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A B S T R A C T   

Remote sensing is one of the main sources of information for monitoring forest dynamics; however, surface 
reflectance is often not possible to accurately derive due to haze, cloud, or cloud shadow. Pixel-based composites 
are generated from multi-temporal images to cover the entire area of interest using several different methods. 
While the availability of free and open remote sensing data has further expanded the use of compositing ap
proaches, to date a comprehensive methodology to assess the quality of these composites does not exist, nor is 
there a detailed set of compositing requirements to ensure consistent and reliable outputs to produce maps and 
statistics. Herein, we introduce a pixel-based composite assessment methodology based on five criteria: (i) 
number of valid observations and number of pixels with no available observations (data gaps), (ii) amount of 
unscreened clouds, cloud shadows, haze, or smoke (noise), (iii) radiometric consistency of the surface reflectance 
data, (iv) temporal proximity of pixels acquisition dates, and (v) spatial agreement of pixels acquisition dates. To 
test our methodology, we processed more than 16,000 Landsat images to generate and assess the Best Available 
Pixel (BAP) and the Medoid pixel-based composites for summer 2019 (2019-Jun-1 to 2019-Aug-31) over Europe, 
with a focus on the forested ecosystems. We found that BAP resulted in composites that were more temporally 
consistent, whereas the Medoid approach resulted in composites that were more radiometrically consistent. 

Our results illustrate that our assessment approach is effective for comprehensively assessing the quality of 
pixel-based composites and could be implemented when using composites to generate statistical estimates (i.e. 
forest area) and for assessing the performance of new compositing algorithms or for selecting an appropriate 
compositing approach for a specific application.   

1. Introduction 

Free and open access remote sensing images are a powerful data 
source (Wulder and Coops, 2014). The Landsat mission, with more than 
40 years of consistent surface reflectance data (Markham et al., 2018; 
Wulder et al., 2012, 2019), represents a key dataset for monitoring forest 
dynamics (Wulder et al., 2022), which is crucial in the current context of 
climate change. Recently, cloud-computing platforms have drastically 
increased the capabilities to process and manage remotely sensed data 
(Gomes et al., 2020), facilitating a variety of high-impact applications 
including deforestation, drought, disaster assessment, food security, 

water management, climate monitoring, and environmental protection 
(Gorelick et al., 2017). These large amounts of open-access remote 
sensing data, combined with increased processing and storage capabil
ities, have led to a transition from analysis focused on satellite scenes (i. 
e. satellite’s acquisition path/row) to analysis involving entire regions, 
countries, or even global applications via the use of pixel-based 
composites. 

Pixel-based compositing methodologies aim to produce cloud-free 
images covering entire study areas using reflectance values of 
different images acquired within defined temporal windows. Time series 
of Landsat pixel-based composites enable the generation of spatial 
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information characterizing land cover, land cover change, and forest 
structural attributes in a dynamic, transparent, systematic, repeatable, 
and spatially exhaustive manner (Hansen et al., 2013; White et al., 2014; 
Hermosilla et al., 2016). These Landsat pixel-based composites have 
been used for studying forest disturbance (Senf and Seidl, 2020; Francini 
et al. 2020; Hermosilla et al., 2019; White et al., 2017), to predict and 
map forest structure and aboveground biomass (Zald et al. 2016; Mat
asci et al., 2018a, b; Hawrylo et al., 2020; Martilei et al., 2020; Francini 
et al., 2022a), to produce statistically rigorous estimates of forest 
disturbance areas (Francini et al., 2021, 2022b), and to map land cover 
and land-use dynamics at continental and global scales (Potapov et al., 
2022). 

In these aforementioned and similar studies, the theoretically desired 
inputs are cloud-free imagery acquired on the desired date(s) and 
covering the entire study area. However, clouds, haze, and related 
shadows limit the number of available observations and can result in 
data gaps (i.e. pixels with no observations within a defined period) 
(Saarinen et al., 2018). Similarly, obscured observations related to un
screened clouds, cloud shadows, atmospheric haze, or smoke, can limit 
the operational utility of pixel-based composites when interested in 
capturing status or changes to the Earth’s surface. In addition, the 
number of days between the target date used for compositing and the 
observations’ acquisition dates should be minimized to ensure that, for 
example, the composite relates to specific phenological phases. The 
acquisition date is of utmost importance when pixel-based composites 
and derived maps are used as intermediate products to derive official 
statistics referring to specific periods (Francini et al., 2022a). Finally, the 
capability of pixel compositing algorithms to limit the number of donor 
images from which observations are selected is also relevant for 
improving the spatial congruency among pixels acquisition dates, 
phenological phases, and atmospheric conditions and limiting the pos
sibility of changes occurring between different acquisition dates. In 
summary, the desired traits of pixel-based composites include (i) no data 
gaps, (ii) lack of atmospheric interference, (iii) radiometrically consis
tent surface reflectance data, (iv) proximity of pixels acquisition dates to 
the target date, and (v) spatial congruency of pixels’ acquisition dates. 
Despite the increasing prevalence of pixel-based composites, a set of key 
criteria with which to assess the quality of pixel-based composites does 
not currently exist. 

