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a b s t r a c t

The asymptotic analysis of a linear high-fieldWigner-BGK equation is developed by amodified Chapman–
Enskog procedure. By an expansion of the unknownWigner function in powers of the Knudsen number ε,
evolution equations are derived for the terms of zeroth and first order in ε. In particular, a quantum drift-
diffusion equation for the position density of electrons, with an ε-order correction on the field terms,
is obtained. Well-posedness and regularity of the approximate problems are established, and a rigorous
proof that the difference between exact and asymptotic solutions is of order ε2, uniformly in time and for
arbitrary initial data is given.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Quantum mechanics has recently proved an essential tool for
modeling the new generation of nanodevices [1]. However, the
adoption of quantummodels requires a delicate compromise with
quantum statistics principles. Hamiltonian dynamics is described
at the quantum level, either in terms of wave-functions (via
Schrödinger–Poisson-systems), or of density-matrix operators (via
von Neumann equation). For different reasons, both formulations
are not suitable for simulations: precisely, the wave-function
approach cannot be extended to picture dissipative dynamics of
open quantum systems, while the density matrix approach is not
appropriate to describe finite position domains, due to its non-local
character. For the same reasons, it is instead convenient to employ
(Wigner) quasi-distribution functions [2,3]. Nevertheless, a phase-
space description of a multi-dimensional dynamics presents well-
known computational drawbacks. On the other hand, quantum
hydrodynamic models seem to be a promising tool both from the
numerical and the analytical point of view [4,5]. Similarly, in semi-
classical semiconductor theory, the interest of modeler has shifted
from the Boltzmann equation to hydrodynamic systems, and they
have been widely studied both for a physical validation and from
an analytical and numerical point of view (cf. [6] and the references
therein). A rigorous derivation of quantum hydrodynamic models
from more fundamental ones, in either Schrödinger or Wigner
formulation, is an open and analytically demanding problem [7–9].
This is the motivation of the present paper.
The preliminary step for switching from the kinetic picture to

a macroscopic one consists of including dissipative mechanisms in
the evolution model, for example, the interaction of the quantum

∗ Corresponding author.
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system with the environment. In the weak coupling limit, a
Markovian dynamics can be still adopted, and the description via
an (operator) evolution equation in Lindblad form is considered
quantum-physically correct [10]. From this class of evolution equa-
tions, kinetic models of open systems can be derived via a Wigner
transform. In Section 2 we shall briefly review the most popular
Wigner models of irreversible dynamics.
In this paper, we consider the case of an open quantum sys-

tem in a high-field regime,more precisely, of an electron ensemble
subject to an external potential, whose effect is comparable with
the interaction with the ion crystal. Much interest was devoted in
the recent past to high-field models in the classical charged par-
ticle transport, defined by the regime where drift velocity domi-
nates thermal velocity. Some mathematical results on the analysis
of runaway particles for the Boltzmann equation are available
[11–13]. Moreover, the literature on high-field asymptotics is
rather rich, see [14–17] and the papers cited there in.
Including high-field effects has great relevance in semiconduc-

tor simulation. A macroscopic model of this evolution is expected
to contain field-dependent transport parameters, that are typi-
cally deduced via fitting procedures. We refer the reader to [18]
for an updated review of derivations of semi-classical high-field
drift-diffusion models by diverse limit procedures: in particular,
in [18], explicit field-dependent mobilities are obtained from an
energy-transportmodel. On the contrary, in [19], a high-field drift-
diffusion model with non-explicit field-dependent coefficients is
derived, as the limit of a Spherical Harmonics Expansion of the
semi-classical Boltzmann equation.
We present a rigorous derivation of a Quantum drift-diffusion

(QDD) equation with an explicit field-dependent mobility and
diffusion coefficient. We shall start from theWigner equation with
an additional linear Bhatnager–Gross–Krook (BGK) term,modeling
the interactionwith the environment, and then adapt the equation
to the high-field case, by rescaling it in terms of the Knudsen

