
20 April 2024

Temperature driven mass transport in concentrated saturated solutions / FASANO A; M. PRIMICERIO. -
STAMPA. - 61:(2005), pp. 91-108. [10.1007/3-7643-7317-2_8]

Original Citation:

Temperature driven mass transport in concentrated saturated
solutions

Published version:
10.1007/3-7643-7317-2_8

Terms of use:

Publisher copyright claim:

(Article begins on next page)

La pubblicazione è resa disponibile sotto le norme e i termini della licenza di deposito, secondo quanto
stabilito dalla Policy per l'accesso aperto dell'Università degli Studi di Firenze
(https://www.sba.unifi.it/upload/policy-oa-2016-1.pdf)

Availability:
This version is available at: 2158/231130 since: 2020-01-15T10:21:53Z

Questa è la Versione finale referata (Post print/Accepted manuscript) della seguente pubblicazione:

FLORE
Repository istituzionale dell'Università degli Studi

di Firenze

Open Access

DOI:



Temperature driven mass transport in concentrated saturated solutions∗

Antonio Fasano Mario Primicerio †

Abstract

We study the phenomenon of thermally induced mass transport in partially saturated solutions
under a thermal gradient, accompanied by deposition of the solid segregated phase on the ”cold”
boundary. We formulate a one-dimensional model including the displacement of all species (solvent,
solute and segregated phase) and we analyze a typical case establishing existence and uniqueness.

1 Introduction

It is well known that saturation of a solution of a solute S in a solvent Σ is achieved at some concentration
cS depending on temperature T . Typically cS is a smooth function of T such that c′S(T ) > 0. Therefore,
if one excludes supersaturation, it is possible to produce the following facts by acting on the thermal
field:

(i) cooling a solution of concentration c∗ to a temperature T such that c∗ > cS(T ), segregation of the
substance S is produced as a solid phase, typically in the form of suspended crystals,

(ii) maintaining a thermal gradient in a saturated solution creates a concentration gradient of the solute
inducing diffusion.

These phenomena are believed to be the most important origin of the formation of a deposit of solid
wax on the pipe wall during the transportation of mineral oils with a high content of heavy hydrocarbons
(waxy crude oils) in the presence of significant heat loss to the surroundings (see the survey paper [1]).

In the paper [2] we have illustrated some general features of the behaviour of non-isothermal saturated
solutions in bounded domains, including the appearance of an unsaturated region and the deposition of
solid matter at the boundary.

The analysis of [2] was based on the following simplifying assumptions:

(a) the three components of the system, namely the solute, the solvent and the segregated phase, have
the same density (supposed constant in the range of temperature considered),

(b) the concentrations of the solute and of the segregated phase are small in comparison with the
concentration of the solvent.

The consequences of (a) are that gravity has no effect and that the segregation/dissolution process
does not change volume.

The consequences of (b) are that solvent can be considered immobile and that the presence of a
growing solid deposit has a negligible effect on the mass transport process.

For the specific application to waxy crude oil assumption (a) is reasonable on the basis of experimental
evidence, but assumption (b) may not be realistic. Of course eliminating (b) leads to a much more complex
situation.

For this reason we want to formulate a new model in which, differently from [2], the displacement of
all the components is taken into account, as well as the influence of the growing deposit on the whole
process.

∗Work performed in the framework of the cooperation between Enitecnologie (Milano) and I2T3 (Firenze).
†Dipartimento di Matematica “U.Dini”, Universitá di Firenze, Viale Morgagni 67/A, 50134 Firenze, Italia
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In order to be able to perform some mathematical analysis of the problem and to obtain some quali-
tative results we confine our attention to the one-dimensional case, considering a system confined in the
slab 0 < x < L. Of course the results can be adapted with minor changes to a region bounded by coaxial
cylinders (the geometry of some laboratory device devoted to the measure of thickness of deposit layers
formed under controlled temperature gradients).

The general features of the model are presented in Sect. 2. In Sect. 3 we consider a specific experi-
mental condition in which we pass through three stages: at time t = 0 the system is totally saturated with
the segregated phase present everywhere, next a desaturation front appears and eventually the saturated
zone becomes extinct. The rest of the paper is devoted to the study of the three stages, showing existence
and uniqueness and obtaining some qualitative properties.

2 Description of physical system and the governing differential equations

During the evolution of the process we are going to study we can find a saturated and an unsaturated
region. Supposing that at any point and at any time the segregated phase is in equilibrium with the
solution, there will be no solid component in the unsaturated region. We recall that all the components
have the same density ρ, whose dependence on temperature is neglected.

The saturated region is a two-phase system:

- The solid phase is the segregated material. It is made of suspended particles (crystals) having some
mobility. We denote its concentration by Ĝ(x, t)

- The liquid phase is a saturated solution. Its concentration in the whole system is Γ̂(x, t).

In turn, the solution is a two-component system containing

- the solute with concentration ĉ (mass of solute per unit volume of the system)

- the solvent with concentration γ̂ (mass of solvent per unit volume of the system).

In the sequel we will use the nondimensional quantities

G = Ĝ/ρ, Γ = Γ̂/ρ, c = ĉ/ρ, γ = γ̂/ρ.

Clearly
Γ = γ + c (2.1)

G + Γ = 1 (2.2)

We can also introduce the relative nondimensional concentrations (mass of solute and of solvent per
unit mass of the solution)

crel = c/Γ γrel = γ/Γ. (2.3)

As we pointed out, saturated region is characterized by the fact that crel = cS(T ) where the latter
quantity is the saturation concentration and depends on the local temperature T only.

