
Analisi Numeri
a. { A 
omputational approa
h to fra
tures in
rystal growth. Nota di Matteo Novaga ed Emanuele Paolini.Abstra
t. { In the present paper, we motivate and des
ribe a nu-meri
al approa
h in order to dete
t the 
reation of fra
tures in a fa
et ofa 
rystal evolving by anisotropi
 mean 
urvature. The result appears tobe in a

ordan
e with the known examples of fa
et-breaking. Graphi
alsimulations are in
luded.Key Words: Nonlinear partial di�erential equations of paraboli
 type;Crystal growth; Non-smooth analysis.Riassunto. { Un appro

io numeri
o alle fratture nella 
res
ita di
ristalli. In questo lavoro, presentiamo e dis
utiamo un appro

io numeri
oal problema di individuare la nas
ita di fratture in una fa

ia di un 
ristallo
he si evolve per 
urvatura media anisotropa. I risultati sono in a

ordo
on gli esempi noti �no ad ora di frattura di fa

e. Sono inoltre in
luseal
une simulazioni gra�
he.0. Introdu
tionWe model 
rystal growth in R3 as an anisotropi
 evolution by mean
urvature when the ambient spa
e is endowed with a 
onvex one-homogeneous fun
tion whose unit ball (usually 
alled the Wul� shape)is a polyhedron. Su
h evolutions are 
onsidered in materials s
ien
eand phase transitions when the velo
ity of the evolving front dependson the orientation of the normal ve
tor and has a �nite number ofpreferred dire
tions. This problem has been widely studied; we referamong others to [10℄, [12℄, [7℄, [9℄, [3℄.This motion has a variational interpretation as \gradient 
ow" ofan asso
iated 
rystalline energy de�ned on the subsets of R3 having�nite perimeter, see [12℄, [2℄ and Remark 1.2 below.The simplest situation of motion by 
rystalline 
urvature is thebidimensional 
ase. In this 
ase short time existen
e and uniquenessof the evolution has been established, as well as an in
lusion prin
iplebetween the evolving fronts. Moreover, if the initial set E is a poly-gon 
ompatible with the Wul� shape, its edges translate parallely tothemselves during the evolution, so that no edge{breaking o

urs [10℄,[12℄, [1℄. It is interesting to observe that the situation be
omes quitedi�erent in presen
e of a spa
e dependent for
ing term [8℄, sin
e newedges may 
reate during the evolution.1



In the three{dimensional 
ase, fa
et{breaking phenomena are quite
ommon and, even starting from a polyhedral set whose shape is very
lose to the Wul� shape, some fa
ets 
an break or bend and 
urveportions of the boundary 
an appear (see [4℄, [11℄, [13℄ for related ex-amples). For what 
on
erns the qualitative behaviour of the evolvinginterfa
es, to the best knowledge of the authors, the problem of under-standing if and where fa
et{breaking phenomena take pla
e has not ade�nite answer.Here we try to answer to this question by means of a numeri
alapproa
h. More pre
isely, with a formal argument we show that the
rystalline 
urvature of an evolving set (whi
h is equal to the velo
ity)is expe
ted to solve a minimum problem on ea
h fa
et.This 
orresponds to look for the 
anoni
al element of the subdif-ferential of the 
rystalline energy (restri
ted to the fa
et), whi
h is a
ommon pro
edure in multivalued 
onvex analysis (
ompare [9℄). Wethen determine this minimum with a numeri
al approa
h, using a �-nite element method. The dis
ontinuities of the 
rystalline 
urvature
orrespond to the fra
tures appearing in the fa
et, more pre
isely thefa
et will not break or bend if and only if the 
rystalline 
urvature is
onstant on the fa
et.The plan of the paper is the following. In Se
tion 1 we give somenotation and we re
all, following [3℄, the general de�nitions of �-regular set and �-regular 
ow. Observe that these de�nitions 
on
ernLips
hitz surfa
es, and we do not restri
t ourselves to polyhedral sur-fa
es in view of the examples dis
ussed in Se
tion 3. We also introdu
ethe minimum problem (5), whi
h we will solve numeri
ally, in order to
hara
terize the velo
ity of the evolving set. In Se
tion 2 we presentthe algorithm whi
h we use to �nd su
h a minimum, and in Se
tion 3we dis
uss the results of the algorithm applied to the examples of [4℄.Numeri
al simulation are in a