0167-2789/$ – see front matter© 2009 Elsevier B.V. All rights reserved.
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number ε. Thus, our contribution is the quantum counterpart
of [11]. We recall that, in [20], the starting point is the Wigner-
BGK equation as well, but collisions are considered to be the
strongest mechanism during the evolution (moderately high-field
regime), and the relaxation term is derived via a Chapman–Enskog
procedure. In our case, the additional relaxation term is instead an
O(h̄2)-approximation of the Wigner-transformed relaxation term
in operator formulation (cf. Section 2). Moreover, we perform an
asymptotic expansion of the unknownWigner function in terms of
ε, according to amodified Chapman–Enskog procedure introduced
in [21]. This method has been applied to many kinetic models and
constitutes a valuable tool for a rigorous asymptotic derivation
of macroscopic models (cf. Section 5). We substitute the Wigner
unknown in the originary evolution problem, with the expansion
of order ε2, and we get an approximated problem: in particular,
an equation with unknown the electron position-density. This
equation is precisely the QDD equation corrected by the O(h̄2)-
Bohmian term of order ε, and by field-dependent terms, of order ε
as well. These terms contain the same field-dependent coefficients
obtained in the semi-classical case [18,11].
The well-posedness of theO(ε2)-approximated problem is dis-

cussed in Sections 7 and 8, and finally, in Section 9, we prove that
the difference between the solutions of the originary and of the ap-
proximated evolution problems is also of order ε2. In conclusion,
with the present analysis we obtain a QDD equation with field-
dependent mobility and diffusion coefficients and we prove rigor-
ously that, up to a certain degree of accuracy, it constitutes amodel
of quantum transport in the high-field case. From the analytical
point of view, this equation is a second-order parabolic PDE with
non-homogeneous coefficients. In particular, it belongs to the class
of singularly perturbed equations; accordingly, thewell-posedness
result, together with the regularity estimates derived in Section 8,
are complementary to the discussion in [22] about the same class
of equations with constant coefficients. A counterpart of our anal-
ysis is the well-posedness study of the quantum drift-diffusion
equation, in the fourth-order formulation obtained via a ‘‘classical-
equilibrium’’ approximation [5]. We remark that the asymptotic
procedure usedhere presents analogieswith the Chapman–Enskog
one in kinetic theory; nevertheless, generally the latter does not
deal with the ‘‘initial layer’’ problem, namely, the instants close
to the initial one are excluded from the analysis, due to the rapid
changes of the solution [11]. The only exception we know is [23].
In contrast, in the presented approach the initial layer problem
is solved simultaneously with the derivation of the drift-diffusion
equation.

2. Wigner-BGK equations

Let us consider a quantum system with d degrees of freedom,
evolving under the effect of an external potential V = V (x), x ∈
Rd. The Wigner equation with unknown the quasi-distribution
function w = w(x, v, t), (x, v) ∈ R2d, t > 0, provides a kinetic
description of the evolution of the system. It reads

∂w

∂t
+ v · ∇xw −Θ[V ]w = 0, (x, v) ∈ R2d, t > 0, (2.1)

with the pseudo-differential operatorΘ[V ] defined by

(Θ[V ]w)(x, v, t)

=
i

(2π)d

∫
Rd

∫
Rd
δV (x, η)w(x, v′, t)ei(v−v

′)·ηdv′dη

=
i

(2π)d/2

∫
Rd
δV (x, η)Fw(x, η, t)eiv·ηdη, (2.2)

where

δV (x, η) :=
1
h̄

[
V
(
x+

h̄η
2m

)
− V

(
x−

h̄η
2m

)]

and F f (η) ≡ [Fv→ηf ](η) denotes the partial Fourier transform of
w with respect to the variable v; the corresponding new variable
is denoted by η. In the Fourier-transformed space Rdx × Rdη the
operator Θ[V ] is the multiplication operator by the function i δV ;
in symbols,

F (Θ[V ]w) (x, η) = i δV (x, η)Fw(x, η). (2.3)