Some of the pixel-based compositing methodologies involve the 
calculation of general statistics (e.g., average, median, maximum) 
among selected available observations (Simonetti et al., 2021). Aggre
gating different observations this way results in image composites made 
of values that (i) do not refer to specific dates but rather represent a 
range of dates (Flood, 2013), (ii) include incomparable measures across 
seasons, (iii) are impacted by haze, clouds, or shadows not correctly 
masked (Foga et al., 2017). Moreover, those composites are made of 
pixels in which the relationship between band values is not preserved, as 
they result from the aggregation (e.g., the average or the median) of 
several images. This can negatively impact the calculation of photo
synthetic activity indices (Flood, 2013). To address those issues, 
different pixel-based compositing approaches were developed, such as 
WELD (Roy et al., 2010), the phenology-adaptive image compositing 
technique (Frantz et al., 2017), the Best Available Pixel composite (BAP) 
(Griffiths et al. 2013; White et al., 2014) and the Medoid (Kennedy et al. 
2018; Flood, 2013). BAP and Medoid approaches are commonly used in 
the literature and are good examples to test a composite assessment 
methodology, as Medoid should provide superior results when consid
ering the reflectance criteria, whereas BAP should be superior when 
considering criteria related to image acquisition dates. 

BAP enables the selection of optimal observations from those avail
able based on a set of criteria including the proximity of the acquisition 
date to the target date and the distance to clouds or cloud shadows 
(White et al., 2014). Alternately, the Medoid compositing method 
implemented by Kennedy et al. (2018) populates the pixels with surface 
reflectance values as similar as possible to the band-wise median value, 

which is calculated from all available images within a defined temporal 
window. As a result, for both BAP and Medoid, each pixel in the com
posite originates from a single “image donor”, and different pixels can 
have different image donors. Despite the relevance and the need for 
working with consistent and reliable image composites, a comprehen
sive, unique, and exhaustive methodology to analyze the quality of such 
products is not commonly articulated. 

This study aims to address this need by (i) introducing a compre
hensive methodology for the assessment of pixel-based image compos
ites over forests; (ii) demonstrating the methodology by comparing BAP 
and Medoid pixel-based compositing techniques over European forests; 
and (iii) providing guidelines on the assessment of pixel-based com
posites, highlighting those factors that should be considered in the 
context of scientific and rigorous remote sensing applications for forest 
monitoring through analysis of pixel-based image composites. To do so, 
we introduce and analyze a set of criteria that should be considered and 
taken into account when constructing composites, proposing new 
compositing algorithms, and choosing composites for specific 
applications. 

2. Materials 

2.1. Study area 

The study area is Europe – defined as the European Union plus 
enclosed countries - with about 1018 Mha of land of which about 38% or 
387 Mha are covered by forests and represent the focus of this study. 
46% of European forests are predominantly coniferous, 37% are pre
dominantly broadleaved, and the rest are mixed forests (Forest Infor
mation System for Europe, 2020). An estimated 17% of Europe’s forest 
area was disturbed by anthropogenic and natural disturbances between 
1986 and 2016 (Senf and Seidl, 2020), most of which were stand 
replacing (Palahí et al., 2021). Indeed, deforestation (permanent forest 
removal) is almost absent in Europe (Eurostat, 2022), and these dis
turbances do not represent a change in land cover (i.e. from forest-non- 
forest). Increased windthrow, fires, and insect disturbances are expected 
to be the greatest threat to European forests under a changing climate 
(Forzieri et al., 2022). To stratify our analysis and results by latitude and 
longitude, we constructed a tessellation of 100 × 100 km analysis units 
or tiles and selected all units overlapping Europe’s landmass. As a result, 
741 tiles were obtained (Fig. 1). 

2.2. Forest mask 

Forest areas of Europe were identified using the JAXA global forest 
mask which was generated by classifying the global 25-m resolution 
PALSAR-2/PALSAR SAR mosaic such that strong and low backscatter 
pixels are assigned as “forest” and “non-forest”, respectively. The ac
curacy of the JAXA global forest mask is 86%, assessed using in-situ 
photos and high-resolution optical satellite images (JAXA, 2016). To 
match the Landsat resolution, the JAXA mask was resampled to 30 m. 
Although the most recent JAXA forest mask refers to 2017, no sub
stantial land cover changes over forests are expected in the subsequent 
years due to the aforementioned very low level of deforestation in 
Europe. 

2.3. Landsat data 

Candidate images for producing pixel-based annual composites 
representing the European summer conditions were selected from the 
Landsat data holdings as mirrored on Google Earth Engine. The dataset 
consists of Landsat 7 and Landsat 8 surface reflectance imagery 
(Collection 1-Tier 1 on Google Earth Engine) atmospherically corrected 
using LEDAPS (Wolfe et al., 2004) and LaSRC (Vermote et al., 2018), 
respectively. 