ordan
e with the result of [4℄.More graphi
s and the sour
e 
ode of the program (written in C++language) are available on http://ro
k.sns.it/
rystals/.We thank G. Bellettini and M. Paolini for many useful dis
ussions.1. Notation and main definitionsIn the following we denote by � the standard eu
lidean s
alar produ
tin R3 , and by j � j the eu
lidean norm of R3 . Given a subset A of R or2



R2 , we denote by jAj the Lebesgue measure of A. Hk, k = 1; 2; 3 willdenote the k-dimensional Hausdor� measure.We indi
ate by � : R3 ! [0;+1[ a 
onvex fun
tion satisfying theproperties�(�) � �j�j; �(a�) = a�(�); � 2 R3 ; a � 0; (1)for a suitable 
onstant � 2 ℄0;+1[, and by �o : R3 ! [0;+1[,�o(��) := sup f�� � � : �(�) � 1g the dual of �. We setF� := f�� 2 R3 : �o(��) � 1g; W� := f� 2 R3 : �(�) � 1g:F� and W� are 
onvex sets whose interior parts 
ontain the origin. Inthis paper we shall assume that � is 
rystalline, i.e. W� (and hen
eF�) is a 
onvex polyhedron. F� is usually 
alled the Frank diagramand W� the Wul� shape.Let T o : R3 ! P(R3) be the duality mapping de�ned byT o(��) := 12��(�o(��))2; �� 2 R3 ;where P(R3) is the 
lass of all subsets of R3 and �� denotes the subd-i�erential in the sense of 
onvex analysis. T o is a multivalued maximalmonotone operator, andT o(a��) = aT o(��); a � 0:One 
an show that�� � � = �o(��)2 = �(�)2; �� 2 R3 ; � 2 T o(��):Given E � R3 and x 2 
, we setdist�(x; E) := infy2E �(x� y); dist�(E; x) := infy2E �(y � x);dE� (x) := dist�(x; E)� dist�(R3 n E; x):At ea
h point where dE� is di�erentiable, there holds [5℄�o(rdE� ) = 1:The next de�nition generalizes to the 
rystalline 
ase the notion ofsmooth surfa
e [4℄. 3



De�nition 1.1. Let E � R3 and n� : �E ! R3 be Borel{measurable.We say that the pair (E; n�) is �-regular if1. the set �E is 
ompa
t and Lips
hitz 
ontinuous;2. n�(x) 2 T o �rdE� (x)� H2 � a:e: x 2 �E;3. there is an open set A � �E su
h that for a.e. y 2 A thereexists a unique (x; s) 2 �E � R so that y = x + sn�(x) andletting ne�(y) := n�(x) there holdsne� 2 L1(A;R3); divne� 2 L1(A);4. divne� admits a tra
e on �E, whi
h we denote by div�n� 2L1(�E).We say that E is �-regular if there exists a fun
tion n� : �E ! R3su
h that (E; n�) is a �-regular pair.Su
h a generality (as in De�nition 1.4 below) is needed in view ofthe se
ond example of Se
tion 3 (see also Remark 1.5 below). We no-ti
e that, if �E is a plane, then div� is the usual tangential divergen
ein the sense of distributions.In the 
rystalline literature n� is usually 
alled the Cahn-Ho�manve
tor �eld. Given a �-regular pair (E; n�), we de�ne the �-mean
urvature �� of �E at H2-almost every x 2 �E as�� := div� n�: (2)Remark 1.2. We observe that the ve
tor �eld ��� n� in De�nition1.1 has a variational interpretation as \gradient 
ow" of the 
rys-talline energy A! Z�A �o(�A)dH2;where �A is the exterior unit normal to �A, see [4℄ for a formal 
om-putation in this dire
tion.Remark 1.3. Let E be a polyhedral set having the following property:given any vertex v of �E, the interse
tion of T o(rdE� )jQ over all fa
etsQ 
ontaining v is non empty. Then there exists a ve
tor �eld n� 2Lip(�E;R3) su
h that (E; n�) is a �-regular pair.4



