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Nature of phase transitions in a probabilistic cellular automaton with two absorbing states
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We present a probabilistic cellular automaton with two absorbing states, which can be considered a natural
extension of the Domany-Kinzel model. Despite its simplicity, it shows a very rich phase diagram, with two
second-order and one first-order transition lines that meet at a bicritical point. We study the phase transitions
and the critical behavior of the model using mean field approximations, direct numerical simulations and field
theory. The second-order critical curves and the kink critical dynamics are found to be in the directed perco-
lation and parity conservation universality classes, respectively. The first–order phase transition is put in
evidence by examining the hysteresis cycle. We also study the ‘‘chaotic’’ phase, in which two replicas
evolving with the same noise diverge, using mean field and numerical techniques. Finally, we show how the
shape of the potential of the field-theoretic formulation of the problem can be obtained by direct numerical
simulations.
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I. INTRODUCTION

Probabilistic cellular automata~PCA! have been widely
used to model a variety of systems with local interactions
physics, chemistry, biology, and social sciences@1–5#.
Moreover, PCA are simple and interesting models that
be used to investigate fundamental problems in statist
mechanics. Many classical equilibrium spin models can
reformulated as PCA, for example, the kinetic Ising mo
with parallel heat-bath dynamics is strictly equivalent to
PCA with local parallel dynamics@6,7#. On the other hand
PCA can be mapped to spin models@8# by expressing the
transition probabilities as exponentials of a local ener
PCA can be used to investigate nonequilibrium phenome
and in particular the problem of phase transitions in the p
ence of absorbing states. An absorbing state is represente
a set of configurations from which the system cannot esc
equivalent to an infinite energy well in the language of s
tistical mechanics. A global absorbing state can be origina
by one or more local transition probabilities which take t
value zero or one, corresponding to some infinite coupling
the local energy@8#.

The Domany–Kinzel~DK! model is a boolean PCA on
tilted square lattice that has been extensively studied@9,10#.
Let us denote the two possible states of each site with
terms ‘‘empty’’ and ‘‘occupied.’’ In this model a site at tim
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t is connected to two sites at timet21, constituting its
neighborhood. The control parameters of the model are
local transition probabilities that give the probability of ha
ing an occupied site at a certain position once given the s
of its neighborhood. The transition probabilities are symm
ric for all permutations of the neighborhood, and this pro
erty is equivalent to saying that they depend on the sum
‘‘occupied’’ sites in the neighborhood, whence the term ‘‘t
talistic’’ used to denote this class of automata.

In the DK model the transition probability from an emp
neighborhood to an occupied state is zero, thus the em
configuration is an absorbing state. For small values of
other transition probabilities, any initial configuration wi
evolve to the absorbing state. For larger values, a phase
sition to an active phase, represented by an ensemble of
tially occupied configurations, is found. The order parame
of this transition is the asymptotic average fraction of occ
pied sites, which we call the density. The critical propert
of this phase transition belong to the directed percolat
~DP! universality class~except for one extreme point! @11#,
and the DK model is often considered the prototype of su
a class.

The evolution of this kind of models is the discre
equivalent of the trajectory of a stochastic dynamical syste
One can determine the sensitivity with respect to a pertur
tion, by studying the trajectories originating by two initiall
different configurations~replicas! evolving with the same re-
alization of the stochasticity, e.g., using the same seque
of random numbers. The order parameter here is
asymptotic difference between the two replicas, which
call the damage. It turns out that, inside the active pha
there is a ‘‘chaotic’’ phase in which the trajectories depe

fr;
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on the initial configurations and the damage is different fr
zero, and a ‘‘nonchaotic’’ one in which all trajectories eve
tually synchronize with the vanishing of the damage.
simple models like the DK one, this transition does not d
pend on the choice of the initial configurations~provided
they are different from the absorbing state! and the initial
damage@12#.