The bands used in this study were the three visible bands (blue, 
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green, and red), a near-infrared band (NIR), and two short-wave infrared 
bands (SWIR1, SWIR2) processed to orthorectified surface reflectance. 
These data include a mask generated using the C code based on the 
Function of Mask algorithm (CFMask, Foga et al. 2017) and informed on 
the presence of clouds, shadow, water, and snow. The candidate images 
used to construct cloud-free composites belong to the 578 Landsat 
scenes representing Europe with cloud cover < 70% (Vaglio et al., 2021, 
2022). Images with cloud cover greater than this threshold are indeed 
more prone to geographical location errors, due to the challenges of 
performing geometric corrections when ground control points are 
obscured (Goward et al., 2017). Images acquired in 2018, 2019, and 
2020 between June 01 and August 31 were used. The total number of 
Landsat images used in this study was 12,121: 3,943 for 2018, 4,281 for 
2019, and 3,897 for 2020. Images acquired in 2018 and 2020 were used 
to identify and remove noise from composites of 2019 (see Section 
3.3.2.), which was the actual year of assessment for the BAP and Medoid 
pixel-based composites. 

2.4. Landsat reference data 

To assess the radiometric consistency of BAP and Medoid composite 
surface reflectance data, we generated a reference dataset for July 2019, 
corresponding to the central month of the temporal window used to 
select imagery (June–August). Using a cloud threshold of 10%, 770 
Landsat images were selected for the reference dataset, from which 
remaining clouds were masked out using the CFMASK algorithm (Foga 
et al., 2017). For those pixels where multiple images were available, the 
spectral values of the first image acquired were used as reference data. 
These selected images were removed from the compositing pool and are 
independent data that can be used for compositing assessment as indi
cated by White et al. (2014). Note that despite the cloud masking 
operation and the selection of imagery with low cloud cover, there is no 
guarantee that the reference values are flawless as some unscreened 
clouds or cloud shadows may be present. The total number of reference 

values was 2,118,825,742. No reference observations were available for 
128 of our analysis tiles (Fig. 2). Considering tiles where at least a single 
reference observation was available, the average number of reference 
observations per tile was 3,456,486. 

3. Methods 

3.1. BAP algorithm 

A comprehensive description of the logic and scoring rules for image 
compositing using the BAP approach introduced by Griffiths et al. 
(2013) and adapted by White et al. (2014), with key elements summa
rized in this section. Using the BAP, for each year and temporal window, 
the “best” observations from those available are selected based on four 
scoring functions which ranked observations based on: i) acquisition 
sensor, ii) proximity of acquisition date to the target date, iii) distance to 
cloud or cloud shadows, and iv) atmospheric opacity. 

The sensor scoring function serves to mitigate the impact of spatial 
gaps associated with Landsat-7 ETM + SLC (Scan Line Corrector)-off 
data and to avoid spectral variability due to introducing multiple 
small image patches from the areas affected by the SLC-off. Thus, a lower 
sensor score is assigned to all observations acquired by Landsat 7 after 
2003-May-31 (the date of failure of the SLC), while all observations 
belonging to Landsat 8 and Landsat 7 images acquired before 2003-May- 
31 receive the full sensor score. 

Observations were also scored based on their acquisition date rela
tive to the target Day Of Year (DOY). In this case, the target DOY was 
July 15, coinciding with the central date of the periods used for con
structing the composite. Observations of images acquired closer to the 
target DOY were higher scored and so preferentially selected. 

A distance to cloud or cloud shadow score was then assigned to each 
observation using the cloud masks produced for each Landsat image by 
the CFMASK algorithm. Pixels located at a distance greater than 1500 m 
from an identified cloud or cloud shadow pixel were assigned with the 
highest score. Pixels located<1500 m away from clouds and cloud 
shadows were assigned a weighted score following the function intro
duced in (Griffiths et al., 2013). 

The atmospheric opacity band produced by LEDAPS is only available 
for Landsat 7. To accommodate the lack of opacity information, Landsat 
8 observations are assumed to be clear and received the highest opacity 
score value (Hermosilla et al., 2019). For Landsat 7 the atmospheric 
opacity band was used to score the presence of haze and other atmo
spheric interferences. The highest score was assigned to observations 
with an opacity value < 0.2 while observations with an opacity value 
greater than 0.3 were excluded from the composting process. Observa
tions with opacity values ≥ 0.2 and < 0.3 were labeled with a weighted 
score as per White et al. (2014). 

3.2. Medoid calculation 

Medoids are defined as “representative objects of a data set or a clus
ter with a data set whose average dissimilarity to all the objects in the clus
ter is minimal” (Struyf et al., 1997). The objective of the Medoid 
algorithm is to populate the final image composite pixels with the 
observation that has the most similar surface reflectance values to the 
median surface reflectance value calculated considering all images 
available but excluding clouds and shadows. Using the Medoid 
approach, the overall difference (in terms of Euclidean distance ED in 
the feature space) between images observations and the median of the 
entire time series (excluding pixels covered by clouds) defines the score 
that is used to select the optimum observations for compositing. As per 
the BAP approach, the Medoid compositing approach maintains the 
relationship between bands and produces composites in which obser
vations refer to specific acquisition dates. 

