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Short Research Note
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Abstract

Species that can act as indicators of ecosystem health offer a valuable tool in the management of natural
resources. Crayfish have been suggested as bioindicators of water quality in Europe and at least one species
(Austropotamobius pallipes) has been studied to determine its tolerance to pollution and its potential as a
bioindicator. The genus Austropotamobius includes three crayfish species native to western Europe:
A. pallipes, A. italicus and A. torrentium. It was hypothesised that because of their geographical and habitat
distribution, the three Austropotamobius species might vary in their value as a bioindicator of water quality.
Crayfish of species A. pallipes and A. italicus were subjected to three different treatments: hypoxia (treat-
ment 3, approx 3 mg l)1 O2), light hypoxia (treatment 2, approx 5.5 mg l)1 O2) and normoxia (treatment
1, control, approx 8.5 mg l)1 O2). A. torrentium crayfish were only subjected to treatment 1 (control) and
3. Variations in haemolymph sodium, calcium and chloride were used as a biomarker and concentrations
were measured before and after treatment to evaluate hypoxia-induced stress. Significant differences in the
concentrations of sodium between the control groups (treatment 1, normoxia) and the experimental groups
(treatment 3, 3 mg l)1 O2) were found in the species A. pallipes and A. torrentium. Groups of A. italicus did
not show any significant difference between treatments in sodium concentrations but in chloride concen-
trations. Crayfish of all three species demonstrated a disruption in the ion exchange process in hypoxia, but
all tolerated very low oxygen concentration for an extended period of time.

Introduction

Species that can act as indicators of ecosystem
health offer a valuable tool in the management of
natural resources. Several species have been stud-
ied and suggested as biological indicators of water
quality in lotic habitats. Scientists and managers in
Europe have been interested in crayfish for many
years, partly because of the drastic decline of
native species populations (Vigneux & Souty-
Grosset, 2000), but also because of their social and
economic importance in many countries (Reynolds

& Souty-Grosset, 2003). Crayfish have been sug-
gested as bioindicators of water quality in Europe
and at least one species (Austropotamobius palli-
pes) has been studied to determine its tolerance to
pollution and its potential as a bioindicator
(Gallagher, 2002; Demers & Reynolds, 2003;
Lyons & Kelly-Quinn, 2003; Trouilhé et al., 2003).

The genus Austropotamobius includes three
crayfish species native to Western Europe:
A. pallipes, A. italicus and A. torrentium. A. palli-
pes and A. italicus have just recently been sepa-
rated into two separate species (Santucci et al.,
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1997; Grandjean et al., 2002) and some authors
still consider them as two subspecies (A. pallipes
pallipes and A. pallipes italicus). A. pallipes is dis-
tributed in France, Ireland, Great Britain and
north-west Italy while A. italicus is found in Spain,
Italy, Austria and Dalmatia (Grandjean et al.,
2002; Holdich, 2002). A. torrentium is mostly
found around the alpine region and central Europe
(Holdich, 2002).

Austropotamobius pallipes was thought to be
sensitive to pollution (Jay & Holdich, 1981; Hold-
ich &Reeve, 1991; Reynolds et al., 2002) but recent
studies have shown that this species is quite toler-
ant to eutrophication (Troschel, 1997; Demers &
Reynolds, 2002, 2003; Gallagher, 2002; Trouilhé
et al., 2003). Less information is available on the
other species. However, it was suggested that be-
cause of their different geographical distribution,
the three Austropotamobius species might have a
different value as a bioindicator of water quality.
Although the three species are found in similar
habitats such as upland streams with rocky sub-
strate and shaded banks, each species is found in a
distinct geographical area. This means that each
species is exposed to different climatic conditions.

Hypoxia, temporary or permanent, is often a
consequence of eutrophication and organic
enrichment (for example Karim et al., 2002; Parr
& Mason, 2004). A. pallipes is known to tolerate
environmental hypoxia for prolonged periods of
time (Demers, 2003), but little is known about the
tolerance of A. italicus and A. torrentium to low
oxygen concentrations.