Evolution law.If t 2 [0; T ℄ 7! E(t) � R3 is a parametrized family of subsets of R3 ,we let dE(t)� (x) := dist�(x; E(t))� dist�(R3 n E(t); x):Whenever no 
onfusion is possible, we set d�(x; t) := dE(t)� (x).We now de�ne a �-regular 
ow (E(t); n�(�; t)), for t 2 [0; T ℄, asa �-regular evolution of a boundary moving with velo
ity, in the n�-dire
tion, equal to ��� (see [4℄).De�nition 1.4. A �-regular 
ow is a pair (E(t); n�(�; t)), n�(�; t) :�E(t)! R3 , whi
h satis�es the following properties:(1) (E(t); n�(�; t)) is �-regular for any t 2 [0; T ℄;(2) the fun
tion d� is Lips
hitz 
ontinuous on R3� [0; T ℄, di�erentiablefor a.e. t 2 [0; T ℄ and for H2� a.e. x 2 �E(t), and su
h that�d��t (x; t) = ��(x; t); a.e. t 2 [0; T ℄; H2 � a.e. x 2 �E(t): (3)In 
ase no new fa
et 
reates, the previous evolution law 
on
ideswith the evolution law 
onsidered in [12℄ and [9℄.Remark 1.5. We observe that the 
lass of polyhedral subsets of R3seems not to be stable under the evolution de�ned by (3), i.e. somepolyhedral set may develop 
urve portions of the boundary during theevolution (see [4℄, [11℄, [13℄ and Se
tion 3 below).Let now (E; n�) be a �-regular pair. Assume thatE is a polyhedronand let F be a fa
et of �E. We noti
e that by [9, Lemma 9.2℄, the tra
eof n� � �F is well{de�ned in L1(�F ) (�F is the exterior unit normalto �F lying in the plane 
ontaining by F ). For H1-a.e. s 2 �F , wedenote su
h a tra
e by 
F (s). Let alsovF := 1jF j Z�F 
F (s) dH1(s) = 1jF j ZF ��(x) dH2(x):Noti
e that, sin
e the fa
et F is planar, for any x 2 int(F ) it is well{de�ned the 
onvex set T o(rdE� (x)) � �W�, and it is independent ofx 2 int(F ).Using [9, Lemma 9.2℄, one 
an get the following result (see also[13℄). 5