On cS(T ) we make the following assumption:

(H1) cS ∈ C3, c′S > 0

in a temperature interval [T1, T2].
Displacement of the various components is generated by spatial dishomogeneity.
Let JG, JΓ be the fluxes of segregated solid and of solution, respectively, in a saturated region.
Let Q be the mass passing, per unit time and per unit volume (rescaled by ρ), from segregated to

dissolved phase. Then we have the balance equations

∂G

∂t
+

∂JG

∂x
= −Q, (2.4)
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∂Γ
∂t

+
∂JΓ

∂x
= Q. (2.5)

From (2.2) it follows that
∂

∂x
(JG + JΓ) = 0, (2.6)

expressing bulk volume conservation and implying

JG + JΓ = 0 (2.7)

if there is no global mass exchange with the exterior, as we suppose.
At this point we do not take the general view point of mixture theory, but we make the assumption

that G is transported by diffusion. Thus

JG = −DG
∂G

∂x
, (2.8)

where DG is the diffusivity coefficient for the segregated phase.
We notice that (2.8) is consistent with the fact that all the components of the system have the same

density, so that we may say that suspended particles do not feel internal rearrangements of the solution
components.

Next we have to describe the flow of the components in the solution, and denote by Jγ and Jc the
flux of solvent and of solute, respectively. Of course

JΓ = Jγ + Jc. (2.9)

Here too we take a simplification supposing that the solute flow J ′c relative to the solution is of Fickian
type, i.e.

J ′c = −D
∂crel

∂x
, (2.10)

where D > DG is the solute diffusivity so that in the saturated region J ′c is a given function of the thermal
gradient.

The flux Jc is the sum of ΓJ ′c and of the convective flux due to the motion of the solution. Introducing
the velocity of the solution

VΓ = JΓ/Γ (2.11)

we have
Jc = cVΓ + ΓJ ′c = crelJΓ + ΓJ ′c (2.12)

Consequently we have the following expression for Jc for the saturated and unsaturated case (still
retaining the basic assumption of absence of bulk mass transfer, (2.7))

Jc = cSDG
∂G

∂x
− (1−G)D

∂cS

∂x
, for the saturated case (2.13)

Jc = −D
∂crel

∂x
= −D

∂c

∂x
, for the unsaturated case (G = 0) (2.14)

At this point we can write the balance equation for the solute

∂c

∂t
+

∂Jc

∂x
= Q. (2.15)

While for the unsaturated case, (2.15) is nothing but

∂c

∂t
−D

∂2c

∂x2
= 0 (2.16)

in the saturated case we have c = cS(T )(1−G) and hence

−cS
∂G

∂t
+

∂

∂x
{cSDG

∂G

∂x
− (1−G)D

∂cS

∂x
} = Q, (2.17)
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which provides the expression of Q. Thus (2.4) takes the form

∂G

∂t
−DG

∂2G

∂x2
+

1
1− cS

{(DG + D)
∂cS

∂x

∂G

∂x
− (1−G)D

∂2cS

∂x2
} = 0 (2.18)

It is also convenient to observe that from γ + c + G = 1 and c = cS(1−G) we obtain

γ = (1− cS)(1−G), (2.19)

from which using (2.7), (2.9), (2.13) we deduce the expression

Jγ = −DG
∂γ

∂x
+ (D −DG)

γ

1− cS

∂cS

∂x
(2.20)

We are interested in the case in which T is a linear function of x independent of time:

T = T1 + (T2 − T1)
x

L
(2.21)

where the boundary temperatures T1, T2 (with T1 < T2) are given in such a way that a saturation phase
is present, at least for some time.

Remark 1 The assumption that temperature has the equilibrium profile (2.21) is acceptable if heat dif-
fusivity is much larger than D (which is certainly true), so that thermal equilibrium is achieved before
any significant mass transport takes place, and if we may neglect the amount of heat that is released
or absorbed during the segregation/dissolution process. In the specific case of waxy crude oils it can be
seen that the latter assumption is fulfilled (the influence of latent heat associated to deposition is likewise
negligible).

3 Modelling a specific mass transport process with deposition

We restrict our analysis to the following process, easily reproducible in a laboratory device.
We start with a solution at uniform concentration ĉ∗(< ρ) and uniform temperature T ∗ with ĉ∗

below saturation. Then we cool the system rapidly to the temperature profile (2.21) in such a way that
c∗ = ĉ∗/ρ > cS(T2), so that the whole system becomes saturated with a (nondimensional) concentration

G0(x) = c∗ − cS(T (x))(1−G0(x)) (3.1)

of segregated phase, with
c0(x) = cS(T (x))(1−G0(x)) (3.2)

being the corresponding concentration of the solute.
These will be our initial conditions. Starting from t = 0 the system will evolve through the following

stages.

STAGE 1. G > 0 throughout the system
The mass flow towards the cold wall x = 0 produced by the gradient of cS(T (x)) generates various

phenomena:

• the solute mass leaving the warm wall x = L has to be replaced by the segregated phase,

• mass exchange occurs between the solid and the liquid phase, as described in the previous section,

• the solute mass liberated at the cold wall has to be segregated: a fraction χ ∈ (0, 1] of it is used
to build up a deposit layer, while the complementary fraction 1 − χ is released in the form of
suspension.
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As we shall see, this stage terminates at a finite time t1.

STAGE 2. The measures of the sets {G > 0}, {G = 0} are both positive
At time t1 an unsaturated region appears. This stage is characterized by the simultaneous presence

of saturated and unsaturated regions (not necessarily connected for general initial data), separated by
one or more free boundaries. Also Stage 2 has to terminate at a finite time t2, when G becomes zero
everywhere.