Osmoregulation has been used as a biomarker
in fish (Eddy, 1981; Wendemeyer & McLay, 1981)
and has also been studied in crustaceans
(Bjerregaard & Vislie, 1985; Fjeld et al., 1988;
Boitel & Truchot, 1990; Ahern & Morris, 1998).
Lignot et al., 2000, in their extensive literature
review on osmoregulation as a biomarker in
crustaceans, came to the conclusion that variations
in osmotic and ionic regulation can be considered
as a warning of sublethal stress, such as that
caused by hypoxia. Osmoregulatory capacity (OC)
is defined for a given species as the difference be-
tween the osmotic pressure of the hemolymph and
of the external medium at a given salinity (Char-
mantier et al., 1989). Since the ions Na+ and Cl)

make up 90% of the osmotic pressure in crusta-
ceans (Prossner, 1973; Castille & Lawrence, 1981),

ionic regulation has also been used as a biomarker
(Caldwell, 1974; Fjeld et al., 1988; Jeberg &
Jensen, 1994). The aim of this research was to test
the different tolerance to hypoxia to the three na-
tive crayfish of Western Europe using haemol-
ymph ionic concentrations as a biomarker.

Materials and methods

Austropotamobius pallipes crayfish were obtained
by trapping in the Magot river, Deux-Sèvres
Département, with the permission of the ‘Conseil
Supérieur de la Pêche’. Twenty-one crayfish were
caught. Specimens of Austropotamobius italicus
were hand caught in the Gattaia river, Mugello
province, and brought to Poitiers by train. All 24
crayfish survived transportation.Austropotamobius
torrentium crayfish were hand caught in Kammel
river, Bavaria. They were brought back to Poitiers
by car and only 12 crayfish survived transporta-
tion. All crayfish were intermolt. Table 1 presents
some of the characteristics of the sites where
crayfish were caught.

Although all rivers were small upland streams,
the Italian site was in a forested area while the two
other sites were in farmed areas. This is reflected
(in case of the Magot) in the important dissolved
oxygen variation and the high nitrate concentra-
tions encountered. Despite the low oxygen con-
centrations measured, the crayfish population in
the French stream is one of the most dense in the
region. The Italian stream can be considered
unaffected by human activity and the population
at the site is healthy. The values for several vari-
ables in Table 1 were not available for the German
stream, but biological quality was also rated as
‘good’. Substrate was very similar at all sites.

Crayfish of the three species were held indi-
vidually in 20 l aquaria all linked to a common
filtration and cooling system and allowed to
acclimatise for 5 days. Temperature was kept
around 16 �C and the photoperiod imposed was
the natural photoperiod relayed to the system via a
receptor located outside. Crayfish of species
A. pallipes and A. italicus were subjected to three
different treatments: normoxia (treatment 1, con-
trol, approx 8.5 mg l)1 O2, 85% saturation or
17.7 kPa), light hypoxia (treatment 2, approx
5.5 mg l)1 O2, 55% saturation or 11.5 kPa) and
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hypoxia (treatment 3, approx 3 mg l)1 O2, 30%
saturation or 6.3 kPa). A. torrentium crayfish were
only subjected to treatments 1 (control) and 3. For
treatments 2 and 3, the desired oxygen concen-
tration was maintained by bubbling nitrogen
through the water. There were 8 crayfish per
treatment for italicus, 7 for pallipes, 6 for
torrentium; the difference of n for each species is
due deaths of crayfish during transport.

Crayfish were acclimated to the aquaria for
5 days in normoxia before the first haemolymph
sample was taken. They were then submitted to the
experimental conditions for another 12 days and a
second haemolymph sample was taken after this
period. Crayfish were not fed during the acclima-
tion period and for 5 days before the second hae-
molymph sample. At other times, they were fed
with dry eel pellets.

Haemolymph samples of about 0.3 ml were
taken at the base of the third walking leg with a
0.5�1.6 mm needle and 1 ml syringe. A small
volume of anticoagulant (3.5 ll of 200 mM phen-
ylthiocarbamide) was added and the samples were
frozen at )80 �C for later analysis. Haemolymph
samples were diluted by a factor of 1000 (50 ll in
50 ml; three replicate dilutions were done per
sample). Sodium (Na) and calcium (Ca) concen-

trations were measured by plasma mass emission
(ICP) using an Optima 4003 DV-Perkin Elmer.
Chloride (Cl) was measured by ionic chromatog-
raphy using a Vydac column (302 IC 4.6).

Measured concentrations were analysed by an
analysis of covariance, using concentrations after
(after 12 days treatment) as dependant variables
and concentrations before (after 5 days acclima-
tion) as covariables, with SPSS 12.

Results

Significant differences in the concentrations of
sodium between the control groups (treatment 1,
normoxia) and the experimental groups (treatment
3, 3 mg l)1 O2) were found in the speciesA. pallipes
andA. torrentium (Table 2 and Fig. 1). On average,
A. pallipes crayfish in the control group (treatment
1) had a haemolymph sodium concentration 15%
higher then crayfish kept in hypoxia (treatment 3).
For A. torrentium, the difference between the
control and the experimental groups was only 6%
higher, but it is highly significant.