Proposition 1.6. Let E be a �-regular polyhedron, and F be a fa
etof �E. Then, the fun
tion 
F 2 L1(�F ) depends only on E and isindependent of the 
hoi
e of n�. More pre
isely, for H1-a.e. s 2 �Fthere holds
F (s) = (sup fn � �F (s) : n 2 T o(rdE� )g if E is lo
ally 
onvex in s;inf fn � �F (s) : n 2 T o(rdE� )g if E is lo
ally 
on
ave in s:(4)Observe that expression (4) is in agreement with the 
orrespondingde�nition given in [12℄.We now try to 
hara
terize the 
rystalline 
urvature de�ned in(2) as minimum of a variational problem. This formal argument isintended to motivate the numeri
al approa
h dis
ussed in Se
tion 2.Let (E(t); n�(�; t)), t 2 [0; � ℄, be a �-regular 
ow, and assume forsimpli
ity that E := E(0) is a polyhedron. Then we expe
t thatn�(�; 0) solves the following minimum problem on �Emin nZ�E �div� ��2�o(�E) dH2(x) : � 2 L1(�E;R3); (5)div� � 2 L2(�E); � 2 T o(rdE� ) H2 � a:e: on �Eo:Noti
e that, by Proposition 1.6, problem (5) is equivalent tomin nZF �div� ��2 dH2(x) : � 2 L1(F ;R3); div� � 2 L2(F );� 2 T o(rdE� ) H2 � a:e: in F; � � �F = 
F on �Fo: (6)for any fa
et F � �E.We �x a fa
et F � �E and we assume that �E(t) is the graph of aLips
hitz 
ontinuous fun
tion u : 
� [0; � ℄ ! R, in a neighbourhoodof F . Let P be the proje
tion of F on 
. Then equation (3) be
omes8<: ut 2 ��o(�ru; 1) ���(u); a:e: (x; t) 2 
� [0; � ℄;u(x; 0) = u0(x); x 2 
;u(x; t) = v(x; t); (x; t) 2 �
� [0; � ℄; (7)where u0 2 Lip(
) represents the set �E as graph over 
, v(�; t) 2Lip(�
), t 2 [0; � ℄, represents the set �E(t) as a graph over �
 and� : H1(
) � L2(
)! R is de�ned as�(u) := Z
 �o(�ru; 1) dx:6



Here �� is the subdi�erential in L2(
) in the sense of 
onvex analy-sis [9℄.By [9, Lemma 9.1℄, there holdsf 2 ���(u) () f = div �;for some � 2 �L1lo
(
)�2, with � 2 ���o(�ru; 1) a.e. in 
. Noti
ethat this 
onstraint on � implies that � 2 �L1(
)�2.On the analogy of the results dis
ussed in [6℄ for maximal monotoneoperators, we 
an expe
t that ut = ���o(�ru; 1) ���(u)�0 for a.e.t 2 [0; � ℄, where ��o(�ru; 1) ���(u)�0 solvesmin�jj�o(�ru; 1) f jjL2(
) : f 2 ���(u)	; (8)whi
h in turn gives (5).The following result (see [4℄) is useful in order to 
hara
terize whi
hfa
ets of �E do not break during the evolution.Proposition 1.7. Let (E; n�) be a �-regular pair. Assume that Eis a polyhedron and let F be a fa
et of �E. If F does not instantlybreak or bend during the evolution starting from E, then the following
ondition holds: vP := jP j�1 Z�P 
P (s) dH1(s) � vF ; (9)for any set P � F with Lips
hitz 
ontinuous boundary, where
P (s) := (
F (s) if s 2 �P \ �F;sup fn � �P (s) : n 2 T o(rdE� )g otherwise:Proof. From (3) we have ��(x) = vF for any x 2 F . Moreover, ifwe integrate �� over P , we getjP jvF =ZP��(x) dH2(x) =Z�Pn�(s) � �P (s) dH1(s) �Z�P
P (s) dH1(s);whi
h implies (9). 2We expe
t that 
ondition (9) is also suÆ
ient for a fa
et F � �Enot to break during the evolution.7