It has been conjectured that all second-order phase tra
tions from an ‘‘active’’ phase to a nondegenerate, quiesc
phase~generally represented by an absorbing state! belong to
the DP universality class if the order parameter is a sc
and there are no extra symmetries or conservation l
@13,14#. This has been verified in a wide class of mode
even multicomponent, and in the presence of several as
metric absorbing states@15#. Also the damage phase trans
tion has a similar structure. Once synchronized, the two r
licas cannot separate, and thus the synchronized sta
absorbing. Indeed, numerical simulations show that it is
the DP universality class@16#. Moreover, in the DK model,
the damage phase transition can be mapped onto the de
one @7#.

On the other hand, some models with conserved qua
ties @17,18# or symmetric absorbing states belong to a diff
ent universality class called parity conservation~PC! or di-
rected Ising@19,20#. This universality class appears to be le
robust since it is strictly related to the symmetry of the a
sorbing states; a slight asymmetry is sufficient to bring
model to the usual DP class@19,20#.

An interesting question concerns the simplest, o
dimensional PCA model with short range interactions exh
iting a first-order phase transition. Dickman and Tom´
@21,22# proposed a contact process with spontaneous an
lation, autocatalytic creation by trimers and hopping. Th
found a first-order transition for high hopping probabilit
i.e., in the region more similar to mean field~weaker spatial
correlations!.

Bassler and Browne discussed a model whose phase
gram also presents first- and second-order phase transi
@23#. In it, monomers of three different chemical species c
be adsorbed on a one-dimensional surface and neighbo
monomers belonging to different species annihilate insta
neously. The control parameters of the model are the abs
tion rates of the monomers. The transition from a saturat
a reactive phase belongs to the DP universality class, w
the transition between two saturated phases is discontinu
The point at which three phase transition lines join do
belong to the PC universality class.

Scaling and fluctuations near first-order phase transiti
are also an interesting subject of study@24–27#, which can
profit from the existence of simple models.

In this paper we study a one-dimensional, on
component, totalistic PCA with two absorbing states. It c
be considered as a natural extension of the DK model
lattice in which the neighborhood of a site at timet contains
the site itself and its two nearest neighbors at timet21. This
space-time lattice arises naturally in the discretization of o
dimensional reaction-diffusion systems. In our model,
transition probabilities from an empty neighborhood is ze
and that from a completely occupied neighborhood is o
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The model has two absorbing states: the completely em
and the completely occupied configurations. The order
rameter is again the density; it is zero or one in the t
quiescent phases, and assumes other values in the a
phase. The system presents a line of symmetry in the ph
diagram, over which the two absorbing phases have the s
importance. A more detailed illustration of the model can
found in Sec. II.

This model can arise as a particular case of a nonequ
rium wetting of a surface. In this framework, only a sing
layer of particles can be absorbed on the surface. If we
sume that particles can be absorbed or desorbed only nea
boundaries of a patch of already absorbed particles~when the
neighborhood is not homogeneous!, then the completely
empty and occupied configurations are absorbing states.

This totalistic PCA can also be interpreted as a sim
model of opinion formation. It assumes that an individu
may change his mind according to himself and his two ne
est neighbors. The role of social pressure is twofold. If th
is homogeneity of opinions, individuals cannot disagree~ab-
sorbing states!, otherwise they can agree or disagree with t
majority with a certain probability.

The density phase diagram shows two second-order p
transition curves separating the quiescent phases from
active one, and a first-order transition line between the t
quiescent phases, as discussed in Sec. III. These curves
on the line of symmetry in a bicritical point. We use bo
mean field approximations and direct numerical simulatio
The former simple approximation gives a qualitatively co
rect phase diagram. The numerical experiments are part
based on the fragment method@28#. This is a parallel algo-
rithm that implements directly the evolution rule for differe
values of the control parameters on the bits of one or m
computer words.

In Sec. IV, we investigate numerically the second-ord
phase transitions and find they belong to the DP universa
class. Along the line of symmetry of the model the two a
sorbing phases are equivalent. In Appendix B we show t
on this line one can reformulate the problem in terms of
dynamics of kinks between patches of empty and occup
sites. Since the kinks are created and annihilated in pairs
dynamics conserves the initial number of kinks modulo tw
In this way we can present an exact mapping betwee
model with symmetric absorbing phases and one with pa
conservation. We find that the critical kink dynamics at t
bicritical point belongs to the PC universality class.