STAGE 3. The whole system is unsaturated

Deposition goes on as long as c = cS and
∂c

∂x
> 0 on the deposition front.

Remark 2 The asymptotic equilibrium is characterized by the absence of segregated phase and uniform
solute concentration cS(σ∞), where σ∞ denotes the nondimensional asymptotic thickness of the deposit.
Therefore we can write the trivial mass balance

σ∞ + (1− σ∞)cS(σ∞) = c∗

Since the l.h.s. is a function of σ∞ increasing from cS(0) < c∗ for σ∞ = 0 to 1 > c∗ for σ∞ = 1,
there exists one and only one solution σ∞ ∈ (0, 1).

We have to write down the boundary conditions for the three stages.
However, before doing that, we introduce the nondimensional variables:

ξ = x/L, τ = t/tD, δ = DG/D < 1, θ =
T − T1

T2 − T1

with tD = L2/D.

For simplicity we keep the symbols G(ξ, τ), Γ(ξ, τ), c(ξ, τ) and cS(θ(ξ)). Note that
dcS

dξ
= c′S(θ),

d2cS

dξ2
=

c′′S(θ), since θ(ξ) = ξ.
With the new variables equations (2.18), (2.16) take the form

∂G

∂τ
− δ

∂2G

∂ξ2
+

1
1− cS

{(1 + δ)c′S(θ)
∂G

∂ξ
− (1−G)c′′S(θ)} = 0, (3.3)

∂c

∂τ
− ∂2c

∂ξ2
= 0. (3.4)

BOUNDARY CONDITIONS FOR STAGE 1
During Stage 1 equation (3.3) must be solved in the domain D1 = {(ξ, τ)|σ(τ) < ξ < 1, 0 < τ < τ1},

where ξ = σ(τ) is the deposition front, with initial conditions

σ(0) = 0, G0(ξ) =
c∗ − cS(ξ)
1− cS(ξ)

, ξ ∈ (0, 1). (3.5)

At the boundary ξ = 1 we just have Jγ = 0, meaning

δ
∂G

∂ξ
|ξ=1 = −c′S(1)

1−G

1− cS(1)
, 0 < τ < τ1. (3.6)

Conditions on the deposition front depend on the way the deposit layer is built. As we said, the
primary source of the deposit is a fraction χ ∈ (0, 1] of the incoming solute flux. In addition we expect
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that the advancing front can capture by adhesion a fraction η ∈ [0, 1] of the suspension it finds on its
way (in [2] we just considered η = 1).

Therefore, with the adopted rescaling, the speed
dσ

dτ
is the sum of two terms

dσ

dτ
= χ(1−G)c′S(σ) + η

dσ

dτ
G,

yielding
dσ

dτ
= χ

1−G

1− ηG
c′S(σ), 0 < τ < τ1. (3.7)

The most obvious way of deriving the second condition on the deposition front is to impose that the

solvent is displaced precisely with the speed
dσ

dτ
.

In the original physical variables the solvent velocity is

vγ =
JΓ − Jc

γ
=

DG
∂G

∂x
(1− cS) + (1−G)D

∂cS

∂x
(1−G)(1− cS)

(3.8)

from which we deduce the desired condition

dσ

dτ
=

1
(1−G)(1− cS(σ))

[δ
∂G

∂ξ
(1− cS) + c′S(σ)(1−G)], 0 < τ < τ1. (3.9)

Eliminating
dσ

dτ
between (3.7) and (3.9) we obtain the equivalent equation

δ

1−G

∂G

∂ξ
|ξ=σ(τ) = c′S [χ

1−G

1− ηG
− 1

1− cS
]|ξ=σ(τ) (3.10)

For instance, when χ = η = 1 (3.10) simply reduces to

δ

1−G

∂G

∂ξ
|ξ=σ(τ) = − cS(σ)

1− cS(σ)
c′S(σ), (3.11)

while for χ = 0 (no deposition, i.e.
dσ

dτ
= 0 from (3.7)) we find

δ
∂G

∂ξ
|ξ=σ(τ) = −(1−G)

c′S(σ)
1− c′S(σ)

, 0 < τ < τ1. (3.12)

(irrespectively of η which cancels out, having no role).
Thus we have now the complete model for Stage 1, which can be summarized as follows:
PROBLEM 1 (η 6= 1)
Find the pair (σ,G) satisfying the differential equation (3.3) in D1, with initial conditions (3.5),

boundary condition (3.6), and free boundary conditions (3.7), (3.10), all in the classical sense.

For η = 1 condition (3.7) reduces to the o.d.e.
dσ

dτ
= χc′S(σ) and consequently the motion of the

deposition front becomes known. The problem is standard in that case.

BOUNDARY CONDITIONS FOR STAGE 2
Stage 2 differs from Stage 1 because of the simultaneous presence of a saturated and an unsaturated

region, separated by a free boundary ξ = s(τ), which, in the specific case we refer to, is a curve starting
from the point (1, τ1), where G(ξ, τ) vanishes for the first time. We shall find sufficient conditions on
cS ensuring that G(ξ, τ1) > 0 for ξ ∈ [σ(τ1), 1) and that the unsaturated region remains connected. We
denote by τ2 the transition time to Stage 3.
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In the region {s(τ) < ξ < 1, τ1 < τ < τ2}, corresponding to concentration below saturation (G = 0,
and hence crel = c < cS), the governing equation is (3.4).

The wall ξ = 1 is a no-flux boundary, i.e.

∂c

∂ξ
|ξ=1 = 0, τ1 < τ < τ2, (3.13)

implying of course that also
∂γ

∂ξ
|ξ=1 = 0.