Eq. (2.1) corresponds via a Wigner-transform to the von Neumann
equation describing the conservative dynamics of an isolated
quantumsystem [3]. Successivemodifications of theWignermodel
have been proposed to picture an irreversible interaction of the
system with the environment. In [24] a scattering term is derived
by a weak-coupling limit; however, due to its non-locality, it is
not suitable for simulations and for mathematical analysis. A sec-
ond possibility is an additional diffusive term, as in the quantum
counterpart of Fokker–Planck (FP) equation of classical kinetic the-
ory [25] (cf. [26] for the latest derivation and [27,28] for the latest
well-posedness results). Unlike theWigner equationwith the scat-
tering term, the quantum FP equation is the Wigner-transformed
version of a Markovian master equation in Lindblad form, namely,
it is the kinetic version of a quantum-physically correctmodel [29].
The shape of the drift-diffusion equations corresponding to the
low-field, respectively high-field, scaling of the classical, respec-
tively quantum, FP equations are presented in [30]. Another pos-
sibility is to insert a BGK operator, either linear or non-linear, like
in [31], meaning that after a time 1/ν the system relaxes to a pre-
scribed stateweq; namely,

∂w

∂t
+ v · ∇xw −Θ[V ]w = −ν(w − weq),

(x, v) ∈ R2d, t > 0. (2.4)

In the recent literature [7,32,20,9], diverse relaxation-time states
weq have been proposed.
The standard picture is that the system converges to a state of

thermodynamical equilibrium with the surrounding environment
at temperature T . The operator e−βH gives the statistical equilib-
riumstate at (constant) temperature T = 1/kβ (k is the Boltzmann
constant), H being the energy operator associated to the system.
The von Neumann equation modified by a relaxation-time term
containing e−βH is in Lindblad form [33]. Accordingly, a Wigner-
BGK model, being the Wigner-transformed version of that equa-
tion, formally belongs to the class of quantum-physically correct
kinetic models. The same Wigner-BGK model shall contain the
Wigner-transformed e−βH as the relaxation-time state. In his pi-
oneering article [3], Wigner applies an expansion in terms of h̄ to
the Wigner function corresponding to the operator e−βH and ob-
tains the classical equilibrium distribution function on the phase
space with correction of non-odd order in h̄:

wW(x, v) :=
(
m
2π h̄

)d
e−βE

{
1+ h̄2

β2

24

[
−
3
m
∆V +

β

m
|∇V |2

+β

d∑
r,s=1

vrvs
∂2V
∂xr∂xs

]
+ O(h̄4)

}
, (2.5)

where E(x, v) := mv2/2 + V (x) is the total energy of the system.
Let us callweq its local (in time and space) version, defined by

weq(x, v, t) := C(x, t) wW(x, v),

with C to be chosen. By assuming, like in [32],∫
weq(x, v, t)dv =

∫
w(x, v, t)dv =: n[w](x, t) ≡ n(x, t), (2.6)
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and since, by direct computation,∫
wW(x, v)dv =

(
m

2π h̄2 β

)d/2
e−βV

×

{
1+ h̄2

β2

12m

[
−∆V +

β

2
|∇V |2

]
+ O(h̄4)

}
,

the local Wigner thermal equilibrium functionweq equals

weq(x, v, t) = n(x, t)
(
βm
2π

)d/2
e−βmv

2/2

×

{
1+ h̄2

β2

24

[
−
1
m
∆V + β

d∑
r,s=1

vrvs
∂2V
∂xrxs

]
+ O(h̄4)

}
. (2.7)

In (2.7) one can recognize the classical (normalized) Maxwellian

F(v) :=
(
βm
2π

)d/2
e−βmv

2/2, (2.8)

the particle density n as parameter and the constant temperature
1/kβ , with an additional correction term of order h̄2. We shall
consider the expression (2.7) as the O(h̄2)-approximation of the
Wigner function associated to the state to which the quantum sys-
tem shall approach.
An alternative strategy to determine the relaxation-time state

is presented in [34]; it is an extension to the quantum case of
Levermore’s one for classical kinetic equations ([35], cf. [6] for
semi-classical equations). It consists of tackling a constrainedmin-
imization problem for the relative entropy of the quantum system
under consideration, with respect to the environment. In the quan-
tum case the procedure is performed at the operator level in terms
of the operators describing the states of the quantum system, due
to the non-local definition of the entropy. However, the constraints
for the minimization procedure are considered at the kinetic level.
Thus, the Wigner transform W is used intensively to switch from
the operator formulation to the kinetic one, any time it is required
by the procedure. Due to that, the expression of the minimizer of
the entropy formally derived in [7] is non-explicit. Nevertheless,
in [7], is formally proved thatW{expW−1f } = exp f +O(h̄2)with
f defined on the phase-space. Accordingly, the (formal) minimizer
reads

wA(x, v, t) := e(A−βmv
2/2)

{
1+ h̄2

β2

8

[
+
1
m
∆A+

β

3m
|∇A|2

+
β

3

d∑
r,s=1

vrvs
∂2A
∂xr∂xs

]
+ O(h̄4)

}
(2.9)

with A = A(x, t) Lagrangemultiplier used for the constrainedmin-
imization procedure, i.e.∫
wA(x, v, t)dv = n(x, t).

