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Abstract

The coexistence of different viral strains (quasispecies) within the same host are nowadays observed for a growing

number of viruses, most notably HIV, Marburg and Ebola, but the conditions for the formation and survival of new

strains have not yet been understood. We present a model of HIV quasispecies competition, which describes the conditions

of viral quasispecies coexistence under different immune system conditions. Our model incorporates both T and B cells

responses, and we show that the role of B cells is important and additive to that of T cells. Simulations of coinfection

(simultaneous infection) and superinfection (delayed secondary infection) scenarios in the early stages (days) and in the late

stages of the infection (years) are in agreement with emerging molecular biology findings. The immune response induces a

competition among similar phenotypes, leading to differentiation (quasispeciation), escape dynamics and complex

oscillations of viral strain abundance. We found that the quasispecies dynamics after superinfection or coinfection has time

scales of several months and becomes even slower when the immune system response is weak. Our model represents a

general framework to study the speed and distribution of HIV quasispecies during disease progression, vaccination and

therapy.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The human immune system has the goal of providing a basic defense against pathogenic organisms [1,2].
The cells forming the immune system communicate via direct contact and through chemical signals. Using a
very basic schematization, the immune system protective action can be divided into an innate, specific
response, and an adaptive one. This latter component involves two major types of cells: lymphocytes (T and B
lymphocyte cells) and antigen presenting cells: monocytes, macrophages, B cells and dendritic cells.
Lymphocytes have the ability to react to specific epitopes, which generally are portions of a protein. The idea
is to recognize those shapes that constitute a fingerprint of the presence of a foreign agent (antigen), but not to
e front matter r 2005 Elsevier B.V. All rights reserved.
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react to self repertoire. Their response depends on the T cell receptor (TCR) of the T cell, and immunoglobulins
(Ig) of the B cells. It is the great variety of cells carrying TCRs or secerning Igs that allows the recognition of all
possible antigens.

Let us present a simplified description of the adaptive response, see Ref. [2] for a physicists-oriented
introduction to immune system modeling. The task of protecting the body implies the detection and removal
of free antigens, and the recognition and suppression of infected (or cancer) cells. These deviating self cells are
identified by a sophisticated automatic mechanism, common to all cells, that presents on their surface specific
receptors along with epitopes. Both viral infection or cancer proliferation implies the activation of novel genes,
and thus the production of foreign proteins that can thus be detected. However, due to the danger (and cost) of
an inflammation, the activation of the immune adaptive response is subject to a double key protection,
implemented by T helper cells.

T cells are divided into CD4+ (helper) and CD8+ (killer) types, according with specific receptors present
on their surface. CD4+ T cells provide the regulatory mechanism that triggers the immune response by
finding and presenting antigens and releasing stimulatory signals (cytokines). T cells are specific for a given set
of epitopes; simplifying, we can say that they are specific for a given antigen. Once activated, CD8+ T cells
search for and kill other cells presenting the specific antigen. Their action is triggered by CD4+ T cells
recognizing that antigen. This specificity is not absolute: there is a certain variability of receptors allowing
cross-recognition of similar epitopes.

The coverage of all possible shapes is implemented by a unique mechanism of genetic combinatorial
sampling. The protection against self-recognition is due to the maturation phase. Immature T lymphocytes are
generated in the bone marrow and then travel to the thymus where they proceed through a selection process.
In the thymus those CD4+ and CD8+ T cells that initiate any reaction against self shapes are selected out.

B cells are responsible of the removal of extracellular antigens. Antigen specific CD4+ T cells are required
to induce proliferation of antigen specific B cells. The activated B cells then proliferate and differentiate into
plasma cells. These produce soluble counterparts to the cell’s receptors, called antibodies, which circulate in
the blood and fluids. Antibodies bind to specific extracellular antigens and allow them to be removed by other
means.

An antigen selects a ‘‘strain’’ of lymphocytes which replicates in response (clonal response). During this
growth, the specificity of receptors to a given antigen may be increased by an hypermutation mechanism that
slightly modifies the genes specifying the receptor shapes. A few cells of this strain (memory cells) will persist
for a long time in the body, after viral eradication: should the specific antigen reappear, the response will be
faster and stronger (vaccination).

Let us now describe the immune response in the framework of an HIV infection. HIV infects cells that
contain the CD4 receptor on their cell membrane, through which the virus attaches and enters the cell. The
CD4 molecules are found on T lymphocyte helper cells, monocytes and macrophages.

