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Abstract

We study a mathematical model describing the nonlinear diffusion of oxygen

in a living tissue, in presence of consumption due to metabolism. The tissue

is perfused by a system of parallel capillaries in which oxygen is carried by the

blood in the form of gas freely diffusing in plasma and bound to hemoglobine.

We prove global existence of a unique smooth solution to the resulting parabolic-

hyperbolic system.



Chapter 1

Introduction

It is well known that oxygen is supplied to living tissues through microcircula-

tion of blood. The first attempt to describe the phenomenon in mathematical

terms is the classical Krogh’s model (see [13], [14]). This model deals with an

idealized geometrical arrangement consisting of one capillary of circular cross

section concentric with a circular cross section of muscle tissue; the exchange

of oxygen is modeled through a law of Robin’s type (flux proportional to the

jump between partial pressure of O2 in blood and in the tissue) and a diffusion

problem in axial symmetry with a consumption term has to be solved in the

region occupied by the tissue.

Many extensions of Krogh’s model have been proposed and studied (see [6],

[20] for a survey) and several semianalytical or approximated methods have been

developed, also to incorporate the effect of the presence of many capillaries.

The number of papers devoted to this subject in last 2-3 decades is really

impressive and we will just quote a few of them, referring the interested reader

to the literature quoted therein.

We single out three main lines of research: (i) modeling the mechanism of

transport/storage of O2 in microcirculation and of transport/storage/consumption

of oxygen in living tissue ([10], [18], [20]); (ii) discussing the boundary condi-

tions that express the exchange across the walls of capillaries ([5], [7], [19], [21]),

and (iii) finding approximated solutions often based on the use of line sources

1



to mimic the presence of capillaries and/or on asymptotic expansions ([1], [4],

[5], [11], [22]).

Our approach is based on the discussion carried out on topics (i) and (ii) and

has the aim of obtaining a rigorous mathematical result on the well-posedness

(existence, uniqueness, dependence on the data) of the corresponding analytical

problem.

In [16] we already considered the problem of perfusion of living tissue by a

bundle of parallel capillaries and we discussed the corresponding homogeniza-

tion.

In the present paper we release some assumptions that were instrumental for

the proofs of [16]: the fact that the transport of O2 in blood was supposed to

be based only on convection and the assumption of instantaneous equilibrium

between oxygen in plasma and bound to erythrocytes.

Thus, the model we deal with is more similar to the one presented in [17].

The analysis given there is heavily based on symmetry (just one capillary sur-

rounded by a co-axial cylindrical slab of tissue as in the original Krogh’s model,

while in our case we have N capillaries of radii Ri, i = 1, 2 . . . N), and on the use

of classical representation techniques that are clearly inapplicable to our general

geometric situation. Our existence and uniqueness results could be compared

with the study of smooth solutions for two-scale quasilinear parabolic systems,

arising in modeling of catalytic reactors, in [8].

The plan of the paper is the following.

In Section 2 we give the mathematical formulation of the problem, just

recalling the basic physiological facts (see [12] for a comprehensive introduction

to mathematical physiology), and we prove a simple a-priori estimate; in Section

3 we consider several auxiliary problems which are necessary in the proof of the

existence theorem which is given in Section 4 and is based on Schauder’s fixed

point theorem. The solution is sufficiently smooth, as it will be clear by the

arguments. In the last Section we prove the uniqueness.
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Chapter 2

Formulation of the problem
and basic assumptions

Let O be a bounded set in R2 with smooth boundary. Let x ≡ (x, y, z) and

denote by Ω ≡ {x ≡ (x, y, z) : (x, y) ∈ O, 0 < z < L}. For i = 1, 2, . . . , N

denote by Ci ≡ {x : (x− xi)
2+(y − yi)

2 < Ri
2, 0 < z < L}, and by C =

⋃N
i=1 Ci.

We will assume that the living tissue occupies ω = Ω \ C, and represent the

bundle of capillaries. We assume that ∂C and ∂Ω have no common parts outside

z = 0 and z = L.

We have to find 2N +1 functions: C(x, t), defined in ω×R+, represents the

volumetric concentration of oxygen diffusing in the tissue; ci(z, t) and `i(z, t),

defined on Ci×R+ (i = 1, 2 . . . N), represent the concentrations of oxygen in the

blood flowing in the i-th capillary, respectively dissolved in plasma and bound

to hemoglobin.