By comparison of the expression (2.9) with (2.7), it can be easily
seen that they coincide if one identifies the Lagrange multiplier A
with−βV . In [9] it is indeed proved that A = −βV +O(h̄2) holds.

Remark 2.1. It is crucial to recall that the correspondence via
Wigner-transform of the operator and the kinetic formulations is
merely formal, unless certain assumptions are posed both on the
Wigner functions and on the operators [36]. This point creates an-
alytical difficulties in stating rigorously the well-posedness of the
derivation in [7]. For the same reason, the analysis ofWigner equa-
tions is set in the Hilbert space L2, since the necessary condition for
the rigorous correspondence is satisfied [36] (cf. [28], e.g.). �

As a consequence of the previous discussion, in the present article
we shall adopt the Wigner-BGK equation (2.4) containing (2.7) on
the right-hand side as themodel of the open quantum system evo-
lution. In particular, we remark that we shall consider the operator
on the right-hand side as an O(h̄2)-approximation, in the kinetic
framework, of the dissipative dynamics induced by the interaction
with the environment.

3. The high-field Wigner-BGK equation

Our aim is describing an open quantum system subject to a
strong external potential; in particular, the action of the potential
is to be considered comparable with the interaction with the envi-
ronment. In order to adapt the Wigner-BGK equation (2.4) to this
specific case, we rewrite it by using dimensionless variables and,
for this purpose, we introduce the time-scales of the action of the
external potential and of the interactionwith the environment. Let
us call tV the potential characteristic time and tC themean free time
between interactions of the systemwith the background. Then we
introduce x′ = x/x0, v′ = v/v0, t ′ = t/t0, with x0, v0, t0 character-
istic quantities, and we call w′ = w(x′, v′, t ′) the rescaled Wigner
function (observe that we can indeed neglect to rescale theWigner
function). Thus, we obtain

x0
v0t0

∂

∂t
w + v · ∇xw −

x0
v0tV

Θ[V ]w = −
x0
v0tC

ν(w − weq),

t > 0, (x, v) ∈ R2d,

where we have omitted the prime everywhere. If we introduce the
relation x0 = v0t0, we obtain

∂

∂t
w + v · ∇xw −

t0
tV
Θ[V ]w = −

t0
tC
ν
(
w − weq

)
,

t > 0, (x, v) ∈ R2d.

In the following we assume that the times tV and tC are compara-
ble, in the sense

tV
t0
≈
tC
t0
≈ ε, (3.1)

where ε := l/x0 is the Knudsen number, since l := v0tC is the char-
acteristic length corresponding to the classicalmean free path. This
corresponds to saying that the external potential and the interac-
tions coexist during the evolution. In particular, ε ≈ 0 corresponds
to an evolution in which the effect of the interactions is dominant
on the transport (tC � t0 or equivalently l� x0). However, at this
time the action of the external potential has the same strength, due
to the assumption (3.1) (tV � t0). In fact, the resulting equation is

ε
∂w

∂t
+ εv · ∇xw −Θ[V ]w = −ν

(
w − weq

)
,

t > 0, (x, v) ∈ R2d. (3.2)

We recall that it is the quantum counterpart of the one studied by
Poupaud in [11].
Nowweput (3.2) in abstract form. Asmotivated in Remark 2.1, a

suitable setting for problems in Wigner formulation is the Hilbert
space L2(R2d). However, in order to give a rigorous sense to the
expression

n(x) :=
∫
w(x, v)dv, ∀x ∈ Rd, (3.3)

which enters the equation via the definition (2.7) ofweq, we intro-
duce the subspace Xk := L2(R2d, (1 + |v|2k)dxdv;R), with k ∈ N,
endowed with the norm

‖w‖2Xk =

∫
R2d
|w(x, v)|2(1+ |v|2k)dxdv.
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Let us call Xvk the Hilbert space L
2(Rd, (1+|v|2k)dv;R) and Hmk the

Sobolev space Hmx ⊗ X
v
k . The weight k has to be chosen according

to the space dimension d: we call d-admissible

k ∈ N such that 2k > d.

