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Abstract: We consider a convection-diffusion problem in a porous medium saturated
by a solution of a chemical substance A in water. A nonlinear non-equilibrium kinetics of
sorption/desorption of A on the porous matrix is assumed. We assume that the chemical
substance can be transported by ionic exchange through the walls of an array of parallel
tubes in which the solution flows at a prescribed velocity. The well-posedness of the prob-
lem is proved under different boundary conditions. If the array of tubes is periodic, we
homogenize the problem and we prove that there exists a unique solution to the homog-
enized problem, in which the terms of interaction due to chemical exchange through the
walls of the tubes are cast in the differential equation.

1 Introduction

In a previous paper [15] we made a preliminary analysis of a mathematical problem mod-
eling ionic exchange in a porous medium, saturated by a liquid solution, through the

∗The research of A.M. was supported in part by the GDR MOMAS (Modélisation Mathématique et Sim-
ulations numériques liées aux problèmes de gestion des déchets nucléaires: 2439 - ANDRA, BRGM, CEA,
EDF, CNRS) as a part of the project ”Modélisation micro-macro des phénomènes couplés de transport-
chimie-déformation en milieux argileux ”
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injection of a liquid in an array of parallel pipes whose walls are permeable to the chemi-
cal substance to be extracted from (or to be added to) the porous medium.

More precisely, let the array P ⊂ IR3 be the set

P =
N⋃

k=1

Pk, Pk ≡ {(x− xk)2 + (y − yk)2 ≤ R2
k, 0 < z < H}

for given positives N, H, R1, . . . , RN . We assume that the porous medium occupies the
domain K \ P , where K is a cylinder Q× (0,H) , containing P , and Q is a domain in
IR2 having smooth boundary.

We suppose that the porous medium is saturated by a solution of a chemical substance
A in water. If c(x, t) is the concentration of A in the solution (i.e. the mass of chemical
per unit volume of water) and n is the porosity, the mass balance equation reads

∂(nc)
∂t

= −div
(
cq − nD∇c

)
+ nΓ + f, x ∈ K \ P, t > 0, (1.1)

where q (a given divergence-free vector, since the porous medium is rigid and the fluid
incompressible) is the volume of liquid flowing per unit time through a unit surface nor-
mal to it, Γ (mass per unit volume of liquid) is the rate at which the substance is pro-
duced/destroyed within the solution e.g. because of internal chemical reaction, decay etc.
and f is the quantity of pollutant entering the solution (per unit bulk volume and per
unit time), because of desorption from the solid matrix; of course f < 0 means that the
chemical is leaving the solution because it is adsorbed on the grains of the porous matrix.

Conversely, balance of the same substance bound to the matrix has the following
expression

∂

∂t

(
(1− n)ρsF

)
= (1− n)Γs − f, x ∈ K \ P, t > 0, (1.2)

where F is the mass ratio between the chemical adsorbed and the solid grains, ρs is the
density of the latter and Γs has the same meaning as Γ . We assume that the adsorption
does not affect porosity n significantly.

In addition to (1.1),(1.2) a law regulating the dynamics of adsorption/desorption has
to be specified, i.e. f has to be prescribed.

As discussed e.g. in [2] there are two classes of laws that can be applied:

(i) equilibrium isotherms, when the quantities on the solid and in the adjacent solution
are in equilibrium; and

(ii) non-equilibrium isotherms, when it is assumed that equilibrium is approached at
a rate depending on the local values of c and of F .

Of course the use of laws of type (i) or (ii) depends on the time scale of the phenomenon we
are studying. For general considerations about the ”sufficiently fast” and reversible, and
about the ”insufficiently fast” and/or irreversible chemical reactions in solute transport
analysis, see [19].

From a mathematical point of view, in case (i) the relation is monotone and can be
expressed in terms of c or vice-versa. Thus (1.1)-(1.2) reduce to a single (nonlinear)
parabolic equation. Case (ii) is more general and more interesting, as the relation between
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c and F turns out to be a differential equation whose form depends on the nature of the
chemical and of the porous matrix.

Among the forms that are found in the literature the most common (see [2]) are the
non-equilibrium Langmuir isotherm (see [9])

∂F

∂t
=

1
τ

( αc

1 + βc
− F

)
(1.3)

and the non-equilibrium Freundlich isotherm (see [20])

∂F

∂t
=

1
τ

(
αcβ − F

)
, (1.4)

where α and β are experimental constants and τ > 0 represents the time scale of the
adsorption/desorption dynamics so that the case of vanishing τ takes us back to situation
(i).

As far as Γ and Γs are concerned, they are assumed to be known and depend possibly
on c and F respectively. For instance, in case of a substance undergoing radioactive (or
any other type of linear) decay, we have

Γ = −λ̃c, Γs = −µ̃F, (1.5)

for some positive constants λ̃, µ̃ . Upon normalization, we have that the following two
equations hold in K \ P and for t > 0

∂U

∂t
−D∆U + q · ∇U + λU = S(V − Φ(U)), (1.6)

∂V

∂t
= −S(V − Φ(U))− µV, (1.7)

where the function f , according to (1.3),(1.4) has been expressed in a general form through
two increasing functions S and Φ , such that Φ(0) = S(0) = 0 .

Equations (1.6) and (1.7) will be supplemented by initial conditions

U(x, 0) = U0(x), x ∈ K \ P, (1.8)
V (x, 0) = V0(x), x ∈ K \ P, (1.9)

and by suitable conditions on the external boundary Σ of K \P . Let ne be the normal
to Σ pointing outwards. We write Σ = Σ+ ∪ Σ− where Σ− ≡ {

x ∈ Σ : q · ne < 0
}

and
we assume that chemical A does not cross Σ− , whereas on the seepage face it leaves the
domain with the fluid. Thus





−D
∂U

∂ne

(x, t) + U(x, t)q · ne = 0, x ∈ Σ−, t > 0,

∂U

∂ne

(x, t) = 0, x ∈ Σ+, t > 0.

(1.10)

Note that in the special case Σ− = ∅ and thus q · ne = 0 on Σ , the condition (1.10)
reduces to the homogeneous Neumann condition.
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For a reason that will be made clear later, we will also consider conditions




−D
∂U

∂ne

(x, t) + U(x, t)q · ne − ϑU(x, t) = 0, x ∈ Σ−, t > 0,

∂U

∂ne

(x, t) = 0, x ∈ Σ+, t > 0,

(1.11)

for some ϑ > 0 .
In addition, we have to prescribe the conditions on the walls of the pipes .
There, we assume that water can not cross the boundary ( q · ne = 0 , ∀k ) and nat-

ural conditions for ionic exchange suggest that flux of A is proportional to the jump in
concentrations, or more generally that, for k = 1, . . . , N,

D
∂U

∂nk

= γ[U(x, t)− δck(x, t)], x ∈ ∂Pk ∩K, t > 0, (1.12)

where γ is an increasing function from IR to IR, γ[0] = 0 , and nk is the unit outward
normal vector to the cylinder Pk , while c is the concentration at the inner wall.

We will also consider the condition

D
∂U

∂nk

− ϑU = γ[U(x, t)− δck(x, t)], x ∈ ∂Pk ∩K, t > 0. (1.13)

Next, we have to write the mass balance for c inside each tube.
Assume Rk << diam Q for k = 1, . . . , N so that, for any t > 0 , the concentration c

can be thought to depend on position through the z coordinate only. Moreover, we assume
incompressibility of water and suppose that walls are rigid and impermeable to water so
that a bulk velocity vk(t) directed along the z -axis can be defined. For simplicity, we
suppose vk(t) = v(t) > 0, ∀k .

Thus, putting δc(x, t) = uk(x, t) for each x ∈ Pk , we write

∂uk

∂t
+ v(t)

∂uk

∂z
− d

∂2uk

∂z2
=

2
Rk

∫ 2π

0
γ
[
U(xk + Rk cosφ,

yk + Rk sinφ, z, t)− uk(z, t)
]

dφ, z ∈ (0, H), t > 0, k = 1, . . . , N. (1.14)

We will have initial conditions

uk(z, 0) = uk0(z), z ∈ (0,H), k = 1, 2...N, (1.15)

and boundary conditions at z = 0 and z = H .
We suppose e.g. that clear water is injected at z = 0 , so that we can essentially

assume
uk(0, t) = 0, t > 0, k = 1, 2...N. (1.16)

At z = H , we may prescribe several type of boundary conditions. The simplest is to
suppose that z = H is a ”seepage surface” in the sense that the liquid (together with the
chemicals dissolved in it) is instantaneously removed as it leaves Pk . This means

∂uk

∂z
(H, t) = 0, t > 0, k = 1, . . . , H. (1.17)
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Again, we write a modified condition that will be useful in the sequel

∂uk

∂z
(H, t) + ϑuk(H, t) = 0, t > 0, k = 1, . . . , H. (1.18)

A less standard condition consists in assuming that all tube discharge in the same
reservoir of volume V that can be considered instantaneously mixed, so that the concen-
tration of A in the reservoir can be considered as a space-independent unknown function
Υ(t) .

