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Abstract

A new approach is presented to investigate the multiple breakage of

liquid droplets in agitated dispersions. The model includes, besides

coalescence and breakage, also the volume scattering as leading

mechanism of the evolution. The key role played, as far as the global

existence of the solution, by a positive threshold size below  which drops

are stable versus fragmentation and coalescence is clearly emphasized.

1. Introduction

In [2, 3] we presented a new model for the dynamics of dispersions in
an agitated vessel in which the break-up of droplets with volume above
the critical size is introduced in a quite natural way through a new effect

that we called volume scattering. This effect consists in the coalescence of

two droplets into a single unit with total volume above the maximum

value mv  allowed for the system (which in turn depends on side

parameters, like the rotational velocity of the impeller, its geometry, the
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chemical and physical nature of the two liquids and so on) followed by an

immediate rupture into two smaller droplets with volume below the

critical size (the model was confined to binary breakage).

Another novelty in [2, 3] was the presence of an efficiency factor
(depending on the number of droplets and the total inter-facial area) in
the evolution equation, whose role is to offer a more precise control of the
whole dynamics than the one achievable by just modeling the interaction
kernels.

However fragmentation appears to be instantaneously multiple in

most experiments and this implies that also the scattering term should
be modified in our model in order to allow the fragmentation of an
unstable droplet in, possibly, more than two pieces. In [4] we already
presented a possible approach to this kind of generalization and in [5] we
worked out explicitly a case in which only a ternary mode of rupture was
taken into account. In any case the breakage rate in the above quoted
papers was taken to be bounded. Here we will present not only a more
natural approach to the problem of dealing with multiple breakage but
also remove the hypothesis of a bounded breakage rate.

It must be said that multiple breakage has been considered also by
other authors (see [1, 8, 7]).

However our approach is rather different. Indeed in [8] the structure
of the breakage term in the evolution equation is taken to be the
following:

( ) ( ) ( ) ( ) ( ) ( ) ( ).,d,,, tvfvwtwfvwwwtvfL
mv

v
b α−βµα= ∫ (1.1)

Here ( )tvf ,  =v(  volume, =t  time) denotes the distribution function of

droplet size (per unit volume of dispersion), and

1. ( )wα  is the breakage frequency of a particle with size w,

2. ( )wµ  the number of droplets with the same parent w,

3. ( ) wvw d,β  is the probability that a parent w generates a daughter

of size v, independently of the breakage mode.
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The whole process is seen as a composite of a large number of
independent random processes. If the Central Limit Theorem applies,

then ( )vw,β  can be approximated by a normal distribution with mean

( ) ( )2,0 wwww ∈µ=∗  and a standard variation to be conveniently

chosen.

A similar point of view is taken in the papers of [1, 7]: according to
these authors

( ) ( ) ( ) ( ) ( ) ( )∫ ∫
∞+

ω−γ=
v

v

b wwwv
v

tvf
wtwfwvwtvfL

0
,d,

,
d,,, (1.2)

but no assumption about the normality of β is made a priori. In this case

( ) ( )∞+<≤≤γ wvvw 0,  is the multiple fragmentation kernel. Although

seemingly different, these two formulations can be proved to be
equivalent (see [7]) (except for the finite upper bound of the integral in
(1.1)). Moreover the case of binary breakage can be incorporated into this
formulation by means of a suitable change of variables (and by using the
symmetry of the kernel characteristic of the binary case, see [7] again).

From our point of view the above models for multiple breakage have
some disadvantages: first of all none of them seems to take into account

the randomness of the breakage mode since the kernel is the same for all

modes. Moreover the fact that one of these models can be proved to be

equivalent to that suited for the binary breakage case, appears to be a
strong indication that the physics of the process has been somehow
oversimplified. Finally if no information on the breakage mode is
specified (as in (1.1) and (1.2)) it is still possible to know the total number
of droplets but it appears impossible to count just those due to breakage.