The function n(x) in (3.3) is well-posed for all w ∈ Xk with d-
admissible k, since∣∣∣∣∫

Rd
w(x, v)dv

∣∣∣∣ ≤ C(d, k)(∫
Rd
|w(x, v)|2(1+ |v|k)2dv

)1/2
,

∀ x ∈ Rd

by the Hölder inequality (cf. [37]). We define the streaming opera-
tor S by

Sw = −v · ∇xw, D(S) = {w ∈ Xk | S w ∈ Xk} ,

and the operators

Aw := Θ[V ]w, Cw := −(ν w −Ω w), ∀w ∈ Xk (3.4)

with the operatorΩ defined by

Ω w(x, v) := νF(v)

{
1+ h̄2

β2

24

[
−
1
m
∆V + β

d∑
r,s=1

vrvs
∂2V
∂xrxs

]}

×

∫
w(x, v′)dv′.

The function F(v) is the normalizedMaxwellian, given by (2.8). Ob-
serve that we substitute the functionweq defined in (2.7) with the
operatorΩw, that differs fromweq by terms of order h̄4. Let us call
F (2) the O(h̄2)-coefficient in the above definition ofΩ

F (2)(x, v) ≡ F (2)[V ](x, v)

=
β2

24

[
−
1
m
∆V + β

d∑
r,s=1

vrvs
∂2V
∂xrxs

]
F(v),

such that

Ωw(x, v) ≡ ν n[w](x)
[
F(v)+ h̄2 F (2)(x, v)

]
.

Observe that such an expression for Ωw can be seen as an O(h̄2)-
correction to the classical product n(x)F(v).
In conclusion, we write Eq. (3.2) in the abstract formε
dw
dt
= ε Sw +Aw + Cw,

lim
t→0+
‖w(t)− w0‖Xk = 0

(3.5)

wherew0 is the initial condition.
In next Lemma we specify under which assumptions the ab-

stract definition (3.4) of the operatorA+ C is well-posed.

Lemma 3.1. If V ∈ Hkx with d-admissible k and ∆V ∈ L
∞
x , then the

operator A+ C is well-defined from Xk into itself, and is bounded by

‖A+ C‖B(Xk)

≤ C(d, k)
[
‖V‖Hkx + ν‖∆V‖L∞x ‖F‖Xvk+2 + ν‖F‖Xvk + ν

]
.

Moreover, A + C is well-defined from Xvk into itself, and is bounded
by

‖A+ C‖B(Xvk )

≤ C(d, k)
(
‖V‖Hkx + ν|∆V (x)|‖F‖Xvk+2 + ν‖F‖Xvk + ν

)
. (3.6)

Proof. Here and in the following we denote by C non necessarily
equal constants.
The arguments are similar to those in [38], so we just give a

sketch of the proof. First of all, by (cf. (2.3)), for all w ∈ Xk it holds
that

‖Θ[V ]w‖2Xk = C‖δVFw‖2
L2x,η
+ C

∥∥∥∥∥ d∑
i=1

∂k

∂ηik
(δVFw)

∥∥∥∥∥
2

L2x,η

≤ 2C‖V‖2L∞x ‖w‖
2
L2x,v
+ C

∥∥∥∥∥ d∑
i=1

∂k

∂ηik
(δVFw)

∥∥∥∥∥
2

L2x,η

,

since 2k > d guarantees that Hkx ↪→ L∞x . Here, the constant C
is due to the Fourier transform. Then, by applying the product-
formula rule andusing Sobolev embeddings for the functionsV and
Fw ∈ L2x ⊗ H

k
η , it follows that ‖Θ[V ]‖B(Xk) ≤ C‖V‖Hkx . Moreover,

for allw ∈ Xk with 2k > d,

‖Ω w‖2Xk ≤ ν

∫
R2d
(1+ |v|2k)