On the desaturation front we have
G(s(τ)−, τ) = 0 (3.14)

which implies that the absolute solute concentration equals cS(s(τ)) on both sides of the front:

c(s(τ)+, τ) = cS(s(τ)). (3.15)

Continuity of (all) concentrations across the front implies in turn that the total solvent flux has to be
continuous, or equivalently that

(δ(1− cS)
∂G

∂ξ
+

∂cS

∂ξ
)|ξ=s(τ)− =

∂c

∂ξ
|ξ=s(τ)+, τ1 < τ < τ2. (3.16)

The model for Stage 2 is completed by the conditions

G(ξ, τ1+) = G1(ξ), σ(τ1) < ξ < 1, s(τ1) = 1 (3.17)

where G1(ξ) = G(ξ, τ1−).
Thus we can state
PROBLEM 2
Find the functions (σ, s,G, c) such that σ,G satisfy (3.3), (3.7), (3.10), (3.17), and s,G, c satisfy

(3.4), (3.13)-(3.16), all in the classical sense.

BOUNDARY CONDITIONS FOR STAGE 3
At time τ2 the saturated region disappears, i.e. σ(τ2) = s(τ2) (we are still referring to the particular

case in which the unsaturated region during Stage 2 is connected). From that time on deposition continues

as long as c(σ, τ) = cS(σ),
∂c

∂ξ
|ξ=σ(τ) > 0 and necessarily all the incoming mass enters the deposit,

irrespectively of the value of χ during Stage 2. Therefore the new conditions on the deposition front are

c(σ(τ), τ) = cS(σ(τ)), τ > τ2 (3.18)

dσ

dτ
=

∂c

∂ξ
|ξ=σ(τ), τ > τ2 (3.19)

Of course c(ξ, τ) satisfies (3.13) with initial condition

c(ξ, τ2+) = c2(ξ), σ(τ2) < ξ < 1, (3.20)

with c2(ξ) = c(ξ, τ2−).
Thus during this stage we have to solve
PROBLEM 3
Find (σ, c) satisfying (3.4), (3.13), (3.18)-(3.20) in the classical sense.
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4 Analysis of Stage 1

The overall mass balance during Stage 1 can be expressed by imposing that the solvent mass is conserved,
starting from the equation

∂γ

∂t
+

∂Jγ

∂x
= 0 (4.1)

and remembering that Jγ = JΓ−Jc = DG(1−cS)
∂G

∂x
+D(1−G)

∂cS

∂x
, so that in nondimensional variables

we have
∂γ

∂τ
+

∂

∂ξ
{δ(1− cS)

∂G

∂ξ
+ (1−G)c′S(θ)} = 0. (4.2)

Since G = 1− γ

1− cs
, it is easily seen that the equation above is equivalent to

∂γ

∂τ
− δ

∂2γ

∂ξ2
+ (1− δ)

∂

∂ξ
(

γc′S
1− cS

) = 0 (4.3)

Integrating (4.2) over any domain Dτ = {(ξ, τ ′)|σ(τ ′) < ξ < 1, 0 < τ ′ < τ}, with τ ≤ τ1, we get
∮

∂Dτ

{γdξ − [δ(1− cS)
∂G

∂ξ
+ (1−G)c′S(θ)]dτ ′} = 0, (4.4)

simply expressing
∮

∂Dτ
{γdξ − Jγdτ} = 0.

Since Jγ = 0 on ξ = 1, Jγ = γσ̇ on ξ = σ(τ), we obtain
∫ 1

σ(τ)

γ(ξ, τ)dξ =
∫ 1

0

(1− cs)(1−G0)dξ,

as expected, which can also be written as
∫ 1

σ(τ)

[G(ξ, τ) + c(ξ, τ)]dξ = c∗ − σ(τ) (4.5)

having an evident physical meaning.

Remark 3 For η = 1 (complete inclusion of the suspended phase) (3.7) simplifies to

dσ

dc
= χc′S(θ(σ)) (4.6)

which can be integrated. In this case the deposition front becomes a known function σ(1)(t). If we can

establish an a priori upper bound Gmax < 1 for G, the factor
1−G

1− ηG
takes values in [

1−Gmax

1− ηGmax
, 1].

Denoting by σ(η) the integral of
dσ

dτ
= χ

1−Gmax

1− ηGmax
c′S(θ(σ)) with zero initial value, we have the a-priori

bounds
σ(η)(τ) ≤ σ(τ) ≤ σ(1)(τ) for τ ∈ (0, τ1). (4.7)

Proposition 1 The extinction time τ1 of Stage 1 is finite. An upper estimate is given by the solution
τ∗ of

σ(η)(τ∗) = σ∞ (4.8)

Proof. Simply use the inequality (4.7) and Remark 2.
2

Let us show that G never reaches 1, thus preventing the formation of a solid layer inside the system.
To assumption (H1) on cS we add

(H2) c′′S ≤ 0.
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Proposition 2 Under assumptions (H1), (H2) during Stage 1 we have G < 1 in D1.

Proof. We know that 0 < G0 < 1, so it will be G < 1 at least for some time. Moreover G > 0 by
definition. Moving the term (1 − G)c′′S(θ)/(1 − cS) to the r.h.s. of (3.3) we see that it is nonpositive,
thanks to (H2). Thus G has to take its maximum on the parabolic boundary of D1. From (3.6) we see

that, still for G < 1, we have
∂G

∂ξ
< 0 on ξ = 1.

On the boundary ξ = σ(τ) (as long as G < 1) we see that for η = 1

δ

1−G

∂G

∂ξ
= −c′S(

1
1− cS

− χ) < 0, ∀χ ∈ [0, 1].

Thus
∂G

∂ξ
< 0 for η ∈ (0, 1) too because the r.h.s. of (3.10) is monotone in η.