2. The algorithmIn order to give numeri
al examples of fa
et{breaking, we 
onsider asingle polygonal fa
et F � �E (we shall 
onsider F as a subset of R2)and minimize the fun
tionalE�(�) := ZF (div �(x))2 dx; (10)over all fun
tions � 2 L1(F ;R2) su
h that div � 2 L2(F ), � � �F = 
Fassigned, and � 2 W a.e. in F , where W is the orthogonal proje
tionon the plane 
ontaining F of the 
onvex set T o(rdE� jF ).We observe that, following [9, Se
tion 9.
℄, the fun
tional (10)admits a minimum �min 2 L1(F ;R2) under the previous restri
tions;moreover two di�erent minima of (10) have the same divergen
e in F .By (6), we expe
t that if � is a minimum of (10) then �div �represents the velo
ity (along the Cahn-Ho�man ve
tor �eld) of thepoints of F , so that possible fra
tures will appear in 
orrespondan
e ofdis
ontinuities of div � while, if div � is 
ontinuous but non 
onstant,the fa
et F will bend.Here is a brief explanation of the numeri
al algorithm used to �ndthe minima of (10). We use a �nite element method: given a triangu-lation of F with verti
es x1; : : : ; xN , we 
onsider the �nite dimensionalspa
e of pie
ewise linear fun
tions� = NXi=1 �i�i;with �i 2 R2 and �i : F ! R being 
ontinuous fun
tions whi
hare linear on every single triangle and su
h that �i(xj) = Æij (hatfun
tions). It is not diÆ
ult to �nd the gradient of the fun
tional (10)restri
ted to this spa
e of fun
tions:�E���i (�) =Xj Mij�j; (11)where Mij are the 2� 2 matri
es given byMij = 2 ZF r�i 
r�j dx:8



Given a triangulation of F and an initial admissible guess �, we lookfor a minimum of E� letting � evolve following (minus) the gradient ofE� given by (11). After ea
h step of the evolution, we proje
t � ontothe 
onstraint W , in order to guarantee that � is always admissiblefor (10).We begin with a huge triangulation of F and, as initial guess, we
onsider � := 
F �F on �F and � := 0 inside F . Then we 
omputethe matrixMij and we start the steepest des
ent minimizing evolutionfor E�. When we are 
lose enough to a minimum of E� for the giventriangulation we thi
ken the triangulation by adding new triangleswhere div � has more variation, and then we restart the minimizationpro
ess with the new triangulation and the new initial guess.3. Examples and 
on
lusionsIn this se
tion we show the numeri
al results obtained in two simpleexamples for whi
h it is possible to �nd expli
itly the velo
ity �eld(see [4℄, [13℄).In the �rst example we 
onsider the 
rystalline norm on R3 givenby �(x) := maxfjx1j; jx2j; jx3jg, and we let E := F � [0; 1℄, where F isa non 
onvex polygon whi
h is the union of a square and a re
tangle,see Figure 1.In Figure 1 it is shown the adaptive triangulation 
onstru
ted bythe alghorithm during the minimization pro
ess. We noti
e that smalltriangles are 
reated along the segment separating the square from there
tangle, where the velo
ity has a great os
illation. In Figure 2 the
ontour 
urves of the resulting velo
ity are shown. We noti
e that onthe segment between the square and the re
tangle the 
ontour 
urvesa

umulate, while elsewhere the resulting normal velo
ity is nearly
onstant. This is in agreement with the theoreti
al result predi
tingthe fra
ture of F along the segment [4℄.In the se
ond example we 
onsider a 
rystalline norm whose Wul�shape is an orthogonal prism 
entered at the origin, having a regularhexagon as basis. We let E := F � [0; 1℄, where F is the hexagonshown in Figure 3.We noti
e that the 
omputed velo
ity has great os
illations in 
or-respondan
e of the short edges of F . More pre
isely, the velo
ity seemsto in
rease approa
hing su
h edges. In Figure 4 the 
ontour 
urves ofthe resulting velo
ity are shown. Indeed, by the argument dis
ussed9



Figure 1: The adaptive triangulation. The brightness of 
olors repre-sents the value of div � on every triangle.in [4℄, one expe
ts that the velo
ity is 
ontinuous on F (in
reasingnear the short edges), so that the fa
et F should bend inside E duringthe evolution.
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Figure 2: The 
ontour 
urves of div �

Figure 3: The adaptive triangulation. The brightness of 
olors repre-sents the value of div � on every triangle.11



Figure 4: The 
ontour 
urves of div �Referen
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