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Anharmonic parametric excitation in optical lattices
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We study both experimentally and theoretically the losses induced by parametric excitation in far-off-
resonance optical lattices. The atoms confined in a one-dimensional sinusoidal lattice present an excitation
spectrum and dynamics substantially different from those expected for a harmonic potential. We develop a
model based on the actual atomic Hamiltonian in the lattice and we introduce semiempirically a broadening of
the width of lattice energy bands which can physically arise from inhomogeneities and fluctuations of the
lattice, and also from atomic collisions. The position and strength of the parametric resonances and the
evolution of the number of trapped atoms are satisfactorily described by our model.
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I. INTRODUCTION

The phenomenon of parametric excitation of the mot
of cold trapped atoms has recently been the subject of sev
theoretical and experimental investigations@1–3#. The exci-
tation caused by resonant amplitude noise has been prop
as one of the major sources of heating in far-off-resona
optical traps~FORT’s!, where the heating due to spontaneo
scattering forces is strongly reduced@4#. In particular, the
effect of resonant excitation is expected to be particula
important in optical lattices, which usually provide a ve
strong confinement to the atoms, resulting in a large vib
tional frequency and in a correspondingly large transfer
energy from the noise field to the atoms@1#.

Nevertheless, parametric excitation is not only a source
heating, but it also represents a very useful tool to charac
ize the spring constant of a FORT or in general of a trap
cold particles, and to study the dynamics of the trapped
Indeed, the trap frequencies can be measured by intention
exciting the trap vibrational modes with a small modulati
of the amplitude of the trapping potential, which results
heating@5# or losses@2,6# for the trapped atoms when th
modulation frequency is tuned to twice the oscillation fr
quency. This procedure usually yields frequencies that sa
factorily agree with calculated values, and are indeed
pected to be accurate for the atoms at the bottom of
trapping potential. From the measured trap frequencies
then possible to estimate quantities such as the trap d
and the number and phase space densities of trapped a
We note that this kind of measurement is particularly imp
tant in optical lattices, since the spatial resolution of stand
imaging techniques is usually not enough to estimate
atomic density from a measurement of the volume of a sin
lattice site.

Recently, one-dimensional~1D! lattices have proved to b
the proper environment to study collisional processes in la
and dense samples of cold atoms, using a trapping pote
independent of the magnetic state of the atoms. In this
tem, the parametric excitation of the energetic vibratio
mode along the lattice provides an efficient way to inve
1050-2947/2001/64~3!/033403~7!/$20.00 64 0334
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gate the cross-dimensional rethermalization dynamics m
ated by elastic collisions@7,6#.

Most theoretical studies of parametric excitation rely on
classical@8# or quantum@1# harmonic approximation of the
confining potential. Under certain circumstances these
pressions show quite good agreement with experimenta
sults @3#. However, general features of the optical latti
could be lost in these approaches. For example, a sinuso
potential exhibits an energy-band structure and a sprea
transition energies, while harmonic oscillators have jus
discrete equidistant spectrum. Thus, we might expect that
excitation process may happen at several frequencies,
with a non-negligible bandwidth. Such anharmonic effe
can be important whenever the atoms are occupying a r
tively large fraction of the lattice energy levels. The purpo
of this paper is to give a simple description of paramet
excitation in a sinusoidal 1D lattice. In Sec. II, we briefl
discuss general features of the stationary states on su
lattice. Then, we summarize the harmonic description giv
in Ref. @1# and extend it to the anharmonic case. By a n
merical evaluation of transition rates, we make a tempo
description of parametric excitation which is compared w
experimental results. We discuss the relevance of broade
of the spectral lines in order to understand the excitat
process in this kind of system. Some conclusions are give
Sec. V.

II. STATIONARY STATES OF A SINUSOIDAL OPTICAL
LATTICE

The Hamiltonian for an atom in a red detuned FORT i

H5
P2

2M
1Veff~xW !, ~2.1!

with

Veff~xW !52 1
4 auE~xW !u2, ~2.2!
©2001 The American Physical Society03-1



a

o

on
la

re

o
e

q.

ce

5

n
o
n

n
s

s 12
for

he
the

ld

ion

mn
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wherea is the effective atomic polarizations andE(x) is the
radiation field amplitude. For the axial motion in a sinusoid
1D lattice we can take

Hax5
Pz

2

2M
1V0 cos2~kz! ~2.3!