The mass balance can be written as follows

V
dΥ(t)

dt
= −π

N∑

j=1

R2
j

(
d
∂uj

∂z
(H, t)− v(t)uj(H, t)

)− v(t)Υ(t)π
N∑

j=1

R2
j , t > 0 (1.19)

Υ(0) = u0 ≥ 0. (1.20)

In addition we should specify a relationship between uk(H, t) ,
∂uk

∂z
(H, t) and Υ(t) in-

troducing a sort of impedance of the boundary layer between each tube and the reservoir.
To simplify we can assume that concentration is continuously changing from the pipes to
the reservoirs so that

uk(H, t) = Υ(t), t > 0, k = 1, 2...N. (1.21)

Summing up, we have

∂uk(H, t)
∂t

+
dπ

V

N∑

j=1

R2
j

∂uj

∂z
(H, t) = 0, t > 0, k = 1, . . . , N, (1.22)

uk(H, 0) = u0 ≥ 0, h = 1, . . . , N. (1.23)

Once again, we will consider a modified condition

∂uk(H, t)
∂t

+ ϑuk(H, t) +
dπ

V

N∑

j=1

R2
j

∂uj

∂z
(H, t) = 0, t > 0, k = 1, . . . , N. (1.24)

2 Assumptions on data and a priori bounds

We consider the following problems:
We prescribe the nonnegative bounded functions U0(x), V0(x), x ∈ K\P , and uk0(z), z ∈

(0,H) , k = 1, 2...N , and we look for N + 2 functions U(x, t), V (x, t) , x ∈ K \ P, t > 0,
and uk(z, t), z ∈ (0,H), t > 0, such that equations (1.6), (1.7) and (1.14) are satisfied and
for given D > 0 , q , λ ≥ 0 , µ ≥ 0 , v ≥ 0 , d > 0 conditions (1.8)-(1.10), (1.12) and
(1.15)-(1.16) are fulfilled, together with

either (i) (1.17)

or (ii) (1.22)-(1.23)
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The problem will be called Problem (P ) in case (i) and Problem (P ′ ) in case (ii).
Moreover, we consider similar problems with (1.10), (1.12), (1.17), (1.22) replaced by

(1.11), (1.13), (1.18), (1.24) respectively and with λ̃ and µ̃ in (1.6), (1.7) replaced by
λ + ϑ and µ + ϑ .

We will call the corresponding problems Problem (Pϑ ) and Problem (P ′ϑ ).
We will use the following assumptions on the data

(A) S, Φ, γ are continuous increasing functions, such that Φ(0) = 0 = γ(0) = S(0).

(A1) In addition to (A), we suppose that the functions S, Φ, γ are locally Lipschitz and
that Φ is strictly monotone.

(B) q is a continuous divergence-free vector field on K × [0, T ] .

(B1) In addition to (B), we suppose that q ∈ W 1,∞(K × (0, T ))3

(C) v is a continuous non-negative function on [0, T ]

(D) U0, V0 ∈ H1(K \ P ) , u0 ∈ H1(0,H)N and u0(0) = 0 .

(D1) U0, V0 ∈ H2(K \ P ) , u0 ∈ H2(0,H)N and u0(0) = 0 .

Then we have the following L∞ -a priori limitations:

Theorem 2.1. Let the assumption (A) be satisfied and let M be such that

0 ≤ U0(x) ≤ M, x ∈ K \ P, (2.1)
0 ≤ V0(x) ≤ Φ(M), x ∈ K \ P, (2.2)

0 ≤ uk0(z) ≤ M, z ∈ (0,H), k = 1, 2...N. (2.3)

Then for any classical solution of Problem Pϑ we have

0 ≤ U(x, t) ≤ M, x ∈ K \ P, t > 0, (2.4)
0 ≤ V (x, t) ≤ Φ(M), x ∈ K \ P, t > 0, (2.5)

0 ≤ uk(z, t) ≤ M, z ∈ (0,H), t > 0, k = 1, 2...N, (2.6)

For Problem P ′ϑ , (2.4)-(2.6) hold under the conditions (2.1)-(2.3) and

0 ≤ u0 ≤ M, z ∈ (0,H). (2.7)

To prove the theorem, we need the following

Lemma 2.2. Fix ε > 0 and let the assumptions of Theorem 2.1 be satisfied. Let us
suppose that there is a t0 > 0 such that for t ∈ (0, t0) we have

U(x, t) > −ε, x ∈ K \ P, (2.8)

then on the same time interval we also have

V (x, t) > Φ(−ε) x ∈ K \ P, (2.9)
uk(z, t) > −ε, z ∈ (0, H), k = 1, . . . , N. (2.10)
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Proof. Assume (2.9) is violated for the first time at some point (x̃, t̃), x̃ ∈ K \ P, t̃ ∈
(0, t0) . Then

∂tV (x̃, t̃) = −S(Φ(−ε)− Φ(U))− (µ + ϑ)Φ(−ε). (2.11)

But then, according to (2.8), the argument of S is negative; moreover Φ(−ε) < 0 . Thus
∂tV (x̃, t̃) would be positive yielding a contradiction.

Now assume that (2.10) is violated for the first time for some k̃ and at some point
z̃ ∈ [0,H], t̃ ∈ (0, t0) .

Of course, it cannot be z̃ = 0 , because of (1.16). If z̃ ∈ (0,H) , we would have
that the left hand side of (1.14), written for k = k̃ and at (z̃, t̃) would be non-positive,
while the argument of γ in the integral on the right hand side is positive, yielding a
contradiction.

We have to exclude that z̃ = H . In the case of Problem (Pϑ ) , (1.17) would imply
∂uk̃

∂t
(H, t) = ϑε > 0 , i.e. a contradiction.

The case of Problem (P ′ϑ ) is more delicate. First we note that if z̃ = H we would

have uk(H, t̃) = −ε for any k because of (1.21) and hence
∂uk

∂z
≤ 0 for t = t̃ and for

any k . Then, from (1.24) we have

∂uk

∂z
(H, t̃) ≤ ϑε > 0, (2.12)

a contradiction.
¤

The same kind of argument enables us to prove the following

Lemma 2.3. Fix ε > 0 and let the assumptions of Theorem 2.1 be satisfied. Let us
suppose that there is a t0 > 0 such that for t ∈ (0, t0) we have

U(x, t) < M + ε, x ∈ K \ P, (2.13)

then on the same time interval we also have

V (x, t) < Φ(M + ε) x ∈ K \ P, (2.14)
uk(z, t) < M + ε, z ∈ (0,H), k = 1, . . . , N. (2.15)

Now we are in situation to prove Theorem 2.1.
Proof of Theorem 2.1. By the preceding lemmas, if we prove that it cannot exist

a first t̂ such that (2.8) and (2.13) are violated, then we have that (2.9), (2.10) and
(2.14),(2.15) hold for any t > 0 .

We assume that there exists x ∈ K \ P such that t̂ is the first time for which

U(x̃, t̂) = −ε (2.16)

and we prove that this leads to a contradiction (the proof can be repeated to prove the
upper estimate). We recall that Lemma 2.2 implies that (2.9) and (2.10) are satisfied for
t ∈ (0, t̂) .
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First we exclude that x̃ ∈ Σ . Indeed in this case (1.11) implies
∂U

∂ne

> 0 , a contra-

diction. If x̃ ∈ K \P the left hand side of (1.6) is ≤ −(λ + ϑ)ε while the right hand side
is nonnegative since V ≥ Φ(−ε) .

We have to exclude that x̃ ∈ ∂Pk for some k̂ . But the right hand side of (1.13)would

be non positive and hence
∂U

∂ne

< 0 , i.e. a contradiction, since ne is the normal to ∂Pk

pointing out of the tube.
Since ε is arbitrary we conclude that (2.4), (2.5) and (2.6) hold under the assumptions

of Theorem 2.1.
ut

Remark 2.4. It is easy to verify that the assumption on monotonicity of S, Φ and γ can
be weakened. Indeed, adding a term ϑuk on the left hand side of (1.14) yields the result
also for nondecreasing γ . Monotonicity of S was never used and, concerning Φ it is
sufficient to assume that it does not vanish identically in any neighborhood of the origin.

Next intrinsic property of the models are the energy equalities. We prove them for
the strong solutions.

Proposition 2.5. Let us suppose the assumptions on the data (A1) , (B), (C) and (D).
Let {U, V, u} ∈ H1((K \ P ) × (0, T ))2 ×H1((0,H) × (0, T ))N be a bounded solution for
Problem (Pϑ ). Then it satisfies the following energy equality

∫

K\P

1
2
U2(x, t) dx + D

∫ t

0

∫

K\P
|∇U |2(x, ξ) dxdξ +

∫

K\P

∫ V (x,t)

0
Φ−1(ξ) dξdx+

∫ t

0

∫

K\T
(λ + ϑ)U2(x, t) dxdξ +

∫ t

0

∫

Σ−
(ϑ− q · ne)|U |2 dSdξ +

N∑

k=1

∫ t

0

∫

∂Pk

ϑU2
k dSdξ

+
∫ t

0

∫

K\P
S(V − Φ(U))(Φ−1(V )− U)(x, ξ) dxdξ +

N∑

k=1

∫ t

0

∫

∂Pk

γ(Uk−

uk)(Uk − uk) dSdξ +
N∑

k=1

R2
k

2

{ ∫ H

0

1
2
u2

k(z, t) dz +
∫ t

0
(
v(ξ)
2

+ ϑ)u2
k(H, ξ) dξ+

d

∫ t

0

∫ H

0
|∂zuk(z, t)|2 dz

}
+

∫ t

0

∫

K\P
(µ + ϑ)V Φ−1(V )(x, ξ) dxdξ =

∫

K\P

1
2
U2

0 (x) dx

+
∫

K\P

∫ V0(x)

0
Φ−1(ξ) dξdx +

N∑

k=1

R2
k

4

∫ H

0
u2

k,0(z) dz −
∫ t

0

∫

K\P
q∇UU dxdξ, (2.17)

where Uk = U |∂Pk
.