(
1+

β4 h̄4

242m2
|∆V |2(x)

)
|F(v)|2

×

∣∣∣∣∫
Rd
w(x, v′)dv′

∣∣∣∣2 dxdv
+

∫
R2d
(1+ |v|2k)

β6 h̄4

242m4

∣∣∣∣∣ d∑
r,s=1

vrvs
∂2V (x)
∂xr∂xs

F(v)

∣∣∣∣∣
2

×

∣∣∣∣∫
Rd
w(x, v′)dv′

∣∣∣∣2 dxdv
≤ ν C(1+ ‖∆V‖2L∞x )‖F‖

2
Xvk
‖w‖2Xk

+ ν C‖∆V‖2L∞x ‖F‖
2
Xvk+2
‖w‖2Xk , (3.7)

since F ∈ Xk, ∀ k. Then the estimate of ‖C‖B(Xk) is straightforward.
The estimate (3.6) in Xvk can be proved analogously. �

We remark that the existence and uniqueness of a solution in Xk
of the initial value system (3.5) for any ε > 0 can be stated under
the assumptions of Lemma 3.1 by using arguments of semigroup
theory, analogously to [37].

4. Well-posedness of the problem with ε = 0

The aim of this paper is the asymptotic analysis of the system
(3.5) with a Chapman–Enskog type procedure. The first step of the
analysis is solving Eq. (3.5) with ε = 0. This corresponds to indi-
viduating theWigner function describing the state of the system in
case the interaction of the environment and the action of the po-
tential are dominant with respect to the transport. We remark that
the function weq defined by (2.7) describes the state to which the
system relaxes under the sole interaction with the environment.
We consider the equation (A + C)w = 0 in the space Xk:

the variable x can be considered as a parameter in the analysis,
thus we shall study (A + C)w = 0 in the space Xvk for any fixed
x ∈ Rd. However, with an abuse of language, we shall also denote
the operators by the same letters when x is fixed. We can state the
following proposition.

Proposition 4.1. If V ∈ H k̃x with k̃ = max{2, k}, and d-admissible
k, then for a fixed x ∈ Rd

ker(A+ C) = {cM(v), c ∈ R} ⊂ Xvk , (4.1)
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with

M(x, v) := νF −1
{

F F(η)
ν − iδV (x, η)

(
1−

β h̄2

24m2

×

d∑
r,s=1

ηrηs
∂2V (x)
∂xrxs

)}
(x, v), v ∈ Rd (4.2)

for any fixed x. Moreover, for all h ∈ Xvk , (A+C)w = h has a solution
if and only if∫

Rd
h(v)dv = 0. (4.3)

Remark 4.1. It can be immediately deduced by the characteriza-
tion (4.1) that the solution of the equation (A + C)w = 0 in Xk is
unique, except for a factor depending only on x. �

Proof. By definition,

ker(A+ C) := {w ∈ Xvk | (ν −Θ[V ])w = Ω w}.

For all h ∈ Xvk , the Fourier-transformedversion of (ν−Θ[V ])w = h
reads (ν − iδV )Fw = F h. Thus,

w(v) = (ν −Θ[V ])−1h(v) := F −1
(

F h(η)
ν − iδV (η)

)
(v) (4.4)

is the unique solution; equivalently, the operator (ν − Θ[V ]) is
invertible in Xvk with bounded inverse, defined by (4.4). Precisely,

‖w‖2Xvk
= ‖(ν −Θ[V ])−1h‖2Xvk

= C
∫

|F h(η)|2

ν2 + |δV (η)|2
dη + C

d∑
r=1

∫ ∣∣∣∣ ∂k∂ηkr F h(η)
ν − iδV (η)

∣∣∣∣2 dη
≤
C
ν2
‖h‖2

L2v
+ C

d∑
r=1

∫ ∣∣∣∣ ∂k∂ηkr F h(η)(ν + iδV (η))
ν2 + (δV )2(η)

∣∣∣∣2 dη,
then, by applying product formula, it can be checked that, if 2k > d,

‖(ν −Θ[V ])−1‖B(Xvk ) ≤ C(1+ ‖V‖Hkx ). (4.5)