As HIV uses the CD4 molecule to establish the initial binding to a cell, these cells are the main target for
HIV infection. Since CD4+ T cells are vital to the establishment of an immune response, their progressive loss
opens the way for AIDS-related opportunistic infections [3].

The worldwide presence of several strains of the HIV virus and their often simultaneous presence within a
patient, due to the increased frequency of multiple infections, are the new remarkable features of HIV
pandemia. For example, HIV-1, presently, exists as three groups classified according to their degree of
similarity. Group M stands for main, Group O for outlier and Group N for non-M, non-O. Group M is the
predominant group and is divided into nine strains (subtypes or strains) that differ in the env gene [4,5].
Specific strains are predominant in different geographical regions and their high mutation rates often allow
researchers to track the network of contacts. A growing number of strains within each subtype is nowadays
reported.

The origin of different HIV strains is related to the quasispecies characteristics of HIV evolution [6].
Quasispecies are the combined result of mutations and recombination, originating variability, and selection,
which filters out this variability. The main source of mutations is the reverse transcription phase [1], in which
the viral RNA is converted into DNA by viral proteins that are not very accurate. Other sources of variability
are the errors during the transcription phase, deletions and other genetic rearrangements during the
integration of viral DNA into the host chromosomes, including recombination with other viral DNA or
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proviruses present in the cell. This mechanism thus increases the viral diversity in the body. However, not all
these variants have the same capability of completing their life cycle and multiplying their clone number (i.e.,
their fitness).

First of all, the infection capacity of mutants may vary, and also their speed of replication [7]. In some cases
a single mutation is sufficient to alter significatively the fitness [8], or this may be due to the accumulation of
several mutations (smooth or Fujiama landscape [9]). Since the number of targets (the substrate) is limited, the
strains that originate more clones in the unit of time tend to eliminate less fit mutants, which are subsequently
regenerated by the mutation mechanism [10]. While mutations are an essential ingredient for exploring the
genetic space in the search for the fitness maximum, they also lower the average fitness of the strain, which
generally is formed by a cloud of mutants around the fitness maximum (quasispecies). For a given fitness
landscape, there is a maximum tolerable mutation rate above which the quasispecies structure is lost (error
catastrophe [6]).

The HIV quasispecies seem able to compete and their persistence affects AIDS progression [11,12]. For
instance, some mutants may even be unable to colonize new cells, but they may survive by parasitizing more
invasive clones (this is particularly observed when recombination of several strains is present) [13]. Finally, the
immune response is specific, with a certain tolerance, to a given antigen, and may vary from antigen to
antigen, due, for instance, to their similarities to self shapes. Thus, the presence of an antigen originates an
immune response that suppresses also variants of the stimulating clone. This results in a form of competition
among strains or clones, which prefer to stay away in the genetic space in order to escape the immune response
and/or lower their intensity by dividing the productive capacity of the immune system into several strains
(multi-infection). The effect of this competition may result in a continuously varying dominant quasispecies
that tries to escape the immune response, or the splitting of the quasispecies into multiple strains
(quasispeciation). During the first phases of HIV infection, when the immune response is vigorous, the first
phenomenon is observed until presumably the virus finds a niche in the genetic space, not sufficiently covered
by the immune system, originating AIDS [14,15]. The resistance to antiviral treatment may be ascribed to a
similar mechanism. When the immune system is depressed, also slightly less adapted strains may survive,
giving origin to multi-clonal infections often observed in terminal patients [16].

Secondary HIV infections with closely related strains may induce the response and clonal selection of a new
subsets of CD4+ T cells that recognize specifically the new HIV strain, even under conditions of chronic
infection by other strains. We can distinguish two scenarios: strain coinfection (simultaneous infection) and
superinfection (delayed secondary infection) scenarios (see for instance Refs. [17–21]).

Our aim is to model viral strain coevolution and understand the importance of factors such as mutation
rates, strength of immune response, cross-talks between T and B cells and competition among strains in
coinfection and superinfection.

The fate of an epidemic does not depend only on the evolution inside a single host, but also on the
transmissibility to other hosts. The social factors involved in emergence of viral strains are diverse and include
global transportation, urban crowding and poverty, changing behavioral patterns, human population growth,
etc. [22]. We shall not deal with these aspects in the present paper.

