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10.1 Introduction

The rapid advancements in multimedia technology have increased the relevance that repos-
itories of digital images are assuming in a wide range of information systems. Effective
access to such archives requires that conventional searching techniques based on external
textual keywords be complemented by content-based queries addressing appearing visual
features of searched data [1], [2]. To this end, a number of models were experimented with
that permit the representation and comparison of images in terms of quantitative indexes
of visual features [3], [4], [5]. In particular, different techniques were identified and ex-
perimented with to represent the content of single images according to low-level features,
such as color [6], [7], [8], texture [9], [10], shape [11], [12], [13], and structure [14], [15];
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intermediate-level features of saliency [16], [17], [18] and spatial relationships [19], [20],
[21], [22], [23]; or high-level traits modeling the semantics of image content [24], [25], [26].
In doing so, extracted features may either refer to the overall image (e.g., a color histogram),
or to any subset of pixels constituting a spatial entity with some apparent visual cohesion
in the user’s perception. This can be the set of pixels constituting any object with high-level
semantics, such as a character, a face, or a geographic landmark. Or it can be a set of pix-
els with low-level visual cohesion, induced by a common chrominance or texture, or by a
common position within a predefined area of the image. As a limit case, the overall image
can be regarded as a particular spatial entity.

Selecting the entities on which content representation should be based entails a trade-off
between the significance of the model and the complexity of its creation: models containing
high-level entities permit a closer fit to the users” expressive habits, but they also require
some assistance in the archiving stage for the identification and the classification of signif-
icant entities.

Information associated with each entity generally combines a set of salient entity features,
along with additional indexes that can be measured once the entity has been extracted: a
high-level object is usually associated with a symbolic type [19], [27], an image region
derived through a color-based segmentation is associated with a chromatic descriptor [28],
and both of them can be associated with a measure of size, or with any other shape index [29],
[30], [31]. When multiple entities are identified, the model may also capture information
about their mutual spatial relationships. This can improve the effectiveness of retrieval by
registering perceived differences and similarities that depend on the arrangement of entities
rather than on their individual features. Relational information associated with multiple
entities can capture high-level concepts, such as an action involving represented objects
or spatial relationships between the pixel sets representing different entities. Relationships
of the latter kind are most commonly employed in content-based image retrieval (CBIR)
due to the possibility of deriving them automatically and to their capability of conveying
a significant semantics.

In particular, image representations based on chromatic indexes have been widely
experimented and comprise the basic backbone of most commercial and research retrieval
engines, such as QBIC [32], Virage [33], VisualSeek [20], PickToSeek [34], BlobWorld [35],
and SIMPLIcity [36], [37], to mention a few. This apparently depends on the capability of
color-based models to combine robustness of automatic construction with a relative per-
ceptual significance of the models.

However, despite the increased descriptive capability enabled by relational models that
identify separate spatial entities, in the early and basic approaches, the chromatic con-
tent of the overall image has been represented by a global histogram. This is obtained by
tessellating the (three-dimensional) space of colors into a finite set of reference parts, each
associated with a bin representing the quantity of pixels with color that belongs to the part
itself [38]. The similarity between two images is thus evaluated by comparing bins and their
distribution [39]. In doing so, the evaluation of similarity does not account for the spatial
arrangement and coupling of colors over the image. This plays a twofold role in the user’s
perception, serving to distinguish images with common colors and to perceive similarities
between images with different colors but similar arrangements. To account for both these
aspects, chromatic information must be associated with individual spatial entities identi-
fied over the image. According to this, integration of spatial descriptors and color has been
addressed to extend the significance of color histograms with some index of spatial locality.

In early work [40], the image is partitioned into blocks along a fixed grid, and each
block is associated with an individual local histogram. In this case, similarity matching also
considers adjacency conditions among blocks with similar histograms. However, because
blocks are created according to a static partitioning of the image, representation of spatial
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arrangement does not reflect the user-perceived patching of colors. In Reference [41], the
spatial arrangement of the components of a color histogram is represented through color
correlograms, capturing the distribution of distances between pixels belonging to different
bins. In Reference [28], a picture is segmented into color sets and partitioned into a finite
number of equally spaced slices. The spatial relationship between two color sets is modeled
by the number of slices in which one color set is above the other. In Reference [31], the spatial
distribution of a set of pixel blocks with common chromatic features is indexed by the two
largest angles obtained in a Delaunay triangulation over the set of block centroids. Though
quantitative, these methods still do not consider the actual extensions of spatial entities.

To overcome the limit, the image can be partitioned into entities collecting pixels with
homogeneous chromatic content [42]. This can be accomplished through an automated
segmentation process [43], [44], which clusters color histograms around dominating com-
ponents, and then determines entities as image segments collecting connected pixels under
common dominating colors [45], [46], [47], [48]. In general, few colors are sufficient to par-
tition the histogram in cohesive clusters, which can be represented as a single average color
without significant loss for the evaluation of similarity. However, color clusters may be split
into several nonconnected image segments when they are back-projected from the color
space to the image. This produces an exceedingly complex model, which clashes with the
human capability to merge regions with common chromatic attributes. An effective solution
to this problem was proposed in References [21], [49], where weighted walkthroughs are
proposed to quantitatively model spatial relationships between nonconnected clusters of
color in the image plane. Following a different approach, in Reference [50], spatial color dis-
tribution is represented using local principal component analysis (PCA). The representation
isbased onimage windows that are selected by a symmetry-based saliency map and an edge
and corner detector. The eigenvectors obtained from local PCA of the selected windows
form color patterns that capture both low and high spatial frequencies, so they are well
suited for shape as well as texture representation.

To unify efforts aiming to define descriptors that effectively and efficiently capture the
image content, the International Standards Organization (ISO) has developed the MPEG-7
standard, specifically designed for the description of multimedia content [51], [52], [53].
The standard focuses on the representation of descriptions and their encoding, so as to
enable retrieval and browsing applications without specific ties to a single content provider.
According to this, descriptors are standardized for different audiovisual features, such as
dominant color, texture, object’s contour shape, camera motion, and so forth. (All MPEG-7
descriptors are outlined in Reference [54].) This has permitted research efforts to focus
mainly on optimization mechanisms rather than on the definition and extraction of the
descriptors. In particular, CBIR applications have usefully exploited the features provided
by the standard. For example, solutions like those proposed in References [55, 56] have
tried to combine MPEG-7 descriptors with relevance feedback mechanisms [57] in order to
improve the performances of retrieval systems. In other works, because the MPEG-7 does
not standardize ways whereby content descriptions should be compared, effective models
for evaluating similarities among descriptors have been investigated [58].

In these approaches, chromatic descriptors are widely used. Specifically, MPEG-7
provides seven color descriptors, namely, Color space, Color Quantization, Dominant
Colors, Scalable Color, Color Layout, Color-Structure, and Group of Frames/Group of Pictures
Color. Among these, the color layout descriptor (CLD) and the color-structure descriptor
(CSD) are capable of conveying spatial information of the image color distribution. The
CSD provides information regarding color distribution as well as localized spatial color
structure in the image. This is obtained by taking into account all colors in a structuring ele-
ment of 8 x 8 pixels that slides over the image, instead of considering each pixel separately.
Unlike the color histogram, this descriptor can distinguish between two images in which a
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given color is present in identical amounts, but where the structure of the groups of pixels
having that color is different. Information carried out by the CSD are complemented using
the CLD, which provides information about the color spatial distributions by dividing im-
ages into 64 blocks and extracting a representative color from each of the blocks to generate
an 8 x 8 icon image. When regions are concerned, the region locator descriptor (RLD) can
be used to enable region localization within images by specifying them with a brief and
scalable representation of a box or a polygon.

However, these kinds of descriptors permit some information to be embedded on the
spatial localization of color content into color histograms but may not be appropriate for
capturing binary spatial relationships between complex spatial entities. For example, this is
the case in which users are interested in retrieving images where several entities, identified
either by high-level types or low-level descriptors, are mutually positioned according to
a given pattern of spatial arrangement. Moreover, this difficulty is particularly evident in
expressing spatial relationships between nonconnected entities.