Then,

w ∈ ker(A+ C)⇔ w = (ν −Θ[V ])−1Ω w
⇔w = νn[w](ν −Θ[V ])−1(F + h̄2 F (2)[V ])⇔ w = n[w]M(v),

(4.6)

by definition of the operators (ν − Θ[V ])−1 and Ω . From this
follows the characterization (4.1) of ker(A+C), with the function
M defined by

M(x, v) := ν(ν −Θ[V ])−1(F(v)+ h̄2 F (2)[V ](x, v)) ∀ v ∈ Rd,

with the fixed x ∈ Rd. Since F + h̄2 F (2)[V ] ∈ Xk for all k ∈ N,
provided ∆V ∈ L2x ; then, due to the assumption on V and to (4.5),
M ∈ Xvk if 2k > d. For allh ∈ Xk, solving (A+C)w = h is equivalent
to (I − (ν − Θ[V ])−1Ω )w = −(ν − Θ[V ])−1h. Moreover, by
the equivalence (4.5), ker(A + C) = ker(I − (ν − Θ[V ])−1Ω ).
Since ker(A + C) 6= {0}, the operator I − (ν − Θ[V ])−1Ω is
not injective. If the operator (ν − Θ[V ])−1Ω is compact, by the
Fredholm alternative, this is equivalent to R((ν − Θ[V ])−1Ω ) 6=
Xvk . The equation (I − (ν − Θ[V ])

−1Ω )w = M has indeed no
solution, since∫

Rd
(I− (ν −Θ[V ])−1Ω )w(v)dv = 0, ∀w ∈ Xvk ,

(by the definition of the operator (ν−Θ[V ])−1Ω ), while, instead,∫
M(v)dv =

∫
F(v)dv = 1. Analogously, for all u ∈ ker(A +

C), (I− (ν −Θ[V ])−1Ω )w = u has no solution.
In conclusion, if we show that (ν − Θ[V ])−1Ω is a compact

operator, then we can conclude by the Fredholm alternative that
(I − (ν − Θ[V ])−1Ω )w = h has a solution iff

∫
h(v)dv = 0.

Analogously to Lemma 1 in [11], one can construct, by the Rellich–
Kondrachov theorem, a sequence of bounded finite rank operators
converging to (ν −Θ[V ])−1Ω . Thus the thesis follows. �

Finally, let us compute the first and the second moments of the
functionM:

Lemma 4.1. Let V ∈ Hk+2x with d-admissible k. Then, the function M
defined by (4.2) satisfies

(A+ C)w = 0⇔ w = n[w]M with
∫
M(x, v)dv = 1, (4.7)∫

vM(x, v)dv = −
1
νm
∇V (x), (4.8)∫

v ⊗ vM(x, v)dv

=
I

βm
+

2
ν2m2

∇V ⊗∇V +
β h̄2

12m2
∇ ⊗ ∇V . (4.9)

Proof. (4.7) follows by (4.5). Moreover, since V ∈ Hk+2x with 2k >
d, then the functionM

M(x, v) = νF −1
(

F (F + h̄2 F (2))
ν − iδV (x, η)

)
(x, v),

belongs to Xk+2. By calculus rules in the Fourier space, since F is
smooth, it holds∫
vM(x, v)dv = iν

[
∇η

(
F (F + h̄2 F (2))
ν − iδV (x, η)

)]
(x, 0).

By taking the derivative and using

F (F + h̄2 F (2))(x, 0) = F F(0) = 1,
∇ηF (F + h̄2 F (2))(x, 0) = 0,

and (∇ηδV )(x, 0) = ∇xV (x)/m, one gets (4.8).
Analogously, the second moments of M are well defined, and,

by the calculus rules, it holds that∫
vivjM(x, v)dv = −ν

[
∂2

∂ηi∂ηj

F (F + h̄2 F (2))
ν − iδV

]
(x, 0),

∀ i, j = 1, . . . d,

and

−
∂2

∂ηi∂ηj

(
F F

ν − iδV

)
(x, 0)

= −
1
ν

(
∂2F F
∂ηi∂ηj

)
(x, 0)+

2
ν3

(
∂δV
∂ηi

∂δV
∂ηj

)
(x, 0)

=
1

νβm
+

2
ν3m2

∂V (x)
∂xi

∂V (x)
∂xj

,

−
∂2

∂ηiηj

(
F F (2)

ν − iδV

)
(x, 0) = −

1
ν

(
∂2F F (2)

∂ηi∂ηj

)
(x, 0)

=
β

12m2ν
∂2V (x)
∂xi∂xj

.

