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Nature of phase transitions in a probabilistic cellular automaton with two absorbing states
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We present a probabilistic cellular automaton with two absorbing states, which can be considered a natural
extension of the Domany-Kinzel model. Despite its simplicity, it shows a very rich phase diagram, with two
second-order and one first-order transition lines that meet at a bicritical point. We study the phase transitions
and the critical behavior of the model using mean field approximations, direct numerical simulations and field
theory. The second-order critical curves and the kink critical dynamics are found to be in the directed perco-
lation and parity conservation universality classes, respectively. The first—order phase transition is put in
evidence by examining the hysteresis cycle. We also study the ‘“chaotic” phase, in which two replicas
evolving with the same noise diverge, using mean field and numerical techniques. Finally, we show how the
shape of the potential of the field-theoretic formulation of the problem can be obtained by direct numerical

simulations.
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[. INTRODUCTION t is connected to two sites at time-1, constituting its

neighborhood. The control parameters of the model are the

Probabilistic cellular automatéPCA) have been widely local transition probabilities that give the probability of hav-
used to model a variety of systems with local interactions inng an occupied site at a certain position once given the state
physics, chemistry, biology, and social sciendds-5|. of its neighborhood. The transition probabilities are symmet-
Moreover, PCA are simple and interesting models that camic for all permutations of the neighborhood, and this prop-
be used to investigate fundamental problems in statisticatrty is equivalent to saying that they depend on the sum of
mechanics. Many classical equilibrium spin models can bé&occupied” sites in the neighborhood, whence the term “to-
reformulated as PCA, for example, the kinetic Ising modeltalistic” used to denote this class of automata.
with parallel heat-bath dynamics is strictly equivalent to a In the DK model the transition probability from an empty
PCA with local parallel dynamicE6,7]. On the other hand, neighborhood to an occupied state is zero, thus the empty
PCA can be mapped to spin modé® by expressing the configuration is an absorbing state. For small values of the
transition probabilities as exponentials of a local energyother transition probabilities, any initial configuration will
PCA can be used to investigate nonequilibrium phenomenavolve to the absorbing state. For larger values, a phase tran-
and in particular the problem of phase transitions in the pressition to an active phase, represented by an ensemble of par-
ence of absorbing states. An absorbing state is represented tiglly occupied configurations, is found. The order parameter
a set of configurations from which the system cannot escapef this transition is the asymptotic average fraction of occu-
equivalent to an infinite energy well in the language of stajied sites, which we call the density. The critical properties
tistical mechanics. A global absorbing state can be originatedf this phase transition belong to the directed percolation
by one or more local transition probabilities which take the(DP) universality clasgexcept for one extreme pojnftl1],
value zero or one, corresponding to some infinite coupling irand the DK model is often considered the prototype of such
the local energy8]. a class.

The Domany-Kinze(DK) model is a boolean PCA on a The evolution of this kind of models is the discrete
tilted square lattice that has been extensively stufeto]. equivalent of the trajectory of a stochastic dynamical system.
Let us denote the two possible states of each site with th®ne can determine the sensitivity with respect to a perturba-
terms “empty” and “occupied.” In this model a site at time tion, by studying the trajectories originating by two initially

different configurationsreplicag evolving with the same re-
alization of the stochasticity, e.g., using the same sequence