In this chapter, we propose an original representation of the spatial arrangement of chro-
matic content that contributes to the state-of-the-art in two main respects. First, the color
information is captured by partitioning the image space in color clusters collecting pixels
with common chromatic attributes, regardless of their spatial distribution in separate seg-
ments. This improves perceptual robustness and facilitates matching and indexing. In par-
ticular, this avoids the excessive complexity of descriptions arising in segmenting images
based on connected regions of homogeneous color. However, it also poses some major
difficulties related to the spatial complexity of the projection of color clusters and to the
consequent difficulty in representing their arrangement. To this end, as a second contribu-
tion of this work, we propose and expound a descriptor, called weighted walkthroughs, that is
able to capture the binary directional relationship between two complex sets of pixels, and
we embed it into a graph theoretical model. In fact, weighted walkthroughs enable a quanti-
tative representation of the joint distribution of masses in two extended spatial entities. This
relationship is quantified over the dense set of pixels that comprise the two entities, without
reducing them to a minimum embedding rectangle or to a finite set of representative points.
This improves the capability to discriminate perceptually different relationships and makes
the representation applicable for complex and irregular-shaped entities. Matching a nat-
ural trait of vagueness in spatial perception, the relationship between extended entities
is represented as the union of the primitive directions (the walkthroughs) which connect
their individual pixels. The mutual relevance of different directions is accounted for by
quantitative values (the weights) that enable the establishment of a quantitative metric of
similarity. Breaking the limits of Boolean classification of symbolic models, this prevents
classification discontinuities and improves the capability to assimilate perceptually similar
cases. Weights are computed through an integral form that satisfies a main property of com-
positionality. This permits efficient computation of the relationships between two entities
by linear combination of the relationships between their parts, which is not possible for
models based on symbolic classification. This is the actual basis that permits us to ensure
consistency in the quantitative weighting of spatial relationships and to deal with extended
entities beyond the limits of the minimum embedding rectangle approximation.

A prototype retrieval engine is described, and experimental results are reported that
indicate the performance of the proposed model with respect to a representation based on
a global color histogram, and to a representation that uses centroids orientation to model
spatial relationships between color clusters.

The rest of the chapter is organized into five sections and a conclusion. First, to evi-
dence the innovative aspects of weighted walkthroughs, in the remainder of this section,
we discuss previous work on modeling techniques for representation and comparison
of spatial relationships as developed in the context of image databases (Section 10.1.1).
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In Section 10.2, we introduce the representation of chromatic spatial arrangement based
on color clusters and their mutual spatial relationships. In particular, we define weighted
walkthroughs as original techniques for modeling spatial relationships and discuss their
theoretical foundations and properties. Efficient derivation of weighted walkthroughs is
expounded in Section 10.3. In Section 10.4, the image representation is cast to a graph
theoretical model, and a graph matching approach for the efficient computation of im-
age similarity is prospected. A retrieval engine based on this model is briefly described in
Section 10.5. In Section 10.6, we report a two-stage evaluation of the effectiveness of the
proposed model, focusing first on a benchmark of basic synthetic arrangements of three
colors, and then on a database of real images. Finally, conclusions are drawn in Section 10.7.

10.1.1 Related Work on Modeling Techniques for Representing Spatial Relationships

Several different solutions have been practiced to model spatial relationships in image
databases. In particular, at the higher level, representation structures for spatial relation-
ships can be distinguished into object-based and relation-based structures.

The first group comprises those structures that treat spatial relationships and visual infor-
mation as one inseparable entity. In these approaches, spatial relationships are not explicitly
stored, but visual information is included in the representation. As a consequence, spatial
relationships are retrieved examining objects coordinates. Object-based structures are based
on space partitioning techniques that allow a spatial entity to be located in the space that it
occupies. In that some of the data structures used for the indexing of n-dimensional points
can also handle, in addition to points, spatial objects such as rectangles, polygons, or other
geometric bodies, they are particularly suited to being employed as spatial access methods
to localize spatial entities in an image. According to this, object-based representations rely
on R-trees [59], R [60], R* [61], and their variations [62], [63]. R-trees are commonly used to
represent the spatial arrangement of rectangular regions and are probably the most popular
spatial representation, due to their easy implementation. R-trees are particularly effective
for searching points or regions. RT and R* trees are improvements of the R-tree based on dif-
ferent philosophies. Applications exploiting the spatial properties of these representations
have been used mainly in the context of geographical information systems (GISs).

Structures in the second category do not include visual information and preserve
only a set of spatial relationships, discarding all uninteresting relationships. Objects are
represented symbolically, and spatial relationships explicitly. These approaches may address
topological set-theoretical concepts (e.g., inclusion, adjacency, or distance) [64], [65] or di-
rectional constructs (e.g., above or below) [19], [66], [67], [68]. In both cases, relationships
can be interpreted over a finite set of predefined (symbolic) classes [65], [66], or they can
be associated with numeric descriptors taking values in dense spaces [19], [64]. The lat-
ter approach enables the use of distance functions that change with continuity and avoid
classification thresholds, thus making them better able to cope with the requirements of
retrieval by visual similarity [21], [69].

In Reference [64], the topological relationship between pixel sets is encoded by the empti-
ness/nonemptiness of the intersections between their inner, border, and outer parts. In
Reference [65], this approach is extended to the nine-intersection model, so as to allow the
representation of topological relationships between regions, lines, and points. Each object
is represented as a point set with an interior region, a boundary, and an exterior region.
The topological relationship between two objects is described considering the nine possible
intersections of their interior, boundary, and exterior.

In References [67], [68], [70], the directional relationship between point-like objects is
encoded in terms of the relative quadrants in which the two points are lying. Directional
relationships are usually the strict relationships north, south, east, and west. To these are
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often added the mixed directional relationships northeast, northwest, southeast, and south-
west. Other solutions consider the positional directional relationships: left, right, above,
and below. Developing on this model, directional spatial relationships are extended to the
case of points and lines in Reference [71], while in Reference [72], direction relations for
crisp regions are proposed. Generalization of the directional model to regions with broad
boundaries is considered in Reference [73].

In the theory of symbolic projection, which underlies a large part of the literature on image
retrieval by spatial similarity, both directional and topological relationships between the
entities in a two-dimensional (2-D) scene are reduced to the composition of the qualita-
tive ordering relationships among their projections on two reference axes [27], [66]. In the
original formulation [66], spatial entities are assimilated to points (usually the centroids)
to avoid overlapping and to ensure a total and transitive ordering of the projections on
each axis. This permits the encoding of the bidimensional arrangement of a set of enti-
ties into a sequential structure, the 2-D-string, which reduces matching from quadratic to
linear complexity. However, this point-like representation loses soundness when entities
have a complex shape or when their mutual distances are small with respect to individ-
ual dimensions. Much work has been done around this model to account for the extent of
spatial entities, trading the efficiency of match for the sake of representation soundness.
In the 2-DG-string and the 2-DC-string, entities are cut into subparts with disjoint convex
hulls [74], [75]. In the 2-D-B string [76], [77], the mutual arrangement of spatial entities
is represented in terms of the interval ordering of the projections on two reference axes.
Because projections on different axes are independent, the representation subtends the
assimilation of objects to their minimum embedding rectangles, which largely reduces the
capability to discriminate perceptually distant arrangements. In References [78] and [79],
this limit is partially smoothed by replacing extended objects through a finite set of repre-
sentative points. In particular, in Reference [78], the directional relationship between two
entities is interpreted as the union of the primitive directions (up, up-right, right, down-
right, down, down-left, left, up-left, coincident), capturing the displacement between any
of their respective representative points.

In general, the effectiveness of qualitative models is basically limited by inherent Boolean
classification thresholds that determine discontinuities between perceived spatial arrange-
ments and their representation. This hurdles the establishment of quantitative metrics
of similarity and basically limits the robustness of comparison. These limits of Boolean
matching are faced in quantitative models by associating spatial relationships with numeric
values, which enables the evaluation of a continuous distance between nonexact matching
arrangements. In the most common approach, directional information is represented
through the orientation of the line connecting object centroids [19], [80]. This type of repre-
sentation inherently requires that extended entities be replaced by a single representative
point used to take the measure of orientation. This still limits the capability to distinguish
perceptually dissimilar configurations. Representations based on directional histograms
have partially solved this limit [81], [82], [83]. The approach in Reference [81] avoids assim-
ilating an object to representative points, like the centroid, or to the minimum bounding
rectangle, by computing the histogram of angles between any two points in both the objects.
This histogram, normalized by the maximum frequency, represents the directional relation-
ship between the two objects. In Reference [82], histograms are extended to consider pairs
of longitudinal sections instead of pairs of points. In this way, it is possible to exploit the
power of integral calculus to ensure the processing of raster data as well as of vector data,
explicitly considering both angular and metric information. Instead, in Reference [83], the
histogram of angles is modified by incorporating both angles and labeled distances. The
set of angles from any pixel on the boundaries of two spatial entities expresses their direc-
tional relationships. In summary, these angle histogram approaches provide quantitative
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representation of directional relationships, but they do not provide explicit metric (dis-
tance) information and do not support the extraction of topological spatial relationships
like “inside” or “overlap.”