Proof. We test the equation (1.6) with U , the equation (1.7) with Φ−1(V ) and add
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the resulting equalities. This yields

∂t

∫

K\P

1
2
U2(x, t) dx + D

∫

K\P
|∇U |2(x, t) dx +

∫

K\P
(λ + ϑ)|U |2(x, t) dx+

∫

K\P
q∇UU dx +

∫

Σ−
(ϑ− q · ne)|U |2 dS + ∂t

∫

K\P

∫ V (x,t)

0
Φ−1(ξ) dξdx+

∫

K\P
S(V − Φ(U))(Φ−1(V )− U) dx +

N∑

k=1

∫

∂Pk

γ(Uk − uk)(Uk − uk) dS

+
N∑

k=1

∫ t

0

∫

∂Pk

ϑU2
k dSdξ +

N∑

k=1

∫

∂Pk

γ(Uk − uk)uk dS = 0, (2.18)

where Uk denotes the trace of U at ∂Pk . Next we test the equation (1.14) with uk and
get

N∑

k=1

∫

∂Pk

γ(Uk − uk)uk dS =
N∑

k=1

R2
k

2

{
∂t

∫ H

0

1
2
u2

k(z, t) dz+

(
1
2
v(t) + ϑ)u2

k(H, t) + d

∫ H

0
|∂zuk(z, t)|2 dz

}
(2.19)

After inserting (2.19) into (2.18) we get the energy equality (2.17).
¤

Proposition 2.6. Let us suppose the assumptions on the data (A1) , (B), (C) and (D).
Let {U, V, u, Υ} ∈ H1((K \ P )× (0, T ))2 ×H1((0,H)× (0, T ))N ×H1(0, T ) be a bounded
solution for Problem (P ′ϑ ). Then it satisfies the following energy equality

∫

K\P

1
2
U2(x, t) dx + D

∫ t

0

∫

K\P
|∇U |2(x, ξ) dxdξ +

∫

K\P

∫ V (x,t)

0
Φ−1(ξ) dξdx+

∫ t

0

∫

K\P
(λ + ϑ)U2(x, t) dxdξ +

∫ t

0

∫

Σ−
(ϑ− q · ne)|U |2 dSdξ +

N∑

k=1

∫ t

0

∫

∂Pk

ϑU2
k dSdξ+

∫ t

0

∫

K\P
S(V − Φ(U))(Φ−1(V )− U)(x, ξ) dxdξ +

N∑

k=1

∫ t

0

∫

∂Pk

γ(Uk−

uk)(Uk − uk) dSdξ +
N∑

k=1

R2
k

2

{ ∫ H

0

1
2
u2

k(z, t) dz + d

∫ t

0

∫ H

0
|∂zuk(z, t)|2 dz

}
+

V

4π
Υ2(t) +

1
2

∫ t

0
{ϑ

π
+ v(τ)(

N∑

k=1

1
2
R2

k)}Υ2(τ) dτ +
∫ t

0

∫

K\P
(µ + ϑ)V Φ−1(V )(x, ξ) dxdξ

=
∫

K\P

1
2
U2

0 (x) dx +
V

4π
u2

0 +
∫

K\P

∫ V0(x)

0
Φ−1(ξ) dξdx+

N∑

k=1

R2
k

4

∫ H

0
u2

k,0(z) dz −
∫ t

0

∫

K\P
q∇UU dxdξ (2.20)

where Uk = U |∂Pk
.
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Proof. We test the equation (1.6) with U , the equation (1.7) with Φ−1(V ) and add
the resulting equalities. This yields

∂t

∫

K\P

1
2
U2(x, t) dx + D

∫

K\P
|∇U |2(x, t) dx +

∫

K\P
(λ + ϑ)|U |2(x, t) dx+

∫

K\P
q∇UU dx +

∫

Σ−
(ϑ− q · ne)|U |2 dS + ∂t

∫

K\P

∫ V (x,t)

0
Φ−1(ξ) dξdx+

∫

K\P
S(V − Φ(U))(Φ−1(V )− U) dx +

N∑

k=1

∫

∂Pk

γ(Uk − uk)(Uk − uk) dS

+
N∑

k=1

∫ t

0

∫

∂Pk

ϑU2
k dSdξ +

N∑

k=1

∫

∂Pk

γ(Uk − uk)uk dS = 0, (2.21)

where Uk denotes the trace of U at ∂Pk . Next we test the equation (1.14) with wk =
uk − zΥ(t)/H and using equation (1.24) we get

N∑

k=1

∫

∂Pk

γ(Uk − uk)uk dS =
N∑

k=1

R2
k

2

{
∂t

∫ H

0

1
2
u2

k(z, t) dz+

1
2
v(t)Υ2(t) + d

∫ H

0
|∂zuk(z, t)|2 dz

}
+

V

4π
∂tΥ2(t) +

ϑ

2π
Υ2(t) (2.22)

After inserting (2.22) into (2.21) we get the energy equality (2.20).
¤

3 Uniqueness

In this section we study the uniqueness of solution to the Problem (P) and to the
Problem (P ′) . For the problems Problem (Pϑ) and Problem (P ′ϑ) proof is exactly
the same. The proof relies on the fact that the problem has an energy functional hidden
in its structure and on the monotonicity of the exchange function γ .

Let V 1,0
2 ((K \ P )× (0, T )) = C([0, T ]; L2(K \ P )) ∩ L2(0, T ; H1(K \ P )) We have

Theorem 3.7. Assume (A1), (B) and (C). Then Problem (P) has a unique bounded
non-negative solution {U, V, u} ∈ V 1,0

2 ((K \ P )× (0, T ))2 × V 1,0
2 ((0,H)× (0, T ))N .

Proof. Let us suppose that there exist two solutions for the Problem (P) . Then the
difference of the solutions, denoted by {U, V, u} , is once more in V 1,0

2 ((K \P )× (0, T ))2×
V 1,0

2 ((0,H) × (0, T ))N . We note that there are N capillary pipes Pi of the length H
and consequently function u is vector valued with N components.

We proceed in several steps.
1. STEP Function U satisfies the equation

∂tU −D∆U + q · ∇U + λU = S(V1 − Φ(U1))− S(V2 − Φ(U2)) (3.1)

10



Consequently, after testing (3.1) with U , we get

1
2

∫

K\P
U2(x, t) dx + D

∫ t

0

∫

K\P
|∇xU(x, ξ)|2 dxdξ +

∫ t

0

∫

K\P
q · ∇UU dxdξ+

∫ t

0

∫

K\P
λU2 dxdξ + D

N∑

i=1

∫ t

0

∫

∂Pi

∇xU · niU dSdξ −
∫ t

0

∫

Σ−
U2q · ne dSdξ =

∫ t

0

∫

K\P

(
S(V1 − Φ(U1))− S(V2 − Φ(U2))

)
U(x, ξ) dxdξ (3.2)

Since

|
∫ t

0

∫

K\P

(
S(V1 − Φ(U1))− S(V2 − Φ(U2))U(x, ξ) dxdξ| ≤

‖S′‖∞‖Φ′‖∞
∫ t

0

∫

K\P
|U(x, η)|2 dxdη + ‖S′‖∞

∫ t

0

∫

K\P
|U(x, η)||V (x, η)| dxdη, (3.3)

|
∫ t

0

∫

K\P
q · ∇UU dxdξ| ≤

∫ t

0

∫

K\P

(‖q‖2∞
2D

U2 +
D

2
|∇U |2) dxdξ (3.4)

and

D

∫

∂Pi

∇xU · niU dS =
∫

∂Pi

(
γ(U1|r=Ri − (u1)i)− γ(U2|r=Ri − (u2)i)

)
U |r=Ri dS (3.5)

we get

1
2

∫

K\P
U2(x, ξ) dxdξ +

D

2

∫ t

0

∫

K\P
|∇U |2 dxdξ +

∫ t

0

∫

K\P
(λ− ‖q‖2∞

2D
)U2 dxdξ

+
N∑

i=1

∫ t

0

∫

∂Pi

(
γ(U1|r=Ri − (u1)i)− γ(U2|r=Ri − (u2)i)

)
U |r=Ri dSdξ ≤

‖S′‖∞‖Φ′‖∞
∫ t

0

∫

K\P
|U(x, η)|2 dxdη + ‖S′‖∞

∫ t

0

∫

K\P
|U(x, η)||V (x, η)| dxdη (3.6)

2. STEP Next we study the equation for V . After testing the difference of
the equations (1.7) by V and integrating over (K \ P )× (0, t) , we obtain

1
2

∫

K\P
V 2(x, t) dx +

∫ t

0

∫

K\P
µV 2 dxdξ ≤ ‖S′‖∞

∫ t

0

∫

K\P
V 2(x, ξ) dxdξ+

‖S′‖∞‖Φ′‖∞
∫ t

0

∫

K\P
|V (x, ξ)||U(x, ξ)| dxdξ (3.7)

3. STEP Now we study the equation for uk :

∂uk

∂t
+ v(t)

∂uk

∂z
− d

∂2uk

∂z2
=

2
Rk

∫ 2π

0

{
γ(U1|r=Rk

−

(u1)k)− γ(U2|r=Rk
− (u2)k)