Oxygen diffuses in the tissue according to mass balance equation:

∂M(C)
∂t

−D4C = Q(C), (2.1)

where D is the diffusion coefficient, Q ≤ 0 represents, in absolute value, the rate

of oxygen consumption, and M(C) is the total oxygen content of a unit volume

of tissue, that is a monotone function of the concentration C of freely diffusing

oxygen. To be specific, we can think of a law of type Michaelis-Menten

M(C) = C + λCp(Cp + kp)−1, (2.2)
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where λ and k are positive constants and a typical value for p is 2.5 (see [12],

[19]). Assuming (2.2) corresponds to postulate that the mass of oxygen con-

tained in the unit volume of the tissue is the sum of the mass C of the freely

diffusing oxygen(e.g. to myoglobin) which is assumed to be in instantaneous

equilibrium with the former.

Of course, the equation (2.1) can also include nonlinear diffusivity. Explicit

dependence on x and t will be excluded to avoid additional technical complica-

tions.

At the boundaries ∂Ci, i.e. at the walls of capillaries, we assume that oxygen

flow is induced by deviations from the osmotic equilibrium (Henri’s law) and we

write

Ci(θ, z, t)− νci(z, t) = β
∂Ci

∂r
, i = 1 . . . N, (2.3)

where ν and β are positive constants and we denoted by Ci(θ, z, t) the value of

C at point (xi + Ri cos θ, yi + Ri sin θ, z) and at time t (where θ is an angular

coordinate) and by ∂Ci
∂r its derivative, normal to ∂Ci and pointing toward tissue,

at the same point and time. 1

Mass balance of oxygen in each Ci will include convection (with given speed

u(t) of the blood, say in the positive z direction) for both `i and ci, diffusion in

axial direction for ci, and exchange with the surrounding tissue. If α and 1− α

represent the volume fraction of the blood occupied by plasma and erythrocytes,

respectively, and d is the diffusivity of oxygen in plasma, we will write

α{∂ci

∂t
+ u(t)

∂ci

∂z
− d

∂2ci

∂z2
}+ (1− α){∂`i

∂t
+ u(t)

∂`i

∂z
} = (2.4)

=
D

πRi
2

∫ 2π

0

∂Ci

∂r
Ridθ, i = 1 . . . N.

From now on, we will assume that u(t) is a given positive C1-function. Finally,

we will have to postulate a relationship between `i and ci. In [16] we assumed

a law of instantaneous equilibrium `i = γ(ci), γ being a monotone increasing

1A generalization of (2.3) in which the normal derivative
∂Ci

∂r
is a monotone function of

Ci − νci could be also treated with only minor changes.

4



function with γi(0) = 0. Here, we make the more general assumption that a

relaxation mechanism toward equilibrium is given: so that a positive constant

τ and a monotone function Φ (Φ(0) = 0) exist, so that:

τ{∂`i

∂t
+ u(t)

∂`i

∂t
} = Φ(γ(ci)− `i), i = 1 . . . N. (2.5)

The problem is completed by prescribing the following conditions:

(i) initial conditions:
C(x, 0) = C0(x), x ∈ ω,

ci(z, 0) = ci
0(z), z ∈ (0, L), i = 1 . . . N,

`i(z, 0) = `i
0(z), z ∈ (0, L), i = 1 . . . N ;

(2.6)

(ii) inlet/outlet boundary conditions for the capillaries:
ci(0, t) = ci0(t), t > 0, i = 1 . . . N,

ci(L, t) = ciL(t), t > 0, i = 1 . . . N,

`i(0, t) = `i0(t), t > 0, i = 1 . . . N ;

(2.7)

(iii) boundary conditions for the tissue, that we will take simply as homoge-

neous Neumann conditions:

∂C

∂n
= 0, on ∂Ω \ ∂C, t > 0. (2.8)

We note that, incorporating α and 1 − α in the definition of ci and `i and

renormalizing variables, the problem reduces to the following, where the same

symbols have been used to save notation:

∂M(C)
∂t

−4C = Q(C) in ω ×R+ (2.9)

Ci(θ, z, t)− ci(z, t) = β
∂Ci(θ, z, t)

∂r
on ∂Ci ×R+ (2.10)

∂ci

∂t
+ u

∂ci

∂z
− d

∂2ci

∂z2
+

∂`i

∂t
+ u

∂`i

∂z
=

K

πRi

∫ 2π

0

∂Ci

∂r
dθ, in Ci ×R+ (2.11)

∂`i

∂t
+ u

∂`i

∂z
= Φ(γ(ci)− `i), in Ci ×R+ (2.12)
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where i = 1, 2 . . . N in (2.10)-(2.12) and the initial and boundary conditions are

given by (2.6)-(2.8).2

We make the following assumptions on functions M, Q, Φ, γ appearing in

(2.9)-(2.12).

