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We consider the case of a uniform plane conductor containing a thin curve-like inhomogeneity of finite
conductivity. In this article we prove that the imperfection can be uniquely determined from the boundary
measurements of the first order correction term in the asymptotic expansion of the steady state voltage
potential as the thickness goes to zero.
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1. INTRODUCTION

Let � � R2 be a smooth bounded domain that represents a uniform conductor. This
conductor may contain a thin conductivity imperfection localized in the neighborhood
of a curve. To be more precise, we consider inhomogeneities of the form

!" ¼ xþ �nðxÞ: x 2 �, � 2 ð�", "Þ
� �

,

where � is a simple C3 curve contained in �, with positive distance from the boundary,
@�, n(x) is a unit vectorfield normal to � at x, and " is a positive small parameter that
represents the thickness of the imperfection.
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We set the background conductivity equal to 1. The constant finite conductivity of
the imperfection !", will be denoted by k, with 0 < k < þ1 and k 6¼ 1.

Let u" be the steady state voltage potential in the presence of the inhomogeneity !",
that is, the unique solution to

r � ð1þ ðk� 1Þ1!"
Þru"

� �
¼ 0 in �,

@u"
@�

¼ h on @�,Z
@�

u" ¼ 0:

8>>>>><
>>>>>:

Here 1!"
is the characteristic function of !", and � is the unit outer normal to @�. The

function h 2 H�1=2ð@�Þ represents the applied boundary current and satisfies the
compatibility condition

R
@� h ¼ 0.

Let u0 be the potential induced by the current h in the domain � without the
imperfection !", that is the solution to

�u0 ¼ 0 in �,

@u0
@�

¼ h on @�,Z
@�

u0 ¼ 0:

8>>>>><
>>>>>:

For every x 2 �, let �ðxÞ and n(x) be unit vectorfields that are respectively tangent
and normal to � at x. We define the symmetric matrix A(x) by:

AðxÞ has eigenvectors �ðxÞ and nðxÞ,

the eigenvalue corresponding to �ðxÞ is 2ðk� 1Þ,

the eigenvalue corresponding to nðxÞ is 2 1�
1

k

� �
:

ð1Þ

The following asymptotic expansion has been derived in [3, p. 544] (see [2] for a
rigorous error analysis):

u"ð yÞ � u0ð yÞ ¼ "u�ð yÞ þ oð"Þ, y 2 @�, ð2Þ

where the correction term u� is given by

u�ð yÞ ¼ �

Z
�

AðxÞru0ðxÞrx�0ðx, yÞ d�x, y 2 � n �:

Here �0 is the Neumann’s function related to the domain �. We will write
the correction term in a slightly different but equivalent way. We denote by

64 H. AMMARI et al.



�ðx, yÞ ¼ �ð1=2�Þ ln jx� yj the free-space fundamental solution for the Laplace
equation. Since the function �0 �� is smooth, we can write

u�ð yÞ ¼ �

Z
�

AðxÞru0ðxÞrx�ðx, yÞ d�x þ w�ð yÞ, y 2 � n �, ð3Þ

where w�ð yÞ ¼ �
R
� AðxÞru0ðxÞrxð�0ðx, yÞ ��ðx, yÞÞ d�x is the harmonic function in

� such that

@u�
@�

¼ 0 on @�

and Z
@�

u� ¼ 0:

In this note we are interested in solving the following inverse problem: given the trace
of the correction term u� on the boundary @� determine (uniquely) the curve �.

As one clearly sees from (2), our data u� is only known approximately.
For any unit vector a 2 R2, let ua� denote the correction term that corresponds to the

linear background solution

ua0ðxÞ ¼ a � x�
1

j@�j

Z
@�

a � y dsy,

i.e. to the Neumann data h ¼ a � �.
We first prove (Section 2) that given two C3 open curves � and �0, that are graphs

with respect to a common coordinate system, if for some unit vector a, ua� ¼ ua�0 on
an open arc � contained in @�, then � ¼ �0. Then (Section 3), in the special case that
� is a straight line segment, we construct an algorithm for finding � from ua1� j@�

and
ua2� j@�

, where a1 and a2 are two orthogonal unit vectors of R2.