The three groups of A. italicus did not show any
significant difference in sodium concentrations
between treatments but in chloride concentrations

Table 1. Physical and chemical variables of the three sites where crayfish were caught. Temperatures as well as dissolved oxygen and

nitrate concentrations are minimum and maximum recorded yearly

Variables A. pallipes A. torrentium A. italicus

River Magot (France) Kammel (Germany) Gattaia (Italy)

River width 2 m 6 m 3 m

Substrate Rocky Rocky Rocky

Riparian vegetation Yes Yes Yes

Land use Farmland Farmland Forest

Temperature 5–20 �C Na 5–17 �C
Dissolved O2 5–11 mg l)1 Na 7–12 mg l)1

Nitrate 15–57 mg l)1 Na 1–10 mg l)1

Table 2. Significant probability values and associated r-squared of the ANCOVAs of the ion concentrations for each species. Mean

differences of ion concentrations between treatments are also shown. Only statistically significant pairs are included

Species Ion r-squared (ANCOVA) Significance Treatment Mean difference mmol (g l)1)

pallipes Na 0.653 p: 0.001 1–3 34.8 (0.8)

torrentium Na 0.863 p<0.0005 1–3 13.0 (0.3)

italicus Cl 0.752 p: 0.001 1–3 )14.1 ()0.5)
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(Fig. 1). However, individuals in treatment 2
showed great variability in chloride concentrations,
contradicting the expectation of equal variance in
the ANCOVA. When only treatments 1 and 3 are
compared (Table 2), mean differences show that A.
italicus crayfish kept in hypoxia (treatment 3) had a
haemolymph chloride concentration 10% higher
than those kept at normoxia (treatment 1). Chlo-
ride concentrations did not show consistent results
in A. pallipes or A. torrentium.

Calcium concentrations in the haemolymph did
not vary significantly between groups in any of the
species.

Discussion

The most important symptom of eutrophication in
terms of water chemistry is fluctuation in oxygen
saturation. A high biological oxygen demand ow-
ing to organic pollution or increased vegetation
growth will result in hypoxia, particularly at night
when no photosynthetic production of oxygen
occurs.

Hypoxia has been well studied in crustaceans
and a good amount of information is available on
the processes involved in ion regulation in relation
to oxygen saturation. The gills are the most
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Figure 1. Difference in the sodium and chloride haemolymph concentrations between before treatment and after treatment. Treatment

1: control 85% O2 saturation; treatment 2: light hypoxia 55% O2 saturation; treatment 3: hypoxia 30% O2 saturation.
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important site for exchange of monovalent ions.
The effects of decreased oxygen concentrations on
ion regulation can be attributed to the HCO3

)–Cl)

and Na+–H+ ion exchange pathways. The two
ions Na+ and Cl) are regulated through transport
mechanisms that are linked to the transport of H+

and HCO3
) ions (Shaw, 1960a, b; Mantel &

Farmer, 1983; Truchot, 1983; McMahon, 2002).
Evidence, largely gathered from research on
freshwater acclimated species (hyper regulators),
support the presence of two independent exchange
processes: sodium-proton and chloride-
bicarbonate. This link between the regulation of
the two major haemolymph ions and acid–base
concentrations has been established by the fact
that crustaceans will show disruption of the ion
transport process in response to acid–base distur-
bance (Cameron, 1978; Wheatly, 1989; Jensen &
Malte, 1990). Furthermore, in euryhaline species,
changes in ambient salinity, which alter ion ex-
changes, will result in changes in the acid–base
status of the haemolymph (Weiland & Mangum,
1975; Truchot, 1981; Whiteley et al., 2001). In
hypoxia, and indeed hyperoxia, the ventilation
rate will change and an alteration in the acid–base
balance will ensue due to variations in the excre-
tion of CO2 (Burnett & Johansen, 1981; Hagerman
& Uglow, 1982; Wheatly, 1989). Studies investi-
gating the effects of hypoxia in marine or eury-
haline species have noticed a decrease in chloride
haemolymph concentrations, particularly when
the animals were kept in a dilute medium
(Hagerman & Uglow, 1982; Johnson & Uglow,
1987; Hagerman & Szaniawska, 1991). Individuals
of the three crayfish species kept in this experiment
did not exhibit a decrease in chloride concentra-
tions when exposed to hypoxia. Indeed, A. italicus
individuals kept at 30% oxygen saturation had an
increase in haemolymph chloride concentrations.
A few authors have found occurrences where
exposure to pollutants increased ion regulation in
estuarine isopods (Jones, 1975; Oksama & Kris-
toffersson, 1980). Lignot et al. (2000) suggest that
an initial activation of ionic uptake could occur
following exposure to pollutants. This hypothesis
was put forward by Lignot et al. (2000) to account
for the lack of effects in some research or osmotic
capacity increases in others (Oksama & Kristof-
fersson, 1980; Boitel & Truchot, 1989; Ahern &
Morris, 1998). It is possible that exposure to small