}
dϑ in (0,H)× (0, T ) (3.8)

11



We test (3.8) by uk and integrate with respect to z and ξ . Then we have

πR2
k

(1
2

∫ H

0
u2

k(z, t) dz +
∫ t

0

v(ξ)
2

u2
k(H, ξ) dξ + d

∫ t

0

∫ H

0
|∂uk

∂z
(z, ξ)|2 dzdξ

)
=

2πRk

∫ t

0

∫ H

0

∫ 2π

0
uk(z, ξ)

{
γ(U1|r=Rk

− (u1)k)− γ(U2|r=Rk
− (u2)k)

}
dϑdzdξ

After summation over k , we get

1
2π

N∑

k=1

πR2
k

2

∫ H

0
u2

k(z, t) dz +
d

2π

N∑

k=1

πR2
k

∫ t

0

∫ H

0
|∂uk

∂z
(z, ξ)|2 dzdη−

N∑

k=1

∫ t

0

∫

∂Pk

uk(z, ξ)
{
γ(U1|r=Rk

− (u1)k)− γ(U2|r=Rk
− (u2)k)

}
dSdξ ≤ 0 (3.9)

4. STEP Now we add the estimates (3.6), (3.7) and (3.9) and obtain

1
2

∫

K\P
U2(x, t) dx +

1
2

∫

K\P
V 2(x, t) dx +

1
2π

N∑

k=1

πR2
k

2

∫ H

0
u2

k(z, t) dz+

+
D

2

∫ t

0

∫

K\P
|∇U |2 dxdξ +

d

2π

N∑

k=1

πR2
k

∫ t

0

∫ H

0
|∂uk

∂z
(z, ξ)|2 dzdη+

N∑

k=1

∫ t

0

∫

∂Pk

(U |r=Rk
− uk)(z, ξ)

{
γ(U1|r=Rk

− (u1)k)−

γ(U2|r=Rk
− (u2)k)

}
dSdξ ≤ 3

2
C

∫ t

0

∫

K\P
(U2(x, ξ) + V 2(x, ξ)) dxdξ (3.10)

Using monotonicity of γ and Gronwall’s inequality , we easily conclude that U(x, t) =
0 = V (x, t) and u = 0 .

¤

Next we have

Theorem 3.8. Assume (A1), (B) and (C). Then Problem (P ′) has a unique bounded
non-negative solution {U, V, u, Υ} ∈ V 1,0

2 ((K \ P ) × (0, T ))2 × V 1,0
2 ((0,H) × (0, T ))N ×

H1(0, T ) .

Proof. Let us suppose that there exist two solutions for the Problem (P ′) . Then
the difference of the solutions, denoted by {U, V, u, Υ} , is once more in V 1,0

2 ((K \ P ) ×
(0, T ))2 × V 1,0

2 ((0,H) × (0, T ))N × H1(0, T ) . We note that there are N capillary pipes
Pi of the length H and consequently function u is vector valued with N components.

We proceed in several steps.
1. STEP It is exactly the same as the Step 1 from Theorem 3.7 .
2. STEP It is again exactly the same as the Step 2 from Theorem 3.7 .
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3. STEP Let uk takes value u at z = H . Then we test equation (3.8) by uk

and integrate with respect to z and ξ . Then we have

πR2
k

(1
2

∫ H

0
u2

k(z, t) dz +
∫ t

0

v(ξ)
2

u2(ξ) dξ + d

∫ t

0

∫ H

0
|∂uk

∂z
(z, ξ)|2 dzdξ−

d

∫ t

0

∂uk

∂z
(H, ξ)u(ξ) dξ

)
= 2π

∫ t

0

∫

∂Pk

uk(z, ξ)
{
γ(U1|r=Rk

− (u1)k)− γ(U2|r=Rk
− (u2)k)

}
dSdξ

After summation over k , we get

1
2π

N∑

k=1

πR2
k

2

∫ H

0
u2

k(z, t) dz +
d

2π

N∑

k=1

πR2
k

∫ t

0

∫ H

0
|∂uk

∂z
(z, ξ)|2 dzdη +

V

4
u2(t) +

1
2

∫ t

0
(V ϑ+

v(ξ)(
N∑

k=1

R2
k))u

2(ξ) dξ −
N∑

k=1

∫ t

0

∫

∂Pk

uk(z, ξ)
{
γ(U1|r=Rk

− (u1)k)−

γ(U2|r=Rk
− (u2)k)

}
dSdξ = 0 (3.11)

and proceeding as in the Step 4 from the proof of Theorem 3.7, we conclude the uniqueness.
¤

4 Existence

Next, we prove the existence of a solution to problems (P) , (P ′) , (Pϑ) and (P ′ϑ) .
Because of maximum principle, proved in theorem 2.1, we start by considering the existence
of the strong solution for bounded and globally Lipschitz continuous non-linearities γ , S
and Φ . A possible approach would be to use the sectorial operators, standard in the
geometric theory of semilinear parabolic operators, and establish a local existence and
uniqueness. Then one should search for the maximal time interval of the existence. This
is the classical approach and we refer to the classical book of D. Henry [10] for details.
Nevertheless, we have complicated interface conditions and manipulating the fractional
powers of corresponding operators seems to be quite technical. From this reason we prefer
to give a simpler proof by discretization in the space variables. The existence will follow
from the energy estimate and appropriate time estimates.

We start by considering the Problem (P) and the Problem (Pϑ) .

Theorem 4.9. Assume (A1), (B1), (C) and (D). Then Problem (P) and the Prob-

lem (Pϑ) admit at least one solution {U, V, u} ∈
(

L2(0, T ; H1(K \P ))∩L∞(0, T ; L2(K \

P ))
)
×

(
H1((K \P )× (0, T ))∩W 1,∞(0, T ;L2(K \P ))

)
×

(
L2(0, T ;H1(0,H))∩L∞(0, T ;

L2(0, H))
)N

, such that ∂t{U, V, u} ∈ L2((K \ P ) × (0, T )) × H1(0, T ; L2(K \ P )) ×
(L2((0,H)× (0, T )))N .

Proof. It is enough to consider Problem (Pϑ) with ϑ ≥ 0 .
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1. STEP Let {ζj}j∈IN be a smooth basis for H1(K \P ) and {βj}j∈IN a smooth
basis for W = {ϕ ∈ H1(0, H) | ϕ(0) = 0} . Then we start by looking for an approximate
solution. More precisely, we look for

Um =
m∑

j=1

αj(t)ζj , Vm =
m∑

j=1

δj(t)ζj and um,k =
m∑

j=1

ωj,k(t)βj (4.1)

satisfying the system

∫

K\P
∂tUmζj dx + D

∫

K\P
∇Um∇ζj dx +

N∑

k=1

∫

∂Pk

(
γ(Um,k − um,k) + ϑUm,k

)
ζj dS+

∫

K\P
(λ + ϑ)Umζj dx +

∫

Σ−
(ϑ− q · ne)Umζj dS

+
∫

K\P
q∇Umζj dx =

∫

K\P
S(Vm − Φ(Um))ζj dx, ∀j ∈ {1, . . . , m} (4.2)

∫

K\P
∂tVmζj dx +

∫

K\P
S(Vm − Φ(Um))ζj dx+

∫

K\P
(µ + ϑ)Vmζj dx = 0, ∀j ∈ {1, . . . , m} (4.3)

∫ H

0
∂tum,kβl dz +

∫ H

0
v(t)∂zum,kβl dz + d

∫ H

0
∂zum,k∂zβl dz+

ϑum,k(H, t)βl(H) =
2

R2
k

∫

∂Pk

γ(Um,k − um,k)βl dS, ∀l ∈ {1, . . . , m} (4.4)

Um(x, 0) = Um,0(x), Vm(x, 0) = Vm,0(x), um,k(z, 0) = um,k,0, (4.5)

where the initial values are projected to the corresponding functional spaces.
It is obvious that the Cauchy problem (4.2) -(4.5) has a unique continuously differ-

entiable solution on [0, Tm] .

2. STEP In this step we prove that Tm = T by obtaining the a priori estimates.
First, as in Proposition 2.5, we prove the energy equality (2.17) for {Um, Vm, um} .