In this study, we used the method presented by Kennedy et al. 
(2018), which is an approximation of the medoid (Flood, 2013): first, for 

Fig. 1. Study area, the 741 100-km side tiles we used to stratify the analysis 
and the forest areas as identified by the JAXA forest mask. 
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each pixel and spectral band, the median value m is computed consid
ering the entire image collection; then equation (1) is implemented to 
calculate for each pixel the ED. 

ED =
∑6

b=1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(mb − ib)
2

√

(1) 

Where b refers to the six Landsat bands considered, m is the pixel 
median value calculated in the first step, and i is the pixel value in the ith 

image. 
Finally, the band spectral values with the smaller ED are assigned to 

each output pixel. For the sake of comparability, pixel observations from 
Landsat 7 with an opacity value greater than 0.3 were a priori excluded 
from the analysis, as done for the BAP method. In those pixels with only 
two valid observations, the medoid value was given by randomly 
selecting one of the values. 

3.3. Assessment of pixel-based composites 

The assessment approach is based on five criteria: the number of per- 
pixel valid observations, the amount of noise, the radiometric consis
tency of the surface reflectance data, the temporal proximity of the 
pixel’s acquisition date to the compositing target date, and the spatial 
agreement of pixel acquisition dates. 

3.3.1. Valid observations and data gaps 
The number of per-pixel valid observations indicates, for each pixel 

in the composite, the number of pixel observations not obscured by 
clouds, considering acquisitions within the time window selected to 
construct the composites. This aspect depends on the satellite revisit 
rate, the number of satellites in the constellation, and cloud coverage, 
and will thus be the same for BAP and Medoid composites. The greater 
the number of valid observations the greater the availability of candi
date observations and the greater the relevance of the compositing al
gorithms selection. When the number of valid observations is equal to 1, 

any compositing pixel selection process will produce the same result. 
When the number of valid observations is equal to 0 the resulting image 
composite will contain data gaps. 

3.3.2. Amount of noise 
Noisy observations of pixels over forests (i.e. unscreened clouds, 

cloud shadows, haze, or smoke) can result in spikes over a photosyn
thetic index time series and can be detected by using the despiking al
gorithm (Kennedy et al., 2010), which can be applied independently to 
the six Landsat spectral bands considered in this study (Hermosilla et al., 
2015a). The despiking algorithm requires observations for the year pre 
and post-target year, resulting in the need to construct pixel-based 
composites for 2018 and 2020, while 2019 was the actual year of 
analysis. 

Specifically, a pixel value was flagged as noise if (i) the surface 
reflectance value of the spike detected in that band is greater than 0.01, 
AND (ii) the difference between the spectral value under consideration 
(2019) and the average of previous and subsequent years (2018 and 
2020) exceeded a despiking threshold (0.6) in half or more of the 
Landsat bands considered. Where the spike was calculated as the abso
lute difference between pixel values in 2019 and the average between 
2018 and 2020. The percentage of despiked pixels relative to the total 
amount of forested pixels was calculated for each tile and considered as 
an index of the amount of noise in the original composites. 

3.3.3. Radiometric consistency 
To assess the radiometric consistency, BAP and Medoid surface 

reflectance values were compared with those available in the reference 
dataset (White et al., 2014). The comparison was performed in terms of 
ED based on all the spectral bands (Eq. (1). The smaller the ED the 
greater the radiometric consistency of the bands’ reflectance values. For 
each tile in the study area with reference data available, we calculated 
and reported the average of the ED of the pixels included. Moreover, as 
suggested by White et al. (2014), we calculated for each band the 
Pearson’s correlation coefficient r between BAP and Medoid reflectance 

Fig. 2. Per-tile number of reference observations (A) and percentage within forested areas (B). Empty tiles had no reference observation.  
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values and those of the reference dataset. This procedure permits 
assessing the per-band agreement with reference data and thus 
comparing the radiometric consistency between bands. 

3.3.4. Temporal proximity 
For each pixel and composite, we computed the DOY Deviation 

(DOYD) as the number of days between the DOY in which the donor 
image was acquired and the DOY corresponding to the middle day of the 
period used for constructing the composite (i.e. July 15). The smaller the 
DOYD the greater the proximity between composite observations 
acquisition dates and the middle day of the period defined for con
structing the composite. Decreasing the average DOYD of composite is 
expected to reduce (i) the spectral variability of the image due to 
vegetation phenological changes (relevant for classification tasks), and 
(ii) change occurrence probability (relevant for change detection tasks 
and statistics production). 