5
Pz

2

2M
1

V0

2
@11cos~2kz!#.

~2.4!

The corresponding stationary Schro¨dinger equation

2
\2

2M

d2F

dz2
1

V0

2
~11cos~2kz!!F5EF ~2.5!

can be written in canonical Mathieu’s form

d2F

du2
1~a22q cos 2u!F50 ~2.6!

with

a5S E2
V0

2 D S 2M

\2k2D 2q5
V0

2 S 2M

\2k2D . ~2.7!

It is well known that there exists countably infinite sets
characteristic values$ar% and$br% which, respectively, yield
even and odd periodic solutions of the Mathieu equati
These values also separate regions of stability. In particu
for q>0 the band structure of the sinusoidal lattice cor
sponds to energy eigenvalues betweenar andbr 11 @9#. The
unstable regions are betweenbr and ar . For q!1, there is
an analytical expression for the bandwidth@9#:

br 112ar;24r 15A2/pq(1/2)r 1(3/4)e24Aq/r !. ~2.8!

The quantities defined above can be expressed in terms
frequencyv0 defined in the harmonic approximation of th
potential

1

2
Mv0

25
V0

2

~2k!2

2!
, ~2.9!

thus obtaining

a5S E2
V0

2 D S 4V0

\2v0
2D ; q5S V0

\v0
D 2

. ~2.10!

Thus, the width of ther band can be estimated using E
~2.8! whenever the condition (V0 /\v0)2@1 is satisfied. In
the experiment we shall be working with a 1D optical latti
havingV0;10.5\v0. While the lowest bandr 50 has a neg-
ligible width ;10218\v0, the bandwidths for highest lying
levels r 510, 11, 12, and 13 would, respectively, be 0.006
0.1036, 1.52, and 20.56 in units of\v0.

In order to determine the energy spectrum, a variatio
calculation can be performed. We considered a harmonic
cillator basis set centered in a given site of the lattice, a
03340
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with frequencyv0. The diagonalization of the Hamiltonia
matrix associated to Eq.~2.4! using 40 basis functions give
the eigenvaluesEn,V0 shown in Table I forV0510.5\v0.
According to the results of last paragraph, the eigenvalue
and 13 belong to the same band while the band width
lower levels is smaller than 0.11\v0.

III. PARAMETRIC EXCITATION

As already mentioned, parametric excitation of t
trapped atoms consists of applying a small modulation to
intensity of the trapping light

H5
P2

2M
1Veff@11e~ t !#. ~3.1!

Within first order perturbation theory, this additional fie
induces transitions between the stationary statesn and m
with an averaged rate

Rm←n5
1

T U2 i

\ E
0

T

dtT~m,n!e~ t !eivmntU2

5
p

2\2
uT~m,n!u2S~vmn!; vmn5

Em2En

\
,

~3.2!

where

T~m,n!5^muVeffun&5Endnm2
1

2M
^muP̂2un& ~3.3!

is the matrix element of the space part of the perturbat
and

TABLE I. Energy spectrum in units of\v0 obtained from the
diagonalization of the Hamiltonian Eq.~2.4! for V0510.5\v0 in a
harmonic basis set with the lowest 40 functions. The third colu
shows the bandwidthss r , Eqs. ~3.14! and ~4.2!, used in the nu-
merical simulations reported in Sec. IV.

r Er Er 112Er s r

0 0.494 0.976 0.014
1 1.470 0.95 0.015
2 2.420 0.923 0.019
3 3.343 0.897 0.025
4 4.240 0.867 0.032
5 5.107 0.837 0.042
6 5.944 0.802 0.051
7 6.746 0.767 0.062
8 7.513 0.727 0.072
9 8.240 0.680 0.082

10 8.920 0.624 0.092
11 9.544 0.551
12 10.095 0.402
13 10.497
3-2
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S~v!5
2

pE0

T

dt cosvt^e~ t !e~ t1t!& ~3.4!

is the one-sided power spectrum of the two-time correlat
function associated to the excitation field amplitude.

If the confining potential is approximated by a harmon
well, the transition rates different from zero are

Rn←n5
pv0

2

16
S~0!~2n11!, ~3.5!

Rn62←n5
pv0

2

16
S~2v0!~n1161!~n61!. ~3.6!

The latter equation was used in@1# to obtain a simple expres
sion for the heating rate

^Ė&5
p

2
v0

2S~2v0!^E& , ~3.7!

showing its exponential character. The dependence on 2v0 is
characteristic of the parametric nature of the excitation p
cess. The fact that\ is not present is consistent with th
applicability of Eq.~3.7! in the classical regime.