The article is organized in the following way: in the following sections we introduce a model that combines
T and B cells immune response to HIV infection. Then we extend the model to include quasispecies and we test
the model in the scenarios of coinfection and superinfection using parameters derived from biological
literature. Finally, we discuss results and work in progress.

In what follows, we shall use the terms strain and quasispecies, according with the scale at which one is
examining the system. In order to resolve the quasispecies details, one needs to use a (genotypic or phenotypic)
scale sufficiently fine to allow differentiation inside a single quasispecies. On the contrary, if one is interested in
the ecological relations among quasispecies, it is more efficient to use a scale in which a whole quasispecies is
simply collapsed in a single value. In this latter case we use the term strain to refer to the whole quasispecies.

2. Models

Mathematical models have proven valuable in understanding the mechanisms of many of the observed
features of HIV dynamics, such as the positive and negative regulation of T and B cell selection, the dynamics
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of production of the TCR repertoire in the thymus, the progression to and the latent phase of AIDS
[15,23–29]. They have also been useful in forecasting the effects of multi-drug therapy.

While the majority of HIV dynamics models assume that each CD4+ T cell is infected by a single HIV
strain, Dixit and Perelson [30] have shown that with the progression of HIV infection multiple infections
become very likely.

Our goal was to investigate the conditions of the multi-strain persistence within a single patient and the
effects of coinfection and superinfection. To set the scenarios of our model, it is noteworthy that, in general,
the immune response can be seen as a prey/predator dynamics, in that the immune system is the predator of
the virus (the prey). The HIV dynamics is more complex because the HIV is both the prey and the predator,
i.e., it attacks CD4+ T cells and is attacked by cells coordinated by CD4+ T cells.

Fig. 1 illustrates the relationships among the different quantities of our model. This schematization is valid
for the quasispecies case and for the undifferentiated one. In this latter case, the indication of strains (in
parenthesis) should be neglected. The clonal amplification of naive T cells (of population i) depends on the
ability of (ith class) T cell to recognize all the infected T cells (carrying an epitope from the kth class of
viruses). The rate of infection of naive T cells (of class i) depends on all the viruses (containing the epitope k).
In the same way, the clonal expansion of infected T cells (of class k, meaning that they have been infected by a
virus of class k irrespective of the original T class) depends on the interaction of these viruses with all the T
cells (of any class i).

2.1. Combining B and T cell responses

Let us start from a widely accepted theoretical model of HIV progression and immune response proposed
by Perelson and colleagues in 1995 [15], recently extended to include CTL response and stochastic components
[23]. There are several works that discuss the role of B cells in the immune response [14]. Since the progression
to AIDS has been found to correlate well with CD4+ T cells decrease, B cells are thought to play a minor role
in the immune response to HIV. Note that B cells can act only as predator to the HIV, so their coupling with
HIV dynamics is different from that of T cells. Our aim is to present a more general model framework of both
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Fig. 1. Representation of the interactions between cells and/or cells and viruses. HIV strains infect CD4+ T cells that become infected and

produce new viruses. At the same time HIV peptides are presented via APC cells to T helper cells that become activated. Activated CD4+

T cells trigger B and CD8+ cell reactions: the first release antibodies that bind to the antigen while the latter directly remove infected

CD4+ T cells. ‘‘+’’ and ‘‘�’’ signs indicate cell/virus production or removal.
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T and B immune responses to HIV. We have first considered the following system of differential equations
describing the dynamics of a single viral strain:

_T ¼ ðlþ gðTÞITÞð1� T=KÞ � ðdT þ bV ÞT , (1)

_I ¼ bVT � ðdI þ gðIÞTÞI , (2)

_V ¼ pI � ðcþ gðV ÞTÞV . (3)

All quantities indicated by Greek letters and c have unit days�1.
This model considers the T-helper (CD4+) cells (T), and HIV virus particles (V); the T cells can become

infected (I). With respect to Refs. [15,23], in Eq. (1), we describe how the number of naive T cells (T) which
have passed the thymus selection depends on rate of formation in the bone marrow ðlÞ, and on clonal
amplification upon stimulation by infected cells, I (term IT). They decrease with a rate that is the sum of a
natural clearance, ðdT TÞ, due to cell aging, and cell destruction upon virus infection, ðVTÞ. The density of T
cells is limited by a saturating density/lymphonode capacity factor, K. Following Ref. [28] we have set
K ¼ 1012.