The above models share the common underlying philosophy of
capturing a global information about breakage, in view of the difficulty of
analyzing the single modes. Here we prefer to follow a more direct
approach, evaluating the contribution of each event to the rate of change
of the distribution function.
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2. Evolution Equation

As in [2, 3] we write the evolution equation for f as follows:

( ) ( ),fLfLfLt
t
f

sbc ++φ=
∂
∂ (2.1)

where (see [2, 3] for example) ( ) ( ) ( )[ ]ttt SN ,Ψ=φ  is the efficiency factor

and

( ) ( ) ( ) ( ) ( )∫∫ ==
mm vv

vtvfvtvtvft
0

32

0
,d,,d, SN

represents, respectively, the instantaneous total number of droplet and

interfacial area per unit volume of dispersion.

The operators at the r.h.s. of (2.1) have a rather complex structure:

cL  is the coalescence operator and depends on a coalescence kernel cτ

which is a known function of the sizes of the two colliding droplets; bL  is

the breakage operator summing up the contributions of the various

rupture modes (binary, ternary, etc.), having defined, for each breakage

mode, its frequency kα  and the probability density kβ  of its outcome.

Finally sL  is the scattering operator and the kernel of the k-th mode is

just the product of kβ  and .cτ  We recall that sL  has represented the

main novelty of our model in the current literature about drops dynamics
since we first proposed it in [2, 3]. Its role is to justify the instability of
droplets resulting from coalescence and with volume above the threshold

value mv  without invoking any extra condition besides the true physics

involved: indeed sL  is nothing but a suitable combination of the two

main factors driving the dynamics of droplets, namely coalescence and
breakage.

Natural size limitations among droplets impose particular care when
the integration domains of the various terms on the r.h.s. of (2.1) are
specified. To be precise we put

( ) ( ) ( ) ( )∫ −−τ=
2

0
d,,,,

v

cc wtwvftwfwvwtvfL
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( ) ( ) ( )∫
−

τ−
vv

c
m

wtwfvwtvf
0

,d,,, (2.2)

( ) ( ) ( ) ( )∫ βα=
mv

v
b stsfvsstvfL d,,, 22

( ) ( )∑ ∫
=

α+
N

k

v

v
k

m
stsfs

3

d,

( )
( )∫ −−− σ−−β×

vsD
kkkk

k

Uvsuus
,

2221 d,...,,,

( ) ( )∑
=

α−
N

k
k tvfv

2

,, (2.3)

( ) ( ) ( ) ( ) ( ) ( )∫ ∫
+

−
−−τ−βλ=

vv

v

s

vs
cs

m

m m

wtwsftwfwwssvssstvfL
2

22 d,,,d,,

( ) ( ) ( ) ( )∑ ∫ ∫
=

+

−




−−τλ+

N

k

vv

v

s

vs
ck

m

m m

wtwsftwfwwsss
3

2
d,,,d

( )
( ) 




σ−−β× ∫ −−−

vsD
kkkk

k

Uvsuus
,

2221 d,...,,,

( ) ( ) ( )∫
+

−−τ−
vv

v
c

m

m

stvsfvsvtvf ,d,,, (2.4)

where 212 ddd −− =σ kk uu  denotes the measure element in .2−kR
Notice that

( ) ( ) ( ) ( )∫ ∫
+

−
τ=−−τ

vv

v

v

vv
cc

m

m

m

m

wtwfvwstvsfvsv ,d,,d,, (2.5)

so that the last term in (2.4) is nothing but the continuation of the last
term in (2.2). The symbols appearing above have the following meaning:

– ( )skα  is the breakage rate of droplets with volume ( )mvs ,0∈  in k

pieces.
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– ( )skλ  is a suitable weight (to be chosen conveniently) measuring

the chance of the parent droplet ( )mm vvs 2,∈  to break exactly in k

pieces within the scattering process; we assume ( )∑
=

=λ
N

k
k s

2
1  in any case.

– ∑
=

=
n

h
hn uU

1
.