Classically, parametric harmonic oscillators exhibit res
nances not just at 2v0 but also at 2v0 /n with n any natural
number@8#. In fact, the resonances corresponding ton52,
i.e., at an excitation frequencyv0, have been observed i
optical lattices@2,6#. A quantum description of parametri
harmonic excitation also predicts resonances at the same
quencies vianth-order perturbation theory@10#. In particular,
the presence of the resonance atv0 can be justified with the
following argument. According to the standard procedu
the second-order correction to the transition amplitude
tween statesun& and um& is given by

Rm←n
(2) 5^nuU (2)~ t0 ,t !um&5(

k
S 2 i

\ D 2

T~n,k!T~k,m!,

E
t0

t

dt8eivnkt8e~ t8!E
t0

t

dt9eivkmt9e~ t9!, ~3.8!

with U (2)(t0 ,t) the second-order correction to the evoluti
operatorU. Therefore, the transition may be described a
two-step procedureum&←uk&←un&. For harmonic parametric
excitation the matrix element of the space part of the per
bation differs from zero just for transitionsun&←un& and un
62&←un&. Consider a transition in Eq.~3.8! involving a
‘‘first’’ step in which the state does not changeun&←un& and
a ‘‘second’’ step for whichun62&←un&. Then resonance
phenomena occur when the total energy of the two exc
tions, 2\V, coincides with that of the second step transitio
i.e., for an excitation frequencyV5v0.

These ideas can be directly extended to anharmonic
tentials: the corresponding transition probability ra
R(n,m) would be determined by the transition matr
T(n,m), by the transition frequenciesvnm , and by the time
dependence of the excitatione(t). In general, anharmonic
03340
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transition matrix elementsT(n,m) will be different from
zero for a wider set of pairs (n,m). Besides, the transition
energies will not be unique so that the excitation proces
not determined by the excitation power spectrum at a sin
given frequency 2v0 and its subharmonics 2vo /n. As an
example, the transition energies for the specific poten
considered in this work are reported in Table I. Therefo
within the model Hamiltonian of Eq.~3.1!, resonance effects
can occur for several frequencies that may alter the shap
the population distribution within the trap. However, in ge
eral these resonant excitations will not be associated with
escape of trapped atoms.

Here we are interested in a 1D lattice; the direct extens
of the formalism mentioned above requires the evaluation
the matrix elementsT(n,m) among the different Mathieu
states that conform a band. This involves integrals which
our knowledge, lack an analytical expression and require
merical evaluation. As an alternative, we consider functio
which variationally approximate the Mathieu functions. Th
are the eigenstates of the Hamiltonian Eq.~2.4! in a har-
monic basis set of frequencyv0:

un&5(
i 51

i max

cniu i &v0
. ~3.9!

These states are ordered according to their energy:En
<En11 as exemplified in Table I. Within this scheme on
obtains a very simple expression forT(n,m)

T~n,m!5Endnm2 (
i , j 51

i max

cnicn j

1

2M
^ i uP̂2u j &. ~3.10!

It is recognized that any discrete basis set approximation
system with a band spectrum will lack features of the ori
nal problem which have to be carefully analyzed. Anywa
alternatives to a discrete basis approach may be cumbers
and not necessarily yield a better approach to understan
general properties of experimental data. While the discr
basis approach is exact for transitions between the low
levels, which have a negligible width, eigenstates belong
to a band of measurabe width should be treated with spe
care. Thus, we shall assume that matrix elementsT(n,m)
involving states with energiesEn and Em , so thatEn2(En
2En21)/2<En<En1(En112En)/2 with an analogous ex
pression forEm , are well approximated byT(n,m).

Within this scheme the equations which describe the pr
ability P(n) of finding an atom in leveln, given the transi-
tion ratesRm←n , are

Ṗ~n!5(
m

Rm←n
(1) ~P~m!2P~n!! ~3.11!

in the first-order perturbation theory scheme, and the fin
difference equations
3-3
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R. JÁUREGUI, N. POLI, G. ROATI, AND G. MODUGNO PHYSICAL REVIEW A64 033403
Pn~ t !5Pn~ t0!1(
m

Rm←n
(1) ~Pm~ t0!2Pn~ t0!!~ t2t0!