10.2 Modeling Spatial Arrangements of Color

Using a clustering process [84], the color histogram of an image can be partitioned into a
few cohesive clusters, which can be effectively represented by their average color without
significant loss of information for the evaluation of similarity. In general, using the CIE
L*u*v* color space for color representation, we found that a number of clusters not higher
than 8, at most 16, is definitely sufficient to maintain a nonambiguous association between
an image and its reduced representation, in which colors are replaced by the average value
of their cluster. However, in the backprojection from the color space to the image, each color
cluster may be split into several nonmutually connected image segments. This produces an
exceedingly complex model, that does not reflect the human capability to merge multiple
regions with common chromatic attributes (see Figure 10.1a).

To overcome the limitation, we consider the pixels of each color cluster as a single spatial
entity, regardless of their spatial distribution and of their connection in the image space
(see Figure 10.1b). The entity is associated with the triple of L*u*v* normalized coordinates
of the average color in the cluster. Clusters are also associated with their number of pixels,
even if this has only a limited significance due to the capability of the clustering algorithm
to produce sets with an approximately equal number of pixels.

10.2.1 Representing Spatial Relationships between Color Clusters

The spatial layout of color clusters is usually complex: color clusters are usually not
connected; their mutual distances may be small with respect to their dimensions; and
they may be tangled in a complex arrangement evading any crisp classification. These

L* backprojection (a) description
color clustering to the image of region
relationships

cl
(b) description ¢4 3
of cluster c
relationships
c2 c¢5

FIGURE 10.1

Pixels are grouped in the color space by using chromatic similarity, so that image content is effectively partitioned
into a few clusters. (a) Backprojection in the image space results in a high number of separated segments, yielding
an exceedingly complex model for the image. (b) All the pixels obtained from the backprojection of a common
cluster are collected within a single entity in the image space.
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complexities cannot be effectively managed using conventional spatial descriptors based
on centroids or embedding rectangles. To overcome the limit, spatial relationships between
color clusters are represented with weighted walkthroughs [21]. In the rest of this subsec-
tion, we further develop the original model of weighted walkthroughs to fit the require-
ments of retrieval by color similarity.

10.2.1.1 Weighted Walkthroughs

In a Cartesian reference system, a point a partitions the plane into four quadrants: upper-
left, upper-right, lower-left, and lower-right. These quadrants can be encoded by an index
pair < i, j >, withi and j taking values £1. In this perspective, the directional relationship
between the point 4 and an extended set B, can be represented by the number of points of
B that are located in each of the four quadrants. This results in four weights w1, +1(a, B)
that can be computed with an integral measure on the set of points of B:

1 7
wi j(a, B) = 1Bl /Bci(xb = x)C (Yo — Ya) dxpdyp (10.1)

where |B| denotes the area of B and acts as dimensional normalization factor (x,, y,)
and (xy, y), respectively, denote the coordinates of the point 4, and of points b € B (see
Figure 10.2). The terms C.(-) denote the characteristic functions of the positive and neg-
ative real semi-axes (0, +00) and (—oo, 0), respectively. In particular, C,;(t) are defined in
the following way:

0 otherwise 0 otherwise (10.2)

C_l(t):{l if t<0 Cl(t)z{l if t>0

where, according to Equation 10.1, t = x; — x; for C;(-), and t = y, — v, for C;(").
The model can be directly extended to represent the directional relationship between two

extended sets of points A and B, by averaging the relationships between the individual

points of Aand B:

1
w;,j(A B) = ——— //Ci(xb—xa)Cj(]/b—]/a)dxbdybdxadya (10.3)
|AIIBl JaJB

In doing so, the four-tuple w(A, B) provides a measure of the number of pairs of points in A
and B that have a displacement that falls within each of the four directional relationships:
w11 evaluates the number of point pairsa € Aand b € B such that b is upper-right from a;

YA

FIGURE 10.2
Walkthroughs connecting the point a € A, to two points b1, by € B. Because by is in the upper-right quadrant of
a, it contributes to the weight wy,1. Being b in the lower-left quadrant of 4, it contributes to the weight w1, _1.
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in a similar manner, w_1,; evaluates the number of point pairs such that b is upper-left from
a; wy,—1 evaluates the number of point pairs such that b is lower-right from a; and w_;,_;
evaluates the number of point pairs such that b is lower-left from a.

10.2.1.2 Properties of Weighted Walkthroughs

Because the functions C41(.) are positive defined, and due to the normalization factor in
Equation 10.3, the four weights w; ; are adimensional positive numbers. They are also
antisymmetric, that is, w;, j(A, B) = w_;,_;(B, A):

/A/B Ci(xy — x)Cj(Yp — Ya) dxpdypy dXpdy, = /A/B CoiC —x0)C—j (Yo — o) dxpdypy dXadyy

as a direct consequence of Equation 10.3, and the antisymmetric property of characteristic
functions (i.e., C11(t) = Cx1(—1)).

In addition, weighted walkthroughs between two sets Aand B are invariant with respect
to shifting and zooming of the two sets:

wi,]-(aA—f- B,aB 4+ B) = wi/j(A, B)

Shift invariance descends from the fact that w;, ; (A, B) is a relative measure (i.e., it depends
on the displacement between points in Aand B rather than on their absolute position). Scale
invariance derives from integration linearity and from the scale invariance of characteristic
functions C44(-).

More importantly, weights inherit from the integral operator of Equation 10.3 a major
property of compositionality, by which the weights between A and the union B; U B, can
be derived by linear combination of the weights between Aand B;, and between Aand B:

THEOREM 10.2.1
For any point set A, and for any two disjoint point sets B; and B, (i.e., B1 N B, = @, and
By U B, = B):

| B1] | B2 |

i i(A, By=w; (A, BiUBy) = ——w; (A B _
wl,]( ) wz,]( 1 2) |BluBz|wz,]( 1)+|B1UB2|

wj, j (A, By) (10.4)
PROOF From Equation 10.3 directly descends
wj,j (A, By U By) - |Al - |B1 U By | = /A/B s Ci(y — x)C (Yo — Ya)dxpdypd x,d Y,
= /A : Ci(xp — x2)Cj(yp — Ya)dxpd ypd x,d Y,

+/ Ci(xy — x)Cj (Yo — Ya)dxpdYpd x,d Y,
AJB,

= w; j(A, B1) - |Al - |B1] + w;, j(A, B2) - |Al - | Ba
and dividing both sides by the term |A| - | B U By|, the thesis of the theorem follows. ®

The property of compositionality permits the derivation of the four-dimensional integral
of Equation 10.3 through the linear combination of a number of terms corresponding to
subintegrals taken over elementary domains for which the weights can be easily computed
in closed form. In particular, the four-tuple of weighted walkthroughs can be easily com-
puted over rectangular domains. For example, the weight w1 between two rectangular
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V+H |- -

FIGURE 10.3
Determination of wy,1(A, B).

entities with projections that are disjoint along the X axis and perfectly aligned along the
Y axis, is computed as follows:

1
wii(4, B) = TR / / Ci1(xp — %)C1(yy — Ya)dxpdypd x,dy,
AJB

1 La+T Lg+T V+H V+H
= = dx, / dxb/ / d bd
T2H? /LA ‘ Lg 14 Ya it
V+H 1

T2 V+H 1 yg
ZWA I:V+H_]/a]dyu:ﬁ|:(V+H)ya_7:|v ZE

where, as shown in Figure 10.3, the integration domain along the y dimension of B is
limited to the set of points such that yb > ya, Yy, € A Similar computations permit the
derivation of the weights w; ; among rectangular domains arranged in the nine basic cases
(Figure 10.4a and Figure 10.4b) that represent the possible relationships occurring between
two elementary rectangles. This has particular relevance in the context of a digital image
with a discrete domain, constituted by individual pixels, that can be regarded as a grid of
elementary rectangular elements. In this way, the discrete case can be managed by using
the results derived in the continuous domain for the basic elements.