We conclude that the maximum of G can be taken on ξ = σ(τ). However, if G tends to 1 there,
∂G

∂ξ
tends to zero contradicting the boundary point principle for equation (3.3).

2

Since in our case we start with G′0 < 0, we can have G monotone in ξ if we add the assumption

(H3) (
c′′s

1− cS
)′ ≤ 0.

Proposition 3 Under assumptions (H1)-(H3) we have
∂G

∂ξ
< 0 during Stage 1.

Proof. Set ω =
∂G

∂ξ
. In the previous proposition we have seen that

∂G

∂ξ
< 0 on the lateral boundaries.

Moreover
G′0 = −c′S

1− c∗

(1− cS)2
< 0 (4.9)

Differentiating (3.3) w.r.t. ξ we obtain

∂ω

∂τ
− δ

∂2ω

∂ξ2
+

1 + δ

1− cS
c′S

∂ω

∂ξ
+ ω{ c′′S

1− cS
(2 + δ) +

1 + δ

(1− cS)2
c′2S } = (1−G)(

c′′S
1− cS

)′, (4.10)

from which the thesis follows easily using the maximum principle and assumption (H3).
2

Remark 4 An important consequence of the proposition above is that

G(ξ, τ1) > 0 for ξ ∈ [σ(τ1), 1), (4.11)

in other words the desaturation front starts from the point (1, τ1).

We conclude this section by proving existence and uniqueness of the solution to Problem 1.

Theorem 1 Problem 1 has one unique solution under the assumptions (H1), (H2).

Proof. We start by noting that from (3.7) we have the obvious a priori estimate

0 ≤ dσ

dτ
≤ χ||c′s|| =: A, (4.12)

||c′s|| denoting the sup-norm (of course we recall that 0 < G < 1).
2
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Now, if we introduce the set

Σ = {σ ∈ C1([0, τ̃ ])|σ(0) = 0, 0 ≤ σ̇ ≤ A,
|σ̇(τ)− σ̇(τ ′′)|
|τ ′ − τ ′′|α ≤ B} (4.13)

for some B > 0 and α ∈ (0,
1
2
), and we take any σ ∈ Σ, we may formulate the problem consisting

of equation (3.3), initial condition (3.5) and boundary conditions (3.6), (3.10). For the corresponding
solution G of such a problem, whose existence and uniqueness can be proved by means of standard
methods, it is not difficult to find τ̃ such that G > 0 for τ ∈ (0, τ̃) irrespectively of the choice of σ in Σ.
The inequality G < 1 can be established like in Prop. 2. Finally, working on the problem satisfied by

ω =
∂G

∂ξ
we can easily find the bound

|∂G

∂ξ
| ≤ B (4.14)

with B independent of σ in Σ.
At this point existence can be proved using the following fixed point argument.
Taken σ ∈ Σ and computing G we can define σ̃ via

dσ̃

dτ
= χ

1−G

1− ηG
c′s(σ), σ̃(0) = 0, (4.15)

which automatically satisfies 0 ≤ dσ̃

dτ
≤ A.

Noting that | d

dG

1−G

1− ηG
| ≤ 1

1− η
for η < 1 (while it just vanishes for η = 1, which however is not the

interesting case) for a pair (σ1, σ2) of functions in Σ, we have the easy estimate

|dσ̃1

dτ
− dσ̃2

dτ
| ≤ A

1− η
|G1(σ1(τ), τ)−G2(σ2(τ), τ)|+ χ||c′′s || |σ1 − σ2| (4.16)

with obvious meaning of the symbols.
Therefore at this point we only need to show that G(σ(t), t) depends in a Lipschitz continuous way

on σ in the topology of Σ . More precisely, we want to show that

||G1 −G2||τ ≤ K1||σ1 − σ2||τ + K2

∫ τ

0

||σ̇1 − σ̇2||τ ′(τ − τ ′)−1/2dτ ′ (4.17)

for some positive constants K1,K2, with || · ||τ denoting the sup-norm restricted to the time interval
(0, τ).

Now, G(ξ, τ) corresponding to a given σ ∈ Σ has the representation

G(ξ, τ) =
∫ τ

0

φ(τ ′)Γ(ξ, τ ; σ(τ ′), τ ′)dτ ′ + (4.18)

+
∫ 1

0

G0(ξ′)Γ(ξ, τ ; ξ′, 0)dξ′ +
∫ τ

0

ψ(τ ′)Γ(ξ, τ ; 1, τ ′)dτ ′ +

+
∫ τ

0

∫ 1

σ(τ ′)
Γ(ξ, τ ; ξ′, τ ′)

c′′s (ξ′)
1− cs(ξ′)

dξ′dτ ′,

with Γ(ξ, τ ; ξ′, τ ′) fundamental solution of the parabolic operator L =
∂

∂τ
− δ

∂2

∂ξ2
+

1 + δ

1− cs
c′s

∂

∂ξ
+

c′′s
1− c′s

,

with τ ′ < τ and (ξ, τ), (ξ′, τ ′) varying in [0, 1] × [0, τ̃ ]. The densities φ(τ), ψ(τ), together with a third
unknown Gσ(τ), representing the value of G over ξ = σ(τ), satisfy the system

1
2
φ(τ) =

∫ τ

0

φ(τ ′)Γξ(σ(τ), τ ; σ(τ ′), τ ′)dτ ′ + (4.19)