*Electronic address: bagnoli@dma.unifi.it of random numbers. The order parameter here is the
"Electronic address: nboccara@amoco.saclay.cea.frasymptotic difference between the two replicas, which we
boccara@uic.edu call the damage. It turns out that, inside the active phase,
*Electronic address: rrs@teotleco.cie.unam.mx there is a “chaotic” phase in which the trajectories depend
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on the initial configurations and the damage is different fromThe model has two absorbing states: the completely empty
zero, and a “nonchaotic” one in which all trajectories even-and the completely occupied configurations. The order pa-
tually synchronize with the vanishing of the damage. Inrameter is again the density; it is zero or one in the two
simple models like the DK one, this transition does not de-quiescent phases, and assumes other values in the active
pend on the choice of the initial configuratioGsrovided phase. The system presents a line of symmetry in the phase
they are different from the absorbing statnd the initial  diagram, over which the two absorbing phases have the same
damagg12]. importance. A more detailed illustration of the model can be
It has been conjectured that all second-order phase trandbund in Sec. Il.
tions from an “active” phase to a nondegenerate, quiescent This model can arise as a particular case of a nonequilib-
phase(generally represented by an absorbing stagdong to  rium wetting of a surface. In this framework, only a single
the DP universality class if the order parameter is a scalalayer of particles can be absorbed on the surface. If we as-
and there are no extra symmetries or conservation lawsume that particles can be absorbed or desorbed only near the
[13,14). This has been verified in a wide class of models,boundaries of a patch of already absorbed partiglé®n the
even multicomponent, and in the presence of several asymnmeighborhood is not homogenegushen the completely
metric absorbing statd45]. Also the damage phase transi- empty and occupied configurations are absorbing states.
tion has a similar structure. Once synchronized, the two rep- This totalistic PCA can also be interpreted as a simple
licas cannot separate, and thus the synchronized state risodel of opinion formation. It assumes that an individual
absorbing. Indeed, numerical simulations show that it is inmay change his mind according to himself and his two near-
the DP universality clasgl6]. Moreover, in the DK model, est neighbors. The role of social pressure is twofold. If there
the damage phase transition can be mapped onto the densisyhomogeneity of opinions, individuals cannot disagae
one[7]. sorbing states otherwise they can agree or disagree with the
On the other hand, some models with conserved quantimajority with a certain probability.
ties[17,18 or symmetric absorbing states belong to a differ- The density phase diagram shows two second-order phase
ent universality class called parity conservati®C) or di-  transition curves separating the quiescent phases from the
rected Isind19,20. This universality class appears to be lessactive one, and a first-order transition line between the two
robust since it is strictly related to the symmetry of the ab-quiescent phases, as discussed in Sec. Ill. These curves meet
sorbing states; a slight asymmetry is sufficient to bring theon the line of symmetry in a bicritical point. We use both
model to the usual DP cla$49,20. mean field approximations and direct numerical simulations.
An interesting question concerns the simplest, oneThe former simple approximation gives a qualitatively cor-
dimensional PCA model with short range interactions exhib+ect phase diagram. The numerical experiments are partially
iting a first-order phase transition. Dickman and Tomebased on the fragment methf@8]. This is a parallel algo-
[21,22 proposed a contact process with spontaneous annihiithm that implements directly the evolution rule for different
lation, autocatalytic creation by trimers and hopping. Thewalues of the control parameters on the bits of one or more
found a first-order transition for high hopping probability, computer words.
i.e., in the region more similar to mean figldeaker spatial In Sec. IV, we investigate numerically the second-order
correlations. phase transitions and find they belong to the DP universality
Bassler and Browne discussed a model whose phase dialass. Along the line of symmetry of the model the two ab-
gram also presents first- and second-order phase transitiossrbing phases are equivalent. In Appendix B we show that
[23]. In it, monomers of three different chemical species carpn this line one can reformulate the problem in terms of the
be adsorbed on a one-dimensional surface and neighborirdynamics of kinks between patches of empty and occupied
monomers belonging to different species annihilate instantasites. Since the kinks are created and annihilated in pairs, the
neously. The control parameters of the model are the absorplynamics conserves the initial number of kinks modulo two.
tion rates of the monomers. The transition from a saturate tin this way we can present an exact mapping between a
a reactive phase belongs to the DP universality class, whilenodel with symmetric absorbing phases and one with parity
the transition between two saturated phases is discontinuousonservation. We find that the critical kink dynamics at the
The point at which three phase transition lines join doedicritical point belongs to the PC universality class.
belong to the PC universality class. In Sec. V we study the chaotic phase, using dynamic
Scaling and fluctuations near first-order phase transitionmean field technique&eported in Appendix Aand direct
are also an interesting subject of sty@4—27, which can  numerical simulations. The location of this phase is similar
profit from the existence of simple models. to that of the DK model: it joins the second-order critical
In this paper we study a one-dimensional, one-curves at the boundary of the phase diagram.
component, totalistic PCA with two absorbing states. It can Our model exhibits a first-order phase transition along the
be considered as a natural extension of the DK model to &ne of symmetry in the upper part of the phase diagram. A
lattice in which the neighborhood of a site at titneontains  first-order transition is usually associated to an hysteresis
the site itself and its two nearest neighbors at timél.. This  cycle. It is possible to observe such a phenomena by adding
space-time lattice arises naturally in the discretization of onea small perturbing field to the absorbing states, as discussed
dimensional reaction-diffusion systems. In our model, then Sec. VI.
transition probabilities from an empty neighborhood is zero, The DP universality class is equivalent to the Reggeon
and that from a completely occupied neighborhood is onefield theory[29], which ind=0 corresponds to a quadratic
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potential with a logarithmic divergence at the origin. The 1
Langevin description for systems in the PC class yields a 0.9
similar potential, except for irrelevant terrf3]. It has been i
shown[30] that one can reconstruct the potential from the
numerical integration of the Langevin equation, which, how- 07
ever, requires special techniques in the presence of absorbing 05
stateqg 31]. In Sec. VII we show how the potential is recon- P os
structed from actual simulations of a phenomenological 04
model, such as our original cellular automaton or the kink 65
dynamics. In this way we obtain the shape of the potential i
for a system in the parity conservation universality class. ’
0.1
Il. THE MODEL ’ 0 0.1 02 03 04 05 0.6 07 08 09 1