2. UNIQUENESS

In this section we prove a uniqueness result in the class of curves that are graphs with
respect to the same coordinate system.

Given a C3 function f : ½�,�� ! R, we consider

�f ¼ x ¼ ðx1, x2Þ : x1 2 ð�,�Þ, x2 ¼ f ðx1Þ
� �

,

such that �f is contained in � and has positive distance from the boundary. We also set

�f ðxÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ f 0ðx1Þ
2

q ,
f 0ðx1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ f 0ðx1Þ
2

q
0
B@

1
CA,
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and

nf ðxÞ ¼
�f 0ðx1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f 0ðx1Þ

2
q ,

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f 0ðx1Þ

2
q

0
B@

1
CA,

for x ¼ ðx1, x2Þ 2 �f .
For any function u defined in � n �f , let ½u��f be the jump of u on �f , i.e.

½u��f ðxÞ ¼ lim
t!0þ

uðxþ t nf ðxÞÞ � uðx� t nf ðxÞÞ, x 2 �f :

By Pf and Qf we denote the endpoints of f, i.e. Pf ¼ ð�, f ð�ÞÞ and Qf ¼ ð�, f ð�ÞÞ.
By integrating by parts in (3) we can write,

u�f ð yÞ ¼ �2 1�
1

k

� �Z
�f

@u0
@nf

ðxÞ
@�

@nf ðxÞ
ðx, yÞ d�x

þ 2ðk� 1Þ

Z
�f

@2u0
@�f 2

ðxÞ�ðx, yÞ d�x þ w�f ð yÞ

� 2ðk� 1Þ
@u0
@�f

ðPf Þ�ðPf , yÞ þ 2ðk� 1Þ
@u0
@�f

ðQf Þ�ðQf , yÞ: ð4Þ

From the above expression we conclude the following

PROPOSITION 2.1 The function u�f defined in (4) is harmonic in � n �f , it has logarithmic
singularities in Pf and Qf and the jumps on �f are given by

u�f
� 	

�f
¼ �2 1�

1

k

� �
@u0
@nf

,

@u�f
@nf


 �
�f

¼ �2ðk� 1Þ
@2u0
@�2f

,

where @2=@�2f represents the second order derivative with respect to the arclength
parameter of �f .

For any x0 2 �f and � such that

0 < � < min x0 � Pf

�� ��, x0 �Qf

�� ��� �
,

u�f 2 C1, 	 in ðx1, x2Þ 2 �: x2 � f ðx1Þ
� �

\ B�ðx0Þ and in ðx1, x2Þ 2 �: x2 � f ðx1Þ
� �

\

B�ðx0Þ, where B�ðx0Þ ¼ x : jx� x0j � �f g and 0 < 	 < 1.
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Moreover one has the following estimates for u�f :

u�f ðxÞ
�� �� � c ln

1

x� Pf

�� �� x�Qf

�� �� , x 2 � n �f , ð5Þ

ru�f ðxÞ
�� �� � c

1

x� Pf

�� ��þ 1

x�Qf

�� ��
 !

, x 2 � n �f , ð6Þ

where c is a positive constant.

Proof This proposition follows from classical regularity results in potential theory
(see, for example, [5] or [6, Theorems 2.1 and 2.2]).

For sake of completeness, we outline here the proof of estimates (5) and (6) near the
endpoints.

By well-known properties of single and double layer potentials on sufficiently smooth
open curves, we have that

Z
�f

@u0
@nf

ðxÞ
@�

@nf ðxÞ
ðx, yÞ d�x

�����
����� � C for y 2 �,

Z
�f

@2u0
@�2f

ðxÞ�ðx, yÞ d�x

�����
����� � C for y 2 �,

and so, by (4), estimate (5) follows immediately.
Let us now derive estimate (6) in a neighborhood of Pf. Let us write