The equality (2.17), monotonicity of the non-linearities and Gronwall’s inequality imply
the following energy estimates :

‖Um‖L∞(0,T ;L2(K\P )) + ‖∇Um‖L2(0,T ;L2(K\P )) ≤ C (4.6)

‖Vm‖H1((0,T )×(K\P )) ≤ C (4.7)
N∑

k=1

πR2
k

{
sup

0≤t≤T

∫ H

0

1
2
u2

m,k(z, t) dz + d

∫ T

0

∫ H

0
|∂zum,k(z, ξ)|2 dzdξ

}
≤ C (4.8)

We need better estimates in time. In order to get them we test the equation (4.2) with
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∂tUm . Then we get
∫

K\P
|∂tUm|2(x, t) dx +

D

2
∂t

∫

K\P
|∇Um|2(x, t) dx +

∫

K\P
S(Vm − Φ(Um))∂tUm dx

+
∫

K\P
(λ + ϑ)Um∂tUm dx +

∫

K\P
q∇Um∂tUm dx +

∫

Σ−
(ϑ− q · ne)Um∂tUm dS+

N∑

k=1

∫

∂Pk

γ(Um,k − um,k)∂t(Um,k − um,k) dS +
N∑

k=1

∫

∂Pk

γ(Um,k − um,k)∂tum,k dS

+
N∑

k=1

∫

∂Pk

ϑUm,k∂tUm,k = 0. (4.9)

After using the equation (4.4) for transforming the term
N∑

k=1

∫
∂Pk

γ(Um,k−um,k)∂tum,k dS ,

we obtain the following equality

∫ t

0

∫

K\P
|∂tUm|2(x, ξ) dxdξ +

D

2

∫

K\P
|∇Um|2(x, t) dx +

N∑

k=1

∫

∂Pk

ϑU2
m

2
(·, t) dS+

1
2

∫

K\P
(λ + ϑ)|Um(x, t)|2 dx +

1
2

∫

Σ−
(ϑ− q · ne)|Um(·, t)|2 dS −

N∑

k=1

∫

∂Pk

ϑU2
m,0

2
(·) dS

+
N∑

k=1

R2
k

2

{ ∫ t

0

∫ H

0
|∂tum,k|2(z, ξ) dzdξ +

ϑ

2
|um,k(H, t)|2 +

d

2

∫ H

0
|∂zum,k(z, t)|2 dz

}
+

N∑

k=1

∫

∂Pk

∫ (Um,k−um,k)(t)

Um,0−um,k,0

γ(η)dη dS = −
∫ t

0

∫

K\P
S(Vm − Φ(Um))∂tUm(x, ξ) dxdξ

+
∫

K\P

D

2
|∇Um,0|2(x) dx +

1
2

∫

K\P
(λ + ϑ)|Um,0(x)|2 dx +

1
2

∫

Σ−
(ϑ− q · ne)|Um,0(·)|2 dS+

N∑

k=1

R2
k

2

{
ϑ

2
|um,k,0(H)|2 +

d

2

∫ H

0
|∂zum,k,0(z)|2 dz −

∫ t

0

∫ H

0
v(ξ)∂zum,k∂tum,k dzdξ

}
−

∫ t

0

∫

K\P
q∇Um∂tUm dxdξ − 1

2

∫ t

0

∫

Σ−
∂tq · ne|Um|2(·, ξ) dSdξ (4.10)

Using the a priori estimates (4.6)-(4.8) and the equality (4.10) we have

‖∇Um‖L∞(0,T ;L2(K\P )) + ‖∂tUm‖L2(0,T ;L2(K\P )) ≤ C (4.11)
N∑

k=1

πR2
k

{
sup

0≤t≤T

∫ H

0

d

2
|∂zum,k|2(z, t) dz +

∫ T

0

∫ H

0
|∂tum,k(z, t)|2 dzdt

}
≤ C (4.12)

3. STEP We note that the strong L2− convergence of {Um}m∈IN implies
the same convergence of the sequence {Vm}m∈IN . Then the a priori estimates (4.6)-
(4.8), (4.11)-(4.12) allow us to choose strongly and weakly convergent subsequences. The
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obtained convergences allow an easy passing to the limit in the approximate problem.
Thus all clusters are strong solutions for the Problem (Pϑ) . As the estimates do not
depend on ϑ ≥ 0 , we have simultaneously existence for the Problem (P) .

¤

Now we consider the problems (P ′) and (P ′ϑ) . Here the calculations are bit more
involved. We have

Theorem 4.10. Assume (A1), (B1), (C) and (D). Then the Problem (P ′) and the
Problem (P ′ϑ) admit at least one solution

{U, V, u, Υ} ∈ (
L2(0, T ; H1(K \ P )) ∩ L∞(0, T ; L2(K \ P ))

)×(
H1((K \ P )× (0, T )) ∩W 1,∞(0, T ; L2(K \ P ))

)

×
(

L2(0, T ; H1(0,H)) ∩ L∞(0, T ;L2(0,H))
)N

×H1(0, T ), such that

∂t{U, V, u, Υ} ∈ L2((K \ P )× (0, T ))×H1(0, T ; L2(K \ P ))×
(L2((0,H)× (0, T )))N × L2(0, T ) and u(H, t) = Υ(t)1.

Proof.
As before, it is enough to consider Problem (P ′ϑ) with ϑ ≥ 0 .
1. STEP Let {ζj}j∈IN be a smooth basis for H1(K \P ) and {ξj}j∈IN a smooth

basis for H1
0 (0,H) . Then we start by looking for an approximate solution. More precisely,

we look for 



Um =
m∑

j=1

αj(t)ζj , Vm =
m∑

j=1

δj(t)ζj ,

wm,k =
m∑

j=1

ωj,k(t)ξj and um(t)
(4.13)

satisfying the system

∫

K\P
∂tUmζj dx + D

∫

K\P
∇Um∇ζj dx +

N∑

k=1

∫

∂Pk

γ(Um,k − wm,k − z

H
um(t))ζj dS+

N∑

k=1

∫

∂Pk

ϑUm,kζj dS +
∫

K\P
(λ + ϑ)Umζj dx +

∫

Σ−
(ϑ− q · ne)Umζj dS

+
∫

K\P
q∇Umζj dx =

∫

K\P
S(Vm − Φ(Um))ζj dx, ∀j ∈ {1, . . . ,m} (4.14)

∫

K\P
∂tVmζj dx +

∫

K\P
S(Vm − Φ(Um))ζj dx+

∫

K\P
(µ + ϑ)Vmζj dx = 0, ∀j ∈ {1, . . . , m} (4.15)
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∫ H

0
∂twm,kξl dz + ∂tum(t)

∫ H

0

z

H
ξl dz +

∫ H

0
v(t)∂zwm,kξl dz + v(t)um(t)

∫ H

0

1
H

ξl dz+

d

∫ H

0
∂zum,k∂zξl dz =

2
R2

k

∫

∂Pk

γ(Um,k − wm,k − z

H
um(t))ξl dS, ∀l ∈ {1, . . . ,m} (4.16)

dum

dt
+ ϑum = − πd

HV
um(t)

N∑

k=1

R2
k +

2π

V

N∑

k=1

∫

∂Pk

γ(Um,k − wm,k − z

H
um(t))

z

H
dS

− π

V

N∑

k=1

R2
k

∫ H

0
v(t)∂zwm,k

z

H
dz − π

V

N∑

k=1

R2
k

∫ H

0
∂twm,k

z

H
dz−

πH

3V

dum(t)
dt

N∑

k=1

R2
k −

π

V

v(t)um(t)
2

N∑

k=1

R2
k (4.17)

Um(x, 0) = Um,0(x), Vm(x, 0) = Vm,0(x), wm,k(z, 0) = Pm(uk,0 − z

H
u0), um(0) = u0,

(4.18)

where the initial values are projected to the corresponding functional spaces.
Showing that the Cauchy problem (4.14) -(4.18) has a unique continuously differen-

tiable solution on [0, Tm] is equivalent to show that the matrix containing the coefficients

in front of the time derivatives of
dωj,k

dt
, j ∈ {1, . . . ,m}, k ∈ {1, . . . , N} and um , is

non-degenerate. Without loosing generality, we can suppose that {ξj} is an orthonormal
basis for L2(0,H) and an orthogonal basis for H1

0 (0,H) . Then

dωj,k

dt
= −dum

dt

∫ H

0

z

H
ξj dz + Fjk(~ω1, . . . , ~ωN , ~α, ~δ, um), (4.19)

where Fjk are determined by (4.16).

Next we plug the expressions for
dωj,k

dt
into (4.17). It turns out that (4.17) can be

written in the form

{1 +
Hπ

3V

N∑

k=1

R2
k −

π

V
(

N∑

k=1

R2
k)

m∑

j=1

(
∫ H

0
ξj

z

H
dz)2}dum

dt
= F(~ω1, . . . , ~ωN , ~α, ~δ, um) (4.20)

Since
m∑

j=1

(
∫ H

0
ξj

z

H
dz)2 <

∞∑

j=1

(
∫ H

0
ξj

z

H
dz)2 =

H

3

we see that (4.20) gives an expression for
dum(t)

dt
. Hence the coefficient matrix of the

system (4.14)-(4.18) is non-degenerate and this Cauchy problem has a unique C1 solution
on [0, Tm] , for some Tm > 0 .

2.STEP In this step we prove that Tm = T by obtaining the a priori estimates.
First, as in Proposition 2.6, we prove the energy equality (2.20) for {Um, Vm, um, um} .