We describe here a one-dimensional, totalistic, probabilis- A

tic cellular automaton with three inputs. The state of the

. . . t t ; t

model at timet is given by X'=(Xp, - - XL-1) WIth Xi oo The whitgblack region corresponds to the phasébase 1
€{0,3}; t=12,... andL is the number of sites. All opera- Tne |evels of gray indicate different values of the asymptotic den-
tions on spatial indices are assumed to be modufeeriodic gy ¢ (active phask the lightest corresponds to<Gc< 1/4, and the
boundary conditions For simplicity of notation, we write  next ones to 1/4c<1/2, 1/2<c<3/4, and 3/4c<1. The two

FIG. 1. Mean-field phase diagram for the densitpf active

X=X[, X_=X{_1, X; =X/, 1, andx’=x{"". We shall indi-  quiescent phases coexist in the hatched region.
cate by o=x_+x+x, number of occupied cells in the
neighborhood. The most general three-input totalistic PCA is ¢’ =3p,c(1—c)2+3p,c3(1—c)+cl. )

defined by the quantitigss, which are the conditional prob-
abilities thatx’=1 if o=s. The microscopic dynamics of : s : ;
the model is completely specified by This map has three fixed pointsy, ¢, andc, given by
3 3p;1—1
X' = ZO R, . 1) =0 & 1igp,—ap, Mo
e
The asymptotic density will assume one of the latter values
In this expressiofg is a stochastic binary variable that takes according to the values of the control parameters and the
the value 1 with probabilityps and O with probability 1 initial state as we show in Fig. 1. In the square <{8
—Pps, and 6 is the Kronecker delta. In practice, we imple- <1, 0=p,<2/3, the only stable fixed point 5. Inside this
mentRg by extracting a random numbey uniformly distrib-  square, on the segments —2/3=m(p,—1/3) with m<O0,
uted between 0 and 1, and settiRgequal to 1 ifrc<<psand ¢,=1/(1—m). The first fixed pointc, is stable whenp,
0 otherwise. Equation 1 implies the use of four random num<1/3 andc, is stable wherp,>2/3. There is a continuous
bersr for each site. The evolution of a single trajectory is second-order transition from the quiescent phase 0 to the
not affected by the eventual correlations amongrthesince  active phase on the segmem=1/3, 0<p,<2/3 and an-
only one 8, s is different from zero. This is not true when other continuous transition from the active to the quiescent
computing the simultaneous evolution of two or more repli-phase 1 on the segment ¥®,<1,p,=2/3.
cas using the same noise. If not otherwise stated, we use only In the hatched region of Fig. d, andc, are both stable.
one random number for all the,. More discussions about Their basins of attraction are, respectively, the semi-open
the choice of random numbers can be found in Sec. V and iintervals[0,c,) and (c;,1]. Starting from a uniformly distrib-
Appendix B. uted random value of, as timet goes to infinity,c tends to
With po=0 andpz=1 the model presents two quiescent ¢, with probability c;, and toc, with probability 1—c;.
phases: the phase 0 corresponding to the configuration Since, forp,+ p,=1, ¢;=1/2, the segmeni; + p,=1, with
=(0,...,0) and thephase 1 corresponding to the configura-0<p,<1/3 and 2/3<p,=<1, is similar to a first-order tran-
tion x=(1,...,1). In this case there are two control param- sition line between the phase 0 and the phase 1.
eters, p; and p,, and the model is symmetric under the In Fig. 2 we show the phase diagram of the model ob-
changep;—1-p,, po—1—p;, andx—x®&1 where® is  tained numerically starting from a random initial state with
the exclusive disjunctioffor the sum modulo 2 half of the cells occupied. The scenario is qualitatively the
same as predicted by the mean-field analysis. In the vicinity
of the point p4,p,) =(0,1) we observe a discontinuous tran-
sition from ¢c=0 to c=1. The two second-order phase-
In order to have a qualitative idea of the behavior of thetransition curves from the active phase to the quiescent
model, we first study the mean-field approximationc Hnd  phases are symmetric, and the critical behavior of the order
¢’ denote the density of occupied sites at timesxdt+1, parameterc for the lower curve and % c for the upper one,
respectively, is the same.