– ( )11 ...,,, −β kk uus  is the breakage probability density of drops with

volume ( )mvs 2,0∈  to generate by breakage k fragments with prescribed

volumes ( )1...,,1 −= kjuj  in increasing order, ....0 121 −≤≤≤< kuuu

– ( )wvc ,τ  is the coalescence kernel, that is proportional to the

probability that two colliding droplets of respective volumes v and w

coalesce to form a unique droplet of volume .wv +

The definitions of the functions ( )11 ...,,, −β kk uus  and of the domains

( )vsDk ,  need several preliminaries: we devote the following section just

to this topic. As far as the regularity properties of the functions

appearing in the kernels of sbc LLL ,,  and the efficiency factor Ψ, we

assume the following:

(H1) Ψ is strictly positive, Lipschitz continuous and bounded in .2R
We also assume .0ˆinf

2
>Ψ=Ψ

R

(H2) cτ  is non-negative, symmetric and continuously differentiable in

[ ] [ ].,0,0 mm vv ×

(H3) For ,...,,2 Nk =  kα  is non-negative, continuously

differentiable and non decreasing in [ ),,0 mv  unbounded as v tends to

.mv  We also assume ∑
=

>α
N

k
k

2
0  for all ( )mvvv ,crit∈  and

(a) ( ) µ−−−α vvmk ~  with ( )1,0∈µ  in a left neighbourhood of ,mvv =
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(b) ( )δ+−−α crit~ vvk  with 0>δ  in a right neighbourhood of ,critvv =

where [ )mvv ,0crit ∈  is a given threshold and ( ) { }.0,max: •=• +

(H4) For ,...,,2 Nk =  functions kλ  are continuous in [ ].2, mm vv

A widely used (empirical) law, called Weber relation, assumes

( ) ( )9 5 9 54 2 4 3
crit 10 ,v D −−= π σ ω

where σ and  are, respectively, the surface tension and the density of

the dispersed phase, ω is the angular velocity of the impeller and D is the

impeller diameter. Therefore it is quite reasonable to think of critv  as a

very small but not vanishing value. Indeed 0crit →v  only if either

,∞+→ω  i.e., by spending an infinite amount of energy, or 0→σ  which

is a rather unphysical situation. It is worth noticing that – while the local
existence in time of the unique solution to the Cauchy problem for

equation (2.1) can be achieved regardless of being critv  equal to zero or

not – to prove the global existence we are forced to assume .0crit >v  This

fact is strictly related to the very physics of the problem.

3. Functions kβ  and Domains kD

Function 2β  is such that

( ) ( ) ( ) ,0,,,, 222 =β−β=β usussus   if  .us ≤ (3.1)

In other words, for each ( ],2,0 mvs ∈  we can take 2β  as assigned only in

[ ].2,0 s  Now, for a given ,3≥k  let us first consider the case ( ]mvs ,0∈

and define the set of ,1−kR

( ) ( ){ }....0...,, 111111, mkkkk vUsuuuusT ≤−≤≤≤<|= −−− (3.2)

Clearly 1
~

−−= kUsu  identifies one of the k daughters of s and 1,kT  is

characterized by the circumstance of u~  being the largest daughter.

Function kβ  is assigned on 1,kT  in such a way that
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( )
( )∫ =σβ −−
sT

kkk
k

uus
1,

.1d...,,, 111 (3.3)

For a fixed ( ],,0 mvs ∈  define ( )sT jk,  to be the set of points of

( ) 1
11 ...,, −
− ∈ k

kuu R  such that

{ },......0 1111 mkjkkjk vuuUsuu ≤≤≤≤−≤≤≤< −+−−−

,...,,2 kj = (3.4)

where, by definition, .00 =u  If ,mvs ≤  the last inequality in (3.2) and

(3.4) is obviously redundant. We notice that the j-th domain jkT ,  is

characterized by the circumstance u~  has an intermediate size between

jku −  and .1+− jku  We now consider, again for a fixed s, the maps

( ) ( )





−=

ξξ −−

,1...,,1

,...,,...,,: 1111

kj

uuC kkj (3.5)

defined by













ξ=ξ=

ξ−=

ξ=ξ=

−−+−+−

−

=
−

−−−−

∑
.