Based on the property of compositionality, and the existence of a restricted set of
arrangements between basic elements, if A and B are approximated by any multirect-
angular shape (see Figure 10.5a), their relationship can be computed by exploiting Equa-
tion 10.4 on rectangular domains. According to this, the property of compositionality is
used in the computation of weighted walkthroughs between two color regions Aand B (see

w(A,BO) = (1)8 w(AB2) = 8;
120 B9 = )0 W(AB8) = —

0/0

0[1
,__X

W(A,B6) = ‘1)8 W(A,B4) =
- 0]0
,_X
)

(a

(b)

FIGURE 10.4

The tuples of weights for the nine basic arrangements between rectangular entities. The weights are represented as
elements of a two-by-two matrix. (a) Projections of two rectangular entities are aligned along one of the coordinate
axes; (b) disjoint projections and perfect overlap of rectangular entities.
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= U g
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(b)

FIGURE 10.5

(a) Entity B is approximated by the minimum embedding multirectangle B made up of elements of size € x ¢; (b)
Computation of weighted walkthroughs between Aand B is reduced to that of a set of rectangular parts arranged
in the nine reference positions.

Figure 10.5b), as well as in the composition of relationships between multiple regions within
the same color cluster (Figure 10.6).

Finally, it can be observed that the sum of the four weights is equal to one in each of the
nine basic cases. As a consequence, the four weights undergo to the following bound:

THEOREM 10.2.2
For any two multirectangular pixel sets Aand B, the sum of the four weights is equal to 1:

> wii(AB =1 (10.5)

i=t1 j=+1

PROOF Demonstration runs by induction on the set of rectangles that composes Aand B.
By the property of compositionality (Theorem 10.2.1), for any partition of B in two disjoint
subparts By and B, the coefficients of w(A, B) can be expressed as

| B1] | B2

(A B = (A By 2
A A R AV X

wj, j (A, Bp)

Because this is a convex combination, that is,

| B | B _
[B1U By|  |B1U By

coefficients of w(A, B) are a convex combination of coefficients of w(A, B1) and w(A, B»),
respectively, and so is also the sum of the coefficients themselves. This implies that, by

> ( <

n B A=A1uA2UA3
&, =D WA1B) wA2B) w(A3B) WAB) =W (ATUAZUAS,B)
s B BB
FIGURE 10.6

Property of compositionality applied to the relationship between the nonconnected color cluster A (composed of
three segments) and the color cluster B (composed of one segment).
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Directional indices.

recursive decomposition of Aand B, the sum of the coefficients of w(A, B) is a convex com-
bination of the sum of the coefficients of the weighted walkthroughs between elementary
rectangles mutually arranged in the basic cases.

In all the basic cases of Figure 10.4a and Figure 10.4b, the sum of weights is equal to 1.
This implies that any convex combination of the sum of the coefficients of the weighted
walkthroughs among any set of elementary rectangles mutually arranged in the basic cases
isequaltol. W

10.2.1.3 Distance between Weighted Walkthroughs

Because the four weights have a sum equal to 1, they can be replaced, without loss of
information, with three directional indexes, taking values within 0 and 1 (Figure 10.7):

wy(A, B) = wy,1(A, B) + wy,—1(A, B)
wy (A, B) =w_1,1(A, B) + wy,1(A, B) (10.6)
wp(A, B) = w_1,_1(A, B) + wy,1(A, B)

In doing so, wy (A, B) and wy (A, B) account for the degree by which B is on the right, and
up of A, respectively; wp(A, B) accounts for the degree by which Aand B are aligned along
the diagonal direction of the Cartesian reference system.

In order to compare spatial arrangements occurring between two pairs of spatial enti-
ties, the three directional indexes are used. In particular, we experimentally found that
a city-block distance constructed on the indices provides effective results in terms of
discrimination accuracy between different arrangements. According to this, composition of
differences in homologous directional indexes is used as the metric of dissimilarity Ds for
the relationships between two pairs of entities (A, B), and (A, B) represented by weights
tuples w and w:

Ds(w, w) = ag - |lwyg — Wy| +ay - lwy — Wy| +ap - [wp — Wp|

=ay - -dy(w, ) +ay -dy(w, @) + ap - dp(w, ©) (10.7)

where ap, ay, and ap are a convex combination (i.e., they are nonnegative numbers with
sum equal to 1), and dy, dy, and dp are the distance components evaluated on the three
directional indexes of Equation 10.6. In our framework, we experimentally found that better
results are achieved by equally weighting the three distance components (¢y = oy = ap =
1/3). Due to the city-block structure, D is nonnegative (Ds > 0), autosimilar (Ds(w, w) = 0
iff w = @), symmetric (Ds(w, w) = Ds(w, w)) and triangular (for any three weights tuples
w, W, W: Ds(w, ) < Ds(w, W) + Ds(, w)). In addition, Ds is normal (i.e., Ds € [0, 1]) as
a consequence of the bound existing on the sum of the weights (Theorem 10.2.2). As an
example, Figure 10.8 shows the distance computation between two spatial arrangements.

Weights also satisfy a basic property of continuity by which small changes in the shape
or arrangement of entities result in small changes of their relationships. This results in the
following theorem for the distance between spatial arrangements:
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B l:\ dH(A,B) = 0.75 B I:\ dH(A,B) = 0.9375
- 1/4]3/4 _r T —=
A WAB)= T dV(AB)=1 A w(A,B) = 1/106 ‘ 15é16 dV(A,B) = 1
dD(A,B) =0.75 dD(A,B) = 0.9375

DS(W,W) =0.33 *10.75-0.9375| + 0.33 * [1-1] + 0.33 * 10.75-0.9375| = 0.125

FIGURE 10.8
Spatial distance Dg between two pairs of entities (A, B) and (A, B).

THEOREM 10.2.3

Let Aand B be a pair of pixel sets, and let B be the minimum multirectangular extension of
B on a grid of size € (see Figure 10.5a). Let B, denote the difference between B and B (i.e.,
B = BUBc and BN B, = ©@). The distance Ds(w (A, B), w(A, B)) between the walkthroughs
capturing the relationships between Aand B, and between Aand B undergoes the following
bound:

Ds(w(A, B), w(A, B)) < % (10.8)

PROOF Separate bounds are derived for the three distance components dy, dy, and dp.
By the property of compositionality (Theorem 10.2.1), dy(w(A, B), w(A, B)) can be decom-
posed as

du(w(A, B), w(A, B)) = [(w1,1(A, B) + w1,-1(A, B)) — (w1,1(A, B) + w1,_1(A, B))|

B
= |(w1,1(A, B) + w1,—1(A, B)) — <§(w1,1(A/ B) + wi,—1(A4, B))

B.
+§(w1,1(A, Be) + wi,—1(A, Bo)))l

B.
7 1w11(A B) + w1, 1(4 B)) = (wi1(4, B) +wi,1(A BO)
_ %dH(w(A, B), w(A, B.))

which, by the normality of dy (), yields
B,

o]

The same estimate can be applied to dy(w(A, B), w(A, B)) and dp(w(A, B), w(A, B)), from
which the thesis of the theorem follows. W

10.3 Efficient Computation of Weights

In the straightforward approach, if A and B are decomposed in N and M rectangles,
respectively, the four weights of their directional relationship can be computed by repetitive
composition of the relationships between the N parts of Aand the M parts of B:

1 N M
By | =—=5 | Ayl | Byl - w(Ay, By
) |AllB| ; mz::l

N M

w(A, B)=w (U Ay, U

n=1 m=1

(10.9)
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If component rectangles of Aand B are cells of a regular grid partitioning the entire picture,
each elementary term w(A,, B,,) is one of the four-tuples associated with the nine basic
arrangements of Figure 10.4a and Figure 10.4b. This permits the computation of w(A, B) in
time O(N - M).

A more elaborate strategy permits the derivation of the relationship with a complexity
that is linear in the number of cells contained in the intersection of the bounding rectangles
of the two entities. This is expounded in the rest of this section.