The equality equality (2.20), monotonicity of the non-linearities and Gronwall’s inequality
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imply the following energy estimates :

‖Um‖L∞(0,T ;L2(K\P )) + ‖∇Um‖L2(0,T ;L2(K\P )) + ‖Vm‖H1((0,T )×(K\P )) ≤ C (4.21)
N∑

k=1

πR2
k

{
sup

0≤t≤T

∫ H

0

1
2
u2

m,k(z, t) dz + d

∫ T

0

∫ H

0
|∂zum,k(z, ξ)|2 dzdξ

}
≤ C (4.22)

We need better estimates in time. In order to get them we test the equation (4.14) with
∂tUm . Then we get

∫

K\P
|∂tUm|2(x, t) dx +

D

2
∂t

∫

K\P
|∇Um|2(x, t) dx +

∫

K\P
S(Vm − Φ(Um))∂tUm dx

+
∫

K\P
(λ + ϑ)Um∂tUm dx +

∫

K\P
q∇Um∂tUm dx +

∫

Σ−
(ϑ− q · ne)Um∂tUm dS+

N∑

k=1

∫

∂Pk

γ(Um,k − um,k)∂t(Um,k − um,k) dS +
N∑

k=1

∫

∂Pk

γ(Um,k − um,k)∂tum,k dS+

N∑

k=1

∫

∂Pk

ϑ∂Um,kUm,k dS = 0. (4.23)

After using the equation (4.16) for transforming the term
N∑

k=1

∫
∂Pk

γ(Um,k−um,k)∂tum,k dS,

we obtain the following equality

∫ t

0

∫

K\P
|∂tUm|2(x, ξ) dxdξ +

D

2

∫

K\P
|∇Um|2(x, t) dx +

N∑

k=1

∫

∂Pk

ϑU2
m

2
(·, t) dS+

1
2

∫

K\P
(λ + ϑ)|Um(x, t)|2 dx +

1
2

∫

Σ−
(ϑ− q · ne)|Um(·, t)|2 dS −

N∑

k=1

∫

∂Pk

ϑU2
m,0

2
(·) dS+

N∑

k=1

R2
k

2

{ ∫ t

0

∫ H

0
|∂tum,k|2(z, ξ) dzdξ +

d

2

∫ H

0
|∂zum,k(z, t)|2 dz

}
+

V

2π

∫ t

0
|∂tum|2(τ) dτ+

V ϑ

4π
u2

m(t) +
N∑

k=1

∫

∂Pk

∫ (Um,k−um,k)(t)

Um,0−um,k,0

γ(η)dη dS = −
∫ t

0

∫

K\P
S(Vm − Φ(Um))∂tUm(x, ξ) dxdξ

+
∫

K\P

D

2
|∇Um,0|2(x) dx +

1
2

∫

K\P
(λ + ϑ)|Um,0(x)|2 dx +

1
2

∫

Σ−
(ϑ− q · ne)|Um,0(·)|2 dS+

N∑

k=1

R2
k

2

{
d

2

∫ H

0
|∂zum,k,0(z)|2 dz −

∫ t

0

∫ H

0
v(ξ)∂zum,k∂tum,k dzdξ

}
+

V ϑ

4π
u2

0−
∫ t

0

∫

K\P
q∇Um∂tUm dxdξ − 1

2

∫ t

0

∫

Σ−
∂tq · ne|Um|2(·, ξ) dSdξ (4.24)
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Using the a priori estimates (4.21)-(4.22) and the equality (4.24) we have

‖∇Um‖L∞(0,T ;L2(K\P )) + ‖∂tUm‖L2(0,T ;L2(K\P )) ≤ C (4.25)
N∑

k=1

πR2
k

{
sup

0≤t≤T

∫ H

0

d

2
|∂zum,k|2(z, t) dz +

∫ T

0

∫ H

0
|∂tum,k(z, t)|2 dzdt

}
≤ C (4.26)

‖um‖H1(0,T ) ≤ C (4.27)

3. STEP We note that the strong L2− convergence of {Um}m∈IN implies
the same convergence of the sequence {Vm}m∈IN . Then the a priori estimates (4.21)-
(4.22), (4.25)-(4.27) allow us to choose strongly and weakly convergent subsequences. The
obtained convergences allow an easy passing to the limit in the approximate problem. Thus
all clusters are strong solutions for Problem (P ′ϑ) . As the estimates do not depend on
ϑ ≥ 0 , we have simultaneously existence for the Problem (P ′) .

¤

Remark 4.11. The strong solutions obtained in previous theorems are unique.

Let us now prove the regularity for Problem (Pϑ) and Problem (P) . The extension
of the results to Problem (P ′ϑ) and Problem (P ′) are straightforward.

Theorem 4.12. (regularity theorem) Let us suppose (A1), (B1) , (C) and (D1). Then
the strong solutions for Problems (Pϑ) , (P) , (P ′ϑ) , (P ′) belong to

(
C2,1((K \ P ) ×

(0, T ))2 × C2,1((0, H)× (0, T ))N
) ∩ (

C(K \ P × [0, T ])2 ×H1,1/2([0,H]× [0, T ])N
)
.

Proof. We apply the regularity theory from [14]. We proceed in several steps.
First, direct application of Th. 9.1, page 341 from [14] gives uk ∈ W 2,1

2 ((0, H) ×
(0, T )).

Next, we use uk as data in the equation for U . Using once more Th. 9. 1 from [14],
we get U ∈ W 2,1

2 ((K \ P )× (0, T )) and the same is true for V . Consequently, using the
embedding lemma 3.3., page 80, from [14], we conclude that U |Pk

∈ L10/3((0, T )× ∂Pk) .
Now, we go back to the equation for uk and find out that the right hand side belongs

to L10/3((0,H × (0, T )) . Thus uk ∈ W 2,1
10/3((0,H)× (0, T )) ⊆ H1,1/2([0,H]× [0, T ]) .

Finally, we need the internal regularity for solution U of the parabolic problem
with the nonlinear Neumann conditions (involving γ ) and semilinear nonlinearities S
and Φ . The classical theory from [14], chapter 5.7, and [7], chapter 7.5, implies that
{U, V } ∈ C2,1((K \ P )× (0, T ))2 ∩ (

C(K \ P × [0, T ])2 .
¤

Remark 4.13. Now, for ϑ > 0 , we can apply the maximum principle, proved in theorem
2.1, to conclude that solution satisfies the bounds (2.4)-(2.6). This justifies the assumption
that non-linearities are bounded and globally Lipschitz.

Remark 4.14. If ϑ = 0 , the classical maximum principle from theorem 2.1 doesn’t apply
directly. Nevertheless, for sequence {Uϑ, V ϑ, uϑ} , both the energy estimates (4.6)-(4.8),
(4.11)-(4.12) and the L∞ -bounds (2.4)-(2.6) apply independently of ϑ . Then using the
weak compactness, we conclude there are clusters {U, V, u} , which satisfy the bounds (2.4)-
(2.6), the energy estimates (4.6)-(4.8), (4.11)-(4.12) and the equations. The uniqueness
theorem applies and, consequently, there is a unique limit. This proves that for ϑ = 0 the
solution satisfies the bounds (2.4)-(2.6).
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5 Homogenization of a periodic network of parallel pipes

In this section we consider the model with many pipes obtained by periodic repetition of
an elementary section of size ε in the smooth domain Q ⊂ IR2 . An elementary section
is a fixed closed circle YC = {(x, y) ∈ Y : x2 + y2 ≤ ρ2

C < 1/4} inside the unit cell
Y = (0, 1)2 . Other possibility is to have a finite number of circles at positive distances
from each other and from ∂Y . Then YC would be their union. For simplicity we suppose
here only one circle.
Let εZZ2 be a set of lattice points with edge of length ε , i.e. εZZ2 = {pi

ε : i ∈ Z2} . We
make the periodic repetition of YC and set P i

ε = pi
ε + εYC , Y i

ε = pi
ε + εY . The set of

capillary pipes is given by Pε =
⋃

i{P i
ε : Y i

ε ⊂ Q} . The porous medium part is

M ε =
(
Q \ Pε

)× (0,H) (5.1)

After covering Q with this mesh of size ε , we see that there are Nε = (ε−2)C(1 + O(1))
capillary pipes .

After [3] and [13] there exists an extension operator Π̃ ∈ L(H1(Y \ YC),H1(Y )) such
that

‖∇(Π̃φ)‖L2(Y )2 ≤ ‖∇φ‖L2(Y \YC)2 , ∀φ ∈ H1(Y \ YC).

Then for every ε > 0 there exists an extension operator Πε ∈ L(H1(Q\Pε),H1(Q)) such
that

‖∇(Πεφ)‖L2(Q)2 ≤ ‖∇φ‖L2(Q\Pε)2
, ∀φ ∈ H1(Q \ Pε). (5.2)

Now we define auxiliary problems corresponding to various values of a given constant
vector λ ∈ IR2 . 



−∆wλ = 0 in YC ;

∂wλ

∂n
|∂YC

= 0

wλ − λ · (y1, y2) is Y − periodic.
(5.3)

If wk = wek
, then the effective diffusion matrix is given by Aij =

∫

YC

∇wi · ∇wj dy1dy2 .

It is well-known that A is positive definite and symmetric matrix. Furthermore




η̃ε
λ = ∇wλ(

x

ε
,
y

ε
) χ

Q \ Pε
⇀ Aλ weakly in Lα

loc(IR
2), (a.e.) on Q

χ
Q \ Pε

⇀ |Y \ YC | weakly in Lβ
loc(IR

2), ∀β ∈ [1,+∞), (a.e.) on Q.

(5.4)

Remark 5.15. Let us suppose that YC is a circle of small radius ρ . Then, following
[13], we find

A = (1− 2ρ2π)I + o(ρ2) (5.5)

Next we need an auxiliary result for the interfaces. Homogenization of the non-
homogeneous Neumann problem for the Laplace’s operator in perforated domains was
studied in [4] and the following result was proved on pages 120-122 :

Lemma 5.16. Let φ ∈ H1(Q) . Then we have

ε2R
∑

i

∫ 2π

0
φ|

∂P i
ε

dϑ → |∂YC |
∫

Q
φ dxdy as ε → 0. (5.6)
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Furthermore,

|ε2R
∑

i

∫ 2π

0
φ|∂Pi

ε
dϑ− |∂YC |

|Y \ YC |
∫

Q \ Pε

φ dxdy| ≤ Cε‖φ‖H1(Q) (5.7)

Next we suppose that the non-linearity γ(·) has the form εγ(·) . This assumptions
guarantees the balance between the volume and surface terms in the limit ε → 0 .