1(
m

Rm←n
(2) ~Pm~ t0!2Pn~ t0!!~ t2t0!2, ~3.12!

valid up to second-order time-dependent perturbation the
whenevert;t0. Both sets of equations are subjected to
condition

(
n

P~n!51. ~3.13!

Now, according to Eqs.~3.2! and ~3.8!, the evaluation of
Rn←m

(r ) also requires the specification of the spectral den
S(v). In the problem under consideration, the discrete lab
m,n are used to calculate interband transitions which
actually spectrally broad. This broadening might arise
only from the band structure of the energy spectra associ
with the Hamiltonian Eq.~2.4!, but also from other sources
which we will discuss below. Broad spectral lines can
introduced in our formalism by defining an effective spect
densitySeff(v), which should incorporate essential featur
of this broadening without simulating specific feature
Keeping this in mind, an effective Gaussian density of sta
Sn(v) is associated to each levelun& of energyEn

Sn~v!5
1

A2psn

exp2
~\v2En!2

2~\sn!2
. ~3.14!

The spectral effective densitySeff(vnm) associated to the
transition m←n is obtained by the convolution ofSn(v)
with Sm(v) and with the excitation source spectral dens
S(v). For a monochromatic source the latter is also taken
a Gaussian centered at the modulation frequency that o
integrated over all frequencies yields the square of the in
sity of the modulation source. The net result is thatSeff(vnm)
has the form

Seff~v!5S0 exp2
~v2veff!

2

2seff
2

~3.15!

with veff determined by the modulation frequencyV and the
energiesEn andEm . The effective widthseff contains infor-
mation about the frequency widths of the excitation sou
and those of each level.

IV. COMPARISON WITH EXPERIMENTAL RESULTS

We have tested the procedure described Sec. III to mo
parametric excitation in a specific experiment conducted
LENS, Firenze, Italy. In this experiment40K fermionic at-
oms are trapped in a 1D lattice, realizing retroreflecting l
early polarized light obtained from a single–mode Ti:Sa
ser atl5787 nm, detuned on the red of both theD1 andD2
transition of potassium, respectively, at 769.9 and 766.7
The laser radiation propagates along the vertical direction
provide a strong confinement against gravity. The laser be
is weakly focused within a two-lens telescope to a waist s
03340
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w0.90 mm, with a Rayleigh lengthzR53 cm; the effec-
tive running power at the waist position isP5350 mW.

The trap is loaded from a magneto-optical trap~MOT!,
thanks to a compression procedure already described in@6#,
with about 53105 atoms at a density around 1011 cm23.
The typical vertical extension of the trapped atomic cloud,
detected with a charge coupled device camera~see Fig. 1!, is
500 mm, corresponding to about 1200 occupied lattice si
with an average of 400 atoms in each site. Since the a
extension of the atomic cloud is much smaller thanzR , we
can approximate the trap potential to be

V~r ,z!5V0e2(2r 2/w0
2) cos2~kz!; k52p/l, ~4.1!

thus neglecting a 5% variation ofV0 along the lattice. The
atomic temperature in the lattice direction is measured wit
time–of–flight technique and it is about 50mK.

In order to parametrically excite the atoms we modul
the intensity of the confining laser with a fast acousto-op
modulator for a time intervalT.100 ms, with a sine of
amplitude e53% and frequencyV. The variation of the
number of trapped atoms is measured by illuminating
atoms with the MOT beams and collecting the resulting flu
rescence on a photomultiplier. In Fig. 2 the fraction of ato
left in the trap after the parametric excitation is reportedvs
the modulation frequencyV/2p. Three resonances in th
trap losses are clearly seen at modulation frequencies of
670, and 1280 kHz. By identifying the first two resonanc
with the lattice vibrational frequency and its first harmon
respectively, we get as a first estimatev0.2p3340 kHz.
As we will show in the following, these resonance are ac
ally on thered region ofv0 and 2v0, respectively, and there
fore a better estimate isv0.2p3360 kHz. Therefore the
effective trap depth is, from Eq.~9!, V0.185mK
.10.5\v0. Since the atomic temperature is aboutV0/3.5,
we expect that most of the energy levels of the lattice hav

FIG. 1. Absorption image of the atoms in the optical lattice, a
shape of the optical potential in the two relevant directions.
3-4
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non-negligible population and therefore the anharmonicity
the potential could play an important role in the dynamics
parametric excitation. Note that the third resonance at h
frequency, close to 4v0, is not predicted from the harmoni
theory. It is possible to also observe a much weaker re
nance in the trap losses around 1.5 kHz, which we inter
to be twice the oscillation frequency in the loosely confin
radial direction. However, in the following we will focus ou
attention just on the axial resonances.