10



+
∫ τ

0

ψ(τ ′)Γ(σ(τ), τ); 1, τ ′)dτ ′ +
∫ 1

0

G0(ξ′)Γξ(σ(τ), τ, ξ′, 0)dξ′ +

+
∫ τ

0

∫ 1

σ(τ ′)
Γξ(σ(τ), τ ; ξ′, τ ′)

c′′s (ξ′)
1− cs(ξ′)

dξ′dτ ′ − 1−Gσ(τ)
δ

c′s(σ)[χ
1−Gσ

1− ηGσ
− 1

1− cs(σ)
]

1
2
ψ(τ) = −

∫ τ

0

φ(τ ′)Γξ(1, τ ; σ(τ ′), τ ′)dτ ′ −
∫ τ

0

ψ(τ ′)Γξ(1, τ ; 1, τ ′)dτ ′ − (4.20)

−
∫ 1

0

G0(ξ′)Γξ(1, τ ; ξ′, 0)dξ′ −
∫ τ

0

∫ 1

σ(τ ′)
Γξ(1, τ ; ξ′, τ ′)

c′′s (ξ′)
1− cs(ξ′)

dξ′dτ ′ − 1
δ

c′s(1)
1− cs(1)

G(1, τ)

Gσ(τ) =
∫ τ

0

φ(τ ′)Γ(σ(τ), τ ; σ(τ ′), τ ′)dτ ′ + (4.21)

+
∫ 1

0

G0(ξ′)Γ(σ(τ), τ ; ξ′, 0)dξ′ +
∫ τ

0

ψ(τ ′)Γ(σ(τ), τ ; 1, τ ′)dτ ′ +

+
∫ τ

0

∫ 1

σ(τ ′)
Γ(σ(τ), τ ; ξ′, τ ′)

c′′s (ξ′)
1− cs(ξ′)

dξ′dτ ′,

where G(1, τ) in (4.20) must be replaced with expression obtained from (4.18).
Note that Gσ appears nonlinearly in (4.19) if η < 1, as we are supposing.
Eliminating Gσ leads to a nonlinear system of Volterra equations with weakly singular kernels. Exis-

tence and uniqueness can anyway be proved by standard methods, thanks to the fact that the dependence
on Gσ in (4.19) is Lipschitz. Functions φ, ψ, Gσ are bounded uniformly for σ ∈ Σ and as a consequence

of (4.19)-(4.21) they are at least Hölder continuous of order
1
2

with a Hölder norm uniformly bounded in

Σ. In turn this implies that
∂G

∂ξ
|ξ=σ(τ) has the same type of regularity.

Our task now is to estimate |Gσ1−Gσ2 |. Introducing the functions φi, ψi corresponding to σi, i = 1, 2,
from (4.21) we see that

|Gσ1(τ)−Gσ2(τ)| ≤
∫ τ

0

|φ1(τ ′)− φ2(τ ′)||Γ(σ1(τ), τ ; σ1(τ ′), τ ′)|dτ ′ + (4.22)

+
∫ τ

0

|ψ1(τ ′)− ψ2(τ ′)||Γ(σ1(τ), τ ; σ1(τ ′); τ ′)|dτ ′ +

+M

∫ τ

0

|Γ(σ1(τ), τ ;σ1(τ ′), τ ′)− Γ(σ2(τ), τ ;σ2(τ ′), τ ′)|dτ ′ +

+N{
∫ τ

0

|
∫ σ2(τ

′)

σ1(τ)

Γ(σ1(τ), τ ; ξ′, τ ′)dξ′|dτ ′ +

+
∫ τ

0

∫ 1

σ2(τ ′)
|Γ(σ1(τ), τ ; ξ′, τ ′)− Γ(σ2(τ), τ ; ξ′, τ ′)|dξ′dτ ′}.

which has to be coupled with similar inequalities for |φ1(τ)− φ2(τ)| and |ψ1(τ)− ψ2(τ)|.
According to the parametrix method [3] the function Γ(ξ, τ, ξ′, τ ′) is constructed as follows

Γ(ξ, τ ; ξ′, τ ′) = Z(ξ, τ ; ξ′, τ ′) +
∫ τ

τ ′

∫ 1

0

Z(ξ, τ, η, θ)Φ(η, θ; ξ′, τ ′)dηdθ (4.23)

where

Z(ξ, τ ; ξ′, τ ′) =
1

2
√

πδ(τ − τ ′)
exp[− (ξ − ξ′)2

4δ(τ − τ ′)
] (4.24)
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is the fundamental solution of the heat operator
∂

∂τ
− δ

∂2

∂ξ2
, and Φ(ξ, τ ; ξ′, τ ′) is the solution of the

integral equation

Φ(ξ, τ ; ξ′, τ ′) = LZ(ξ, τ ; ξ′, τ ′) +
∫ τ

τ ′
LZ(ξ, τ ; η, θ)Φ(η, θ; ξ′, τ ′)dηdθ. (4.25)

Since the operator L is particularly simple, we can calculate LZ explicitly:

LZ(ξ, τ ; ξ′, τ ′) = {− 1 + δ

1− cs
c′s

ξ − ξ′

2δ(τ − τ ′)
+

c′′s
1− cs

}Z(ξ, τ ; ξ′, τ ′), (4.26)

so that the development of the parametrix method is largely simplified.
In particular

|LZ(ξ, τ ; ξ′, τ ′)| ≤ const.

(τ − τ ′)µ

1
|ξ − ξ′|1−µ

, µ ∈ (
1
2
, 1) (4.27)

so that the kernel in (4.26) is integrable. Moreover Φ is continuous, Hölder continuous w.r.t. the first
argument, for τ ′ < τ .