(H1) M is a positive strictly increasing locally Lipschitz continuous function

defined on [0,+∞).

(H2) Q is a non-positive locally Lipschitz continuous function defined on [0,+∞),

Q(0) = 0.

(H3) Φ is an increasing locally Lipschitz continuous function defined on (−∞,+∞),

Φ(0) = 0, Φ′(0) > 0.

(H4) γ is a strictly increasing locally Lipschitz continuous function defined on

[0,+∞), γ(0) = 0.

Concerning the notations and the functional spaces, we follow the reference [15]

.

We prove the following a-priori estimate.

Proposition 2.1. Assume that initial and boundary data for ci and C are

strictly positive and smaller than a constant E. Then, if

E1 = γ(E), (2.13)

and if data for `i are strictly positive and less than E1, any classical solution of

problem (2.6)-(2.12) is such that

0 < C(x, t) < E, x ∈ ω, t > 0; (2.14)

0 < ci(z, t) < E, z ∈ [0, L], t > 0, i = 1 . . . N ; (2.15)

0 < `i(z, t) < E1, z ∈ [0, L], t > 0, i = 1 . . . N. (2.16)
2We could allow positive quantities β and K to depend on i.
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Proof. We confine ourselves to prove the upper bound. If the second inequality

is violated in any of (2.14)-(2.16), then a t0 > 0 should exist such that for t < t0

they hold and one of the following cases occur:

(a) `i(z0, t0) = E1 for some z0 and i, while

C(x, t0) < E, x ∈ ω and ci(z, t0) < E in (0, L)∀i;

(b) ci(z0, t0) = E for some z0 and i, while

C(x, t0) < E, x ∈ ω and `i(z, t0) ≤ E1 in (0, L)∀i.

(c) C(x0, t0) = E for some x0 and

`i(z, t0) ≤ E1, ci(z, t0) ≤ E, z ∈ (0, L), ∀i.

In case (a), first we note that z0 6= 0, z0 6= L so that `iz(z0, t0) = 0. Hence

(2.12) implies

Φ(γ(ci(z0, t0))− E1) ≥ 0, (2.17)

but since ci < E, γ(ci) < E1 and (2.17) contradicts (H3).

In case (b), again z0 6= 0, z0 6= L, so that ciz = 0, cizz ≤ 0, cit ≥ 0. Moreover,

from (2.12):

`it + u`iz |zo,to
= Φ(γ(E)− `i) ≥ 0. (2.18)

Consequently, from (2.11)
∫ 2π
0 Cir |zo,to

dθ ≥ 0, which is in contradiction with

(2.10) and (b).

Finally, maximum principle applied to (2.9) ensures that if C attains a maximum

value in ω × (0, t0], it should be attained at some point of ∂Ci × {t0} where Cir

has to be strictly negative, according to boundary point principle. But this

contradicts (2.10).

Corollary 2.2. Let (H1)-(H4) and the assumptions of Proposition 2.1 hold.

Then functions M, Q, γ, Φ in (2.9), (2.12) can be truncated, i.e. there is no

loss of generality in assuming that

(H5) Functions M, |Q|, |Φ|, γ are Lipschitz continuous and bounded by a con-

stant M̂ .
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Chapter 3

Preliminary results

Denote by ST = {(z, t) : 0 < z < L, 0 < t < T } and consider the following

Problem A. For any given non-negative w ∈ Hα, α/2(ST )∩C(ST ), find `(z, t) ∈

C(ST )1 and satisfying

`t + u(t)`z = Φ(γ(w)− `) in ST , (3.1)

`(z, 0) = ` 0(z) ≥ 0, 0 < z < L, (3.2)

`(0, t) = `0(t) ≥ 0, 0 < t < T. (3.3)

We prove

Proposition 3.1. Let the chain of data (3.2), (3.3) be continuous2 , and denote

by `0MAX its maximum. Then Problem A has a unique solution; moreover

0 ≤ ` ≤ γ(W ), in ST , (3.4)

where

W = max(‖w‖C(ST ), γ−1(`0MAX)). (3.5)

Furthermore, if the chain of data is Hölder continuous with the exponent α ∈

(0, 1), the solution is Hölder continuous with exponent α/2.
1In fact its material derivative corresponding to the velocity u(t)~ez is also continuous.
2As usual, by this expression we mean that data themselves are continuous and zero-order

compatibility conditions are satisfied (in this case `0(0) = `0(0)).
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Proof. To find `(z, t) it is sufficient to integrate an ordinary differential equation

along the characteristics z −
∫ t
0 u(τ)dτ =const. Hence `(z, t) is continuously

differentiable along the tangential direction to the characteristics. The normal

direction enters as a parameter and inherits the smoothness of the chain of data.