3.3.5. Spatial agreement of acquisition dates 
Pixel-based composites with tight temporal proximity may result in 

composites using values belonging to several different images—even if 
acquired close to the target date. In contrast, pixel-based composites 
made by a limited number of images—and thereby also a limited 
number of dates—help to prevent variations in phenological phases, 
atmospheric conditions, and possible land cover changes that can occur 
among different acquisition dates. We assessed the spatial agreement of 
acquisition dates by calculating for each tile the standard deviation of 
the composite observations acquisition DOYs (DOYSD). The smaller the 
DOYSD, the lower the variance among composite acquisition dates and 
thus the greater the composite quality, according to this criteria. A 
DOYSD equal to 0 indicates that all reflectance values in the composite 
come from images acquired on a single date, which is often the most 
desirable output when constructing composites. The larger the DOYSD, 
the greater the variance among composite acquisition dates and thus the 
lower the composite quality. 

3.4. Influence of the number of valid observations on the assessment 
criteria 

To determine how the number of valid observations influences the 
resulting composites, and to analyze the effect of an increasing number 
of valid observations (Van doninck and Tuomisto, 2017), we calculated, 
for each tile, the Pearson correlation coefficient r between the number of 

valid observations and the other four composite assessment criteria: the 
amount of noise, radiometric consistency, temporal proximity, and 
spatial agreement of composite acquisition dates. 

4. Results 

The number of valid observations per pixel ranged between 0 and 36 
(Fig. 3). Generally, more observations were available in the south of 
Europe (e.g., Spain, Portugal, Italy), but several observations were also 
available in northern areas with low cloud cover during summer (e.g., 
Sweden, Finland), also due to the large overlap of paths in northern 
latitudes. Data gaps (i.e., pixels with no available observations) were 
extremely rare (1.1% in 2018, 0.9% in 2019, and 1.3% in 2020), and 
were mostly concentrated in Ireland, United Kingdom, and Iceland. 

The percentage of noisy forested pixels was 10.2% for BAP and 6.8% 
for Medoid. Medoid noise was at least 10% smaller than BAP in 77% of 
tiles, was similar (±10%) in 13% of tiles, and was less for BAP than in 
11% of tiles. The distribution of noise across Europe was very similar in 
BAP and Medoid composites (Fig. 4). 

Regarding the radiometric consistency assessment, we found that the 
ED of the Medoid composite was generally lower than that produced 
with the BAP algorithm (on average − 18% or 117 versus 139, in terms of 
surface reflectance). Analyzing the ED values at the tile level (Fig. 5), the 
Medoid composite had slightly smaller ED values than BAP and was thus 
more radiometrically consistent. Medoid ED was at least 10% smaller 
than BAP ED in 64% of tiles, was similar (ΔED ± 10%) in 28% of tiles, 
and was at least 10% smaller for BAP than Medoid in 7% of tiles. 

The analysis of the agreement in surface reflectance values between 
BAP and Medoid composites with reference values indicated a greater 
agreement of Medoid bands than BAP (Fig. 6). On average, Pearson 
correlation coefficient values were always equal to or greater than 0.65, 
suggesting strong spectral agreement for both BAP and Medoid. 

Concerning temporal proximity (Fig. 7), the DOYD average was 18 
days for the BAP and 24 days for the Medoid. DOYD was at least 10% 
smaller for BAP than Medoid in 51% of pixels, was similar (±10%) in 
29% of pixels, and was at least 10% smaller for Medoid than BAP in 20% 
of pixels. Fig. 7 shows very different patterns between BAP and Medoid 
acquisition dates. BAP composite has large areas of pixel values acquired 
on the same day, while the number of adjacent pixels acquired on the 
same day was consistently smaller in the Medoid composite. 

The spatial agreement of pixel values acquisition dates assessment 
indicated DOYSD values ranging between 0 and 25 in both BAP and 

Fig. 3. Number of per-pixel valid observations per analysis tile.  
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Medoid composites (Fig. 8). DOYSD was at least 10% smaller for the BAP 
than Medoid in 84% of tiles, was similar (±10%) in 14% of tiles, and was 
smaller for the Medoid than BAP by at least 10% in 2% of tiles. 

In Fig. 9 we summarize the outcomes of the composites assessments 
performed which produce different and comparable results for BAP and 
Medoid. 

Fig. 4. Per-tile percentage of noisy pixels relative to the total number of forested pixels in each 100 km analysis tile.  

Fig. 5. Per-tile BAP and Medoid Euclidean distance (ED) comparison.  

Fig. 6. Box plot of the Pearson correlation coefficient r values between BAP and 
Medoid composite bands and reference values calculated for each tile. 
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Finally, Fig. 10 shows scatter plots (panels A-D) - and the resulting 
Pearson correlation coefficient values (panel I) - between the number of 
valid observations for the tile and the other four composite assessment 
criteria. Results indicated negative agreement between the number of 
valid observations and noise, ED, and DOYD. The strongest positive 
agreement was found between the number of valid observations and 
DOYSD, with Pearson correlation coefficient r of 0.46 for BAP and 0.66 
for Medoid. 