In Sec. V we study the chaotic phase, using dynam
mean field techniques~reported in Appendix A! and direct
numerical simulations. The location of this phase is simi
to that of the DK model: it joins the second-order critic
curves at the boundary of the phase diagram.

Our model exhibits a first-order phase transition along
line of symmetry in the upper part of the phase diagram
first-order transition is usually associated to an hystere
cycle. It is possible to observe such a phenomena by ad
a small perturbing field to the absorbing states, as discus
in Sec. VI.

The DP universality class is equivalent to the Regge
field theory@29#, which in d50 corresponds to a quadrat
6-2
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NATURE OF PHASE TRANSITIONS IN A . . . PHYSICAL REVIEW E 63 046116
potential with a logarithmic divergence at the origin. T
Langevin description for systems in the PC class yield
similar potential, except for irrelevant terms@18#. It has been
shown @30# that one can reconstruct the potential from t
numerical integration of the Langevin equation, which, ho
ever, requires special techniques in the presence of abso
states@31#. In Sec. VII we show how the potential is reco
structed from actual simulations of a phenomenologi
model, such as our original cellular automaton or the k
dynamics. In this way we obtain the shape of the poten
for a system in the parity conservation universality class

II. THE MODEL

We describe here a one-dimensional, totalistic, probab
tic cellular automaton with three inputs. The state of t
model at time t is given by xt5(x0

t , . . . ,xL21
t ) with xi

t

P$0,1%; t51,2, . . . andL is the number of sites. All opera
tions on spatial indices are assumed to be moduloL ~periodic
boundary conditions!. For simplicity of notation, we write
x5xi

t , x25xi 21
t , x15xi 11

t , andx85xi
t11 . We shall indi-

cate by s5x21x1x1 number of occupied cells in th
neighborhood. The most general three-input totalistic PCA
defined by the quantitiesps , which are the conditional prob
abilities thatx851 if s5s. The microscopic dynamics o
the model is completely specified by

x85(
s50

3

Rsds,s . ~1!

In this expressionRs is a stochastic binary variable that tak
the value 1 with probabilityps and 0 with probability 1
2ps , and d is the Kronecker delta. In practice, we impl
mentRs by extracting a random numberr s uniformly distrib-
uted between 0 and 1, and settingRs equal to 1 ifr s,ps and
0 otherwise. Equation 1 implies the use of four random nu
bersr s for each site. The evolution of a single trajectory
not affected by the eventual correlations among ther s , since
only oneds,s is different from zero. This is not true whe
computing the simultaneous evolution of two or more rep
cas using the same noise. If not otherwise stated, we use
one random number for all ther s . More discussions abou
the choice of random numbers can be found in Sec. V an
Appendix B.

With p050 andp351 the model presents two quiesce
phases: the phase 0 corresponding to the configuratiox
5(0, . . . ,0) and thephase 1 corresponding to the configur
tion x5(1, . . .,1). In this case there are two control param
eters, p1 and p2, and the model is symmetric under th
changesp1→12p2 , p2→12p1, andx→x% 1 where% is
the exclusive disjunction~or the sum modulo 2!.

III. PHASE DIAGRAM

In order to have a qualitative idea of the behavior of t
model, we first study the mean-field approximation. Ifc and
c8 denote the density of occupied sites at timest and t11,
respectively,
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c853p1c~12c!213p2c2~12c!1c3. ~2!

This map has three fixed points,c0 , c1, andc2 given by

c050, c15
3p121

113p123p2
, and c251.

The asymptotic density will assume one of the latter valu
according to the values of the control parameters and
initial state as we show in Fig. 1. In the square 1/3,p1
<1, 0<p2,2/3, the only stable fixed point isc1. Inside this
square, on the segmentsp222/35m(p121/3) with m,0,
c151/(12m). The first fixed pointc0 is stable whenp1
,1/3 andc2 is stable whenp2.2/3. There is a continuous
second-order transition from the quiescent phase 0 to
active phase on the segmentp151/3, 0<p2,2/3 and an-
other continuous transition from the active to the quiesc
phase 1 on the segment 1/3,p1<1,p252/3.