10.3.1 Representation of Spatial Entities

We assume that each entity is approximated as a set of rectangular cells taken over a
regular grid partitioning the entire picture along the horizontal and vertical directions of
the Cartesian reference system. The set of cells comprising each entity is partitioned in
any number of segments. Each of these segments is assumed to be connected, but not
necessarily maximal with respect to the property of the connection (as an example, in
Figure 10.6, the nonconnected entity Ais decomposed into the three connected segments A;,
Ay, and Az). Here, we expound the representation of segments and the computation of their
mutual relationships. Relationships between the union of multiple segments are derived
by direct application of the property of compositionality (Equation 10.4). The following
clauses illustrate the derivation:

WI/VilO]'-O =1 ifthecell (i, j)is partof A
0 otherwise
WI/Vil_]-l'O = 0 if j =0 (i.e., j is the leftmost column of A)

WW, " + W% otherwise

WWS}'O = is derived by scanning the row i if j =0
WY — W otherwise
WI/VZ.?]’-_1 = 0 ifi =0 (i.e., i is the lowermost row of A)
WWlo_l_i + WW&% j otherwise
WI/VZ.,O]’»1 = is derived by scanning the column j ifi =0
WW1 . — WIW? otherwise (10.10)

WW ' =0 ifj=0
WWl ]1 11 + WW,OJ1 1 otherwise

WW{f"l =0 ifi=00rj=0
WWf]1 Il + WWZ.?]:ll otherwise

W/ =0 ifi=0
WW1 -l it WW10 . otherwise

wwl}f = N-— ww00 wwf’]1 le O if j=0andi =0
W, —ww00 W 1f]—0and1>0
1/\/1/\/“1]—ww0]0 ww10 ifj >0

Each segment Ais represented by a data structure that encompasses the following informa-
tion: the number of cells of A, and the indexes (i, ji) and (i, j.) of the cells of the lower-left
and of the upper-right corners of the bounding rectangle of A. The segment Ais also associ-
ated with a matrix WW with size equal to the number of cells in the bounding rectangle of
A, which associates each cell (i, j) in the bounding rectangle of A with a nine-tuple WW, ;
that encodes the number of cells of Ain each of the nine directions centered in the cell (i, ])
WW0 is equal to 1 if the cell (i, j) is part of A, and it is equal to zero otherwise; WW
is the number of cells of A that are on the right of cell (i, j) (i.e., the number of cells of A

with indexes (i, k) such that k > j); in a similar manner, WW; ]1 % is the number of cells of A
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-11 01| 14
WW3,0 WWSO WWSO e
S0 oo 10 0/312
—WWg o= WWS,O WW3’0 .WWS,O = . 0 [ 0 [ 4
11 0-1 11
WW3q |WW34 WW3, L 0 - 3 - 12
=R A NNRER
. WW213 WW2 3 WW2 3
! 0| oo 10| [2/4 4
ww, = WW, g |WWoa WWoa (=314
11 0,1 1,41
WW, 3 WW23 WW23 6/2]2

=X

FIGURE 10.9
Examples of the data structure WW, computed for the cells (3, 0) and (2, 3) of the bounding rectangle enclosing
the entity A.

that are on the left of (i, j), while WI/\/Z.?]’-1 and WWi,O}._1 are the number of cells of Aover and

below cell (i, j), respectively; finally, WWL1 is the number of cells of A that are upper-right
from (i, j) (i. e the cells of A with 1ndexes (h, k) such that i > i and k > j). In a similar
manner, W~ WW_]1 and WIW; ! are the numbers of cells of A that are lower-right,
lower-left, and upper-left from the celf (i, j), respectively. Figure 10.9 shows the WW matrix
computed for two cells of the bounding rectangle of an entity A.

The matrix WW of the segment Ais derived in linear time with respect to the number of
cells in the bounding rectangle of A. To this end, the elements of the matrix are computed
starting from the lower-left corner, covering the matrix by rows and columns. In doing
so, the nine coefficients associated with any cell (i, j) can be derived by relying on the
coefficients of the cells (i — 1, j) (lower adjacent), and (i, j — 1) (left adjacent).

In the overall derivation, a constant time O(1) is spent for evaluating coefficients of each
cell; thus requiring a total cost O(L 4 - Ha), where L 4 and Hj are the numbers of columns
and rows of the bounding box of A, respectively. In addition, the entire column of each cell
in the first row, and the entire row of each cell in the first column must be scanned, with
a total cost O(2 - L 4 - Ha). According to this, the total complexity for the derivation of the
overall matrix WW is linear in the number of cells in the bounding rectangle of A.

10.3.2 Computation of the Four Weights

Given two segments Aand B, the four weights of their relationship are computed from the
respective descriptions, in a way that depends on the intersection between the projections
of Aand B on the Cartesian reference axes:

« If the projections of A and B have null intersections on both the axes, then the
descriptor has only a nonnull weight (and this weight is equal to 1) that is derived
in constant time (see Figure 10.4b).

o If the projections of A and B on the Y axis have a nonnull intersection, but the
projections on the X axis are disjoints (see, for example, Figure 10.10), then the
descriptor has two null elements and is determined with complexity O(Hag),
where Hup is the number of cells by which the projections intersect along the
Y axis. Of course, the complementary case that the projections of Aand B have
nonnull intersection along the X axis is managed in the same manner.

We expound here the method for the case in which B is on the right of A (see
Figure 10.10). In the complementary case (B on the left of A), the same algorithm
serves to derive the relationship w(B, A), which can then be transformed into
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YA

X

FIGURE 10.10

Projections of bounding rectangles A and B intersect along the Y axis. The gray patterns indicate cells that are
scanned in the evaluation of coefficient wy,1 (A, B). This is sufficient to evaluate the complete relationship between
entities represented by segments Aand B.

w(A, B) by applying the property of antisymmetry of weighted walkthroughs.
Because all the cells of A are on the left of B, the two upper-left and lower-left
weights w_1 1(A, B) and w_1,_1(A, B) are equal to 0. In addition, because the sum
of the four weightsis equal to 1, the derivation of the upper-right weight w1 1 (A, B)
is sufficient to fully determine the descriptor (as w1,—1(A, B) =1 — wy,1(A, B)).

The upper-right weight wy,1(A, B) is computed by summing up the number
of cells of A that are lower-left or left from cells of B. According to the forms
computed in the nine basic cases of Figure 10.4a and Figure 10.4b, for any cell
(i, j) in A, the contribution to w,1(A, B) is equal to 1 for each cell of B having
indexes (h, k) withh > i and k > j, and itis equal to 1/2 for each cell of B having
indexes (h, k) with h =i and k > j. In the end of the computation, the total sum
is normalized by dividing it by the product of the number of cells in Aand B.

By relaying on matrixes WW in the representation of segments A and B, the
computation can be accomplished by scanning only once a part of the rightmost
column of the bounding box of A and of the leftmost column of the bounding
box of B, without covering the entire set of cells in A and B. The algorithm is
reported in Figure 10.11. UR denotes the weight w1 1(A, B) being computed. For
the simplicity of notation, matrixes WW of segments A and B are denoted by A
and B. Notations j4 and jp denote the indexes of the right column of the bounding
box of Aand of the left column of the bounding box of B, respectively. Finally,
and i, indicate the indexes of the lowest and topmost rows that contain cells of
both Aand B, respectively (see Figure 10.10).

In the statement on line 1, the term (A;l];1 + AS ;Al) evaluates the number of
cells of A that are lower-left, or lower-aligned with respect to ij, j; for each of
these cells, there are no cells of B that are aligned on the right-hand side, and
the number of cells of B that are in the upper-right position is equal to the term
(BS:(])-B + BS:}B + Bil,/,(])-B + B&:}B). According to this, statement 1 initializes UR by
accounting for the contribution of all the (possibly existing) rows of A that are
below row i;. The statement in line 2 controls a loop that scans the cells in the right
column of A and in the left column of B, throughout the height of the intersection
of the projections of A and B on the vertical axis. Note that, because i, is the
topmost row of A or of B, there cannot be any other cell of A that is over row
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1.UR= (A ¥+ “%m) (BS(]’B +BYL 4+ BY 4 By,

i 1 ]A 1, ]B 1, jB u,]B
2.for i =i;:1i,

3. UR=UR+ A+ AN (B +BI) 1/2+ (BYL + BlL) - 1);
4. UR =UR/(N- M);

FIGURE 10.11
Algorithm for the case in which A and B have a null intersection along the X axis.

iy, and that has any cell of B up-right or aligned-right. The statement 3, in the
body of the loop, adds to UR the contribution of all the cells of A belonging to

row i: (Al 04 A, ) is the number of cells of Ain row i; each of these cells has
(B! B1 0) Cells of B aligned on the right-hand side (contributing the weight

1, ]B
1/2), and (B0 ! + B! ) cells of B that are up-right (each contributing the weight
1). The statement in fme 4 normalizes the weight.