amounts of contaminants results in an increase in
ion regulation in crayfish, while higher concen-
trations of pollutants can produce a decrease in
ion uptake, as was observed by Oksama & Kris-
toffersson (1980). It is also important to note that
many authors discussed the effects of a more acute
hypoxia on crustaceans. In this study, the levels of
hypoxia were intended to reflect what could be
encountered in a river with slight or important
nutrient and organic enrichment. Wheatly &
Taylor (1981) found that below an oxygen partial
pressure of 50 mmHg (6.65 KPa), A. pallipes
reduces its ventilation rate in the gills, most likely
owing to the energy cost associated with the
beating of the scaphognathites. These authors also
found that this species will migrate into air at
42 mmHg or 5.59 KPa (Taylor & Wheatly, 1980).
The impact of acute hypoxia or anoxia on osmo-
regulation in crayfish has yet to be investigated.

Sodium concentrations were found to decrease
with hypoxia in A. pallipes and A. torrentium
individuals. Similar results had been obtained in
an experiment on A. pallipes crayfish from Ireland
(Demers, 2003). A. italicus crayfish did not exhibit
a significant difference in sodium levels in hypoxia.
This species might be more tolerant to low oxygen
partial pressure. Hildebrandt & Zerbst (1992)
found that sodium concentrations in the blood of
medicinal leeches decreased significantly after 96 h
in hypoxia. However, sodium levels in a brackish
water isopod were found not to be affected by
hypoxia and Na+ concentrations decreased only
in anoxia (Hagerman & Szaniawska, 1991). The
decreased sodium concentrations could also be
explained by the energetic cost of the ion pump.
Indeed, when confronted to a low oxygen supply,
actively pumping ions might be too costly to occur
efficiently. Hagerman & Uglow (1981) suggested
that the observed loss of haemolymph chloride in
Palaemon adspersus in hypoxia was caused by the
reallocation of energy to other functions. How-
ever, further research on Crangon crangon showed
that this hypothesis was probably too simplistic
and that changes in the acid–base balance
provided a more likely explanation (Hagerman &
Uglow, 1982).

The environmental conditions to which crayfish
were exposed did not significantly affect haemol-
ymph calcium concentrations, but the calcium
concentrations measured in the haemolymph
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samples demonstrated great variability between
treatments. Changes in haemolymph calcium
concentration have been observed in crustaceans
exposed to hypoxia (Hagerman & Uglow, 1982;
Hagerman & Szaniawska, 1991). A potential
mechanism to buffer the acid–base variations
which occur in hypoxia is the dissolution of the
calcium carbonate in the exoskeleton (Truchot,
1979; Henry & Wheatly, 1992). This adaptation
would be valuable as an increase in blood pH and
Ca will increase the oxygen affinity of haemocya-
nin (Mangum, 1980).

A possible bias was introduced to this experi-
ment owing to the fact that A. italicus and
A. torrentium individuals had to travel in air for a
much longer period than A. pallipes individuals.
Particular caution should be taken when consid-
ering the A. torrentium results, since half of the
individuals died during transportation (techni-
cally leaving the strongest animals). Two
A. pallipes kept at 30% oxygen saturation mo-
ulted. Wheatly & Ignaszewski (1990) reported
that Na+ and Cl) influxes were stable throughout
the intermoult and premoult phases. However,
immediately after ecdysis, these authors demon-
strate that there is a net influx of these ions that
persists for only two days, Na+ and Cl) balance
being re-established 3 days postmoult. Therefore,
the moult of these two individuals is not believed
to have influenced the results as samples were
collected 4 days after ecdysis.

A. pallipes usually inhabits fairly cool waters
with little temperature variations, although some
areas can experience high water temperature in the
summer (for example France in 2003). A. italicus is
found in a warmer climate, being found in Italy and
Spain, but the remaining populations usually in-
habit headwaters of spring-fed rivers, often at high
latitudes. Nevertheless, there is a potential for A. it-
alicus to be exposed to higher water temperatures
than A. pallipes. A. torrentium would not experience
high temperatures because of its tendency to be
found in upland rivers, in the alpine region. Warm
water contains less oxygen than cool water, thus
crayfish found in the warmer climates might be
subjected to hypoxia more often than crayfish living
in cool water. This might explain the different re-
sponses to hypoxia of the different species.