Estimate (3.4) follows at once using assumptions (H3) and (H4).

Next, we want to investigate how the solution `[w] of Problem A depends on

w and we prove

Proposition 3.2. Under the same assumptions, there exists a constant k > 0

such that

‖`[w′
]− `[w

′′
]‖L∞(0,T ;L2(0,L)) +

√
min

0≤t≤T
u(t)‖`[w′

]− `[w
′′
]‖L2(0,T ;L∞(0,L))

≤ k ‖w′ − w
′′‖L∞(0,T ;L2(0,L)). (3.6)

Proof. For given w
′

and w
′′

find `[w′] and `[w′′] solving Problem A and let

` = `[w′]− `[w′′]. Then `(z, t) solves

`t+u(t)`z = [Φ(γ(w′)−`′)−Φ(γ(w′)−`′′)]+[Φ(γ(w′)−`′′)−Φ(γ(w′′)−`′′)] (3.7)

with zero initial and boundary data. Multiply (3.7) by ` and note that the first

term on the r.h.s. of the equation so obtained is negative, while the second term

is dominated by Λ2|w′−w′′||`|, where Λ is the largest of the Lipschitz constants

of Φ and of γ. Integrating over ST concludes the proof.

Remark 3.3. The calculations as in Proposition 3.2 are justified by regulariza-

tion. For such calculations in the the theory of the first order semi-linear hyper-

bolic equations see e.g. [2] . Using the technique from [2] it is straightforward to

prove that for `0 ∈ BV (0, T ) and `0 ∈ BV (0, L) we have ` ∈ L∞(0, T ;BV (0, L))

and

‖`‖L∞(0,T ;BV (0,L)) ≤ C
{
‖`0‖BV (0,T )+‖`0‖BV (0,L)+‖∂zw‖L1((0,L)×(0,T ))

}
(3.8)

We note that this regularity doesn’t require the compatibility of `0 and `0.
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Next, for i = 1, 2 . . . N we consider the following

Problem B. For any wi as in Problem A and for any given positive constant λi

and any non-negative function Ai ∈ Hβ,β/2(ST ) ∩ C(ST ) find ci ∈ Wq
2,1(ST ) ∩

C(ST ) (∀q ∈ [2,+∞)) such that

cit + u(t)ciz − dcizz = −Φ(γ(ci)− `[wi]) + Ai(z, t)− λici, in ST , (3.9)

ci(z, 0) = ci
0(z) ≥ 0, 0 < z < L, (3.10)

ci(0, t) = ci0(t) ≥ 0, 0 < t < T, (3.11)

ci(L, t) = ciL(t) ≥ 0, 0 < t < T. (3.12)

From now on we drop index i for simplicity. We prove

Proposition 3.4. Let the chain of the data (3.10)-(3.12) be Hölder continuous

and denote by c0MAX its maximum. Then Problem B has a unique solution;

moreover

0 ≤ c ≤ M in ST (3.13)

where

M = max(c0MAX, W, ‖A‖C(ST )/λ). (3.14)

Proof. ¿From Theorem 6.4 and Theorem 6.7 of [15] chapter V it follows that

Problem B has a solution such that

c ∈
0
V

1,0

2,2(ST ) ∩Hα, α/2(ST ), α > 0, (3.15)

where

V 1,0
2,2 ≡ {ϕ ∈ L∞(0, T ;L2(0, L)) : ϕz ∈ L2(ST ),∫ T

0
h−2‖ϕ(z, t + h)− ϕ(z, t)‖2L2(ST−h) dh < +∞}.

Moreover, since c ∈ W 2,1
q (ST ) for any q > 1 (see [15], Chapter 4, and recall

boundedness of Φ and A) we have

cz ∈ Hλ, λ/2(ST ), ∀λ < 1. (3.16)
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To prove uniqueness, denote by c′ and c′′ two possible solutions and let

c(z, t) = c′(z, t)− c′′(z, t). (3.17)

We have

ct + ucz − dczz + λc = Φ(γ(c′′)− `[w])− Φ(γ(c′)− `[w]), (3.18)

with c = 0 on the parabolic boundary of ST . Multiply (3.18) by c and integrate

over ST . Using (H3) and (H4) we conclude that c ≡ 0. Next, use maximum

principle noting that the r.h.s. of (3.9) is non-negative for c = 0 and non-positive

for c = M .