When projections of A and B have a nonnull intersection on both the axes (i.e.,
when the bounding boxes of Aand B overlap [see Figure 10.13], all four weights
can be different than 0, and three of them must be computed (the fourth can be
determined as the complement to 1). The derivation of each of the three weights
is accomplished in time linear with respect to the number of cells falling within
the intersection of bounding boxes of Aand B.

We expound here the derivation of w,1(A, B). Of course, any of the other three
weights can be derived in a similar manner, with the same complexity.

The derivation of w1,1(A, B) consists of evaluating how many cells of A have
how many cells of B in the upper-right quadrant, in the upper column, in the
right row, or coincident. According to the forms computed in the nine basic ar-
rangements of Figure 10.4a and Figure 10.4b, each cell in the upper-right quadrant
provides a contribution equal to 1, each cell in the upper column or in the right
row provides a contribution equal to 1/2, and each cell coincident provides a
contribution equal to 1/4.

Also, in this case, matrices WW associated with Aand B permit the evaluation
by scanning only once a limited set of cells of Aand B. The algorithm is reported
in Figure 10.12. In this case, indexes ij, i;, ji, and j, indicate the lower and upper
row, and the left and right column of the intersection of bounding boxes of Aand
B, respectively (see Figure 10.13).

LUR= (A7) - B + B+ B 4 B 1

2. for 1=1:1,

3. UR=UR+ (A" ((BY + Bl -1+ B + B - 1/2);
4. for j=ji:j

5. UR= UR+(A”]) (B} + By - 14+ (BS + B} - 1/2);
6. for i =1ij:

7. for j = jl r

8.

9.

UR=UR+ (A7) - (By) -1+ (BY + B -1/2+ (B))) - 1/4);
UR = UR/(N - M);

FIGURE 10.12
Algorithm for the case in which Aand B have a nonnull intersection on both the X and Y axes.

243

PE: Note that
Figure 10.13
is called out
before
Figure 10.12
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)

=X

FIGURE 10.13

Projections of bounding rectangles of Aand B have a nonnull intersection on both the axes. During the evaluation
of relationships, the cells filled with the less dense pattern are scanned once, those with a more dense pattern are
scanned twice, and the black cell is scanned three times.

Statement 1 initializes the weight w; 1(A, B), denoted as UR, by summing up
the contribution of the (A;l’_l) cells of A that are in the lower-left quadrant of

the cell (ij, ji). The loop in statements 2 and 3 adds to UR the contribution of all
the cells of A that are on the left of the intersection area of the bounding boxes
of Aand B. These cells yield a different contribution on each row i in the range
between i; and i,. In a similar manner, the loop in statements 4 and 5 adds to
UR the contribution of all the cells that are below the intersection area of the
bounding boxes of Aand B. Finally, the double loop in statements 6, 7, and 8 adds
the contribution of the cells of A that fall within the intersection of the bounding

boxes of Aand B. Statement 9 normalizes the weight.

10.4 Graph Representation and Comparison of Spatial Arrangements

Color clusters and their binary spatial relationships can be suitably represented and com-
pared in a graph-theoretical framework. In this case, an image is represented as an
attributed relational graph (ARG):

image model o < E,a,w >, E = set of spatial entities
a:E — AU{any,} (10.11)
w: E x E - WU {anys}

where spatial entities are represented by vertices in E, and their chromatic features are
captured by the attribute label a; spatial relationships are the complete set of pairsin E x E,
each labeled by the spatial descriptor w. To accommodate partial knowledge and intentional
detail concealment, we also assume that both edges and vertices can take a neutral label
any, yielding an exact match in every comparison (i.e.,, Yw € W, Ds(w, any,) = 0, and
Va € A, Da(a, any,) = 0).

In so doing, Ds is the spatial distance defined in Section 10.2.1, while D 4 is the metric of
chromatic distance defined in the L*u*v* color space. In particular, the L*u*v* color space
has been specifically designed to be “perceptual,” this meaning that the distance between
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two colors with coordinates that are not far apart in the space, can be evaluated by using
the Euclidean distance. According to this, attributes a4 and a, of two entities are compared
by using an Euclidean metric distance:

d
Datar, a2) Ly forr - (L, — L2 + o (af, — w2+ - (0, — v (10.12)

where «;, oy, and «, is a convex combination (i.e., or, @, and «, are nonnegative
numbers with sum equal to 1). Because there is not a preferred coordinate in the space, we
set oo, oty oy = 1/3. Distance D4 is nonnegative, autosimilar, symmetric, and normal, and
satisfies the triangular inequality.

The comparison of the graph models of a query specification < Q, a7, w? >and anarchive
image description < D, a9, w? > involves the association of the entities in the query with a
subset of the entities in the description. This is represented by an injective function I" that
we call interpretation.

The distance between two image models Q and D, under an interpretation I' can be
defined by combining the metrics of chromatic distance D,4, and spatial distance Ds,
associated with entity attributes (vertices) and relationship descriptors (edges), respec-
tively. Using an additive composition, this is expressed as follows:

N, Ny k-1
1(Q D) Z RS Da, T@) + A =13 Dslge, 41l [T @G0, T (10.13)
k=1 k=1 h=1

where Nj is the number of entities in the query graph Q, and A € [0, 1] balances the
mutual relevance of spatial and chromatic distance: for A = 1, distance accounts only for
the chromatic component.

In general, given the image models Q and D, a combinatorial number of different inter-
pretations I' are possible, each scoring a different value of distance. The distance is thus
defined as the minimum distance under any possible interpretation:

1(Q D) L minp"(Q, D) (10.14)

In doing so, computation of the distance between two image models becomes an optimal
error-correcting (sub)graph isomorphism problem [85], which is a NP-complete problem
with exponential time solution algorithms.

In the proposed application, the problem of matching a query graph Q against a
description graph D is faced following the approach proposed in Reference [86]. To avoid
exhaustive inspection of all possible interpretations I' of Q on D, the search is organized in
an incremental approach by repeatedly growing a partial assignment of the vertices of the
query to the vertices of the description. In so doing, the space of solutions is organized as
a tree, where the kth level contains all the partial assignments of the first k entities of the
query. Because the function of distance is monotonically growing with the level, any par-
tial interpretation scoring a distance over a predefined threshold of maximum acceptable
dissimilarity pmqx can be safely discarded without risk of false dismissal. While preserv-
ing the exactness of results, this reduces the complexity of enumeration. Following the
approach of the A* algorithm [87], a search is developed in depth-first order by always
extending the partial interpretation toward the local optimum, and by backtracking when
the scored distance of the current assignment runs over a maximum acceptable threshold.
When the inspection reaches a complete interpretation, a match under the threshold is
found. This is not guaranteed to be the global optimum, but its scored distance comprises
a stricter threshold for acceptable distance that is used to efficiently extend the search until
the global optimum is found.
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In Reference [86], a look-ahead strategy is proposed that extends the basic A* schema
using an admissible heuristic to augment the cost of the current partial interpretation with
a lower estimate of the future cost that will be spent in its extension to a complete match.
This permits a more “informed” direction of search and enables the early discard of partial
assignments that cannot lead to a final match with acceptable similarity. This reduces the
complexity of the search while preserving the optimality of results. The approach results
were compatible with the dimension encountered in the application context of retrieval by
spatial arrangement.

10.5 A Retrieval System

The metric of similarity in Equation 10.13 and Equation10.14, based on the joint combination
of color clusters and weighted walkthroughs, was employed within a prototype retrieval
engine.

In the archiving stage, all images are segmented into eight clusters and are represented by
eight-vertices complete graphs. This resulted as a trade-off between the accuracy of repre-
sentation and the efficiency of the graph matching process. The usage of graphs with fixed
size permits the exploitation of the metric properties of the graph distance, thus enabling
the exploitation of a metric indexing scheme [86]. The system supports two different query
modalities: global similarity and sketch.

In a query by global similarity, the user provides an example by directly selecting an
image from the database (see Figure 10.14), and the retrieval engine compares the query

Distp: 0.185674

Distp: 0.197322 Distp: 0.200614

Color Relevance

<~ 1 rEm

Distp: 0.232296 Distp: 0.234381

Distp: 0.256534

FIGURE 10.14 (See color insert.)
A query by image example (left), and the corresponding retrieval set (right).
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Distp: 0.117615 Distp: 0113159

Distp: 0.122541

Distp: 0.113423

Distp: 0122873 Distp: 0126171

Color Relevance

[~y

Distp: 0.126303 Distp: 0.128956 Distp: 0.132496

FIGURE 10.15 (See color insert.)
A query by sketch (left), and the corresponding retrieval set (right).

graph with database descriptions. In a query by sketch, the user expresses the query by
drawing, coloring, and positioning a set of regions that capture only the color patches
and relationships that are relevant to the user (see Figure 10.15 and Figure 10.16). From
this representation, a query graph is automatically derived following a decomposition
approach. Each region corresponds to a variable number of color clusters, depending on
its size normalized with respect to that of the drawing area. This has a twofold effect.