The second equation describes the rate of infection, described by b, of naive T cells upon the interaction
with the virus (term VT). Infected T cells are cleared out at a fixed rate, dI , and due to the action of natural
killer cells, CD8+ (term TI).

The third equation describes the budding of viruses from infected cells, p. Virus particles are cleared out at
rate c (defective viruses) and after immunoglobulin binding and subsequent engulfments by the macrophages
(term TV).

The g parameters have the same meaning of the constant of association in chemistry, or can be thought as a
combination of both the probability of interaction and the interaction strengths between cells (gðTÞ,gðIÞ) or
between cells and viruses ðgðV ÞÞ. Note that in the limit g! 0 and K !1, we recover the pattern of the
standard model [27].

The B cell response is modeled using the parameters corresponding to the T cells which activate them by
receptor recognition. Here, we have assumed the immunoglobulin concentrations, which represent the B cell
response, are linearly correlated to the concentration of activated B cells. These in turn are supposed linearly
correlated to the concentration of the CD4+ T cells. Exploratory analysis with different parameters suggested
us that Eq. (3) allows to keep a minimum number of parameters without loss of important details.

Fig. 2 shows some typical behavior of this single-species model, showing the case of asymptotic coexistence
of immune system and virus (chronical infection) and virus eradication. This latter scenario may be triggered
both by increasing the T killer ðgðIÞÞ or B ðgðV ÞÞ response. In no cases it is possible to observe the defeat of the
immune system, since a decrease of the quantity of T cells affects also the rate of viral production. This reflects
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Fig. 2. Typical time evolution of the single-species model; diamonds represent uninfected T cells, squares represent viruses and plus signs

the infected T cells. Plot (a) illustrates a scenario leading to a chronic infection (gðTÞ ¼ 10�6, gðIÞ ¼ 10�5, gðV Þ ¼ 0). In the presence of a

further B cell response (plot (b)), the infection is defeated by the immune system (gðTÞ ¼ 10�6, gðIÞ ¼ 10�5 and gðV Þ ¼ 5� 10�6).
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the observed fact that progression to AIDS and death is caused by opportunistic infections and not directly by
the HIV virus. Model parameters are derived from medical literature (see also Ref. [23]).

2.2. Modeling quasispecies competition and persistence

Our actual model is obtained by extending Eqs. (1)–(3), to include the effects of quasispecies persistence.
For the sake of simplicity, we assume that each viral strain is characterized by just one epitope i. We make

use of coupled differential equations, one for each viral quasispecies and T cell. Although this mean-field
approach disregards the effect of fluctuations and genetic drift in quasispecies abundances, it is useful for
understanding the coarse-grain features of the behavior of the interplay between HIV and the immune system.

The quasispecies model is described by the following set of equations:

_Ti ¼ li þ
X

k

gðTÞik IkTi

 !
1�

1

K

X
i

T i

 !
� dT þ

X
k

bkV k

 !
Ti, (4)

_Ik ¼
X

k0

mkk0bk0Vk0

 ! X
i

T i

 !
� dI þ

X
i

gðIÞki Ti

 !
Ik, (5)

_Vk ¼ pIk � cþ
X

i

gðV Þki Ti

 !
Vk. (6)

The model considers the following cell types: T-helper (CD4+) cells responding to virus strain i, ðTiÞ; T cells
(any strain) infected by virus strain k, ðIkÞ; abundance of viral strain k, ðV kÞ. This means that viral strain k are
identified by just one epitope, which is then displayed on the surface of the T cell of class k, and that a T cell of
class i can be activated at least by one CD4+ T cell carrying the epitope k, which is specific of the viral strain
k. The indices i (k) range from 1 to Ni ðNkÞ, and in the following we have used Ni ¼ Nk ¼ N.

Eq. (4) describes the generation of T cells through two mechanisms: the bone-marrow source (and selection
in the thymus) and the duplication of T cell strains activated upon the recognition with an antigen carrying cell
that may be even an infected one. In order to take into account the limits of the immune response, we have
investigated both a logistic term and different types of saturating and density-dependent functions [23]. The
logistic term models the global carrying capacity of immune system. In other works [23], a saturating function
or density dependent function was used, aiming to describe how the growth and development of the immune
response is limited by the timing of T cell division among other constraints such as cell–cell recognition, signal
diffusion, and cell migration.

The death rate term represents both a natural death rate proportional to the population, and the infection
rate of T cells by any viral strain. The infection probability, reflected by the term

P
k bkV kTi and by the sum

over Ti in the I cell birth rate, is the same irrespective of the T class. We assume that an infected T cell no more
contributes to the immune response.