Z
�f

@u0
@nf

ðxÞ
@�

@nf ðxÞ
ðx, yÞ d�x ¼

Z
�f

@u0
@nf

ðxÞ �
@u0
@nf

ðPf Þ

� �
@�

@nf ðxÞ
ðx, yÞ d�x

þ
@u0
@nf

ðPf Þ

Z
�f

@�

@nf ðxÞ
ðx, yÞ d�x: ð7Þ

An easy computation gives

Z
�f

@�

@nf
ðx, yÞ d�x ¼ �

1

2�
argðy�Qf Þ � argðy� Pf Þ
� �

,

hence

ry

Z
�f

@�

@nf
ðx, yÞ d�x

 !
¼

1

2�

y2 � f ð�Þ

jy�Qf j
2
, �

y1 � �

jy�Qf j
2

 ! 

�
y2 � f ð�Þ

jy� Pf j
2
, �

y1 � �

jy� Pf j
2

 !!
: ð8Þ
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On the other hand (by [6, Theorems 2.1]) one can see that, in a neighborhood of Pf

ry

Z
�f

@u0
@nf

ðxÞ �
@u0
@nf

ðPf Þ

� �
@�

@nf ðxÞ
ðx, yÞ d�x

 !
is bounded. ð9Þ

In the same way, we write

Z
�f

@2u0
@�2f

ðxÞ�ðx, yÞ d�x ¼

Z
�f

@2u0
@�2f

ðxÞ �
@2u0
@�2f

ðPf Þ

 !
�ðx, yÞ d�x

þ
@2u0
@�2f

ðPf Þ

Z
�f

�ðx, yÞ d�x: ð10Þ

Again by [6, Theorems 2.1], in a neighborhood of Pf

ry

Z
�f

@2u0
@�2f

ðxÞ �
@2u0
@�2f

ðPf Þ

 !
�ðx, yÞ d�x

 !
is bounded ð11Þ

while

ry

Z
�f

�ðx, yÞ d�x

�����
����� � C ln jy� Pf j

�� ��, ð12Þ

for a positive constant C. By putting together (7)–(12) and recalling (4) we get the
desired estimate. g

We are now ready to state our uniqueness result:

THEOREM 2.2 Let f and g be two C3 functions such that �f and �g are contained in �.
Let a 2 R2 be a unit vector and � be an open subset of @�. If

ua�f ¼ ua�g on �,

then

�f ¼ �g:

Proof We will first prove that Pf¼Pg and Qf¼Qg.
Assume the contrary. If Pf 6¼Pg there exists an open arc (for example �f � �f ) with

Pf as an endpoint, which can be reached on both sides with a continuous curve starting
on � and contained in � n �f [ �g.

Let v ¼ ua�f � ua�g . By assumption, v ¼ @v=@� ¼ 0 on � and �v ¼ 0 in � n �f [ �g.
Then by the unique continuation property of harmonic functions and the uniqueness

of the Cauchy problem, v � 0 in the connected component of � n �f [ �g containing �.
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In particular v¼ 0 in a neighborhood of �f on both sides, hence 0 ¼ ½v��f
¼ ½ua�f ��f

¼

2 1� ð1=kÞð Þa � nf . This implies

a � nf ðPf Þ ¼ 0: ð13Þ

On the other side, the function v cannot have a logarithmic singularity in Pf, hence,
by (4),

@u0
@�f

ðPf Þ ¼ a � �f ðPf Þ ¼ 0: ð14Þ

Since (13) and (14) are in contradiction, it follows that Pf¼Pg¼P (and, similarly,
Qf¼Qg¼Q).

Now let us show that

�f ðPÞ ¼ �gðPÞ, �f ðQÞ ¼ �gðQÞ: ð15Þ

By using the expression (4) and the linearity of ua0, we can write, for y 2 � n �f ,

vðyÞ ¼ w�f ðyÞ � w�gðyÞ

� 2ðk� 1Þ ð�f ðPÞ � �gðPÞÞ � a�ðP, yÞ � ð�f ðQÞ � �gðQÞÞ � a�ðQ, yÞ
� �

þ 2ðk� 1Þ

Z
�f

@2ua0
@�2f

ðxÞ�ðx, yÞ d�x �

Z
�g

@2ua0
@�2g

ðxÞ�ðx, yÞ d�x

 !