As discussed in Sec. III, the overall width of the excit
tion assumed for our model system could play an import
role in reproducing essential features of experimental d
Since the source used in the experiment has a neglig
linewidth, it is necessary to model just the broadening of
atomic resonances. The spread of the transition energies
to the axial anharmonicity is reported in Table I, while t
broadening of each energy level, due to the periodic cha
ter of the sine potential, is estimated using Eq.~2.8!. We now
note that the 1D motion assumed in Sec. II is not comple
valid in our case, since the atoms move radially along
Gaussian potential. Since the period of the radial motion
about 500 times longer than the axial period, the atoms
an effective axial frequency which varies with their rad
position, resulting in a broadening of the transition fr
quency. Other sources of broadening are fluctuations of
laser intensity and pointing, and inhomogeneities along
lattice. We also note that elastic collisions within the trapp
sample, which tend to keep a thermal distribution of the t
levels population, can contribute to an overall broadening
the loss resonances. Since it is not easy to build a model
involves all these sources, we introduce semiempirically
effective broadening for ther th level @see Eq.~3.14!#. Rec-
ognizing that the width could be energy dependent we c
sidered the simple expression

s r
25l1S Er

V0
D p

1l0 ~4.2!

FIG. 2. Experimental spectrum of the losses associated to p
metric excitation of the trap vibrational modes. For the low a
high frequency regions two different modulation amplitudes of 2
and 3%, respectively, were used.
03340
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for several values of the constantsl1 , l0, and p. When p
50, i.e., for a constant value of the bandwidth we were
able to reproduce the general experimental behavior repo
in Fig. 2. The best agreement between the simulation and
experimental observations is obtained forl050.0002, l1

50.0135, in units ofv0
2, andp53. Similar results are also

obtained for slightly higher~lower! values ofl0,1 together
with slightly higher~lower! values of the powerp. In Table I
the resulting widths are shown for the lower 12 levels. No
that we have intentionally excluded levels 11, 12, and
from the calculation, since their intrinsic width is so larg
that the atoms can tunnel out of the trap along the lattice
much less than 100 ms@11#. However, the inclusion of thes
levels proved not to change the result of the simulation s
stantially.

A comparison of experimental and theoretical results
made in Fig. 3; the abscissa for the experimental data
been normalized by identifyingv0 with 2p3360 kHz. As
already anticipated, the principal resonance in trap losses
pears atV.1.85v0. This result follows from the fact tha
the excitation of the lowest trap levels does not result in
loss of atoms, as it would happen for a harmonic potent
On the contrary, the most energetic atoms, which hav
vibrational frequency smaller than the harmonic one, are e
ily excited out of the trap. The asymmetry of the resonanc
which has been observed also in@2#, is well reproduced in
the calculations and it is further evidence of the spread of
vibrational frequencies. The first interesting result obtain
by our study of parametric excitation is therefore the corr
tion necessary to extract the actual harmonic frequency f
the loss spectrum. For the specific conditions of the pres
experiment, we find indeed that the principal resonance
the trap losses appears atV.1.85v0. However, the calcu-
lation shows that the resonance is nearby this position fo
the explored values ofl0,1 andp also for deeper traps, up t
V0525\v0, and therefore it appears to be an invariant ch

ra-
FIG. 3. Experimental~circles! and theoretical~lines! fraction of

atoms left in the trap after parametric excitationvs the modulation
frequency. The continuous line corresponds to the numerical i
gration of the first order perturbation theory equations~3.11! and
the dashed line to the numerical integration of the finite differen
second order perturbation theory equations~3.8!.
3-5
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acteristic of the sinusoidal potential.
The result of the numerical integration of Eqs.~3.12! re-

ported in Fig. 3 reproduces relatively well the subharmo
resonance, which in the harmonic case would be expecte
v0. On the contrary, both experiment and calculation sh
that the actual position of the resonance isV.0.9v0. The
fact that the calculated resonance is broader than the ex
mental one could be due to an overestimation of the bro
ening of the high-lying levels of the lattice when using t
simple model of Eq.~4.2!, which could also explain the
small disagreement between theory and experiment on
red of the other two resonances in Fig. 3. In addition, it m
be mentioned that the accuracy of these results is restri
by the finite difference character of Eqs.~3.12! and by the
fact that some noise sources which have not been inclu
could be resonant at a nearby frequency. In particular, a
sible modulation of the laser pointing associated to the int
sity modulation is expected to be resonant atV5v0 in the
harmonic problem@1#, and it could play an analogous role
our sinusoidal lattice.