It is clear that, for fixed A and λ, solving Problem A for any w and then

Problem B for `[w] defines a mapping

c = c[w]. (3.19)

According to Proposition (3.1) and (3.4), if

|w| ≤ max{γ−1(`0MAX), c0 MAX, ‖A‖C(ST )/λ} ≡ M (3.20)

then

|c[w]| ≤ M. (3.21)

Hence c[w] maps the ball with radius M of C(ST ) into itself.

Moreover, since

‖cz‖Hλ, λ/2 ≤ k (3.22)

where k only depends on M , the mapping is compact. To prove that the mapping

is continuous we take a sequence {wm} and study the corresponding cm = c[wm].

Since

‖cm
z ‖Hλ, λ/2(ST ) + ‖cm‖

W 2,1
q
≤ k, (3.23)
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there is a subsequence cr converging to ĉ(z, t) uniformly and converging weakly

in W 2,1
q . Hence, passing to the limit (along the subsequence) in the equation

satisfied by c[wr] we obtain that c[wr] → c[w]. Using Schauder fixed point

theorem gives us the existence theorem for the following

Problem C. For any given λi > 0 and non-negative Ai ∈ Hβ, β/2(ST ) ∩ C(St)

solve Problem B with `[wi] replaced by `[ci].

Now (dropping again index i) we investigate the dependence of c upon A and

prove

Proposition 3.5. Let c′ and c′′ be solutions of Problem C corresponding to A′

anf A′′ respectively. Then, for any t ∈ (0, T ) it is:∫ L

0
|c′(z, t)− c′′(z, t)| dz ≤ k ‖A′ −A′′‖L1(ST ). (3.24)

Proof. Writing again c = c′ − c′′, it is

cz +u(t)cz−dczz +λc = Φ(γ(c′′)− `[c′′])− (Φ(γ(c′)− `[c′])+A′−A′′. (3.25)

Testing (3.25) with regularized sign(c) we get∫ L

o
|c(z, t)|dz+λ

∫∫
St

|c|dzdτ+
∫∫

St

(Φ′′−Φ′)sign c ≤
∫∫

ST

|A′−A′′|dzdτ, (3.26)

(the meaning of Φ′ and Φ′′ is obvious).

Now, proceeding as in the proof of Proposition 3.2, the integral containing Φ′′−

Φ′ is estimated in terms of
∫∫

St
|`[c′′]− `[c′]|dz dτ . Then using Proposition (3.2)

the proof is concluded.

Therefore we have

Corollary 3.6. Solution to Problem C is unique.

Now, we state and solve our last auxiliary problem.

Problem D. For any given n-tuple ϕ ≡ {ϕ1 . . . ϕN} of non-negative functions

ϕi ∈ L∞(ST ) find C ∈ L∞(QT ) ∩ V
1,1/2
2 (QT ) (QT = ω × (0, T )), such that

∂

∂t
M(C)−∆C = Q(C) in QT , (3.27)
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C(x, 0) = C0(x), x ∈ ω, (3.28)

∂C

∂n
= 0, on ∂Ω \ ∂C × (0, T ), (3.29)

[C − βCr]i = ϕi, on ∂Ci × (0, T ), (3.30)

where we wrote for simplicity [C − βCr]i to indicate that the quantity in bracket

has to be evaluated for x = xi + Ri cos θ, y = yi + ri sin θ.

We prove

Proposition 3.7. If C0 ∈ L∞(ω) is a given non-negative function, then Prob-

lem D is uniquely solvable in QT . Moreover

0 ≤ C ≤ max{max C0, max
i
‖ϕi‖L∞(ST )}, (3.31)

and there exist positive constants δ, k1 and k2 such that

‖C‖
V

1,1/2
2 (QT )

+ ‖C‖Hδ,δ/2(QT ) ≤ k1

∑
i

‖ϕi‖L∞(ST ) + k2, (3.32)

where

‖C‖
V

1,1/2
2 (QT )

= ‖ 5 C‖2L2(QT ) +
∫ T−h

0
dt

∫
ω

h−1|C(x, t + h)− C(x, t)|2 dx.