Eq. (5) describes the infection dynamics. The incorporation of two death rate parameters reflects the fact
that the infected cells disappear due to cellular death and after the action of natural killer cells (CD8+). There
are clear experimental evidences that CD4+ cells decrease during the late HIV infection stages and in the
AIDS state. In terms of our models this mean that the parameter dI depends on the stage of the infection. We
have preferred to model the early stage of infection, far from AIDS conditions and therefore we have set dI to
a constant, medical literature referred, value.

The term mkk0 represents a mutation process that affects the phenotype. Mutations occur mainly during the
reverse transcriptase processing of the viral genomes. The mutation parameter is essential for the formation of
new quasispecies. RNA viruses have been reported to have substitution rates of the order of 1� 10�3

substitution per site per replication [31]. Mansky and Temin [32] determined an in vivo mutation rate of
3:5� 10�5. The majority of mutations does not change the amino acids. Moreover, most of amino acid
substitutions are neutral or quasi-neutral, since they do not change remarkably the protein structure, and
therefore the fitness of the species; effective differences in fitness and behavior evolve through several amino
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acid changes (see for instance Ref. [33]). Nevertheless, one single event of recombination can often alter the
fitness in a substantial way. We take into consideration only those non-synonymous mutations that alter the
phenotype (protein structure), and therefore we used a slightly smaller value for the mutation rate of the order
of 10�5.

We have implemented the matrix mkk0 as a discrete Laplacian (diffusion in phenotypic space) controlled by
parameter m (without indices).

Eq. (6) describes the virus replicative dynamics in terms of a birth rate proportional to the virus ‘‘budding’’
numerosity. The viral death rate parameters depend on the rate of natural death and on the recognition of
virus by B cells.

As in the single-specie model, B cells and T killer cells are only implicitly included in the model in order to
reduce the dimensionality without losing too many details. We assume that these responses are fast enough to
be at equilibrium and they are just proportional to the abundance of (cognate) T helper cells.

While in the single-strain model, Eqs. (1)–(3), the three g parameters are scalar values, here gðTÞik , gðIÞki and gðV Þki

are matrices describing the interactions between viral strains and immune cells, i.e., who will interact with
whom. The g parameters represent the interaction between cells and/or cells and viruses in terms of geometry
and strength of the interaction. It expresses in a single matrix all the information about diffusion, epitope
recognition and show some analogies with a constant-in-time fitness, as described in Ref. [34].

When the g matrices are diagonal, each T cell interacts only with one viral strain. The non-zero elements of
the ith row in the gmatrices represent the strains of the virus recognized by the immune cells of class i while the
value represents the affinity maturation, i.e., the accuracy in recognition.

The p coefficients (all equal), the gðTÞ matrix and other parameters will contribute to the replicative success
of the virus, i.e., its fitness. Many of the parameters are set equal among the different strains. Therefore, the
gðTÞii , which represents the efficiency of the T cell recognition of viral antigens, is the most important
determinant of the viral fitness.

In order to control the shape of the gmatrices with few parameters, we choose the following functional form
(see Fig. 3):

gij ¼ A
1

2
1þ cos

2p
N
ði � jÞ

� �� �� ��A

þ B
1

2
1þ cos

p
N
ði þ jÞ

� �h i� ��B
.

The parameters A and �A (B and �B) control the shape of the g matrices in the direction transverse (parallel) to
the main diagonal. The exponents �A and �B control the smoothness of the variation along the corresponding
direction. For � small the variation of the function is very small, while for �!1 the corresponding function
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Fig. 3. Control parameters and shape of the g-matrices.
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is d-shape. So, a diagonal g matrix is obtained by setting B ¼ 0 and �A large. For instance, differences in the
fitness of phenotypes may be obtained by setting B and �B different from zero in some of the g-matrices, while
the intra-species competition is triggered by setting A different from zero and �A small.

It is worth noting that nowadays, 2-photon experiments allow to measure recognition strength, movements
and speed of the immune cells [35] that, in theory, can be used to derive estimates of the g matrices. We think
that these data are still in embryonal phase, so we focus on the qualitatively features of the response.