When calculating the differences φ1 − φ2 or Γ(σ1(τ), τ ; σ1(τ ′), τ ′) − Γ(σ2(τ), τ ;σ2(τ ′), τ ′) the main
term which comes into play is

Γξ(σ1(τ), τ ; σ1(τ ′), τ ′)− Γξ(σ2(τ), τ ; σ2(τ ′), τ ′)

which in turn requires the computation of

Ω(τ, τ ′) = Zξ(σ1(τ), τ ; σ1(τ ′), τ ′)− Zξ(σ2(τ), τ ;σ2(τ ′), τ ′) =

−σ1(τ)− σ1(τ ′)− [σ2(τ)− σ2(τ ′)]
4
√

π[δ(τ − τ ′)]3/2
exp[− (σ1(τ)− σ1(τ ′))2

4δ(τ − τ ′)
]

− σ2(τ)− σ2(τ ′)
4
√

π[δ(τ − τ ′)]3/2
{exp[− (σ1(τ)− σ1(τ ′))2

4δ(τ − τ ′)
]− exp[− (σ2(τ)− σ2(τ ′))2

4δ(τ − τ ′)
]}

.
Writing

|σ1(τ)− σ1(τ ′)− [σ2(τ)− σ2(τ ′)]| = |σ̇1(τ̄)− σ̇2(τ̂)|(τ − τ ′)

with τ̄ , τ̂ ∈ (τ ′, τ), and

| exp[− (σ1(τ)− σ1(τ ′))2

4δ(τ − τ ′)
]− exp[− (σ2(τ)− σ2(τ ′))2

4δ(τ − τ ′)
]| ≤ A

2δ
|σ̇1(τ̄)− σ̇2(τ̂)|(τ − τ ′),

we obtain the estimate

|Ω(τ, τ ′)| ≤ K
||σ̇1 − σ̇2||τ√

τ − τ ′
(4.28)

where K is a constant independent of the choice of σ1, σ2 in Σ.
Similar computations can be performed for the other terms involved, leading to the desired estimate

(4.17). Coupling (4.16) and (4.17) leads to the conclusion that the mapping σ → σ̃ is contractive for τ̃
sufficiently small in the selected topology.

By means of standard arguments we can infer existence and uniqueness (any solution has to belong
to Σ) up to the first time G vanishes.
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5 Analysis of Stage 2: a priori results

First we prove that mass balance is expressed by an equation similar to (4.5)

Proposition 4 For all τ ∈ (τ1, τ2) we have

σ(τ) +
∫ s(τ)

σ(τ)

[G(ξ, τ) + c(ξ, τ)]dξ +
∫ 1

s(τ)

c(ξ, τ)dξ = c∗, where c = cS(1−G). (5.1)

Proof. Take the mass balance of the solvent separately in the domains σ(τ ′) < ξ < s(τ ′), τ1 < τ ′ <
τ ; s(τ ′) < ξ < 1, τ1 < τ ′ < τ , with τ ∈ (τ1, τ2).

Remembering that in the nondimensional form Jγ is expressed by Jγ = δ(1−cs)Gξ +(1−G)c′s in the

first domain and simply by Jγ =
∂c

∂ξ
in the second domain, and using Jγ = γσ̇ on the deposition front,

Jγ = 0 on ξ = 1, G = 0, [γ] = [Jγ ] = 0 on the desaturation front, (5.1) easily follows by integration of
∂γ

∂r
+

∂Jγ

∂ξ
= 0.

2

Since Stage 2 is characterized by the presence of a saturated region, the same argument used in the
proof of Prop. 1 leads to an analogous conclusion, i.e.

Proposition 5 The extinction time τ2 of Stage 2 is finite. Moreover τ2 < τ∗ defined by (4.8).

Likewise we can say that Prop. 2 (G < 1) is still valid. It is enough to recall that G(ξ, τ1) < 1 and

that
∂G

∂ξ
≤ 0 on the desaturation front, owing to (3.17).

Clearly we can also extend Prop. 3 (
∂G

∂ξ
< 0), implying that the saturated region remains connected

during Stage 2.
A peculiar feature of Stage 2 is that there cannot be the analog of a ”mushy region”, in the following

sense

Proposition 6 During Stage 2 the complement of the set {G > 0} cannot contain an open set where
c ≡ cs.

Proof. The differential equation to be satisfied in such a set should be (3.4), with
∂c

∂τ
= 0. Thus the

presence of such a region is compatible only with c′′s = 0. Because of the analyticity with respect to ξ of
the solution of (3.4), the unique continuation of c up to ξ = 1 is a function constant in time, linear and

increasing in ξ, thus contradicting the boundary condition
∂c

∂ξ
= 0.

2

6 Analysis of Stage 2: weak formulation and existence

Clearly the nature of the free boundary conditions on the desaturation front, namely (3.14), (3.15), (3.16),
is quite different from the conditions on the deposition front, which involve the free boundary velocity in
an explicit way.

In order to prove existence the most convenient approach is to introduce a weak formulation, in which
the desaturation front plays the role of a level set (the set of discontinuity of some coefficients).

The natural approach to a weak formulation seems to re-write the problem in terms of the solvent
concentration γ.

