Italy) overlaid with the underwater depth map generated from
the estimated 3D mesh. On the bottom image, a close view of the depth map
is presented.
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