,

,...,,

11...,,11

1

1

1111

kkjkjk

k

i
ijk

jkjk

uu

su

uu

(3.6)

It is not difficult to check the maps (3.6) “re-locate” the residual drop u~

with respect to the ordered set of the other daughters and that

( ( )) ( )
( ( )) ( )





=

=

+

+

,

,

,1,

1,,

sTsTC

sTsTC

jkjkj

jkjkj
(3.7)

so that .1−= jj CC

Evidently the residual drop is the largest one in 1,kT  and the

smallest one in ., kkT  Then we can complete the definition of the maps

(3.5)-(3.6) also for ,kj =  by assuming that ( ( )) ( )sTsTC kkkk 1,, =  which

makes the family of maps jC  cyclic among the domains ( )., sT jk  Because
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of (3.7) it turns out that .... 121 −= kk CCCC  The main reason for

introducing the maps jC  is to extend the probability density over all

domains ., jkT  The procedure is the following. Indeed we can prove that,

for all 3≥k  all open domains jkT ,  are mutually disjoint and that

∩
k

j
jkT

1
,

=
 reduces to a single point which can be identified with the event

121 ... −=== kuuu  ,
k
s=  that is “all droplets have the same volume”.

Now, by means of the maps jC  we extend kβ  from 1,kT  to ,2,kT  from

2,kT  to 3,kT  and so on, up to ., kkT  In other words we put

( )11 ...,,,~
−β kk uus  equal to

( ) ( )

( ) ( )

( ) ( )












β

β

β

−−

−

−

.in,...,,...

,in,...,,

,in,...,,,

,11121

2,111

1,11

sTuuCCC

sTuuC

sTuus

kkkkk

kkk

kkk

(3.8)

Because of the properties of the maps ,jC  we have 
( )∫ =σβ −sT kk

jk,
1d~

1

for all ;...,,1 kj =  we define ∪
k

j
jkk TT

1
,

=
=  and recall that

∅=ikjk TT ,, ∩  for ,ji ≠  we also have 
( )∫ =σβ −sT kk

k
k.d~

1  We now put

( ) =vsDk ,  ( ) { }vsUsT kk −=−1∩  (see Figure 3.1 for the case ).3=k

Thus in all the jkT ,  contributing to ( ),, vsDk  the volume v is the one of

the “residual drop”. Notice that ( )sTk  is ( )1−k -dimensional polytope, so

that ( )vsDk ,  is a ( )2−k -dimensional set. From now on we drop the

“tilde” above kβ  in (3.8), i.e., we identify kβ  with its extension over

( ).sTk  Since we allow s in the interval ( ],2,0 mv  function kβ  is defined in

the k-dimensional polytope ,kR∈T
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( ]{ }.,...0,2,0 121 sUuuuuvs kkkm =≤≤≤≤<∈ − (3.9)

The domain ( )sTk  is nothing but the intersection of T  with the plane

constant.=s  We now extend the definitions (3.2) and (3.4) of the

domains ( )sT jk,  to the case ( ].2, mm vvs ∈  In this case the last

inequality appearing in the definitions (3.2) and (3.4) (which, in the case

( ],,0 mvs ∈  is automatically satisfied) plays an effective role. We also

extend the assumption (3.3): we put

( )
( )∫ =σβ −−
sT

kkk
k

uus
1,

,1d...,,, 111 (3.10)

regardless of the size of s in ( ].2,0 mv  The maps jC  then allow to extend

kβ  over the whole set ( )sTk  also for ( ).2, mm vvs ∈

* Please send a set of fresh figures (coloured)
along with the proofs

Figure 3.1. The domain ( )vsD ,3  when s is smaller (left) than mv

and when s is larger (right) than .mv  The domain ( )vsD ,3  is

represented by the (yellow) intersection of the dashed line with the

( )sT3  domain. In both figures 1,3T  is gray-colored, 2,3T  is cyan-

colored, 3,3T  is red-colored
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4. Further Preliminary Results