Proof. Using the classical theory of linear parabolic equations with discontinu-

ous coefficients from [15], together with the Schauder fixed point theorem, we

arrive at solvability of the Problem D. The membership of C in V
1,1/2
2 (QT ) and

estimate (3.32) follow from classical theory of parabolic equations.

Uniqueness is obtained by the theory of entropy solutions (see [3]).

It can also be seen that constants k1 and k2 exist such that

‖C‖Hδ,δ/2(QT ) ≤ k1

∑
i

‖ϕi‖L∞(ST ) + k2. (3.33)

For more details we refer to [15], pages 418-423. From maximum principle and

assumptions (H1), (H2), it is immediately seen that C ≥ 0.

Moreover, since Q is non-positive, and β > 0 the upper bound for C is obtained

at once.
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Corollary 3.8. Let C0(x) ∈ C2(ω̄) and that its normal derivative vanishes

on ∂ω \ C; moreover let ϕ ∈ C[ST ], ϕiz ∈ Hβ,β/2 be chosen so that (3.30)

holds initially. Then the problem (3.27)-(3.30) has a unique solution C ∈

H2+β,1+β/2 (QT ).

Proof. From Theorem 7.4 page 491 of [15] we find that under our assumptions

a solution of Problem D exists in the class specified.

Remark 3.9. Having stated the problem in a class of very smooth functions,

we require lot of smoothness on the data. Some generalizations are however

possible.
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Chapter 4

Existence theorem

Denote by K(M,T ) the set of all n-tuple of functions ϕi ∈ C(ST ) and such that

0 ≤ ϕi(z, t) ≤ M, i = 1, . . . N, z ∈ ST . (4.1)

Solve Problem D with this choice of ϕ ≡ {c1, c2 . . . cN} and let

Ai(z, t) =
λi

2π

∫ 2π

0
C(xi+Ri cos θ, yi+Ri sin θ, z, t) dθ, i = 1, 2, . . . N. (4.2)

Now, for each i, solve Problem C and find an n-tuple c ≡ {c1, . . . , cN}.

Thus, we have defined a mapping

c = T [ϕ], (4.3)

and we have

Proposition 4.1. Let λi = 2K
βRi

. If ĉ is a fixed point of mapping (4.3)

ĉ = T [ĉ],

then our problem is solved by the 2N + 1 functions

ĉ, `[ĉ], C[ĉ]

where `[ĉ] ≡ {`1[ĉ1], `2[ĉ2], . . . , `N [ĉN ]} is obtained solving Problem A and C[ĉ]

is obtained solving Problem D.

In order to prove that the mapping T has a fixed point we should establish

its properties. First we prove
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Proposition 4.2. There exists M > 0 such that

ϕ ∈ KM,T ⇒ T [ϕ] ∈ KM,T (4.4)

for any given T > 0.

Proof. Take

M > max{ ‖C0‖C(ω̄), c0MAX , γ−1(`0MAX)} (4.5)

and recall (3.4), (3.13), (3.21), (3.31).

Now we prove

Proposition 4.3. T maps KM,T into a compact subset.

Proof. Proposition 3.7 guarantees that (3.31) and (3.32) are satisfied. This

ensures that C[c] belongs to a set A which is compact in L2(0, T ;Hα(ω)) for

any α < 1. Then T [c] is uniformly bounded in W 2,1
q (recall (3.23)) and hence

compact in KM,T for q > 3.

Proposition 4.4. T is continuous.

Proof. Let cm → c in KM,T . Then the set A is compact in L2(0, T, Hα(ω)) for

any α < 1 as seen above and C[cm] contains a subsequence converging strongly

in L2(0, T ;Hα(ω)), weakly in V
1,1/2
2 (QT ) and weak∗ in L∞(QT ) to a solution C

of Problem D. Because of the uniqueness, the whole sequence converges.

Moreover, from Proposition 3.2 we have that `[cm] converges in L1(ST ) and

T [cn] are uniformly bounded in W 2,1
q (ST ) so that they converge uniformly and

weakly in W 2,1
q .

Finally, w = lim T [cn] satisfies Problem C and, because of uniqueness, the whole

sequence converges.

Hence we have proved the following result
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Corollary 4.5. Let us suppose hypothesis (H1)-(H5). Let C0 be a non-negative

bounded function. Let c0 ∈ C2[0, L] and c0, cL ∈ C1[0, T ] be non-negative vector

valued functions satisfying zero-order compatibility condition. Let `0 and `0

be non-negative vector functions of bounded variation. Then there is M > 0

such that the mapping T has at least one fixed point ĉ ∈ KM,T . Furthermore,

{ĉ, `[ĉ], C[ĉ} ∈ W 2,1
q (Ci × (0, T ))N × L∞(0, T ;BV (Ci))N × V

1,1/2
2 (ω × (0, T )),

∀q ≥ 2.