In the hatched region of Fig. 1c0 andc2 are both stable.
Their basins of attraction are, respectively, the semi-o
intervals@0,c1) and (c1,1#. Starting from a uniformly distrib-
uted random value ofc, as timet goes to infinity,c tends to
c0 with probability c1, and to c2 with probability 12c1.
Since, forp11p251, c151/2, the segmentp11p251, with
0<p1,1/3 and 2/3,p2<1, is similar to a first-order tran-
sition line between the phase 0 and the phase 1.

In Fig. 2 we show the phase diagram of the model o
tained numerically starting from a random initial state w
half of the cells occupied. The scenario is qualitatively t
same as predicted by the mean-field analysis. In the vici
of the point (p1 ,p2)5(0,1) we observe a discontinuous tra
sition from c50 to c51. The two second-order phase
transition curves from the active phase to the quiesc
phases are symmetric, and the critical behavior of the or
parameter,c for the lower curve and 12c for the upper one,
is the same.

FIG. 1. Mean-field phase diagram for the densityc of active
sites. The white~black! region corresponds to the phase 0~phase 1!.
The levels of gray indicate different values of the asymptotic d
sity c ~active phase!, the lightest corresponds to 0,c,1/4, and the
next ones to 1/4,c,1/2, 1/2,c,3/4, and 3/4,c,1. The two
quiescent phases coexist in the hatched region.
6-3
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Due to the symmetry of the model the two second-or
phase transition curves meet at a bicritical point (pt,12pt)
where the first-order phase transition linep11p251, p1
,pt ends. Crossing the second-order phase boundaries
line parallel to the diagonalp15p2, the densityc exhibits
two critical transitions, as shown in the inset of Fig. 2. A
proaching the bicritical point the critical region becom
smaller, and corrections to scaling increase. Finally, at
transition point the two transitions coalesce into a single d
continuous one.

IV. CRITICAL DYNAMICS AND UNIVERSALITY
CLASSES

We performed standard dynamic Monte Carlo simulatio
starting from a single site in the origin out of the near
absorbing state, and measured the average number of a
sites N(t), the survival probabilityP(t), and the average
square distance from originR2(t) ~averaged over surviving
runs! defined as

N~ t !5
1

K (
k51

K

(
i

v i
t~k!,

P~ t !5
1

K (
k51

K

uS (
i

v i
t~k! D , ~3!

R2~ t !5
1

KN~ t ! (
k51

K

(
i

v i
t~k!i 2.

In these expressions,k labels the different runs andK is the
total number of runs. The quantityv i is xi if the nearest
absorbing state is0 and 12xi otherwise;u is the Heaviside
step function, that assumes the value 1 if its argumen
greater than 0, and the value 0 if it is smaller than 0.

At the critical point one has

FIG. 2. Phase diagram for the density of active sitesc by nu-
merical experiments. One run was performed withL510 000 and
T510 000. The graph shows 64364 values ofp1 andp2. The color
code is the same as in Fig. 1. The inset represents the density p
along the dashed line. Two critical phase transitions are eviden
04611
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N~ t !;th, P~ t !;t2d, R2~ t !;tz.

At the transition point@p1* 50.6625(3),p250#, we get h
50.308(5), d50.160(2), and z51.265(5), in agreement
with the best known values for the directed percolation u
versality class@32#.

Near the bicritical point, on the linep11p251, the two
absorbing states have symmetrical weight. We define a k
yi asyi5xi % xi 11. For the computation of the critical prop
erties of the kink dynamics, one has to replacev i with yi in
Eq. ~3!. The evolution equation is derived in Appendix B.
the kink dynamics there is only one absorbing state~the
empty state!, corresponding to one of the two absorbin
states0 or 1. For p1,pt the asymptotic value of the densit
of kinks is zero and it starts to grow forp1.pt . In models
with multiple absorbing states, dynamical exponents m
vary with initial conditions. Quantities computed only o
survival runs (R2(t)) appear to be universal, while othe
@namelyP(t) andN(t)] are not@33#.