First of all we complete the set of hypotheses (H) by adding the
following:

(H5) (Normalization). When ( ],,0 mvs ∈  2β  is normalized as follows:

( )∫ =β
2

0
2 ,1d,

s
vvs (4.1)

while, for ( ],2, mm vvs ∈

( )∫ −
=β

2

2 .1d,
s

vs m

uus (4.2)

For ,...,,3 Nk =  we recall that we have set

( )
( )∫ =∀=σβ −−
sT

kkk
hk

khuus
,

....,,1,1d...,,, 111 (4.3)

(H6) (Regularity). (i) ( )vs,2β  is continuous in ( ) ( )svm ,02,0 ×  and

continuously differentiable in ( )mv2,0  for all ( )mvs 2,0∈  and in addition

(a) ( ) ( ) ( )m
vs

vvL
s

s ,
, 12

2 ∈
ξ∂

ξβ∂
α

−=ξ
 for all [ ]mvvs ,∈  and for all

( ];,0 mvv ∈

(b) ( ) 12 , Ms
vs
≤ξβ

ξ∂
∂

−=ξ
 for a suitable positive constant ,1M  for

all [ ]vvvs mm +∈ ,  and all ( ].,0 mvv ∈

(ii) For ,...,,3 Nk =  we assume kβ  continuous in T  and continuously

differentiable in ( )sT k  for all ( ).2,0 mvs ∈  Moreover

(c) for all ,2≥k  kβ  vanishes if the size of the smallest daughter goes

to zero; in particular

( ) ,0lim ,0
=|β

→ vsDkv k
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for all .3≥k

(d) ( )
( ) 2, 2221 d,...,,, MUvsuus

vvsvsD kkkk
mk

<




 σ−−β

+=
−−−∫  for

a suitable positive constant ,2M  for all ( ].,0 mvv ∈

(e) ( ) ( )
( )

( )mvsD kkk
k

k
k vvLUvsuus

u
s

k
,d,...,,, 1

, 2221
1

∈σ−−
∂
β∂

α ∫ −−−
−

for all ( ).,0 mvv ∈

(f) ( ) ( )[ ]vsDLuus
u k

Uvsu
k

k

k

kk

,...,,, 111
1 21

∈






∂
β∂

−− −−=
−

−
 for all ∈s

( )vvv m +,  and for all ( ),,0 mvv ∈

(g) ( )( ) ( )[ ]vsDLuus kUvsukk kk
,...,,, 111 21

∂∈|β
−− −−=−  for all ∈s

( )vvv m +,  and ( ).,0 mvv ∈

Figure 4.1. The domain ( )sT 1,3  (left), the contour level plot (center)

and graph (right) of an example of function .3β  In this case s is

smaller than mv
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Figure 4.2. The domain ( )sT 1,3  (left), the contour level plot (center)

and graph (right) of an example of function .3β  In this case s is

greater than mv

In an extended version of this paper we will show that all the
hypotheses we made are consistent by showing, in particular, an example

of β and α function in the case that both binary and ternary

fragmentation modes may occur. Here we confine to show just a figure of

3β  (see Figures 4.1 and 4.2).

Concerning the initial data we assume that

( )vf  is continuously differentiable in [ ],,0 mv

( )vf  is non-negative in [ ],,0 mv

( ) ( ) .00 == mvff (4.4)

As in [3] we look for a solution – in a suitable class of regular functions f

to be specified later – to both the original Cauchy problem
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( ) ( )

( ) ( )





=

++φ=
∂
∂

,0,

,

vfvf

fLfLfLt
t
f

sbc (4.5)

and the so-called modified Cauchy problem

( ) ( )

( ) ( )





=

ψ+ψ+ψφ=
∂
ψ∂ +++

,0,

,

vfvf

LLLt
t sbc (4.6)

where the +L -operators are defined as follows:

( ) ( ) ( ) ( )∫ −ψψ−τ=ψ ++
+

2

0
d,,,,

v

cc wtwvtwwvwtvL

( ) ( ) ( )∫
−

ψτψ−
vv

c
m

wtwvwtv
0

,d,,, (4.7)