Since Problem (P ′) is the most interesting case, we concentrate only on it. For other
case, the result is analogous and slightly simpler. We leave the details to the reader.

After these auxiliary results we write the Problem (P ′) in the weak form :

Find U ε ∈ L2(0, T ; H1(M ε))× L∞(M ε × (0, T )), Υε ∈ H1(0, T ),

uε − z

H
Υε1 ∈ L2(0, T ; H1

0 (0,H))Nε ∩ L∞((0,H)× (0, T ))Nε and

V ε ∈ H1(M ε × (0, T )) ∩ L∞(M ε × (0, T )), such that ∂tU
ε ∈ L2(M ε × (0, T )),

∂tu
ε ∈ L2((0,H)× (0, T ))Nε , with non-negative initial values

uε(·, 0) = u0(·), ‖uε‖L∞(0,H) ≤ M, u0(0) = 0, u0(H) = u01, u0 ∈ (0,M), (5.8)

U ε(·, 0) = U0(·) ∈ (0,M), and V ε(·, 0) = V0(·) ∈ (0, Φ(M)), (5.9)
which satisfy the following variational equations

d

dt

∫

Mε

U εφ dx +
∫

Mε

{
D∇U ε · ∇φ− S

(
V ε − Φ(U ε)

)
φ

}
dx+

∫

Mε

q∇U εϕ dx +
∫

Mε

λU εϕ dx +
∫

Σ−
(ϑ− q · ne)U

εϕ dS+

ε

Nε∑

i=1

∫ H

0

∫

∂Pi
ε

γ

(
U ε − uε

i

)
φ dSdz = 0, ∀φ ∈ H1(M ε), t > 0, (5.10)

2πε

∫ H

0

∫

∂Pi
ε

g(z)γ
(

U ε|∂Pi
ε
− uε

i

)
dSdz =

d

dt

∫ H

0

∫

Pi
ε

uε
ig dz+

v(t)
∫ H

0

∫

Pi
ε

∂uε
i

∂z
g dz + d

∫ H

0

∫

Pi
ε

∂uε
i

∂z

dg

dz
dz, ∀g ∈ H1

0 (0,H) (5.11)

∂V ε

∂t
+ µV ε + S

(
V ε(x, t)− Φ(U ε(x, t))

)
= 0, x ∈ M ε, t > 0, (5.12)

dΥε

dt
=

2π

V

Nε∑

i=1

∫ H

0

∫

∂Pi
ε

γ

(
U ε − uε

i

)
z

H
dSdz − π

V

Nε∑

i=1

ε2ρ2
C

{
∂t

∫ H

0
uε

i

z

H
dz

+v(t)
∫ H

0
∂zu

ε
i

z

H
dz +

d

H
Υε

}
, Υε(0) = u0, uε

i |z=H = Υε(t), ∀i, (5.13)

where uε
i = uε|∂Pi

ε
on P i

ε , ∀i . The existence of a smooth solution for the equations
(5.10)-(5.13), satisfying initial conditions (5.8)-(5.9) was established in preceding sections.
In order to study the limit ε → 0 we need a priori estimates uniform with respect to ε .

Proposition 5.17. Let the extension of V ε be defined by

∂t(Π̂εV
ε
) + µΠ̂εV ε = −S(Π̂εV

ε − Φ(ΠεU ε)), Π̂εV
ε
(x, 0) = V0(x). (5.14)
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Then the functions {U ε, V ε, uε, Υε} , defined by Problem (P ′) , are non-negative and
satisfy the following a priori estimate

‖ΠεU ε‖L∞(0,T ;H1(K)) + ‖∂tΠεU ε‖L2(0,T ;L2(K)) ≤ C (5.15)

‖∂tΠ̂εV ε‖L2(0,T ;L2(K) + sup
0≤t≤T

‖Π̂εV ε(·+ h)− Π̂εV ε(·)‖L2(K) ≤ C
√

h, ∀h > 0, (5.16)

‖ΠεU ε‖L∞(K×(0,T )) ≤ M ; ‖Π̂εV ε‖L∞(K×(0,T )) ≤ Φ(M) (5.17)

sup
1≤i≤Nε

‖uε
i‖2

L∞(Pi
ε×(0,T )) +

Nε∑

i=1

(∫ T

0

∫ H

0

∫

Pi
ε

|∂tu
ε
i |2 dxdt + sup

0≤t≤T

∫ H

0

∫

Pi
ε

|∂zu
ε
i |2 dx

)
≤ C.

(5.18)

Proof. First we note that (5.17) follows from the maximum principle. Next, in order to
get the energy estimate we test (5.11) by g = uε

i −Υεz/H , sum with respect to i and add
(5.13) tested with V Υε . Then we test (5.10) with ϕ = U ε and (5.12) by h = Φ−1(V ε

) .
Finally, we combine all three integral equalities. Then, as in derivation of the a priori
estimates (4.21)-(4.22) in the existence proof, it follows that

sup
0≤t≤T

{∫

Mε

(
|U ε(t)|2 +

∫ V ε

0
Φ−1(η) dη

)
dxdydz +

Nε∑

i=1

∫ H

0

∫

Pi
ε

|uε
i (t)|2 dx + V ·Υε(t)2

}

+D

∫ T

0

∫

Mε

|∇U ε|2 dxdydz + d

Nε∑

i=1

∫ T

0

∫ H

0

∫

Pi
ε

|∂uε
i

∂z
|2 dxdydz ≤

Cε2
Nε∑

i=1

‖ui0‖2
L2(0,H) + C + C

∫

K

(
|U0|2 +

∫ V0

0
Φ−1(η) dη

)
(5.19)

where C depends on the boundary data and nonlinearities, but not on ε .
Further time estimates for U ε , uε and V ε follow from the equality (4.24). We have

D

2
sup

0≤t≤T

∫

Mε

|∇U ε(t)|2 dxdydz +
∫ T

0

∫

Mε

|∂tU
ε|2 dxdt+

Nε∑

i=1

{ ∫ T

0

∫ H

0

∫

Pi
ε

|∂tu
ε
i (t)|2 dx +

d

2
sup

0≤t≤T

∫ H

0

∫

Pi
ε

|∂uε
i

∂z
|2 dxdydz

}
≤

Cε2
Nε∑

i=1

(
‖∂zui0‖2

L2(0,H) + ‖ui0‖L∞(0,H)

)
+ C + C

∫

K
|∇U0|2 dx (5.20)

‖∂tΥε‖L2(0,T ) + ‖∂tV
ε‖L2(Mε×(0,T )) ≤ C (5.21)

Next we note that (5.19)-(5.20) apply to ΠεU ε , as well, proving (5.15) and (5.18).
For V ε we introduce the extension by (5.14). Then

∫

K
|Π̂εV ε(x + h, t)− Π̂εV ε(x, t)|2 dx ≤

∫

K
|V0(x + h)− V0(x)|2 dx+

C

∫ t

0

∫

K
|ΠεU ε(x + h, ξ)−ΠεU ε(x, ξ)|2 dxdξ ≤ C|h|, ∀h ∈ IR3, ∀t ∈ (0, T ), (5.22)
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proving (5.16).
¤

Next we extend uε to K by

ũε(x, y, z, t) = uε
i (z, t) if (x, y) ∈ Y i

ε , (5.23)

Obviously, uε is a non-negative function, uniformly bounded in L∞ with respect to ε .
Furthermore

‖∂zũ
ε‖L2(K×(0,T )) + ‖∂tũ

ε‖L2(K×(0,T )) ≤ C (5.24)

Nevertheless, since they are locally constant with respect to x and y , these extensions
don’t have derivatives with respect to x and y , in the sense of distributions, in L2 . This
means that we should estimate the translations with respect to x and y , if we wish to
prove compactness of the sequence uε . We note the analogy with the approach from [1].

Proposition 5.18. Let us suppose that ∀k ∈ ZZ2 and ∀η > 0 we have

ε2ρ

∫ H

0

Nε∑

i=1

|ui+k,0 − ui,0|2 dz ≤ C|k|. (5.25)

Then we have

sup
0≤t≤T

∫ H

0

∫

C
|ũε(x+h1, y+h2, z, t)−ũε(x, y, z, t)|2 dxdydzdt ≤ C|h|, ∀h = (h1, h2) (5.26)

Proof. The idea is to use the equation (5.11) and the a priori estimates (5.15)-(5.18).
Clearly, it is enough to prove the result for h = (k1ε, k2ε) , k ∈ ZZ2 .
Let uε,k

i = uε
i (x+k1ε, y+k2ε, z, t) .We test the equation (5.11) with g = uε,k

i −uε
i and

get

1
2

∫ H

0

∫

Pi
ε

|uε,k
i −uε

i |2(t)+d

∫ t

0

∫ H

0

∫

Pi
ε

|∂z(u
ε,k
i −uε

i )|2 =
∫ H

0

∫

Pi
ε

|uε,k
i,0 −uε

i,0|2 +I, (5.27)

where

I = 2π

∫ t

0

∫ H

0

∫ 2π

0
ε2ρC

(
γ(U ε,k

i − uε,k
i )− γ(U ε

i − uε
i )

)
(uε,k

i − uε
i ) dϑdzdη (5.28)

At this stage we make use of an auxiliary function, systematically used in [12], β , being
the solution with zero mean to the problem

−∆β = −|∂YC |
|YC | in YC ;