Supposing a bit more of regularity, we find that solution is very regular :

Theorem 4.6. Let the assumptions of Corollary 4.5 be satisfied and let in

addition C0 ∈ C3(ω̄) and let chain of data (3.2)-(3.3) be Hölder continuous,

with exponent λ ∈ (0, 1). Furthermore, let the compatibility condition (3.30) be

satisfied at t = 0. Then the problem (2.6)-(2.12) has a non-negative solution

{ĉ, `[ĉ], C[ĉ} ∈ W 2,1
q (Ci × (0, T ))N ×Hλ(C̄i × [0, T ])N ×H2+β,1+β/2(ω× (0, T ))

, ∀q ≥ 2 and β ∈ (0, 1).

Remark 4.7. Let in addition c0 ∈ C3[0, L] and c0, cL ∈ C2[0, T ] be non-negative

vector valued functions satisfying zero and first-order compatibility condition.

Then ĉ ∈ H2+λ,1+λ/2(Ci × (0, T ))N .

17



Chapter 5

Uniqueness Theorem

The uniqueness theorem is somehow unexpected, except with very high regu-

larity. We note that even for a special case of our model, studied in [17], no

uniqueness result was obtained. In fact for the uniqueness we don’t really need

classical solutions. The regularity V
1,1/2
2 (ω × (0, T )) × W 2,1

q (Ci × (0, T ))N ×

L∞(0, T ;BV (Ci))N is enough, but we have to balance carefully the correspond-

ing ” energy ” terms. It should be noted that the presence of M makes the

calculations with the time derivatives and time differences tricky. Only optimal

arrangement of the terms from 3 equations gives the right conclusion.

Theorem 5.1. The problem (2.6)-(2.12) has a unique bounded non-negative so-

lution {C, c, `} ∈ V
1,1/2
2 (ω×(0, T ))×W 2,1

q (Ci×(0, T ))N×L∞(0, T ;BV (Ci))N , q >

3.

Proof. Let us suppose that there exist two solutions for the problem (2.6)-

(2.12). Then the difference of the solutions, denoted by {C, c, `}, is once more

in V
1,1/2
2 (ω × (0, T )) ×W 2,1

q (Ci × (0, T ))N × L∞(0, T ;BV (Ci))N . We note that

there are N capillary tubes Ci of the length L and consequently functions c and

` are vector valued with N components.

We proceed in several steps.

1. STEP

We integrate the equation (2.9) in time and get

M(C1(x, t))−M(C2(x, t))−D∆
∫ t

0
C(x, ξ) dξ =

∫ t

0

(
Q(C1)−Q(C2)

)
dξ (5.1)

18



Consequently for every ϕ ∈ H1(ω) we have∫
ω

(
M(C1(x, t))−M(C2(x, t))

)
ϕ dx + D

∫
ω
∇
( ∫ t

0
C
)
∇ϕ dx+

D

β

∑
i

∫ L

0

∫ 2π

0
Riϕ|r=Ri

∫ t

0
C|r=Ri dϑdz =

∫
ω

( ∫ t

0

(
Q(C1)−Q(C2)

)
ϕ dξ

)
dx

+
D

β

∑
i

∫ L

0

∫ 2π

0
Riϕ|r=Ri

∫ t

0
c|r=Ri dϑdz (5.2)

We take ϕ = C as a test function and get∫ t

0

∫
ω

(
M(C1(x, ξ))−M(C2(x, ξ))

)
C dxdξ +

D

2

∫
ω
|∇
( ∫ t

0
C
)
|2 dx+

D

2β

∑
i

∫ L

0

∫ 2π

0
Ri(
∫ t

0
C)2|r=Ri dϑdz =

∫ t

0

∫
ω

( ∫ ξ

0

(
Q(C1)−Q(C2)

)
C dξ dx

+
D

β

∑
i

∫ t

0

∫ L

0

∫ 2π

0
RiC|r=Ri

∫ t

0
c|r=Ri dϑdz (5.3)

Since

|
∫ t

0

∫
ω

( ∫ ξ

0

(
Q(C1)−Q(C2)