Ill. PHASE DIAGRAM
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Iy N(t)~t”7, P(t)~t % R(t)~t2

0.9
0.8 At the transition point[ p; =0.662%3),p,=0], we get 7y
07 =0.3085), §=0.16Q2), andz=1.2655), in agreement
68 with the best known values for the directed percolation uni-
D ) versality clasg§32].
2 05 Near the bicritical point, on the linp;+p,=1, the two
0.4 absorbing states have symmetrical weight. We define a kink
0.3 yi asy;=X;®X;. 1. For the computation of the critical prop-
02 erties of the kink dynamics, one has to replagewith y; in
- Eq. (3). The evolution equation is derived in Appendix B. In

the kink dynamics there is only one absorbing stéte
empty statg corresponding to one of the two absorbing
statesD or 1. For p;<p; the asymptotic value of the density
of kinks is zero and it starts to grow fqgr;>p;. In models
FIG. 2. Phase diagram for the density of active sitdsy nu- ~ With multiple absorbing states, dynamical exponents may
merical experiments. One run was performed with 10000 and ~ Vary Wwith initial_conditions. Quantities computed only on
T=10000. The graph shows 844 values op, andp,. The color ~ Survival runs R?(t)) appear to be universal, while others
code is the same as in Fig. 1. The inset represents the density profildamelyP(t) andN(t)] are not[33].
along the dashed line. Two critical phase transitions are evident. ~ We performed dynamic Monte Carlo simulations starting
either from one and two kinks. In both casgs=0.46Q2),
Due to the symmetry of the model the two second-ordebut the exponents were found to be different. Due to the
phase transition curves meet at a bicritical poipt1—p;)  conservation of the number of kinks modulo two, starting
where the first-order phase transition lipg+p,=1, p; from a single site one cannot observe the relaxation to the
<p, ends. Crossing the second-order phase boundaries ong@sorbing state, and thus=0. In this casen=0.2935), z
line parallel to the diagonab,=p,, the densityc exhibits ~ =1.1535). On theother hand, starting with two neighbor-
two critical transitions, as shown in the inset of Fig. 2. Ap-ing kinks, we find »=0.0Q12), 6=0.2855), and z
proaching the bicritical point the critical region becomes=1.1§2). These results are consistent with those found by
smaller, and corrections to scaling increase. Finally, at thether author§17-19.
transition point the two transitions coalesce into a single dis-

continuous one. V. THE CHAOTIC PHASE

0
0 0102030405060.70809 1
A

Let us now turn to the sensitivity of the model to a varia-
tion in the initial configuration, i.e., to the study of damage
spreading or, equivalently, to the location of the chaotic