We can identify the desaturation front with the level curve γ = 1− cs(s).
We know that in nondimensional variables the current density of the solvent has the expression

jγ = −δ
∂γ

∂ξ
+ (1− δ)

γc′s
1− cs

, for γ < 1− cs (6.1)
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jγ = −∂γ

∂ξ
for γ > 1− cs (6.2)

If we set
v = 1− cs − γ (6.3)

and we define
A(v) = {δ forv>0 (where v≡G(1−cs))

1 forv<0 (where v≡c−cs) (6.4)

then the balance equation
∂γ

∂τ
+

∂jγ

∂ξ
= 0 (6.5)

can be written in the distributional sense in the whole domain Dσ = {(ξ, r) : σ(τ) < ξ < 1, τ1 < τ < τ̄}:
∂v

∂r
− ∂

∂ξ
{A(v)

∂v

∂ξ
− [1−A(v)]v

c′s
1− cs

} = c′′s (6.6)

Here τ̄ is a time instant sufficiently close to τ1, still to be specified.
Equation (6.6) includes the free boundary conditions, that in the classical statements are

v = 0 on both sides of x = s(t) (6.7)

[jγ ] = 0. (6.8)

The latter condition, taking into account (6.7), reduces to

[A(v)
∂v

∂ξ
] = 0. (6.9)

Thus, regarding the boundary ξ = σ(τ) as known, which is true for η = 1, the weak formulation of
the problem for v is: find v ∈ V 1,0(Dσ) such that

∫

Dσ

{[A(v)
∂v

∂ξ
− (1−A(v))v

c′s
1− cs

+ c′s]
∂φ

∂ξ
− v

∂φ

∂τ
}dξdτ − (6.10)

−
∫ ′

0

v(ξ, τ1)φ(ξ, τ1)dξ +
∫ τ̄

τ1

φ(σ(τ), τ)χc′s
1− v

1− ηv
(1− cs)|ξ=σ(τ)dr

∀φ ∈ W 1,1
2 (Dσ) such that φ = 0 for τ = τ̄ . The notation of functional spaces is taken from [4].

(For the formulation of a similar problem in a cylindrical domain see [4], Chap. 3, Sect. 5). Existence
and uniqueness can be established as in Theorem 5.1, p. 170 of [4].

At this point we can use Theorem 10.1, p. 204, of [4], ensuring that v is Hölder continuous, uniformly
with respect to σ in the same class Σ used in the fixed point argument of Sect. 4, in a closed domain
separated from σ and including an interval [ξ0, ξ1] ⊂ (0, 1) for τ = τ1, where we know that v is separated
from zero.

Let Ξ ∈ (ξ0, ξ1). On the basis of the above Hölder estimate we can find τ̃ such that v(Ξ, τ) ≥ 1
2
v(Ξ, τ1)

for τ ∈ [τ1, τ̃ ], for all σ ∈ Σ.
Thus, for a given σ we can solve the problem for G(ξ, τ) in the classical way in the domain Dσ,Ξ =

{σ(τ) < ξ < Ξ, τ1 < τ < τ̃} with the boundary condition G(Ξ, τ) =
v(Ξ, τ)

1− cs(Ξ)
.

The function v = G(1 − cs) will necessarily be the restriction of the weak solution (i.e. the solution
of (6.10)) to Dσ,Ξ.

Therefore, for each σ we know a domain Dσ,Ξ, such that Ξ−σ(τ̃) remains positive for σ ∈ Σ, in which
A(v) = δ.

This is enough to apply the machinery of Sect. 4 to obtain a similar existence and uniqueness result
in the interval (τ1, τ̃). An additional information we have to provide is the continuous dependence of
v(Ξ, τ̃) on σ. Using the stability theorem on p. 166 of [4] in connection with the already quoted th. 10.1,
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p. 204, we can see that if σ1, σ2 → 0 in the C1 norm, then the corresponding difference v1(Ξ, τ)−v2(Ξ, τ)
tends to zero in the Hölder norm. What mainly matters, however, is the dependence of Gσ on σ. It is

well known that
∂G

∂ξ
can be estimated uniformly w.r.t. σ ∈ Σ in a domain Dσ,Ξ′ , for some Ξ′ < Ξ. In

practice it is possible to identify Ξ′ with Ξ, by possibly reducing τ̃ , thanks to the arbitrariness of Ξ. In
turn, writing the equation for the difference G1 − G2 after having performed the transformation which
maps Dσi,Ξ into the rectangle (0,Ξ)× (0, τ̃), it is easy to realize that |Gσ1(τ)−Gσ2(τ)| can be estimated

by a linear combination of supτ ′∈(τ1,τ) |σ1(τ ′)− σ2(τ ′)| and
∫ τ

τ1

|σ̇1(τ ′)− σ̇2(τ ′)|√
τ ′ − τ

dτ ′.

This is the basic estimate in the fixed point argument already used in Stage 1 to obtain existence and
uniqueness.

Precisely the same argument can be iterated (thanks to the a priori properties illustrated in the
previous section) up to the extinction of the saturated zone.

We summarize the above results in the following statement

Theorem 2 During Stage 2 the weak formulation of Problem 2 has one unique solution (σ, v) with σ ∈ C1

and v ∈ V 1,0. The functions G and c can be easily deduced from v in the sets {v > 0}, {v < 0}, where
they satisfy their respective differential equations in the classical sense. The set {v = 0} must have zero
measure.

We conclude the paper by just remarking that the analysis of Stage 3 follows the pattern of the
analysis of Stage 1 and the problem of existence and uniqueness Theorem for Problem 3 is in fact a
simplification of the parallel result for Problem 1.

References

[1] A. Fasano, L. Fusi, S. Correra, Mathematical models for waxy crude oils. To appear on MEC-
CANICA (2004).

[2] A. Fasano, M. Primicerio, Heat and mass transport in non-isothermal partially saturated oil-wax
solutions. To appear on New Trends in Mathematical Physics, P. fergola et al. editors (2004).

[3] A. Friedman, Partial differential equations of parabolic type. Prentice-Hall, Englewood Cliffd, N.J.
(1964).

[4] O.A. Ladyzenskaya, V.A. Solonnikov, N.N. Uralceva, Linear and quasilinear equations of
parabolic type. AMS Translations of Mathematical Monographs 27, Providence R.I. (1968).

15