)
C dξ dx| ≤ Cqt

∫ t

0

∫
ω

C2 (5.4)

and

|D
β

∑
i

∫ t

0

∫ L

0

∫ 2π

0
RiC|r=Ri

∫ t

0
c|r=Ri dϑdz| =

|D
β

∑
i

∫ L

0

∫ 2π

0
Ri

( ∫ t

0
C|r=Ri

∫ t

0
c|r=Ri −

∫ t

0
(c|r=Ri

∫ ξ

0
C|r=Ri)dξ dϑdz| ≤

D2

β

∑
i

∫ L

0

∫ 2π

0
Ri

(∫ t

0
c2|r=Ri + (

∫ t

0
c|r=Ri)

2

)
+

D

4β

∑
i

∫ L

0

∫ 2π

0
Ri

(
(
∫ t

0
C)2|r=Ri + (

∫ t

0
(
∫ ξ

0
C|r=Ri)

2 dξ)
)

(5.5)

Hence for t ≤ T0 = min{T, cm/(2cq)} we have∫
ω
|∇
( ∫ t

0
C
)
|2 dx +

∫ t

0

∫
ω

C2 +
∑

i

∫ L

0

∫ 2π

0
Ri(
∫ t

0
C)2|r=Ri

≤ CM

∑
i

∫ t

0

∫ L

0

∫ 2π

0
Ric

2|r=Ri (5.6)
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2. STEP

Now we study the equation for ` :

∂`

∂t
+ u(t)

∂`

∂z
=
(

Φ(γ(c1)− `1)−Φ(γ(c2)− `2)
)

in (0, L)× (0, T ) (5.7)

By testing this equation by regularized ` and after using Proposition 3.2 , we

get ∫ t

0

∫ L

0
`2 ≤ Cρt

∫ t

0

∫ L

0
c2 for every i (5.8)

3. STEP

Finally we study the equation for c :

∂c

∂t
+ u(t)

∂c

∂z
− d

∂2c

∂z2
+

2D

βRi
c = −

(
Φ(γ(c1)− `1)− Φ(γ(c2)− `2)

)
+

D

βπRi

∫ 2π

0
C|r=Ri dϑ in (0, L)× (0, T ) (5.9)

We integrate (5.9) from 0 to t and test the obtained equation by c. Then we

have ∫ L

0
c2(t) +

∫ L

0
c(t)(

∫ t

0
u(η)

∂c

∂z
dη) +

d

2
∂t

∫ L

0
| ∂

∂z

∫ t

0
c|2 +

2D

βRi
∂t

∫ L

0
(
∫ t

0
c)2 ≤

C0

(∫ L

0

∫ 2π

0
|
∫ t

0
C||c|+

∫ L

0
|c|
∫ t

0
|c|+

∫ L

0
|c|
∫ t

0
|`|
)

(5.10)

Clearly, we should first take care of the transport term :

|
∫ t

0

∫ L

0
c(ξ)(

∫ ξ

0
u(η)

∂c

∂z
dη) dxdξ| = |

∫ t

0

∫ L

0

(
∂ξ(
∫ ξ

0
u(η)

∂c

∂z
dη

∫ ξ

0
c(η) dη)

−u(ξ)
∂c

∂z
(ξ)
∫ ξ

0
c

)
dxdξ| ≤ Ctr

(
1
δ

∫ t

0

∫ L

0
| ∂

∂z

∫ t

0
c|2+

(δ +
t‖u‖∞

d
)
∫ t

0

∫ L

0
c2 +

∫ L

0
| ∂

∂z

∫ t

0
c|2
)

(5.11)

After inserting (5.11) into (5.10) we get∑
i

(1− 3C0δ − C1t)
∫ t

0

∫ L

0
c2(t) +

d

8

∫ L

0
| ∂

∂z

∫ t

0
c|2 +

2D

βRi

∫ L

0
(
∫ t

0
c)2 ≤

C3

(
1
δ

∫ t

0

∫ L

0

∫ 2π

0

∑
i

|
∫ ξ

0
C|r=Ri |2 +

1
δ

∫ t

0

∫ L

0
| ∂

∂z

∫ t

0
c|2
)

(5.12)
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Using (5.6) and Gronwall’s inequality , we conclude that for t ≤ T1 ≤ T0 and

such that 1− 3C0δ − C1T1 > 0, c(x, t) = 0. Hence C and ` are also zero.

Therefore we have uniqueness on a small time interval with length indepen-

dent of the data. By repeating this procedure a finite number of times, we get

uniqueness on (0, T ).
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