We introduce the assumption of a linear strain space that represents the different phenotypes, see for
instance Refs. [41,42] for similar assumptions. The strain space is ordered in terms of phenotype similarity.
This assumption is justified if the phenotypes are determined by few viral protein functional determinants
which are both independent and differ only in few DNA bases, i.e., few mutations can change one determinant
into another. Since we consider a quasi-neutral model of evolution, e.g., sequential mutations change one
amino acid into another similar, boundaries can be modeled as periodic. These two assumptions, linear space
and periodic boundaries, certainly make the model more manageable.

We have used the same values of model parameters by re-scaling T ; I ;V , li and K by the number N of
strains.

3. Numerical results

The evolution of T cell abundances in a scenario of quasispecies is shown in Fig. 4. Note that when the
asymptotic state of our model is given by a fixed point, the asymptotic distribution is insensitive of the initial
conditions, and the strains corresponding to higher fitness are more abundant. However, one should consider
that this asymptotic state may be reached after such a long time that it may be outside any practical scenario
of the progression of a disease. The role of mutations in the transitory regime is quite particular. First of all,
mutations are necessary to populate strains outside the first inoculum, see also Fig. 6. Mutations affect also
the average fitness and the width of the quasispecies and the Eigen’s error threshold [36] is a sort of extremal
consequence of this effect. However, in the presence of coupling among strains, due to competition or to
global constraints (the K parameter), the specific form of mutations does not play a fundamental role, see also
Ref. [34].

3.1. Phase diagrams of g matrices

We focused our attention on the parameter A of the three g matrices which represent the major features of
the interaction, Fig. 5. The regions I and II in the three diagrams represent chronic infection (coexistence of
103
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Fig. 4. Typical time evolution of the T cell abundance in the multi-species model for short-term (a) and long-term behavior (b). We set

m ¼ 10�5, A ¼ 5� 10�6, �A ¼ 10, BðTÞ ¼ 3� 10�6, �ðTÞB ¼ 10 with N ¼ 5. In the inset, the y-axis on the left reports the asymptotic

abundance of virus strains, the y-axis on the right shows the interaction strength (dashed line) between T cells and virus phenotypes

(x-axis).
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immune system and viral infection) and complete recovery (virus defeat) from the disease, respectively. For the
sake of clarity instead of 3D diagrams, we choose 2D projections, after setting the other dimension to a
biologically meaningful value.

The effect of B cells is shown in Fig. 5a : for a very low contribution of B cells to the immune response, there
is a clear threshold effect on both gðTÞ and gðIÞ. By considering a weak action of T killer cells, the threshold
effect for gðTÞ and gðV Þ (B cells effect) is somewhat decreased but still present, Fig. 5b. Instead, Fig. 5c shows
that the combined effects of B and T cells are almost additive, despite the parameter K that limits the total
population of T cells. For example, let us look at Fig. 5c. If we draw a line at AðIÞ ¼ 2:56� 10�4, which is an
extreme value for coexistence in Fig. 5a, we can notice that both the two phases are present, in particular there
are values of AðV Þ leading to the defeat of the infection.

3.2. Coinfection dynamics

The effect of competitive evolution observed after a single inoculum of two different HIV strains at time
t ¼ 0 is shown in Fig. 6. We have considered two different scenarios. The first one (Fig. 6a, b) represents the
time evolution of T cells and viruses when the epitopes of two different strains are subjected to the same
interaction strength. The second scenario (Fig. 6c, d) considers differences in the recognition ability of
viral antigens by T cells. For example, variants of the CCR5 receptors may induce partial resistance against
HIV [37]. De Boer and Perelson have shown [25] that the phase space of the antigen-T cell recognition is
not homogeneous but it is patched with areas of strong immune response and areas of lack of immune
response. This difference in the strains targeted by the T cells generates changes in the fitness of the virus that
turn into differences in their abundances. The immune system response is almost the same in the two cases,
and very similar to that obtained without considering the phenotypic space, Fig. 2. The asymptotic
distribution of viruses reflects the behavior of the fitness is induced by the stimulation of the immune response,
gðTÞii , as in Fig. 4.
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A ¼ 5� 10�6, �A ¼ 10, N ¼ 5. (a) and (b): B ¼ 0; (c) and (d): BðTÞ ¼ 3� 10�6, �ðTÞB ¼ 10. In the inset the asymptotic distribution of T and

V populations and the shape of the diagonal of gðTÞ are shown.