� 2 1�
1

k

� � Z
�f

@ua0
@nf

ðxÞ
@�

@nf ðxÞ
ðx, yÞ d�x �

Z
�g

@ua0
@ng

ðxÞ
@�

@ngðxÞ
ðx, yÞ d�x

 !
:

This means (see Proposition 2.1) that in a neighborhood of P, the function v has a
logarithmic singularity given by

�2ðk� 1Þ ð�f ðPÞ � �gðPÞÞ � a
� �

�ðP, yÞ:

Since v � 0 in the connected component of � n �f [ �g containing �, this singularity
cannot appear, hence

ð�f ðPÞ � �gðPÞÞ � a ¼ 0: ð16Þ

By (8) in the proof of Proposition 2.1 and since (16) holds, the leading order singu-
larity for rv at P has the form

�
1

�
1�

1

k

� �
ðnf ðPÞ � ngðPÞÞ � a
� � y2 � f ð�Þ

y� Pf

�� ��2 , � y1 � �

y� Pf

�� ��2
 !

:
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Again, since v � 0 in the connected component of � n �f [ �g containing �, this
singularity cannot appear, hence

ðnf ðPÞ � ngðPÞÞ � a ¼ 0: ð17Þ

By putting together (16) and (17) one gets (15).
Now, let us assume that �f and �g do not coincide. Since the two curves are regular

and have common endpoints, there exist at most a countable set of subintervals ð�1,�1Þ

of ð�,�Þ such that, say, gðx1Þ < f ðx1Þ for every x1 2 ð�1,�1Þ, f ð�1Þ ¼ gð�1Þ and
f ð�1Þ ¼ gð�1Þ. Set

D ¼

n
ðx1, x2Þ : x1 2 ð�1,�1Þ, gðx1Þ < x2 < f ðx1Þ

o
,

P0 ¼ ð�1, f ð�1ÞÞ, and Q0 ¼ ð�1, f ð�1ÞÞ.
We want to show that

�f ðP
0Þ ¼ �gðP

0Þ, �f ðQ
0Þ ¼ �gðQ

0Þ: ð18Þ

Set vþ ¼ vjD . The function vþ satisfies the following overdetermined problem in D

�vþ ¼ 0, in D,

vþ ¼ 2 1�
1

k

� �
nf � a, on �f \ @D,

vþ ¼ 2 1�
1

k

� �
ng � a, on �g \ @D,

@vþ

@nf
¼ 2ðk� 1Þ

@

@�f
ð�f � aÞ, on �f \ @D,

@vþ

@ng
¼ 2ðk� 1Þ

@

@�g
ð�g � aÞ, on �g \ @D:

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

ð19Þ

Let us prove (18) for P0. If P0 ¼ P, this is a consequence of (15), so let us assume that
P0 6¼ P, that is �1 > �.

Observe that both ua�f and ua�g are continuous in a neighborhood of P0 relative to D.
By (19) this implies that

nf ðP
0Þ � a ¼ ngðP

0Þ � a: ð20Þ

Now let us prove that

Z
@D

@vþ

@�
¼ 0, ð21Þ

where � is the unit outer normal to @D.
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If P0 6¼ P and Q0 6¼ Q this simply follows from the fact that vþ is in C1ðDÞ, hence one
can apply Green’s formula and the fact that vþ is harmonic.

If, for example P0 ¼ P, let us show that one can again apply Green’s formula.
By (15), we approximate D by a sequence of smooth domains fDng � D. Let x1n be a

point on �f such that the arc joining P0 and x1n has length smaller than 1=n, and let x2n be
a point on �g such that the arc joining P0 and x2n has length smaller than 1=n.
Analogously we define ~xx1n and ~xx2n on the side of Q0 in case Q0 ¼ Q. Let �1

n and �2
n be

two smooth arcs joining x1n and x2n and ~xx1n and ~xx2n respectively, and such that the
region Dn enclosed by �1

n, �2
n, �f and �g is sufficiently smooth and such that

lengthð�1
nÞ and lengthð�2

nÞ are bounded by 1=n2 (this is possible because of (15)).
Now we can apply Green’s formula in Dn, since vþ 2 C1ðDnÞ, and get