The higher order resonance around 3.5v0 observed in the
experiment is also well reproduced by the calculations ba
on first-order perturbation theory. Note that a simpler a
proximation to the confining potential by a quartic potent
VQ(z)5k2z21k4z4 would yield a resonance around 4v0
and not 3.5v0. However, it is possible to understand qua
tatively one of the features of this resonance considerin
quartic perturbation of the forme(t)VQ to a harmonic poten-
tial. In this case the ratio of the transition rates at the 2v0
and 4v0 resonances is set by Eqs.~3.2! to

uT~n62,n!u2/uT~n64,n!u2}
V0

2

v0
2

. ~4.3!

This result can qualitatively explain the absence of the c
responding high-order resonance in theradial excitation
spectrum~see Fig. 2!: since the radial trap frequency is
factor of 500 smaller than the axial one, the relative stren
of such radial anharmonic resonance is expected to be
pressed by a factor of (500)2. In conclusion, high harmonic
resonances, which certainly depend on the actual shap
the anharmonic potential, are expected to appear only if
spring constant of the trap is large.

In Fig. 4 theoretical and experimental results for the e
lution of the total population of trapped atoms at the reson
exciting frequencyV52v0 are shown. Although there is
satisfactory agreement between the model and the ex
ment, we notice that experimental data exhibit a differ
rate for the loss of atoms before and after 100 ms. T
change is probably due to a variation of the collision rate
the number of trapped atoms is modified, which cannot
easily included in the model. A comparison of the expe
mental evolution of the trap population with and witho
modulation shows the effectiveness of the excitation proc
in emptying the trap on a short time scale.

We have also simulated the energy growth of the trap
atoms due to the parametric excitation, which is reported
Fig. 5. Our calculations show a nonexponential energy
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crease in contrast with what is expected in the harmo
approximation, Eq.~3.7!. The fast energy growth at sho
times is related to the depopulation of the lowest leve
which are resonant with the 2v0 parametric source. The satu
ration effect observed for longer times is due to the fact t
the resonance condition is not satisfied for the upper lev
so that they do not depopulate easily.

V. CONCLUSIONS

We have studied both theoretically and experimentally
time evolution of the population of atoms trapped in a 1
sinusoidal optical lattice, following a parametric excitatio
of the lattice vibrational mode. In detail, we have presente
theoretical model for the excitation in an anharmonic pot
tial, which represents an extension of the previous harmo
models, and we have applied it to the actual sinusoidal
tential used to trap cold potassium atoms. The simulat

FIG. 4. Theoretical~continuous line! and experimental~tri-
angles! results for the evolution of the population of trapped ato
at the resonant exciting frequencyV52v0. The circles show the
evolution of the population in absence of modulation.

FIG. 5. Calculated evolution of the average energy of
trapped atoms during parametric excitation atV52v0.
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seems to reproduce relatively well the main features of b
the spectrum of trap losses, including the appearance of r
nances beyond 2v0, and the time evolution of the total num
ber of trapped atoms.

By comparing the theoretical predictions and the exp
mental observations the usefulness of a parametric excita
procedure to characterize the spring constant of the trap
been verified. Although the loss resonances are redsh
and wider than expected in the harmonic case, the lat
harmonic frequency can be easily extracted from the exp
mental spectra to estimate useful quantities such as the
depth and spring constant.

We have also emphasized the need for modeling
broadening of bands with a negligible natural width in ord
to reproduce the observed loss spectrum. In a harm
model this broadening is not necessary since the equidis
energy spectrum guarantees that a single transition en
ys

tt

M.
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characterizes the excitation process. We think that mos
the broadening in our specific experiment is due to the f
that the actual trapping potential is not one dimensional,
also to possible fluctuations and inhomogeneities of the
tice.

To conclude, we note that the dynamical analysis we h
made can be easily extended to lattices with larger dim
sionality, and also to other potentials, such as Gaussian
tentials, which are also commonly used for optical trappi
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