F. Bagnoli et al. / Physica A 366 (2006) 333–346342
3.3. Superinfection dynamics

Results of short time and long term viral coevolution after superinfection are reported in Figs. 7 and 8,
respectively. In both figures the first viral inoculum occurs at time t ¼ 0 and the second infection at time
t ¼ 20, when the immune response to the first inoculum has completed and the virus has established a chronic
infection. After the second inoculum and a short transient, a slow mounting of the second viral infection
occurs. This low dynamics continues on a scale of several months (Fig. 8) and eventually reaches the same
level of the other quasispecies. This behavior represents another example of a slow relaxation to a fixed-point
equilibrium. With the progression of the disease, when the immune system is compromised (low number of T
cells, i.e., low l), a second inoculum strain requires a very long time to reach the same abundances of the first
strain (Fig. 8b).

Experimental evidences [13] show that the probability of observing new fitter recombinant strains increases
with the number of already coevolving strains. This effect has not been yet incorporated into our model.

3.4. Coevolution and speciation

Finally, we have studied virus quasispecies formation in more detail. Fig. 9a shows the initial inoculum at
phenotype 15 in a space of 25, followed by a delayed inoculum at phenotype 5 at time t ¼ 1. The non-uniform
interaction strength would favor the central phenotypes. However, since in this simulation the immune system
does not discriminate among similar phenotypes (modeled by �ðTÞA ¼ 10), there is an induced competition
among neighboring strains. This competition induces a separation of the original quasispecies into two
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clusters (quasispeciation), Fig. 9b. However, as shown in Figs. 9c, d the immune system response continues to
change in time, resulting in a complex coevolution with viral populations. Fig. 10 shows the typical irregular
evolution of a speciation dynamics.
4. Discussion

We presented a model of the within-patience persistence of HIV quasispecies. We have first extended
Perelson’s standard model [27] to incorporate B cell response. The B cells, once activated by specific T cells,
can only act as a predator, and not being directly targeted as a prey by HIV. We found that this role represents
a non-negligible contribution to the immune response in all cases where a virus or bacterium is targeting (and
being targeted by) T cells. Interestingly, T cells have a role in both innate and adaptive immune responses
while B cells only in the adaptive system. It is known that the innate immune response is present also in insects
while the adaptive is more recent, being present only in vertebrate. Thus, B cells may have appeared also to
fight back viruses targeting specifically at T cells.

Recent works have shown that HIV quasispecies may compete [11] and that persistence of the initial or
ancestor quasispecies is a good indicator for disease progression [12].
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Our model shows that the time evolution of the competition between quasispecies is slow and has time scales
of several months. This provides a hint of why standard viral dynamics models, which ignore multiple
infections, are effective in describing viral load evolution in HIV-infected individuals.

Burch and Chao [38] have stressed that the evolution of an RNA virus is determined by its mutational
neighborhood. As the phenotype divergence among viral strains arises from differences in selection pressure,
these differences may lead, for instance, to a higher infection rate. Since the competition is through the
immune system response and given that the phase space of antigen recognition is not homogeneously covered
[14], the HIV high mutation rate allows the quasispecies to find regions with weak immune response. This
competition may lead to speciation of viral strains.

Work in progress considers parametric time dynamics; this approach would allow for instance to model the
shift in usage from CCR5 to CXCR4 chemokine receptors, corresponding to a change in viral selection [43].

The introduction or modulation of a quasispecies may be used in therapy against an already present
aggressive strain. This would be particularly effective during full AIDS stage when virus burden is particularly
high and the conditions for competition are more stringent. It is noteworthy that Schnell and colleagues [39]
have constructed a recombinant vesicular stomatitis virus that although unable to infect normal cells, infected
and killed cells that were first infected with HIV causing a rapid cytopathic infection. The authors showed that
the introduction of this engineered virus can achieve HIV load reduction of 92% and recovery of host cells to
17% of their normal levels (see also the mathematical model in Ref. [40]).

In summary, our model represents a general framework to investigate several aspects of the evolution of
HIV infections, for example intermittency or switching dominance of strains and the arising of new dominant
strains during different phases of therapy; how superinfection will evolve in case of replacement of drug-
resistant virus with a drug-sensitive virus and acquisition of highly divergent viruses of different strains. It is
also useful to investigate whether antiviral treatment may increase susceptibility to superinfection by
decreasing antigen load. Different drug treatments can alter the population of quasispecies. Quasispecies may
be the key to understanding the emerging infectious diseases and has implications for transmission, public
health counselling, treatment and vaccine development.
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