( ) ( ) ( ) ( )∫ +
+ ψβα=ψ

mv

v
b stsvsstvL d,,, 22

( ) ( )∑ ∫
=

+ψα+
N

k

v

v
k

m
stss

3

d,

( )
( )∫ −−− σ−−β

vsD
kkkk

k

Uvsuus
,

2221 d,...,,,

( ) ( )∑
=

ψα−
N

k
k tvv

2

,, (4.8)

( ) ( ) ( )∫
+

+ −βλ=ψ
vv

v
s

m

m

svssstvL d,, 22

( ) ( ) ( )∫ − ++ −ψψ−τ
2

d,,,
s

vs
c

m

wtwstwwws

( ) ( ) ( ) ( )∑ ∫ ∫
=

+

−
++




−ψψ−τλ+

N

k

vv

v

s

vs
ck

m

m m

wtwstwwwsss
3

2
d,,,d
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( )
( ) 




σ−−β× ∫ −−−

vsD
kkkk

k

Uvsuus
,

2221 d,...,,,

( ) ( ) ( )∫ −
ψτψ−

m

m

v

vv
c wtwwvtv ,d,,, (4.9)

where, in writing ,+sL  we made use of (2.5).

5. Physical Consistency of the Model

It is worth noticing that in the exceptional case of binary ruptures

only (that is 0=λ=α kk  for all )3≥k  the model we propose identifies

with the one presented in [2, 3].

We now list the main results that we can prove.

Lemma 5.1 (Positiveness). Under assumptions from (H1) to (H6), all

bounded solutions to problem (4.6) are non-negative.

Theorem 5.1 (Volume conservation). Let ( )vf  be a (continuous)

initial data for ( )., tvf  Then, if ( )tvf ,  is a regular solution to equation

(2.1), we have

( ) ( )∫ ∫=
m mv v

vvvfvtvvf
0 0

.dd, (5.1)

Theorem 5.2 (Uniqueness). Under assumptions from (H1) to (H6),

problem (4.5) has at most one bounded solution.

We now prove that problem (4.6) has a local bounded solution

provided that the initial data go to zero sufficiently fast as v goes to .mv

Because of positivity, all solutions to problem (4.6) with initial data ( )vf

also satisfy problem (4.5) with the same data. Moreover, because of the
uniqueness theorem, to achieve the existence of solutions to problem
(4.5), it suffices to prove it for problem (4.6).

Theorem 5.3 (Local existence). Assume that hypotheses from (H1) to

(H6) be satisfied and that ( )vf  satisfy both (4.4) and
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( ) ( ) ....,,2, Nkvfvk =∀∞+<α′ (5.2)

Then problem (4.6) has at least one Lipschitz continuous solution in

[ ] [ )Tvm ,0,0 ×  for a suitable finite .0>T

All proofs are rather long and need several side lemmas. For this
reason they will be published elsewhere.

6. The Key Point for Proving Global Existence

The reason for which we need to assume 0crit >v  find its justification

in the very physics of the problem. Indeed, it is well known that droplets
of arbitrary small size cannot be obtained through breakage from larger
droplets unless we spend an infinite power (infinite rotational speed of

the impeller). The same request is needed for :cτ  indeed it is also very

difficult to make two very small droplets coalesce (see Figures 6.1 and 6.2
taken from [6]) because of the large energy needed to drain and break the
interposed enveloping protective film. Similarly, if we look at the

probability to get a very small droplet v as the final product of either a

breakage or a scattering event, since very small droplets are very unlike
to appear as a rupture event of a larger parent.

Figure 6.1. Coalescence region for drops of equal size: very large and

very small droplets do not coalesce regardless of the mutual angle of

approach 0( app =α  means “head-on collision”, 90app =α  means

grazing droplets)
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This circumstance suggests to assume, in addition to all previous

hypotheses made for ,kα  also the following:

[ ],,0,2,0 critvvkk ∈∀≥∀≡α (6.1)

where mvv <<< crit0  is a (small) threshold value (see Remark 2 at page

5 (Please confirm if Remark 2 has come from reference [6])). The same

request is needed for :cτ  indeed it is also very difficult to make two very

small droplets coalesce (see Figures 6.1 and 6.2 taken from [6]) because of
the large energy needed to drain and break the interposed separating
film1.