We performed dynamic Monte Carlo simulations starti
either from one and two kinks. In both casespt50.460(2),
but the exponents were found to be different. Due to
conservation of the number of kinks modulo two, starti
from a single site one cannot observe the relaxation to
absorbing state, and thusd50. In this caseh50.292(5), z
51.153(5). On theother hand, starting with two neighbor
ing kinks, we find h50.00(2), d50.285(5), and z
51.18(2). These results are consistent with those found
other authors@17–19#.

V. THE CHAOTIC PHASE

Let us now turn to the sensitivity of the model to a vari
tion in the initial configuration, i.e., to the study of dama
spreading or, equivalently, to the location of the chao
phase.

Given two replicasx andy, we define the differencew as
w5x% y. The damageh is defined as the fraction of sites i
which w51, i.e., as the Hamming distance between the c
figurationsx andy.

The precise location of this phase transition depends
the particular implementation of the stochasticity. Since
sum of occupied cells in the neighborhood ofx is in general
different from that ofy, the evolution equation~1! for the
two replicas uses different random numbersr s . The correla-
tions among these random numbers affect the location of
chaotic phase boundary@34#.

We limit our investigation to the case of maximal corr
lations by using just one random number per site, i.e., alr s
are the same for alls at the same site. This gives the smalle
possible chaotic region. Notice that we have to extrac
random number for all sites, even if in one or both replic
have a neighborhood configuration for which the evoluti
rule is deterministic~if s50 or s53).

One can write the mean field equation for the damage
taking into account all the possible local configurations
two lattices. The evolution equation for the damage depe
on the correlations among sites but in the simplest case
can assume thath(t11) depends only onh(t) andc(t), the

file
6-4
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NATURE OF PHASE TRANSITIONS IN A . . . PHYSICAL REVIEW E 63 046116
density of occupied sites. In Appendix A we find the evo
tion equation for the damage in the mean field approxim
tion. In Fig. 3 we show the phase diagram of the chao
phase in this approximation. There is a qualitative agreem
with the mean field phase diagram found for the DK mo
@35#.

In Fig. 4 we show the phase diagram for the dama
found numerically by considering the evolution starting fro
uncorrelated configurations with initial density equal to 0
The damage region is shown in shades of gray. Outside
region there appear small damaged domains on the o
phase boundaries. This is due either to the divergence o
relaxation time~second-order transitions! or to the fact that a
small difference in the initial configuration can drive the sy
tem to a different absorbing state~first-order transitions!. The
chaotic domain near the point (p1 ,p2)5(1,0) is stable re-
gardless of the initial density. On the linep250 the critical
points of the density and the damage coincide atp1* .

FIG. 3. Mean field damage-spreading phase diagram. The
gram has been obtained numerically iterating Eq.~A1!. The lightest
level of gray corresponds to 0,h,1/8, the next ones to 1/8,h
,1/4, 1/4,h,3/8, and 3/8,h,1/2, respectively.

FIG. 4. Phase diagram for the damage spreading from di
numerical simulations. The color code is that of Fig. 3. Traces
the second-order phase transitions are present; they join to the
order (c050.5) phase boundary.
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VI. FIRST-ORDER PHASE TRANSITION AND
HYSTERESIS CYCLE

First-order phase transitions are usually associated
hysteresis cycle due to the coexistence of two phases. In
absence of absorbing states, the coexistence of two st
phases for the same values of the parameters is a tran
effect in finite systems, due to the presence of fluctuatio
To find the hysteresis loop we modify the model slightly
putting p0512p35« with «!1. In this way the empty and
fully occupied configurations are no longer absorbing. T
brings the model back into the class of equilibrium mod
for which there is no phase transition in one dimension
metastable states can nevertheless persist for long times
mean field equation for the densityc becomes

c85«~12c!313p1c~12c!213p2c2~12c!1~12«!c3.
~4!

We study the asymptotic density asp1 andp2 move on a
line with slope 1 inside the hatched region of Fig. 1. Forp1
close to zero, Eq.~4! has only one fixed point, which is
stable and close to«. As p1 increases adiabatically~by tak-
ing c at t50 equal the previous value of the fixed point! the
new asymptotic density will still assume this value ev
when two more fixed points appear, one of which is unsta
and the other stable and close to one. Eventually the
fixed point disappears, and the asymptotic density jump
the stable fixed point close to one. Going backwards on
same line, the asymptotic density will be close to one u
that fixed point disappears and it will jump back to a sm
value close to zero. By symmetry, the hysteresis loop is c
tered around the linep11p251 which we identify as a first-
order phase transition line inside the hatched region.