0 ¼

Z
Dn

�vþ ¼

Z
@Dn

@vþ

@�
: ð22Þ

By (6) and by the choice of �1
n and �2

n, we have

lim
n!1

Z
�1

n

@vþ

@�
¼ lim

n!1

Z
�2

n

@vþ

@�
¼ 0:

Hence, passing to the limit in (22) we get (21).
Consider the closed curve determined by �f \D and �g \D. Let 0 � s � sf be the

arclength parameter on �f from P0 to Q0 and sf � s � sf þ sg be the arclength parameter
on �g from Q0 to P0.

By (19), and noticing that � ¼ nf , ð@=@sÞ ¼ ð@=@�f Þ on �f and � ¼ �ng and ð@=@sÞ ¼
�ð@=@�gÞ on �g, we arrive at

0 ¼

Z
@D

@vþ

@�

¼ 2ðk� 1Þ

Z sf

0

@

@s
ð�f � aÞ dsþ

Z sfþsg

sf

@

@s
ð�g � aÞ ds

 !

¼ 2ðk� 1Þ

�f ðQ

0Þ � �f ðP
0Þ þ �gðP

0Þ � �gðQ
0Þ

�
� a:

Hence

�f ðQ
0Þ � �gðQ

0Þ
� �

� a ¼ �f ðP
0Þ � �gðP

0Þ
� �

� a:

Now we observe that for the endpoint P we know that �f ðPÞ ¼ �gðPÞ, so, by a recursive
algorithm one can conclude that

�f ðxÞ � �gðxÞ
� �

� a ¼ 0,

for every point x in �f \ �g. This, together with (20), gives (18).
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Now we show that Z
D

rvþ
�� ��2¼ Z

@D

vþ
@vþ

@�
: ð23Þ

As before, it is enough to notice that if P0 and Q0 do not coincide with P and Q, the
function vþ is regular enough to apply Green’s theorem. Otherwise we approximate D
by the sequence of smooth domains fDng � D and observe thatZ

Dn

rvþ
�� ��2¼ Z

@Dn

vþ
@vþ

@�
: ð24Þ

By (5) and (6) and by the choice of �1
n and �2

n, we have

lim
n!1

Z
�1

n

vþ
@vþ

@�
¼ lim

n!1

Z
�2

n

vþ
@vþ

@�
¼ 0:

Hence, passing to the limit in (24) we get (23).
Next step consists of proving thatZ

@D

vþ
@vþ

@�
¼ 0: ð25Þ

By (19),

Z
@D

vþ
@vþ

@�
¼

4ðk� 1Þ2

k

Z sf

0

ðnf ðsÞ � aÞ
@

@s
ð�f � aÞ dsþ

Z sfþsg

sf

ðngðsÞ � aÞ
@

@s
ð�g � aÞ ds

 !
: ð26Þ

Since �f ðsÞ is a regular function of s, there is a regular function 
f ðsÞ such that

�f ðsÞ � a ¼ cos 
f ðsÞ

and

nf ðsÞ � a ¼ � sin 
f ðsÞ

Hence Z sf

0

ðnf ðsÞ � aÞ
@

@s
ð�f � aÞ ds ¼

Z sf

0

sin2 
f ðsÞ
@
f ðsÞ

@s
ds ¼

Z 
f ðsf Þ


f ð0Þ

sin2 
 d
: ð27Þ

In the same way we define 
gðsÞ such that

�gðsÞ � a ¼ cos 
gðsÞ and ngðsÞ � a ¼ � sin 
gðsÞ,

and getZ sfþsg

sf

ðngðsÞ � aÞ
@

@s
ð�g � aÞ ds ¼

Z sfþsg

sf

sin2 
gðsÞ
@
gðsÞ

@s
ds ¼

Z 
gðsfþsgÞ


gðsf Þ

sin2 
 d
: ð28Þ
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Condition (18) can be read as


f ð0Þ ¼ 
gðsf þ sgÞ and 
f ðsf Þ ¼ 
gðsf Þ:

From (26), (27), and (28) we get

Z
@D

vþ
@vþ

@�
¼

4ðk� 1Þ2

k

Z 
f ðsf Þ


f ð0Þ

sin2 
 d
 þ

Z 
f ð0Þ


f ðsf Þ

sin2 
 d


 !
¼ 0:

By putting together (23) and (25) we get that

vþ ¼ constant in D,

which leads to

nf � a ¼ ng � a ¼ constant on ð�1,�1Þ:

This, means that sin 
f ¼ sin 
g ¼ constant on ð�1,�1Þ. Since 
f and 
g are regular
function this implies that both 
f and 
g are constant on (c, d). We already know
that they coincide at the endpoints, hence the tangent fields to �f and �g coincide
in all the interval. From this and the fact that the endpoints coincide we conclude
that �f ¼ �g. g

Remark 2.1 Notice that the assumption that �f and �g are graph with respect to the
same coordinate system can be slightly relaxed. What we really need to perform the
proof is that any point of �f [ �g can be reached from � with a continuous curve
contained in the connected component of � n �f [ �g containing �.

3. ALGORITHM

In this section we present an algorithm for reconstructing a straight curve � from the
measurements on the boundary of the correction terms ua1� j@� and ua2� j@� generated by
two constant current sources.

In fact in this case we expect good reconstructions since the inverse problem
restricted to line segments should be well posed (Lipschitz continuous dependence).
This is not true any more for arbitrary curves. In that case we are confident that the
problem is severly ill-posed (logarithmic continuous dependence) as was shown in [4]
for a similar problem.

We first note that, if we denote by e1 and e2 the unit vectors (1, 0) and (1, 0), for any
unit vector a we have

ua� ¼ ða � e1Þu
e1
� þ ða � e2Þu

e2
� , ð29Þ

so, the knowledge of ua1� and ua2� for any two orthogonal vectors a1 and a2 corresponds
to the knowledge of uei� , for i ¼ 1, 2.

We assume that � is a straight line segment and reconstruct its endpoint P and Q
from ue1� j@� and ue2� j@�. This generalizes the algorithm described in [1] for the reconstruc-
tion of small diameter imperfections to the more difficult case of thin imperfections.
The major difficulty comes from the fact that the conductivity inhomogeneity is thin
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(i.e. with a bad Lipschitz character) and so, results from [1] are not applicable to
our case.

Notice that in the case of a straight line segment, the matrix A defined in (1) is
constant along �. Let ~ee1 ¼ PQ

�!
=jPQ
�!

j and ~ee2 a unit vector orthogonal to ~ee1. Consider
an open domain S containing � with C2 boundary @S.

Let us denote by D�v the double layer potential of the density function v, defined by

D�vðxÞ ¼

Z
@�

vðyÞ
@�

@�ðyÞ
ðx, yÞ dsy, x 2 R2 n @�:

Then, the following lemma holds.

LEMMA 3.1 For any pair of unit vectors a and a* we have

Z
@S

@

@�
D� ua�

��
@�

� �
ð yÞ a� � y dsy �

Z
@S

D� ua�
��
@�

� �
ðyÞ a� � �ð yÞ dsy ¼ j�j a� � A � a,

where � denotes the normal to @S pointing outside S

Proof Let us consider y 2 R2 n� and, by using the definition in (3), let us evaluate

Z
@�

@u�
@�ðxÞ

�ðx, yÞ dsx �

Z
@�

u�ðxÞ
@�

@�ðxÞ
ðx, yÞ dsx

¼ �

Z
@�

@

@�ðxÞ

Z
�

AðzÞru0ðzÞrz�ðz, xÞ d�z

� �
�ðx, yÞ dsx

þ

Z
@�

Z
�

AðzÞru0ðzÞrz�ðz, xÞ d�z

� �
@�

@�ðxÞ
ðx, yÞ dsx

þ

Z
@�

@w�

@�
ðxÞ�ðx, yÞ dsx �

Z
@�

w�ðxÞ
@�

@�ðxÞ
ðx, yÞ dsx:

Since w� is harmonic in � and y =2�, the sum of the last two integrals is zero. Notice
that the points x, y and z are well separated and y is outside �. Hence, we can inter-
change the order of the integrations and get

Z
@�

@u�
@�

ðxÞ�ðx, yÞ dsx �

Z
@�

u�ðxÞ
@�

@�ðxÞ
ðx, yÞ dsx

¼ �

Z
�

AðzÞru0ðzÞrz

Z
@�

@�

@�ðxÞ
ðz, xÞ�ðx, yÞ ��ðz, xÞ

@�

@�ðxÞ
ðx, yÞ

� �
dsx

� �
d�z

¼ �

Z
�

AðzÞru0ðzÞrz

Z
�

�x�ðz, xÞ�ðx, yÞ ��ðz, xÞ�x�ðx, yÞð Þ dx

� �
d�z

¼ �

Z
�

AðzÞru0ðzÞrz�ðz, yÞd�z:
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In the special case u0 ¼ ua0 is linear, and observing that ð@ua�=@�j@� ¼ 0Þ and A is
constant on �, one gets, for y 2 R2 n�,

D�ðu
a
�ÞðyÞ ¼

Z
@�

ua�ðxÞ
@�

@�ðxÞ
ðx, yÞ dsx ¼ A � a

Z
�

rx�ðx, yÞ d�x:

By using this expression we can calculateZ
@S

@

@�ðyÞ
D�ðu

a
�

��
@�
ÞðyÞ a� � y dsy �

Z
@S

D�ðu
a
�

��
@�
ÞðyÞ a� � �ðyÞ dsy

¼

Z
@S

A � a
 @

@�ð yÞ

Z
�

rx�ðx, yÞ d�xa
� � y�

Z
�

rx�ðx, yÞ d�x a
� � �ð yÞ

�
dsy

¼ A � a

Z
�

rx

Z
@S

@�

@�ðyÞ
ðx, yÞ a� � y��ðx, yÞ a� � �ðyÞ

� �
dsy d�x

¼ A � a

Z
�

rxða
� � xÞ d�x ¼ j�j a� � A � a:

g

From Lemma 3.1 it follows that the components of the matrix A in the basis (e1, e2)
are given by

Aij ¼
1

j�j

Z
@S

@

@�
D�ðu

ej
�

��
@�
Þð yÞei � y�D�ðu

ej
�

��
@�
ÞðyÞei � �ðyÞ


 �
dsy:

This expression only involves j�j and the boundary values of u
ej
� for j¼ 1, 2.

In particular, the knowledge of ue1� j@� and ue2� j@� is enough to reconstruct the
eigenvectors of A.

Notice that to distinguish between ~ee1 and ~ee2 (which one is tangent and which is
orthogonal to �) it is not necessary to know the value of k. The sign of the eigenvalues
of Aij tells us if k is bigger or smaller than 1: if the eigenvalues are positive, then k>1
and ~ee1 corresponds to the bigger eigenvalue. If the eigenvalues are negative, then k<1,
and ~ee1 corresponds to the eigenvalue with smaller absolute value.

Now, let us express everything in the coordinate system ð ~ee1, ~ee2Þ. In this way, P ¼ ðp1, 	Þ
and Q ¼ ðq1, 	Þ. By straightforward calculations, one can see that

D�ðu
~ee2
� Þð0, y2Þ ¼ �

1

�
1�

1

k

� �
ð	� y2Þ

Z
�

1

x� ð0, y2Þ
�� ��2 dsx: ð30Þ

Notice that, once ~ee2 is known, u
~ee2
�

��
@�

is obtained from ue1�
��
@�

and ue2�
��
@�

according to (29).
Hence, the left-hand side of (30) is known in R2 n� and 	 can be identified as the value
where it changes sign.

Finally, assuming p1< q1,

D�ðu
~ee1
� Þðy1, 	Þ ¼ �

1

�
ðk� 1Þ ln

y1 � q1

y1 � p1
, for any y1 < p1 or y1 > q1,

and from this we can determine p1 and q1.
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