We performed standard dynamic Monte Carlo simulationgphase.
starting from a single site in the origin out of the nearest Given two replicax andy, we define the difference as
absorbing state, and measured the average number of active=x®y. The damagé is defined as the fraction of sites in
sites N(t), the survival probabilityP(t), and the average whichw=1, i.e., as the Hamming distance between the con-
square distance from origiR?(t) (averaged over surviving figurationsx andy.
rung defined as The precise location of this phase transition depends on

the particular implementation of the stochasticity. Since the
1 X sum of occupied cells in the neighborhoodxak in general
Nt = > > wlk), different from that ofy, the evolution equatioril) for the
two replicas uses different random numbeys The correla-
tions among these random numbers affect the location of the
13 ¢ chaotic phase boundafg4].
P(O)= 1 2, 9( EI “’i(k))’ ®) We limit our investigation to the case of maximal corre-
lations by using just one random number per site, i.e.; all

IV. CRITICAL DYNAMICS AND UNIVERSALITY
CLASSES

1 K are the same for adl at the same site. This gives the smallest
R2(t)= 2 2 w!'(K)i2. possible chaotic region._ Notice thgt_ we have to extrapt a
KN(t) =1 5 random number for all sites, even if in one or both replicas

have a neighborhood configuration for which the evolution
In these expressiong,labels the different runs arlid is the  rule is deterministidif c=0 or c=3).
total number of runs. The quantity; is x; if the nearest One can write the mean field equation for the damage by
absorbing state i6 and 1—-x; otherwise;# is the Heaviside taking into account all the possible local configurations of
step function, that assumes the value 1 if its argument iswo lattices. The evolution equation for the damage depends
greater than 0, and the value O if it is smaller than O. on the correlations among sites but in the simplest case we
At the critical point one has can assume thdtt(t+ 1) depends only oh(t) andc(t), the
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1 VI. FIRST-ORDER PHASE TRANSITION AND
0.9 HYSTERESIS CYCLE
08 First-order phase transitions are usually associated to a
0.7 hysteresis cycle due to the coexistence of two phases. In the
0.6 absence of absorbing states, the coexistence of two stable
Py o5 phases for the same values of the parameters is a transient
i effect in finite systems, due to the presence of fluctuations.
) To find the hysteresis loop we modify the model slightly by
03 putting pp=1—pz=¢ with e<1. In this way the empty and
0.2 fully occupied configurations are no longer absorbing. This
0.1 brings the model back into the class of equilibrium models
0 for which there is no phase transition in one dimension but

0 0.102 0304050607 0809 1 metastable states can nevertheless persist for long times. The
n mean field equation for the densitybecomes
FIG. 3. Mean field damage-spreading phase diagram. The dia-
gram has been obtained numerically iterating &d.). The lightest
level of gray corresponds to<Oh<1/8, the next ones to 1#8h
<1/4, 1/4<h<3/8, and 3/8&h<1/2, respectively.

c'=e(1-c)3+3p;c(1—c)?+3p,c?(1—c)+(1—¢)cs.
4

We study the asymptotic density pg andp, move on a

density of occupied sites. In Appendix A we find the evolu- "€ With slope 1 inside the hatched region of Fig. 1. Ber
tion equation for the damage in the mean field approximaf:Iose to zero, Eq(4) has iny one f|xgd pqlnt, which is
tion. In Fig. 3 we show the phase diagram of the chaoti(f;table and close te. As p, Increases adlabatllcal[)by Fak'
phase in this approximation. There is a qualitative agreemedfd € att=0 equal the previous value of the fixed poitite
with the mean field phase diagram found for the DK model"€W asymptotic density will still assume this value even
[35]. when two more fixed points appear, one of which is unstat_)le
In Fig. 4 we show the phase diagram for the damag _nd the_othe_r stable and close to one. Eventuglly_ the first
found numerically by considering the evolution starting from Xed point disappears, and the asymptotic density jumps to
uncorrelated configurations with initial density equal to 0.5.the sta_ble fixed point clqse to one. C_;omg backwards on the
The damage region is shown in shades of gray. Outside thiF2™M€ line, the asymptotic dens[ty V\.”".be close to one until
region there appear small damaged domains on the oth at fixed point disappears and it will jump bac;k to a;mall
phase boundaries. This is due either to the divergence of thiUe close to zero. By symmetry, the hysteresis loop is cen-
relaxation time(second-order transitionsr to the fact that a  €réd around the linp; + p,=1 which we identify as a first-
small difference in the initial configuration can drive the sys-rder phase transition line inside the hatched region.
tem to a different absorbing statfirst-order transitions The The hysteresis region is found by two methods, the dy-
chaotic domain near the poinp{,p,)=(1,0) is stable re- namical mean field, which extends the mean field approxi-

gardless of the initial density. On the lipa=0 the critical mation to blocks of sites[36], and direct numerical experi-
points of the density and the damage coincide’at ments. As stated before it is necessary to introduce a small

perturbatiore = py=1— p3. We consider lines parallel to the
diagonal p;=p, in the parameter space and increase the
value ofp; andp, after a given relaxation timg up to p»