5. Discussion 

5.1. Contextualization of the study 

Several remote sensing applications require the construction of pixel- 
based image composites such as BAP and Medoid, which aim to produce 
a single image approximation of the whole study area under ideal at
mospheric conditions by combining multiple images based on given 
compositing rules and relying on automatic cloud detection methods. 
The selection of the compositing algorithm and rules, as well as the 
presence of atmospheric interferences—both seasonal and 

permanent—results in image composites with different levels of quality. 
However, pixel-based composites should meet specific requirements, as 
they are often used to produce official statistics (FAO, 2020) and to 
monitor forest disturbance (Francini et al., 2022b), and recovery (Pérez- 
Cabello et al., 2021; Viana-Soto et al., 2020), classify land cover (Alam 
et al., 2020), and predict (Cavalli et al., 2022, 2023) and quantify 
afforestation areas (Francini et al., 2023). 

In this study, we introduced a methodology for the assessment of 
pixel-based Landsat composites. We demonstrated our approach by 
assessing BAP and Medoid composites over European forests based on 
five main requirements or criteria: data gaps, noise, radiometric con
sistency, temporal proximity, and spatial agreement of acquisition dates. 
To test our approach, we processed 16,481 Landsat images and con
structed BAP and Medoid pixel-based composites referring to 2018, 
2019, and 2020 summer conditions (June-August). 2019 was the actual 
year of analysis, while 2018 and 2020 composites were constructed to 
enable the detection of noisy observations in the 2019 composite 
(Hermosilla et al., 2015a, Kennedy et al., 2010). 

Fig. 7. The temporal proximity of BAP and Medoid composites. The smaller the DOYD (day of interest deviation) – and the lighter the colors - the smaller the 
distance (in days) between acquisition DOYs and the middle day of the time window used for constructing the composite (July 15), and thus the greater the temporal 
proximity of the composite. 
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5.2. Number of valid observations and data gaps 

Data gaps are traditionally a quality aspect of primary importance for 
composites (Chen et al., 2011), and for this reason, multiple studies have 
developed methods to address these data gaps (Siabi et al., 2022; Lan 
et al., 2022). The number of gaps does not depend on the compositing 
algorithms but rather on the availability of cloud-free observations 
dictated by sensor revisit time and regional cloud coverage. In contrast, 
the amount of noise, radiometric consistency, temporal proximity, and 
the spatial agreement of acquisition dates are strongly related to the 
compositing algorithms used. In assessing data gaps, we found very 
large variability in the amount of Landsat data available across Europe 
(Fig. 3). While for some pixels no Landsat observations were available 
for the 2018–2020 period, some pixels had up to 36 observations, con
firming the need for appropriate pixel values selection processes. The 
average amount of data gaps in the 2018–2020 period was 1.1%. 

5.3. Amount of noise 

The despiking procedure we applied (Kennedy et al., 2010; Hermo
silla et al., 2015a) quantifies the amount of noise in the composites. 
When focusing the analysis on forests - which were the target of our 
study - the despiking algorithm represents a powerful tool that helps to 
remove any possible remaining noise from composites. To analyze pixels 
in which land cover changes are not expected to occur, and thus to 
properly assess the five criteria we introduced, the focus of this study 
was on forests, as deforestation is almost absent in Europe (Palahí et al., 
2021), and as active forest management affects a small proportion of the 
total area. Depending on the analysis, the despiking threshold calibra
tion may be very important (Chirici et al., 2020) as, for example, forest 
disturbance followed by rapid forest recovery can be detected as noise 
(Francini et al., 2021). When image composites are used for classifica
tion, noise in the composites may result in labeling errors, whereas when 
image composites are used in regression-based approaches, noise may 
result in the prediction of outliers. Although the despiking algorithm 
used herein represents a well-established approach for removing noise 
from composites (Kennedy et al., 2018, 2010), and although it was 
further improved by Hermosilla et al. (2019), it should be noted that it is 
not without error, and therefore that the amount of noise identified is 
only an estimate. However, the error associated with the despiking 
process is expected to be similar for each composite (i.e. Medoid and 
BAP) and therefore the algorithm provides estimates of the amount of 
noise, which are comparable across different composites and which can 
be calculated across large areas. In our experiments, the amount of noise 
relative to forested pixels in our analysis tiles was larger for BAP than for 
Medoid (an average of + 3.7%), because the Medoid pixel selection 
process focuses on maximizing the radiometric consistency of surface 
reflectance data, while BAP considers different criteria. 

5.4. Radiometric consistency 

The Euclidean distance represents a useful summary statistic for 
assessing the radiometric consistency (White et al., 2014; Griffiths et al., 
2013) of multi-band imagery. While calculating the correlation coeffi
cient between reference data and pixel-based composites returns one 
result for each band, the Euclidean distance characterizes the overall 
radiometric consistency for all bands with a single value. For an example 
of the operational application of the ED criteria, we can consider a 
composite designed to detect pest attacks in forest ecosystems. In this 
case, if the ED between a pest-affected forest and a healthy forest is 
known and equal to A, and if the radiometric consistency in terms of ED 
of the pixel-based image composite is B, then the composite will be of 
little use if A and B are in the same order of magnitude, but it will be 
definitely useful if A is one or two orders of magnitude greater than B. 