Nevertheless, crayfish did not seem to be
drastically affected by an oxygen saturation of

only 30% as a few individuals moulted and none
showed external signs of stress such as lack of
reaction when touched, decreased activity or
sluggishness. Crayfish of this genus seem fairly
well adapted to cope with decreased oxygen
content for extended periods of time, in this case,
12 days. A. pallipes and A. italicus have been
found in ponds (e.g. Rallo & Garcia-Arberas,
2000) or even in burrows (Peay & Hirst, 2003),
which are habitats that can experience low oxygen
concentrations. Grandjean et al. (1996) found a
well established population of A. pallipes in small
ponds where dissolved oxygen was measured
between 0.8 and 5 mg l)1. Crayfish may thus often
encounter moderate hypoxia and should be
adapted to deal with low oxygen. Although all
three crayfish species experienced a disruption in
ionic regulation in response to hypoxia, all indi-
viduals survived an extended period of time at a
low oxygen concentration. However, these exper-
iments were carried at a constant temperature and
it is quite probable that an elevated temperature in
combination with low oxygen will have a greater
impact on crayfish (Payette & McGaw, 2003;
Mugnier & Soyez, 2005).

There is a great need for methods to assess of
anthropogenic impacts on aquatic ecosystems. In
many European countries, crayfish are assumed to
prefer clean, well-oxygenated water. This experi-
ment has shown that crayfish of the genus
Austropotamobius are quite tolerant to a decrease
in ambient oxygen partial pressure and thus to one
effect of eutrophication or organic pollution. Their
potential use as a bioindicator of water quality is
therefore limited. This genus is part of the cultural
heritage in several countries in mainland Europe.
Because of this, and because of their keystone
ecological role, crayfish of the genus Austropot-
amobius, would be better seen as a ‘heritage’ rather
than ‘bioindicator’ species (Füreder & Reynolds,
2003).
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Füreder, L. & J. D. Reynolds, 2003. Is Austropotamobius pal-

lipes a good bioindicator?. Bulletin Français de la Pêche et de
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Français de la Pêche et de la Pisciculture 367: 671–680.

Hagerman, L. & R. F. Uglow, 1981. Ventilatory behaviour and

chloride regulation in relation to oxygen tension in the

shrimp Palaemon adspersus Rathke. Ophelia 20: 193–200.

Hagerman, L. & R. F. Uglow, 1982. Effects of hypoxia on

osmotic and ionic regulation in the brown shrimp Crangon

crangon (L.) from brackish water. Journal of Experimental

Marine Biology and Ecology 63: 93–104.

Hagerman, L. & A. Szaniawska, 1991. Ion regulation under

anoxia in the brackish water isopod Saduria (Mesidotea)

entomon . Ophelia 33: 97–104.

Henry, R. P. & M. G. Wheatly, 1992. Interaction of respiration,

ion regulation, and acid–base balance in the everyday life of

aquatic crustaceans. American Zoologist 32: 407–416.

Hildebrandt, J.-P. & J. Zerbst, 1992. Osmotic and ionic regu-

lation during hypoxia in the medicinal leech, Hirudo medic-

inalis L. Journal of Experimental Zoology 263: 374–381.

Holdich, D. M. & I. D. Reeve, 1991. The distribution of

freshwater crayfish in the British Isles with particular refer-

ence to crayfish plague, alien introductions and water qual-

ity. Aquatic Conservation 1: 139–158.

Holdich, D. M., 2002. Distribution of crayfish in Europe and

some adjoining countries. Bulletin Français de la Pêche et de
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et de la Pisciculture 370-371: 97–114.

Truchot, J. -P., 1979. Mechanisms of the compensation of blood

respiratory acid–base disturbances in the shore crab,Carcinus

maenas (L.). Journal of Experimental Zoology 210: 583–592.

Truchot, J. -P., 1981. The effect of water salinity and acid–base

state on the blood acid–base balance in the euryhaline crab,

Carcinus maenas (L.). Comparative Biochemistry and Phys-

iology A68: 555–561.

Truchot, J.-P., 1983. Regulation of acid–base balance. In Bliss,

D. E. (ed), The Biology of Crustacea. 5 Academic Press,

New York, 431–457.

Vigneux, E. & C. Souty-Grosset, 2000. Préface. Bulletin
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