0.9 =1; afterwards the scanning is reverted dowmpie=0. The
0.8 hysteresis region for various values of parameters are re-
07 ported in Fig. 5. In numerical simulations, one can estimate
i the size of the hysteresis region by starting with configura-
p tions 0 and 1, and measuring the sizeé of the region in
2 05 . . ; .
which the two simulations disagree.
04
03
- VIl. RECONSTRUCTION OF THE POTENTIAL
0.1 An important point in the study of systems exhibiting ab-
0 sorbing states is the formulation of a coarse-grained descrip-
0 010203 04 0506 07 0809 1 tion using a Langevin equation. It is generally accepted that
B DP universal behavior is represented by
FIG. 4. Phase diagram for the damage spreading from direct
numerical simulations. The cql_or code is that of Fig._3_. Traces _of Jge(x,t) —ac(x,t)—bc2(x,t)+ V2c(x,t)+ \/Ma(x,t),
the second-order phase transitions are present; they join to the first-  Jt
order (c,=0.5) phase boundary. 5)
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] FIG. 6. Reconstruction of potentidl(c) for p,=0. We per-

FIG. 5. Profile of the hysteresis region for several values of theformed 18 runs over a system of 500 sites and computed the prob-

. L ) ability distribution P(n) averaging over 500 time steps after dis-
noisee and relaxation timel according to the local structure ap- ; . oS . i
ST o ; ; carding 1000 time steps. We limited to small times in order to be
proximation withl = 6. The curves represent the intersections of theable to see the divergence at the origihe absorbing stareto-
hysteresis cycle witlt=0.5 (horizontal dashed line in the inget g 9

The curves join smoothly g, =0, p,=1 (not representad Start- gether with the other local minimurtthe active state
ing from the out most curve, these correspond Tte-500, &
=0.0001;T=1000,e=0.0001, andr =500, e =0.001. The dashed
lines represent the mean field hysteresis region. The inset represents
the cycle along a line parallel to the diagomal= p,.

where also the time scale has been renormalized.

The associated Fokker—Planck equation is
dP(c,t) I — —, 2

wherec is the density fielda andb are control parameters i pclac—behP(e)+ 5 ——cP(c),

and « is a Gaussian noise with correlations e

a(X,)a(x’,t"))= 6,4 6. The diffusion coefficient has . . . .

E)e(en azbs(orbegl>into>§[ﬁe B;iramemaemdb and the time scale. vyhere P(c,t) is th.e probab!llty .Of observing a densityat

This equation can be obtained by a mean field approximatione. t. One possﬂgle solution is 5-'peak centered at the

of the evolution equation keeping only the relevant terms©"gin, corresponding to the absorbing state.

The statec(x,t)=0 is clearly stationary, but its absorbing By considering only those trajectories that do not enter

character is given by the balance between fluctuations, whici1€ absorbing state during the observation time, one can im-
are of order of the field itself, and the “potential” paatc ~ POSe a detailed balance condition, whose effective agreement

—bc? (see also Ref28]). with the actual probability distribution has to be checlked
The role of the absorbing state can be illustrated by takingposteriori

a sequence of equilibrium models whose energy landscape A stationary distributionP(c)=exp(—V(c)) corresponds

exhibits the coexistence of an infinitely deep wghe ab- to an effective potentia¥/(c) of the form

sorbing stateand another broad local minimugoorrespond- L

ing to the “active,” disordered stateseparated by an energy V(c)=log(c)—2ac+bc?.

barrier. There is no true stationary active state for such a

system(with a finite energy barrigy since there is always a Note that this distribution is not normalizable. One can im-

probability of jumping into the absorbing state. However, thepose a cutoff for lonc, makingP(c) normalizable. For finite

system can survive in a metastable active state for time insystems the only stationary solution is the absorbing state.