Therefore we also assume

,0≡τc   in  [ ] [ ].,0,0 critcrit vv × (6.2)

Similarly, considering there is no chance to get a droplet of subcritical
size as the final product of either a breakage or a scattering event, we
need to impose

,0≡βk   if  [ ].,0 critvv ∈ (6.3)

                                                     
1 One should eventually distinguish between a lower threshold value ( )bvcrit  below which a

drop is unbreakable and a similar value ( )c
critv  under which a pair of droplets are unable to

coalesce into a unique object. This further complication has not been considered here

although the mathematics involved does not change very much.
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Figure 6.2. Coalescence efficiency vs. droplets ratio

As a consequence the only physical mechanism remaining active for

[ ]crit,0 vv ∈  is the loss of small droplets due to coalescence with ones of

ordinary size (see Figures 6.1 and 6.2 again).

The additional assumptions (6.1), (6.2) and (6.3) have an immediate

consequence on the behaviour of f in a right neighbourhood of .0=v

Indeed, from (2.2), (2.3), (2.4), we get that

[ ]

( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( )











τ−=

=

τ−=

⇒∈

∫

∫

−

−

m

m

m

v

vv
cs

b

vv

v
cc

wtwfvwtvftvfL

tvfL

wtwfvwtvftvfL

vv

,d,,,,

,0,

,d,,,,

,0
crit

crit (6.4)

so that

( ) ( ) ( ) ( ) [ ]∫ ∈∀<τφ−=
∂
∂ mv

v
c vvwtwfvwtvft

t
f

crit
.,0,0d,,, crit (6.5)

Consequently

( ) ( ) ( ) [ ] [ ].,0,0,,, crit Tvtvvftvf ×∈≤ (6.6)

Relation (6.6) implies that, because of the conservation of volume
(Theorem 5.1), also the number of droplets cannot go to infinity because

of a possible non-integrable singularity of f near .0=v  Indeed from

( ) ( ) ( ) ( )∫ ∫ =≡+
crit

crit0
,0d,d,

v v

v

m
tvtvvfvtvvf VV (6.7)

we obtain

( ) ( )∫ ≤
mv

v
vtvfv

crit
,0d,crit V (6.8)

and also

( ) ( ) ( )∫ ∫∫ ≤≤
crit critcrit

0 0
crit

0
.ddd,

v vv
vvfvvvvfvtvvf (6.9)
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Therefore

( ) ( ) ( ) ( )∫ ∫ ∫+==
m mv v v

v
vtvfvtvfvtvft

0 0

crit

crit
d,d,d,N

 ( ) ( ) ( ) ( )
.

0
0

0
d

crit0 crit

crit

vv
vvf

v VNV +≤+≤ ∫ (6.10)

Estimate (6.10) for N  is a priori, global and independent of any bound

for f in the local time of existence.

Proposition 6.1. Let f be a bounded solution to problem (4.5); then,

under assumptions from (H1) to (H6), all products

( ) ( ) Nktvfvk ...,,2,, =α (6.11)

are bounded for all [ ].,0 mvv ∈

Now we can go back to (2.1): from (6.10), hypotheses (H1) to (H6) and
Lemma 6.1 (Please confirm as Lemma 6.1 has not come anywhere) we
easily get that

( { } ),1 tfC
t
f +≤





∂
∂

+
(6.12)

where C does not depend on f. We can thus proceed as in [2] to prove that

(6.12) implies the global existence of f. In conclusion we have

Theorem 6.1 (Global existence). If the hypotheses of Theorem 5.3 are

completed with (6.1), (6.2) and (6.3), then the solution to problem (4.5)

given by Theorem 5.3 can be extended through Tt =  over any finite time

interval with the same regularity properties.
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