The hysteresis region is found by two methods, the
namical mean field, which extends the mean field appro
mation to blocks ofl sites@36#, and direct numerical experi
ments. As stated before it is necessary to introduce a s
perturbation«5p0512p3. We consider lines parallel to th
diagonal p15p2 in the parameter space and increase
value ofp1 andp2 after a given relaxation timet r up to p2
51; afterwards the scanning is reverted down top150. The
hysteresis region for various values of parameters are
ported in Fig. 5. In numerical simulations, one can estim
the size of the hysteresis region by starting with configu
tions 0 and 1, and measuring the sized of the region in
which the two simulations disagree.

VII. RECONSTRUCTION OF THE POTENTIAL

An important point in the study of systems exhibiting a
sorbing states is the formulation of a coarse-grained desc
tion using a Langevin equation. It is generally accepted t
DP universal behavior is represented by

]c~x,t !

]t
5ac~x,t !2bc2~x,t !1“

2c~x,t !1Ac~x,t !a~x,t !,

~5!

a-

ct
f
st-
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FRANCO BAGNOLI, NINO BOCCARA, AND RAÚL RECHTMAN PHYSICAL REVIEW E 63 046116
wherec is the density field,a and b are control parameter
and a is a Gaussian noise with correlation
^a(x,t)a(x8,t8)&5dx,x8d t,t8 . The diffusion coefficient has
been absorbed into the parametersa andb and the time scale
This equation can be obtained by a mean field approxima
of the evolution equation keeping only the relevant term
The statec(x,t)50 is clearly stationary, but its absorbin
character is given by the balance between fluctuations, w
are of order of the field itself, and the ‘‘potential’’ partac
2bc2 ~see also Ref.@28#!.

The role of the absorbing state can be illustrated by tak
a sequence of equilibrium models whose energy landsc
exhibits the coexistence of an infinitely deep well~the ab-
sorbing state! and another broad local minimum~correspond-
ing to the ‘‘active,’’ disordered state!, separated by an energ
barrier. There is no true stationary active state for suc
system~with a finite energy barrier!, since there is always a
probability of jumping into the absorbing state. However, t
system can survive in a metastable active state for time
tervals of the order of the inverse of the height of the ene
barrier. The parameters controlling the height of the ene
barrier are the size of the lattice and the length of the sim
lation: the equilibrium systems are two dimensional w
asymmetric interactions in the time direction@8#. In the lim-
iting case of an infinite system, the height of the ene
barrier is finite below the transition point, and infinite abov
when the only physically relevant state is the disordered o

It is possible to introduce a zero-dimensional approxim
tion to the model by averaging over the time and the spa
assuming that the system has entered the metastable sta
this approximation, the size of the original systems ent
through the renormalized coefficientsā, b̄,

]c~x,t !

]t
5āc~x,t !2b̄c2~x,t !1Ac~x,t !a~x,t !,

FIG. 5. Profile of the hysteresis region for several values of
noise« and relaxation timeT according to the local structure ap
proximation withl 56. The curves represent the intersections of
hysteresis cycle withc50.5 ~horizontal dashed line in the inset!.
The curves join smoothly atp150, p251 ~not represented!. Start-
ing from the out most curve, these correspond toT5500, «
50.0001;T51000,«50.0001, andT5500, «50.001. The dashed
lines represent the mean field hysteresis region. The inset repre
the cycle along a line parallel to the diagonalp15p2.
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where also the time scale has been renormalized.
The associated Fokker–Planck equation is

]P~c,t !

]t
52

]

]c
~ āc2b̄c2!P~c,t !1

1

2

]2

]c2
cP~c,t !,

whereP(c,t) is the probability of observing a densityc at
time t. One possible solution is ad-peak centered at the
origin, corresponding to the absorbing state.

By considering only those trajectories that do not en
the absorbing state during the observation time, one can
pose a detailed balance condition, whose effective agreem
with the actual probability distribution has to be checkeda
posteriori.