tervals of the order of the inverse of the height of the energyHowever, by increasing the size of the system, one approxi-

barrier. The parameters controlling the height of the energynates the limit in which the energy barrier is infinitely high,

barrier are the size of the lattice and the length of the simuthe absorbing state unreachable, &{a) is the observable

lation: the equilibrium systems are two dimensional withdistribution.

asymmetric interactions in the time directif#]. In the lim- In order to find the form of the effective potential for

iting case of an infinite system, the height of the energyspatially extended systems, Mwn[28] numerically inte-

barrier is finite below the transition point, and infinite above,grated Eq.(5), using the procedure described by Dickman

when the only physically relevant state is the disordered ond29]. It is however possible to obtain the shape of the effec-
It is possible to introduce a zero-dimensional approximadtive potential from the actual simulations, simply by plotting

tion to the model by averaging over the time and the spacey(c)= —log(P(c)) versusc, wherec is the density of the

assuming that the system has entered the metastable state comfiguration.

this approximation, the size of the original systems enters In Fig. 6 we show the profile of the reconstructed poten-

through the renormalized coefficierds b, tial V for some values op around the critical value or the

infinite systemp} on the lineq=0. We used rather small

systems and followed the evolution for a limited amount of

time in order to balance the weight of thigpeak with respect

dc(x,t)
at

=ac(x,t) —bc2(x,t) + Je(x,t) a(x,t),
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P — tential governing the coarse-grained evolution for the DP and
R the PC phase was found through direct simulations, confirm-

. ing that critical fluctuations diverge at most logarithmically
in the PC class.

The phase diagram of our model is qualitatively similar to
Bassler and Browne’'$BB) one [30]. In both models two
critical lines in the DP universality class meet at a bicritical
point in the PC universality class, and give origin to a first-
order transition line. This suggests that the observed behav-
7 ior has a certain degree of universality.

An interesting feature of the BB model is that the absorb-
2 L L L L ing states at the bicritical point are indeed symmetric, but the
0 0.05 0.1 0.15 0.2 925 model does not show any conserved quantities. We have
shown that the bicritical dynamics of our model can be ex-

FIG. 7. Reconstruction of potenti®l(c) for the kink dynamics  actly formulated either in terms of symmetric states or of
on the linep,=1—p;. The simulations were carried out as de- kinks dynamics, providing an exact correspondence between
scribed in Fig. 6. the presence of conserved quantities and the symmetry of

absorbing states.
to P(c) (which is only metastab)e For larger systems the Furthermore, in order to obtain a qualitatively correct
absorbing state is not visible above the transition and domimean field phase diagram of the BB model, one has to in-
nates below it. clude correlations between triplets, while the mean field

On the lineg= 0 the model belongs to the DP universality phase diagram of our model is already correct at first ap-
class. One can observe that the curve becomes broader in theoximation. This suggests that we have described a simpler
vicinity of the critical point, in correspondence of the diver- model, which can be used as prototype for multicritical sys-

gence of critical fluctuationg~|p—p.~?', y'=0.54[32].  tems.

By repeating the same type of simulations for the kink dy-

namics(random initial conditioh, we obtain slightly differ- ACKNOWLEDGMENTS
ent curves, as shown in Fig. 7. We notice that all curves have
roughly the same width. Indeed, the exponghfor systems
in the PC universality class is believed to be exactl\38],

as given by the scaling relatid82] y'=dv, —28. Clearly,

10
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much more information can be obtained from the knowledg Itlakll)\}l C%’:Q(igr (l;/lr(]aglccg;o?égecte‘IOI\(I)—Ll_BEl%Cgﬁﬁgé:r

of P(c), either by direct numerical simulations or dynamical (Mexico)
mean field through finite scale analysis, as shown for in- '

stance in Ref[37].
APPENDIX A: DAMAGE SPREADING IN THE MEAN

FIELD APPROXIMATION
VIIl. DISCUSSIONS AND CONCLUSIONS

The minimum damage spreading occurs when the two

We havg studied a probabilistic cellular automaton_ W_ithreplicasx andy evolve using maximally correlated random
two absorbing states and two control parameters. This is g mpers. i.e.. when all in Eq. (1) are the samg34]. Let