In this study, Euclidean distance served as an efficient parameter to 
measure the spectral similarity between composites and reference 

Fig. 8. Absolute difference between BAP and Medoid composites DOYSD.  

Fig. 9. Density histograms resulting from the assessments of BAP and Medoid composites: the amount of noise (A), the radiometric consistency (B), the temporal 
proximity (C), and the spatial agreement of acquisition dates (D). 
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values, as the smaller the Euclidean distance the greater the similarity 
between the composites and the reference Landsat observations. At the 
European level (Fig. 5), Euclidean distance was 18% smaller for Medoid. 
At the tile level, Euclidean distance was consistently (difference greater 
than 10%) smaller for Medoid in 64% of our analysis tiles. The assess
ment of the spectral agreement resulted in large values for both BAP (r 
= 0.65–73) and Medoid (r = 0.7–0.77), indicating strong correspon
dence with reference values, in particular considering that the agree
ment was assessed between values belonging to imagery acquired over 
different dates and thus with possible existing subtle variations in the 
phenological phase and environmental conditions. As a result, the 
spectral agreement computed using Pearson correlation coefficient r 
suggests that both Medoid and BAP approaches allowed for the gener
ation of composites whose spectral reflectance values were reliable and 
radiometrically consistent. Finally, the analysis of the agreement be
tween the number of valid observations and composite assessment 
criteria suggested that more valid observations result in an improvement 
of the radiometric consistency as both noise and ED are reduced, as well 
as an enhancement of the temporal proximity as the DOYD decreases. 

5.5. Temporal proximity 

Temporal proximity, according to the herein presented methodol
ogy, is one of the requirements of the pixel-based composite that needs 
attention and specific assessment. Temporal proximity is a key feature in 
meaningfully defining composite acquisition dates and can be particu
larly relevant when maps derived from pixel-based composites are used 
as intermediate products to generate statistics (Testa et al., 2014; Zeng 
et al., 2021). Pixel-based composites should indeed have spectral values 
referring as much as possible to the target date they are intended to 
represent (Hagolle et al., 2005). Pixel-based composites referring as 
much as possible to a specific day or period are crucial to (i) defining the 
period over which we are producing forest disturbance area estimates 
(Francini et al., 2022a) and (ii) limiting the phenological variation. This 
second aspect is crucial, for example, in forest disturbance detection via 

analysis of annual composites time series (Hermosilla et al., 2015b; 
Kennedy et al., 2010). In such applications, disturbed pixels are 
discriminated from undisturbed or stable forest pixels in which the 
photosynthetic activity has not changed through time. The analysis of 
annual time series based on pixel-based composites using values 
belonging to imagery acquired far away from the target day of the year 
may lead to the incorrect detection of changes that are attributable to 
differences in photosynthetic activity due to differences in phenology. 
While phenological differences could be minimized also by reducing the 
time window used to select the imagery, this would result in an incre
ment of data gaps, as fewer images would be available for providing 
values to construct the composite. Accordingly, in this study, we used a 
three-month time window to select candidate imagery (June to August), 
which still resulted in ~1% of pixels with no valid observations and 
~15% of pixels with less than five valid observations over Europe. For 
an additional example of the operational application of the temporal 
proximity criteria, we can consider a composite designed to detect 
drought. Droguth forest disturbances are characterized by a short 
duration and they are clearly visible in remote sensing imagery just for a 
short period, which makes key to exploit composites with optimal 
temporal proximity in these cases. For example, if the study case is a 
drought forest disturbance that is expected to be clearly visible in the 
first two weeks of August, the ideal pixel-based composite should be 
constructed using August 7 as the target date and should have a DOYD 
smaller or equal to 7. 

The temporal proximity assessment we performed highlighted large 
differences between BAP and Medoid compositing algorithms’ pixel 
values selection processes. Whereas Medoid considered the band’s 
reflectance to perform the observations selection process and obtained 
results were slightly better in terms of noise and Euclidean distance, BAP 
observations selection considered the acquisition dates and enabled the 
construction of composites that were more reliable in terms of temporal 
proximity and the spatial agreement of acquisition dates. Temporal 
proximity is measured in DOYD and was, on average, about 6 days less 
for BAP than Medoid (Fig. 7). This means that with respect to Medoid, 

Fig. 10. Panels A-H show BAP and Medoid scatter plots between the total number of valid observations over forested pixels (section 3.3.1) and Noise (section 3.3.2), 
ED (section 3.3.3), DOYD (section 3.3.4), and DOYSD (section 3.3.5). Panel I shows a summary of the Pearson correlation coefficient values. 