A stationary distributionP(c)5exp(2V(c)) corresponds
to an effective potentialV(c) of the form

V~c!5 log~c!22āc1b̄c2.

Note that this distribution is not normalizable. One can i
pose a cutoff for lowc, makingP(c) normalizable. For finite
systems the only stationary solution is the absorbing st
However, by increasing the size of the system, one appr
mates the limit in which the energy barrier is infinitely hig
the absorbing state unreachable, andP(c) is the observable
distribution.

In order to find the form of the effective potential fo
spatially extended systems, Mun˜oz @28# numerically inte-
grated Eq.~5!, using the procedure described by Dickm
@29#. It is however possible to obtain the shape of the eff
tive potential from the actual simulations, simply by plottin
V(c)52 log(P(c)) versusc, where c is the density of the
configuration.

In Fig. 6 we show the profile of the reconstructed pote
tial V for some values ofp around the critical value or the
infinite systemp1* on the lineq50. We used rather smal
systems and followed the evolution for a limited amount
time in order to balance the weight of thed peak with respect

e

e

nts

FIG. 6. Reconstruction of potentialV(c) for p250. We per-
formed 104 runs over a system of 500 sites and computed the pr
ability distribution P(n) averaging over 500 time steps after di
carding 1000 time steps. We limited to small times in order to
able to see the divergence at the origin~the absorbing state! to-
gether with the other local minimum~the active state!.
6-6
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to P(c) ~which is only metastable!. For larger systems the
absorbing state is not visible above the transition and do
nates below it.

On the lineq50 the model belongs to the DP universali
class. One can observe that the curve becomes broader i
vicinity of the critical point, in correspondence of the dive
gence of critical fluctuationsx;up2pcu2g8, g850.54 @32#.
By repeating the same type of simulations for the kink d
namics~random initial condition!, we obtain slightly differ-
ent curves, as shown in Fig. 7. We notice that all curves h
roughly the same width. Indeed, the exponentg8 for systems
in the PC universality class is believed to be exactly 0@33#,
as given by the scaling relation@32# g85dn'22b. Clearly,
much more information can be obtained from the knowled
of P(c), either by direct numerical simulations or dynamic
mean field through finite scale analysis, as shown for
stance in Ref.@37#.

VIII. DISCUSSIONS AND CONCLUSIONS

We have studied a probabilistic cellular automaton w
two absorbing states and two control parameters. This
simple and natural extension of the Domany–Kinzel~DK!
model. Despite its simplicity it has a rich phase diagram w
two symmetric second-order phase curves that join a fi
order line at a bicritical point. The phase diagram and
critical properties of the model were found using seve
mean field approximations and numerical simulations. T
second-order phase transitions belong to the directed pe
lation universality class except for the bicritical point, whic
belongs to the parity conservation~PC! universality class.
The first-order phase transition line was put in evidence b
modification of the model that allows one to find the hyst
esis cycles. The model also presents a chaotic phase a
gous to the one present in the DK model. This phase
studied using direct numerical simulations and dynam
mean field.

On the line of symmetry of the model the relevant beh
ior is given by kink dynamics. We found a closed express
for the kink evolution rule and studied its critical propertie
which belong to the PC universality class. The effective p

FIG. 7. Reconstruction of potentialV(c) for the kink dynamics
on the line p2512p1. The simulations were carried out as d
scribed in Fig. 6.
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tential governing the coarse-grained evolution for the DP a
the PC phase was found through direct simulations, confi
ing that critical fluctuations diverge at most logarithmica
in the PC class.

The phase diagram of our model is qualitatively similar
Bassler and Browne’s~BB! one @30#. In both models two
critical lines in the DP universality class meet at a bicritic
point in the PC universality class, and give origin to a fir
order transition line. This suggests that the observed beh
ior has a certain degree of universality.

An interesting feature of the BB model is that the abso
ing states at the bicritical point are indeed symmetric, but
model does not show any conserved quantities. We h
shown that the bicritical dynamics of our model can be e
actly formulated either in terms of symmetric states or
kinks dynamics, providing an exact correspondence betw
the presence of conserved quantities and the symmetr
absorbing states.