Distp: 0.156631 A Distp: 0.162430
Distp: 0157027

FIGURE 10.16
A query by sketch, and the corresponding retrieval set for A = 0.5 (color relevance set to 50).
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On the one hand, the different relevance of regions, implicitly associated with their size,
is considered by splitting them into a different number of graph entities. On the other
hand, this partially replicates the behavior of the clustering algorithms, which splits sets of
pixels according to their size, thus providing multiple clusters for colors with a predominant
occurrence. Relationships between entities are those explicitly drawn by the user. If a region
is decomposed in multiple entities, relationships between this region and other regions in
the query are extended to all entities derived from the decomposition. The query graph
derived from this representation involves a restricted match between the N; entities in the
query against the N; entities in the database descriptions (with N; < Nj).

For both queries, the user is allowed to dynamically set the balance of relevance by which
spatial and chromatic distances are combined in the searching process. In the framework
of Section 10.4, this is obtained by setting parameter X in Equation 10.13.

10.5.1 Retrieval Examples

Results are reported for a database of about 10,000 photographic images collected from
the Internet. Figure 10.15 illustrates the querying operation: the user draws a sketch of the
contour of characterizing color entities and positions them so as to reproduce the expected
arrangement in searched images. The sketch is interpreted by the system as a set of color
clusters and their spatial relationships and is checked against the descriptions stored in
the archive. Matching images are displayed in a separate window, sorted by decreasing
similarity from top to bottom and from left to right (see Figure 10.15). The user can tune,
with the slide bar color relevance, the balance of color and spatial distances to the overall
measure.

In Figure 10.16, a query for a different sketch is shown; the interpretation of the sketch
takes into account only those spatial relationships that are marked by the user (made explicit
by lines on the screen). In this case, the color relevance is set equal to 50, corresponding to
A = 0.5, so that color and spatial similarities are given equal weight.

Figure 10.14 shows the expression of a query by example. In this case, one of the database
images is used as a query example, and the system searches for the most similar images,
using all the color entities and relationships that appear in the query representation. In the
particular example, the system retrieves the query image in the first position, and other
images with a similar arrangement. Some of the retrieved images show a lower consistency
in the semantics of the imaged scenes but still have a high relevance in terms of chromatic
content and spatial arrangement.

10.6 User-Based Assessment

The perceptual significance of the metric of dissimilarity derived through the joint repre-
sentation of color and spatial content was evaluated in a two-stage test, focusing first on a
benchmark of images representing basic synthetic arrangements of three colors, and then
on a database of real images.

10.6.1 A Benchmark Database of Basic Spatial Arrangements of Color

The first stage of the evaluation was oriented to investigate the capability of the proposed
model to capture differences and similarities in basic spatial arrangements of colors, by
abstracting from other relevant features, such as color distribution and size and shape of
color patches.
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The columns on the left are the images, listed from top to bottom in increasing order of variation, comprised in
the three sets of mutations of the reference image on the top left. A page of the user test for the reference image
and the mutation set 1 is shown on the right.
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To this end, the evaluation was carried out on a benchmark based on an archive with
6 x 3 x 9 synthetic pictures. The archive was derived from six reference pictures, obtained
by different compositions of an equal number of red, yellow, and blue squares within a
six-by-six grid. Reference pictures (displayed on the top of the plots of Figure 10.18) were
created so as to contain five or six separate regions each. Preliminary pilot tests indicated
that this number results in a complexity that is sufficient to prevent the user from acquiring
an exact memory of the arrangement. Though these images are completely synthetic and not
occurring in real application contexts, they are useful in testing the effectiveness of spatial
descriptors independently from chromatic components. In fact, their structure allows for
an easier evaluation by the users which can focus on spatial arrangements rather than on
the semantics or other image features that could bias the results of the evaluation in the
case of real images.

For each reference picture, three sets of mutations were derived automatically by a
random engine changing the arrangement of blocks through shift operations on randomly
selected rows or columns. Each set includes nine variations of the reference picture, which
attain different levels of mutation by applying a number of shift operations ranging from
one to nine. (Figure 10.17 indicates the level of mutation for the nine variations in each of
the three sets of a reference picture.) In order to avoid the introduction of a perceivable
ordering, mutations were derived independently (i.e., the mutation at level n was obtained
through n shifts on the reference picture rather than through one shift on the mutation at
level n—1). By construction, the mutation algorithm maintains the overall picture histogram
and the multirectangular shape of segments, but it largely increases the fragmentation of
regions. Preliminary pilot tests with variations including more than eight regions resulted

PE: Note that
Figure 10.18
is called out
before
Figure 10.17
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The six query images used in the test, and their corresponding plots of precision/recall. Plotted values corre-
spond to those obtained by resolving the query using both the weighted walkthroughs (WW), and the centroid
orientation (CO).

in major complexity for the user in comparing images and ranking their similarity. The
algorithm was thus forced to accept only arrangements resulting in less than eight regions.

The six reference pictures were employed as queries against the 6 x 3 x 9 pictures of
the archive, and queries were resolved using the metric of dissimilarity defined in Equa-
tion 10.13.

10.6.2 Ground Truth

Evaluation of the effectiveness of retrieval obtained on the benchmark requires a ground-
truth about the similarity ;4 between each reference picture g and each archive image d.
With six queries against an archive of 162 images, this makes 972 values of similarity, which
cannot be realistically obtained with a fully user-based rank. To overcome the problem, user
rankings have been complemented with inference [88].

Each user was shown a sequence of 3 x 6 html pages, each showing a reference picture and
a set of nine variations. (Figure 10.17 reports a test page, while the overall testing session
is available online at http://viplab.dsi.unifi.it/color/test). Pages presenting variations of
the same reference picture were presented subsequently, so as to maximize the correlation
in the ranking of variations included in different sets. On each page, the user was asked to
provide a three-level rank of the similarity between the reference picture and each of the
nine variations. To reduce the stress of the test, users were suggested to first search for the
most similar images and then extend the rank toward low similarities, thus emphasizing
the relevance of high ranks.
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The testing session was administered to a sample of 22 volunteers and took an average
time ranging between 10 and 21 min, with an average of 14.6 min. This appeared to be a
realistic limit for the user capability and willingness in maintaining attention throughout
the test. The overall sizing of the evaluation, and, in particular, the number of reference
pictures and queries considered, was based on preliminary evaluation of this limit.

User ranks were employed to evaluate a ground value of similarity between each reference
picture and its compared variations. In order to reflect the major relevance of higher ranks,
a score of three was attributed for each high rank received; a score of 1 was attributed for
each intermediate rank. No score was attributed for low ranks, as in the testing protocol,
these correspond to cases that are not relevant to the user. The average number of scores
obtained by each variation d was assumed as the value of similarity with the reference
picture g of its set.

The ground truth acquired in the comparison of each query against three sets of variations
was extended to cover the comparison of each query against the overall archive through
two complementary assumptions. On the one hand, we assume that the ranking obtained
for variations of the same reference pictures belonging to different sets can be combined.
Concretely, this means that for each reference picture, the user implicitly sets an absolute
level of similarity that is maintained throughout the three subsequent sets of variations.
The assumption is supported by the statistical equivalence of different sets (which are
generated by a uniform random algorithm), and by the fact that different variations of
the same reference picture are presented sequentially without interruption. On the other
hand, we assume that any picture d; deriving from mutation of a reference picture 41 has
a null value of similarity with respect to any other reference picture ¢,. This is to say that
if d; would be included in a set of the reference picture g, then the user would rank the
similarity at the lowest level. To verify the assumption, a sample of 6 x 9 images collecting
a variation set for each reference picture was created and displayed on a page. Three pilot
users were then asked to identify which variations derived from each of the six reference
pictures. All the users identified a variable number of variations, ranging between four and
six, with no false classifications. None of the selected images turned out to have an average
rank higher than 1.2.

Based on the two assumptions, the average user-based ranking was extended to complete
the array V;, capturing the value of any archive picture d as a member of the retrieval set
for any query gq.