∂β

∂n
= 1 on ∂YC (5.29)

Then βε(x, y) = β(x/ε, y/ε) is uniformly bounded and its derivatives behave as ε−1 .
Next we note that the term I involves U ε and we estimate it as follows :

|I| = |
∫ t

0

∫ H

0

∫ 2π

0
ε3ρC

(
γ(U ε,k

i − uε,k
i )− γ(U ε

i − uε
i )

)
(uε,k

i − uε
i )

∂βε

∂n
dϑdzdη|

≤ C

∫ t

0

∫ H

0

∫

Pε
i

|ΠεU ε(·+ εk, z, η)−ΠεU ε(x, y, z, t)| · |uε,k
i − uε

i |2 dxdydzdη

+C‖ε∇x,yβ
ε‖ε3 (5.30)
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Finally we insert (5.30) into (5.27) and get
∫ H

0

∫

Pi
ε

|uε,k
i − uε

i |2(t) + d

∫ t

0

∫ H

0

∫

Pi
ε

|∂z(u
ε,k
i − uε

i )|2 ≤ Cε2

∫ H

0
|uk

i,0 − ui,0|2 dz

+C

∫ t

0

∫ H

0

∫

Pi
ε

|ΠεU ε(·+ εk, z, η)−ΠεU ε(x, y, z, t)|2 + Cε3 (5.31)

Insertion of the assumptions on the data and (5.15) into (5.31) implies the desired result.
¤

These estimates lead to the following compactness result

Proposition 5.19. There are subsequences of {ΠεU ε, Π̂εV ε, ũε, Υε} , denoted by the same
indices, and functions {U, V, u,Υ} ∈ H1(K× (0, T ))2×L∞(K× (0, T ))×H1(0, T ) , with
∂zu ∈ L2(K × (0, T )) and ∂tu ∈ L2(K × (0, T )) such that

ΠεU ε → U weakly in H1(K × (0, T )) and strongly in L2(K × (0, T )) (5.32)

ũε → u weak∗ in L∞(K × (0, T )), ∂tΥε → Υ weakly in L2(0, T ) (5.33)

{∂zũ
ε, ∂tũ

ε} → {∂zu, ∂tu} weakly in L2(K × (0, T ))2 (5.34)

ũε → u strongly in L2(K × (0, T )) (5.35)

Π̂εV ε → V weakly in H1(K × (0, T )) and strongly in L2(K × (0, T )) (5.36)

ΠεU ε → U and Π̂εV ε → V weak∗ in L∞(K × (0, T )), (5.37)
Υε = ũε|z=H → Υ = u|z=H uniformly on [0, T ] (5.38)

In order to pass to the limit in the interface integrals containing uε we prove the
following result

Proposition 5.20. We have
Nε∑

i=1

∫ T

0

∫ H

0

∫ 2π

0
ε2ρCφ|∂Pi

ε
γ(U ε|∂Pi

ε
− uε

i ) dϑdzdt →

|∂YC |
∫ T

0

∫

K
γ(U − u)ϕ dxdydzdt, ∀ϕ ∈ L2(0, T ; H1(Ω)) (5.39)

Proof. Since we don’t have good estimates for the derivatives of uε with respect to
x and y , we can’t directly use results from [4] . We proceed as in the estimate for the
translations in x and y and introduce β , as the solution with zero mean to the problem
(5.29). Then we have

lim
ε→0

Nε∑

i=1

∫ T

0

∫ H

0

∫ 2π

0
ε2ρCϕ|∂Pi

ε
γ(U ε|∂Pi

ε
− uε

i ) dϑdzdt =

lim
ε→0

ε2

∫ T

0

∫ H

0

∫

Pε

divx,y(ϕ∇x,yβ
εγ(U ε|∂Pi

ε
− uε

i )) dxdydzdt =

lim
ε→0

∫ T

0

∫ H

0

∫

Pε

|∂YC |
|YC | γ(U ε|∂Pi

ε
− uε

i ))ϕ dxdydzdt = |∂YC |
∫ T

0

∫

K
γ(U − u)ϕ dxdydzdt

and the result is proved.
¤
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The derivation of the homogenized problem is now immediate. We have

Theorem 5.21. All cluster points {U, u, V, Υ} satisfy the system

|Y \ YC |∂tU −Ddiv
(
A∇U

)
+ |∂YC |γ(U − u) + λU = |Y \ YC |S(V − Φ(U)) (5.40)

2π
|∂YC |
|YC | γ(U − u) =

∂u

∂t
+ v(t)

∂u

∂z
− d

∂2u

∂z2
(5.41)

∂V

∂t
+ µV = −S(V − Φ(U)) (5.42)

∂Υ
∂t

+ (
d|YC ||Q|

V H
+
|YC |2|Q|

V
)Υ +

|YC |
V H

∂t

∫

K
zu dxdydz =

v(t)|YC |
V H

∫

K
u dxdydz+

2π|∂YC |
V H

∫

K
γ(U − u)z dxdydz (5.43)

in K × (0, T ) , together with the following initial and boundary conditions
{

A∇U · ne = 0 on Σ+ × (0, T );
DA∇U · ne = Uq · ne on Σ− × (0, T ); (5.44)

u|z=H = Υ(t), u|z=0 = 0 on (0, T ) and u|t=0 = lim
ε→0

ε2
Nε∑

i=1

ui0(z) on K (5.45)

U |t=0 = U0, Υ(0) = u0 and V |t=0 = V0 on K. (5.46)

Theorem 5.22. The problem (5.40)-(5.46) admits a unique solution in H1(K× (0, T ))×
L∞(K × (0, T ))×H1(K × (0, T ))×H1(0, T ) , (∂zu, ∂tu) ∈ L2(K × (0, T ))2 .

Proof. The proof uses the energy estimates. We suppose 2 solutions and write the
system for the difference. Then the first equation is tested by U = U1−U2 , the second by
u = u1 − u2 − z(Υ1 −Υ2)/H , the 3rd by V = V1 − V2 and the fourth by Υ = Υ1 −Υ2 .
We have

|Y \ YC |
∫

K

1
2
|U(t)|2 + D

∫ t

0

∫

K
A∇U∇U + |∂YC |

∫ t

0

∫

K

(
γ(U1 − u1)− γ(U2 − u2)

)
U

+λ

∫ t

0

∫

K
|U |2 −

∫ t

0

∫

Σ−
q · neU

2 = |Y \ YC |
∫ t

0

∫

K

(
S(V1 − Φ(U1))− S(V2 − Φ(U2))U

(5.47)

1
2π
|YC |

∫

K

1
2
|u(t)|2 +

d

2π
|YC |

∫ t

0

∫

K
|∂zu|2 − |∂YC |

∫ t

0

∫

K

(
γ(U1 − u1)− γ(U2 − u2)

)
u

=
∫ t

0

1
2π

{
Υ(t)|YC |

∫

K

z

H
u + |YC |v(t)

∫

K
∂zu

z

H
Υ +

d|Q|
H

|YC |Υ2(t)−

|∂YC |
∫

K

(
γ(U1 − u1)− γ(U2 − u2)

)
zΥ/H

}
(5.48)

∫

K

1
2
|V (t)|2 +

∫ t

0

∫

K
µV 2 +

∫ t

0

∫

K

(
S(V1 − Φ(U1))− S(V2 − Φ(U2))

)
V = 0 (5.49)

V

2π

1
2
Υ2(t) = −

∫ t

0

1
2π

{
Υ(t)|YC |

∫

K

z

H
u + |YC |v(t)

∫

K
∂zu

z

H
Υ+

d|Q|
H

|YC |Υ2(t)− |∂YC |
∫

K

(
γ(U1 − u1)− γ(U2 − u2)

)
zΥ/H

}
(5.50)
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We add (5.47) to (5.50) to get

1
2

{
|Y \ YC |

∫

K
(U2(t) + V 2(t)) +

|YC |
2π

∫

K
u2(t) +

V

2π
Υ2(t)

}
+
|YC |d
2π

∫ t

0

∫

K
|∂u

∂z
|2+

|∂YC |
∫ t

0

∫

K

(
γ(U1 − u1)− γ(U2 − u2)

)
(U − u) + D

∫ t

0

∫

K
A∇U∇U + λ

∫ t

0

∫

K
|U |2

−
∫ t

0

∫

Σ−
q · neU

2 + |Y \ YC |
∫ t

0

∫

K
µV 2 (5.51)

Now the uniqueness is trivial.
¤

Corollary 5.23. The whole sequence {ΠεU ε, ũε, Π̂εV ε, Υε} converges to the unique so-
lution {U, u, V,Υ} for the system (5.40)-(5.46).

Remark 5.24. We note that our homogenized model corresponds to the models found
the direct modeling of the solute transport, involving insufficiently fast surface reactions.
For more details we refer to the classical paper [19] . Problems related to the system
(5.40)-(5.46), with modeling borrowed from [19] , are studied in [8] .

Remark 5.25. In addition to the reference [12], we mention some additional references
on homogenization of the convection-diffusion equations involving linear and non-linear
reactive terms. The first mathematically rigorous paper treating homogenization of the
adsorption and surface diffusion effects is the reference [11] . It concentrates on the linear
phenomena and the first effort to generalize the results to nonlinear settings is in [12] .
Recent papers on homogenization of non-linear adsorption and absorption effects in porous
media are [5] and [6]. Our setting is quite different and we were obliged to develop the
new compactness results, in order to pass to the limit.
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