simple and natural extension of the Domany—KingeK) w=x@y be the damage at a sifeand timet. It is also

model. Despite its simplicity it has a rich phase diagram Withpossible to considew as an independent variable and write

two symmetric second-order phase curves that join a firstg,:X@W_ We denote s=x_+x+x,, S =y +y+y,

order line at a bicritical point. The phase diagram and the:(x,@w,)+(xe9w)+(x+69w+) and s"=w_+w+w, .
critical _propertles pf the model were .found. using several-rhe evolution equation fdn, the density of damaged sites
mean field approximations and numerical simulations. The, timet, is obtained by considering all the local configura-

second-order phase transitions belong to the directed Percdons x_xx. andw_ww. of one replica and of the damage
lation universality class except for the bicritical point, which I T

belongs to the parity conservatigRPC) universality class.
The first-order phase transition line was put in evidence by a h'= > m(cs3mh,s" 3)|ps—psl. (AL
modification of the model that allows one to find the hyster- V;‘*VXV’;L
esis cycles. The model also presents a chaotic phase analo-
gous to the one present in the DK model. This phase waghere
studied using direct numerical simulations and dynamical
mean field. m(a,nm)=a"(1—a)" ™
On the line of symmetry of the model the relevant behav-
ior is given by kink dynamics. We found a closed expressiorin Eq. (A1) all the sums run from zero to one. The value of
for the kink evolution rule and studied its critical properties, ¢ is given by Eq.(2). The term|ps— py| is the probability
which belong to the PC universality class. The effective pothat R¢® R, is one using only one random number for the
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rs. The argument of the sum is the probability tk&gy’. It 5, 1= V@ B,
is possible to rewrite Eq/AL) in a different form '

(m m—s\/ m—s 85 =P B,

h,: 1 L
5, 4= £,
Xa(n,s+ S/_Z/um)“as_ ps’|v (A2) '

wheres ands’ are the same as above, arids the overlap In the evolution equatioril), one hasR;=1 if r;<py,
betweenx and y, i.e., /=(x_/Ay_)+(xA\y)+(x;A\y,) andR=1if r,<p,. On the linep;+p,=1 (i.e., p,=1
(/\ is the AND operation Assuming that§)=0 if b>a,  —P1), R takes the value 1 if £r;>p;. Choosing r;

a<0 or b<0, the sum of(A2) can run over all positive ='1 (this choice does not affect the dynamics of a single
integers. This expression is valid for all totalistic rules with afeplica we haveR,=R;®1 and Eq(1) becomes, after some
neighborhood of sizen (herem=3). manipulations,

The stationary state of EqA1) [or Eq. (A2)] can be
found analytically using a symbolic manipulation program. x'=R(éW@ P g £2),
The chaotic transition line is

P,=pi—3, whereR=R;. One can easily check that
with 1/3<p;<1, 0<p,<2/3. W=y _oyox
APPENDIX B: KINK DYNAMICS and

On the segmem; +p,=1, p1<p; the order parameter is
the number of kinks. The dynamics of the kinks=x; A=y _yox.
@®X;, 4 (that for the ease of notation we wrije=x®x_,) is
obtained by taking the exclusive disjunctiondf=x; “* and Finally, we obtain the evolution equation for tiye
x, =x!t1 given by Eq.(1). In order to obtain a closed ex-
pression for they, a little of Boolean algebra is needed. Y =X ®X]

- +

The totalistic functionss,, ¢ wheres=x_+Xx+x, can be
expressed in terms of the symmetric polynomigls of de- =R(y_ayay_y)oR, (YOY,®YY, )8y _yByy, By
greej [38]. These are

=R(y-VY)ORL(YVY,)Dy_yoyy, Y.
ED=x_oxox,,
In this expression/ denotes the disjunction operati(@R).

E@)=x_X@OX_X, ®XX, peraticory).
The sum modulo 2XOR) of all y; over the lattice is invari-

E®=eMe@=y xx. . ant with time, since all repeated terms cancel oat &
=0). Note that the kink dynamics use correlated noise be-
The totalistic functions are given by tween neighboring sites.
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