Furthermore, in order to obtain a qualitatively corre
mean field phase diagram of the BB model, one has to
clude correlations between triplets, while the mean fi
phase diagram of our model is already correct at first
proximation. This suggests that we have described a sim
model, which can be used as prototype for multicritical s
tems.
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APPENDIX A: DAMAGE SPREADING IN THE MEAN
FIELD APPROXIMATION

The minimum damage spreading occurs when the
replicasx and y evolve using maximally correlated rando
numbers, i.e., when allr s in Eq. ~1! are the same@34#. Let
w5x% y be the damage at a sitei and time t. It is also
possible to considerw as an independent variable and wri
y5x% w. We denote s5x21x1x1 , s85y21y1y1

5(x2 % w2)1(x% w)1(x1 % w1), and s95w21w1w1 .
The evolution equation forh, the density of damaged sitesw
at time t, is obtained by considering all the local configur
tions x2xx1 andw2ww1 of one replica and of the damag

h85 (
x2xx1

w2ww1

p~c,s,3!p~h,s9,3!ups2ps8u, ~A1!

where

p~a,n,m!5an~12a!n2m.

In Eq. ~A1! all the sums run from zero to one. The value
c is given by Eq.~2!. The termups2ps8u is the probability
that Rs% Rs8 is one using only one random number for th
6-7
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r s . The argument of the sum is the probability thatx8Þy8. It
is possible to rewrite Eq.~A1! in a different form

h85 (
ss8l

S m

s D S m2s

l
D S m2s

s82l
Dp~c,s,m!

3p~h,s1s822l ,m!ups2ps8u, ~A2!

wheres ands8 are the same as above, andl is the overlap
betweenx and y, i.e., l 5(x2`y2)1(x`y)1(x1`y1)
(` is the AND operation!. Assuming that (b

a)50 if b.a,
a,0 or b,0, the sum of~A2! can run over all positive
integers. This expression is valid for all totalistic rules with
neighborhood of sizem ~herem53).

The stationary state of Eq.~A1! @or Eq. ~A2!# can be
found analytically using a symbolic manipulation progra
The chaotic transition line is

p25p12 1
9 ,

with 1/3,p1,1, 0,p2,2/3.

APPENDIX B: KINK DYNAMICS

On the segmentp11p251, p1,pt the order parameter i
the number of kinks. The dynamics of the kinksyi5xi
% xi 11 ~that for the ease of notation we writey5x% x1) is
obtained by taking the exclusive disjunction ofx85xi

t11 and
x18 5xi 11

t11 given by Eq.~1!. In order to obtain a closed ex
pression for they, a little of Boolean algebra is needed.

The totalistic functionsds,s wheres5x21x1x1 can be
expressed in terms of the symmetric polynomialsj ( j ) of de-
greej @38#. These are

j (1)5x2 % x% x1 ,

j (2)5x2x% x2x1 % xx1 ,

j (3)5j (1)j (2)5x2xx1 .

The totalistic functions are given by
ys
R

04611
.

ds,15j (1)
% j (3),

ds,25j (2)
% j (3),

ds,35j (3).

In the evolution equation~1!, one hasR151 if r 1,p1,
and R251 if r 2,p2. On the linep11p251 ~i.e., p251
2p1), R2 takes the value 1 if 12r 2.p1. Choosing 12r 2
5r 1 ~this choice does not affect the dynamics of a sin
replica! we haveR25R1% 1 and Eq.~1! becomes, after some
manipulations,

x85R~j (1)
% j (2)! % j (2),

whereR5R1. One can easily check that

j (1)5y2 % y% x

and

j (2)5y2y% x.

Finally, we obtain the evolution equation for they

y85x8% x18

5R~y2 % y% y2y! % R1~y% y1 % yy1! % y2y% yy1 % y

5R~y2~y! % R1~y~y1! % y2y% yy1 % y.

In this expression~ denotes the disjunction operation~OR!.
The sum modulo 2~XOR! of all yi over the lattice is invari-
ant with time, since all repeated terms cancel out (a% a
50). Note that the kink dynamics use correlated noise
tween neighboring sites.
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