S. Francini et al.                                                                                                                                                                                                                                



ISPRS Journal of Photogrammetry and Remote Sensing 202 (2023) 1–12

10

BAP composite values tend to be acquired nearer by about 6 days to the 
target day of year used to construct the composite. In other words, the 
BAP approach tends to select observations from a narrower date range. 
This characteristic is particularly relevant when several subsequent 
composites referring to different periods are needed (Coops et al., 2022). 
If they have large DOYDs, the difference between their acquisition dates 
is maximized. Alternately, if they have small DOYDs, there may be 
overlapping observations, such that different composites have more 
values belonging to imagery acquired on the same dates. 

5.6. Spatial agreement of acquisition dates 

The fifth and last composite assessment criteria we introduced in this 
study is the DOY Standard Deviation (DOYSD). Smaller DOYSD values 
indicate less variance among composite acquisition dates and thus less 
expected changes and higher composite quality. For an example of the 
operational application of the spatial agreement of acquisition dates 
criteria, we can consider a composite designed to perform an image 
segmentation task. The smaller the DOYSD, the smaller the number of 
images and dates considered to construct the composite, and thus the 
smaller the expected changes among composite observations in pheno
logical phases, atmospheric conditions and the smaller the occurrence 
probability of land cover changes. These are all composite key features 
to perform segmentation tasks and can be assessed through the DOYSD. 

In this study, DOYSD was smaller for BAP than Medoid in almost all 
of our analysis tiles (Fig. 8), meaning that BAP tends to construct com
posites whose values came from a smaller range of acquisition dates. 
This behavior helps to decrease the spatial variability between different 
acquisitions and reduces possible atmospheric condition changes, which 
complicate data extrapolation by model prediction and negatively 
impact classification task accuracies (Tuia et al., 2016). The capability of 
BAP in creating composites with small DOYSD can be related to (i) 
sensor and (ii) DOY scores (Section 3.1), which are attributed to whole 
images and not single pixels, facilitating thus the selection or the 
removal of entire portions of images in the final composite. The number 
of valid observations has a strong positive correlation with DOYSD 
(Fig. 10E, F), consistently larger than with other criteria, indicating that 
more valid observations relevantly increase the DOYSD and thus 
decrease the spatial agreement of pixel values’ acquisition dates, as the 
more valid observations from which the compositing algorithm can 
choose, the greater the chance to select pixels values and the difficult the 
selection process. 

5.7. Future perspectives 

Overall, the capacity to quantitatively assess the quality and illu
minate the differences between different pixel-based compositing ap
proaches aids in understanding the suitability of the derived image 
composites for their intended application (White et al., 2014). Herein, 
we have a special focus on forest statistics reporting requirements (e.g., 
total forest area, total forest area disturbed) and therefore highlight 
those criteria that are most relevant to deriving mapped outcomes and 
associated statistics. In this context, our analysis and results indicate that 
the BAP approach is preferable for applications in which temporally 
constrained composites are needed. This can be crucial when images are 
used to produce statistics for specific periods, or image segmentation. 
Differently, Medoid may be the first choice if the application needs 
radiometrically consistent composites and more simple pre-processing 
procedures. However, depending on the intended purpose of the map
ping activity, the relevance of composite assessment criteria may 
change. Critically, our analysis indicates that both the BAP and Medoid 
compositing approaches generate composites that are radiometrically 
consistent, which is ultimately a key requirement for any application. 
The composite quality criteria introduced in this study aim to identify 
the strengths and weaknesses of pixel-based image composites for forest 
monitoring applications. The ultimate decision, however, regarding 

which compositing approach to use must be based on the objectives of 
the mapping activity for which the composite will be used. In addition, 
other non-forest ecosystems may have different information needs and 
alternate image composite assessment criteria should be investigated. 
Newly developed compositing approaches can likewise be assessed 
following a similar approach and criteria and the results herein provide 
a useful baseline for understanding algorithmic advances in compositing 
and opportunities for improvement. 

6. Conclusion 

Herein, we presented a new approach for the quality assessment of 
pixel-based image composites according to five key composite criteria: 
number of valid observations and data gaps, amount of noise, radio
metric consistency, temporal proximity, and spatial agreement of 
acquisition dates. We processed more than 16,000 Landsat images and 
applied our assessment approach to quantitatively and objectively 
compare BAP and Medoid composites over European forests. The 
approach presented is rigorous yet readily implemented and is adaptable 
to different data sources. Such quality assessments of image composites 
are critical when composites are used to derive mapped outcomes and 
statistics for reporting purposes, and can also be useful for transparent 
assessment when new compositing methodologies are introduced. 
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Maesano, M., Munafò, M., Chirici, G., Scarascia Mugnozza, G., 2022. Afforestation 
monitoring through automatic analysis of 36-years Landsat Best Available. 
Composites iForest 15, 220–228. https://doi.org/10.3832/ifor4043-015. 

Cavalli, A., Francini, S., McRoberts, R.E., Falanga, V., Congedo, L., De Fioravante, P., 
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