10.6.3 Results

Summarized in Figure 10.18 are the results of the evaluation. Reference pictures employed
as queries are reported on the top, while the plots on the bottom are the curves of Precision/
Recall obtained by resolving the query on the archive according to the joint metric of similar-
ity based on color and weighted walkthroughs (WW), and color and centroids orientation
(CO). Defining as relevant those images in the archive which are similar to the query in the
users’ perception, and as retrieval set the set of images retrieved in each retrieval session,
the Recall is defined as the ratio between the number of relevant retrieved images and the
overall number of relevant images in the archive; instead, the Precision is the ratio between
the number of relevant retrieved images and the size of the current retrieval set.

In the plots, each point represents the values of precision and recall computed for the
retrieval set which extends up to comprise the image represented by the point itself. In
this way, points are added to each plot from left to right, representing retrieval sets of size
varying from one image up to a maximum that depends on the specific query. In fact, the
maximum size of the retrieval set for a query is determined as the number of images in
the three mutation sets of the query that users recognize as similar to the query (values
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are 24, 24, 21, 25, 20, 23 for the six queries, respectively). In this representation, a perfect
accordance of retrieval with the user ranking would result in a flat curve of precision 1 at
every recall, which is possible if the retrieval set is constituted only by relevant pictures.
Instead, any misclassification is highlighted by a negative slope of the curve that derives
from the “anticipated” retrieval of nonrelevant pictures. For all six queries, WW closely
fit the ideal user-based curve in the ranking of the first, and most relevant, variations. A
significant divergence is observed only on the second query for the ranking of variations
taking the positions between six and nine.

In all the cases tested, WW outperformed CO. In particular, CO evidenced a main limit
in the processing of the first and the fifth queries. In particular, the long sequences with
constant recall (in the case (a), the top-ranked images in the retrieval set scored a null value
of recall and precision) indicate that this problem of CO derives from a misclassification that
confuses variations of the query with those of different reference pictures. Analysis of the
specific results of retrieval indicates that CO are not able to discriminate the first and fifth
reference pictures, which are definitely different in the user perception but share an almost
equal representation in terms of the centroids of color sets. Finally, note that, because all the
images share a common proportion of colors, a representation based on a global histogram
cannot discriminate any two images in the benchmark. As a consequence, in all the cases
tested, WW outperformed the color histogram, which ranks, by construction, all the images
in the same position.

10.6.4 A Benchmark Database of Real Images

The second stage of the evaluation was aimed at extending the experimental results to
the case of images with realistic complexity. To this end, the weighted walkthroughs and
the centroids orientation were experimented within the prototype system introduced in
Section 10.5 and compared against a solution based on the sole use of a global color
histogram. For the experiments, the system was applied to an archive of about 1000 refer-
ence paintings featured by the library of WebMuseum [89]. The test was administered to
a set of 10 volunteers, all with university educations. Only two of them had experience in
using systems for image retrieval by content.

Before the start of the testing phase, users were trained with two preliminary examples,
in order to assure their understanding of the system. During the test, users were asked to
retrieve a given set of eight target images (shown in Figure 10.19a, from T; to Tg), represent-
ing the aim of the search, by expressing queries by sketch (see Figure 10.19b in which the
query images for a particular user are shown). To this end, users were shown each target
image, and they were requested to express a query with three regions to retrieve it (see
Figure 10.15). Only one trial was allowed for each target image.
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FIGURE 10.19 (See color insert.)
(a) The target images used in the test; (b) a user’s query sketches for the eight images.
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FIGURE 10.20
Different users” queries for the same target image (leftmost image).

The overall time to express queries for all eight target images was about 20 min, and
this permitted the users to maintain attention. The time spent for each query, about 2 min,
appeared to mainly derive from the difficulty in selecting an appropriate color capable of
representing the visual appearance of the image. This is basically a limit of the interface,
which is not presently engineered with respect to usability quality factors. Figure 10.20
shows some of the queries drawn from users during the search of the sixth target image. It
is worth noting that different users employed noticeably different sketches to find the same
target image.

For each query, the ranking of similarity on the overall set of 1000 pictures was evalu-
ated using the joint modeling of color and spatial relationships (weighted walkthroughs
and centroid orientation have been used separately to model spatial relationships), and the
global color histogram. Results were summarized within two indexes of recall and precision.
For each target image, the recall is 1 if the target image appears within the set of the first
20 retrieved images, 0 otherwise. Thus, recall expresses with a true/false condition, the
presence of the target image within the retrieval set. Precision considers the rank scored by
the target image in the retrieval set: it is 1 if the target image is ranked in the first position,
and gradually decreases to 0 when the target is ranked from the first toward the 20th po-
sition (i.e., precision is assumed zero when the target is ranked out of the first 20 retrieved
images). In this way, precision measures the system capability in classifying images accord-
ing to the implicit ordering given by the target image. System recall and precision for each
of the eight target images are derived by averaging the individual values scored for a target
image on the set of users’ queries.

Results are reported in Figure 10.21a and Figure 10.21b. Figure 10.21a compares values
of recall for the proposed model (here indicated as WW), for the centroid orientation (CO),
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FIGURE 10.21

Values of recall (a) and precision (b) are compared for the proposed model (WW), for centroid orientation (CO),
and for global color histogram (Histogram). Results for WW are reported for . = 0.5, which corresponds to an
equal weight for the contribution of color and spatial distance; » = 0.3 and A = 0.7 correspond to a reduced or
increased contribution for the color distance, respectively. It can be noticed as the global histogram definitely fails
in ranking the second and fourth target images, whose recall and precision values are both null.
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and for the color histogram (Histogram). For WW, results are reported for different values
of the parameter A, which weights the contribution of color and spatial distance in Equa-
tion 10.13. Though Histogram provides an average acceptable result, it becomes completely
inappropriate in two of the eight cases (T, and T4), where the recall becomes zero. Color
used jointly with centroid orientation shows a recall even greater than 0.5 and performs
better than Histogram in six of the eight cases (T3 and Ty are the exceptions). Differently,
search based on the WIW model provides optimal results for each of the eight tested cases.
In particular, it can be observed that better results are scored for A set equal to 0.5, while
for unbalanced combinations, there are cases that both penalize a major weight for color
(T3, and this directly descends from the fact that the color histogram failed, thus evidencing
the inadequacy of the sole color in obtaining the correct response for this image), and cases
that penalize a major weight for spatial contribution (T3 and T5).

Histogram is clearly disadvantaged when the system effectiveness is measured as rank of
the target image in the retrieval set, as evidenced in plots of precision of Figure 10.21b. By
considering a spatial coordinate, ranking provided from the system is much closer to the
user expectation, than that given by global histogram. In almost all the tested cases (13, T3,
T, and T5), a solution that privileges the contribution of color distance scores better results
than that favoring the spatial component (T and T7). In the remaining two cases (T; and
Tg), there is no substantial difference for the three values of A. Finally, for the target image
T5, the histogram outperforms WW, basically due to the low spatial characterization of this
image.

10.7 Conclusions

In image search based on chromatic similarity, the effectiveness of retrieval can be improved
by taking into account the spatial arrangement of colors. This can serve both to distinguish
images with the same colors in different arrangements and to capture the similarity between
images with different colors but similar arrangements.

In this chapter, we proposed a model of representation and comparison that attains this
goal by partitioning the image in separate entities and by associating them with individual
chromatic attributes and with mutual spatial relationships. Entities are identified with the
sets of image pixels belonging to color clusters derived by a clustering process in the L*u*v*
color space. In doing so, a spatial entity may be composed of multiple nonconnected seg-
ments, mirroring the human capability to merge regions with common chromatic attributes.
To support this modeling approach, a suitable spatial descriptor was proposed which is
able to capture the complexity of directional relationships between the image projections
of color clusters.

The effectiveness of the proposed model was assessed in a two-stage experimental eval-
uation. In the first stage, basic chromatic arrangements were considered to evaluate the
capability of the model to rank the similarity of images with equal histograms but dif-
ferent spatial arrangements (which cannot be distinguished using a global histogram).
In the second stage, the model was experimented with to evaluate the capability to reflect
perceived similarity between user sketches and images of realistic complexity. In both cases,
experimental results showed the capability of the model to combine and balance account
for chromatic and spatial similarity, thus improving the effectiveness of retrieval with re-
spect to a representation based on a global histogram and a representation using centroids
orientation to model spatial relationships between color clusters.
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