Thus the thesis follows. �
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Remark 4.2. The state that describes the system under the effect
of the interactionwith the environment and of the strong potential
is described by the function nM , withM defined by (4.2). The fluid
velocity relative to such state is non-zero and given by (4.8). In
contrast, the velocity of the system in the stateweq defined by (2.7)
(i.e., when it is only subject to the influence of the environment),
is
∫
v weqdv = 0, as expected since it is an equilibrium state.

Moreover, the expression of the second moment tensor (4.9) has
to be compared with∫
v ⊗ v weqdv = n

(
I

βm
+
β h̄2

12m2
∇ ⊗ ∇V

)
.

They differ by the second summand in (4.9) that is to be referred
to the strong-field assumption (cf. [11]). �

As a consequence of Proposition 4.1, the following subspace iswell-
defined

(Xk)M := {α(x)M(x, v), α ∈ L
2
x} ⊂ Xk,

which coincides with ker(A+C)whenA+C is considered as an
operator on Xk. Accordingly, we can decompose the space Xk as

Xk = (Xk)M ⊕ (Xk)
0 (4.10)

with

(Xk)0 :=
{
w ∈ Xk

∣∣∣∣∫ w(x, v)dv = 0
}
,

and define the corresponding spectral projection P from Xk into
(Xk)M , by

Pw := M
∫

Rdv
w(x, v)dv,

andQ := I−P . The following corollary is still a preliminary result
for our asymptotic procedure.

Corollary 4.1. Let V ∈ Hkx with d-admissible k. Then, the operator
Q(A+ C)Q is an isomorphism of (Xk)0 onto itself, with

‖A+ C‖B(Xk) ≤ C(d, k)
(
‖V‖Hkx + ν

)
. (4.11)

If, in addition, V ∈ Hk+jx with j > 0, then Q(A + C)Q is an
isomorphism of (H jk)

0 onto itself, with

‖A+ C‖
B(H jk)
≤ C(d, k, j)

(
‖V‖Hk+jx

+ ν
)
. (4.12)

Proof. The operatorQ(A+C)Q, when considered as an operator
acting on (Xk)0, reduces to

Q(A+ C)Qu = Θ[V ]u− νu, ∀ u ∈ (Xk)0. (4.13)

Then the thesis follows fromLemma3.1, Proposition 4.1, and by the
skew-symmetry of the pseudo-differential operator. The second
statement and estimate (4.12) can be proved analogously. �

5. The asymptotic expansion

According to the decomposition of the space Xk, every function
w ∈ Xk can be written as w = Pw + Qw, with Pw ∈ (Xk)M and
Qw ∈ (Xk)0. Let us call ϕ := Pw and ψ := Qw. Observe that, for
all w ∈ Xk,

∫
Pw(x, v)dv = n[w](x), while

∫
Qw(x, v)dv = 0,

that is, we separate the part of w that contributes to the density
n[w] from the other one. Precisely, it holds Pw = n[w]M , by
definition.

Applying formally the projection P , respectively Q, to the
Wigner-BGK equation (3.5) with unknown w, we obtain the fol-
lowing system of equations with unknown ϕ and ψ
∂ϕ

∂t
= P SPϕ + P SQψ

∂ψ

∂t
= QSPϕ +QSQψ +

1
ε

Q(A+ C)Qψ

(5.1)

where we used (A+ C)Pϕ = 0 andP (A+ C)Qψ = 0, together
with the initial conditions

ϕ(0) = ϕ0 = Pw0, ψ(0) = ψ0 = Qw0. (5.2)

System (5.1) consists of an evolution problemwith unknown func-
tions ϕ = n[w]M andψ , and it is supplemented by the initial con-
ditions (5.2). It is a reformulation of (3.5).
Since we expect the solution w to be subject to rapid changes

for small times, we split the functions ϕ andψ into the sums of the
‘‘bulk’’ parts ϕ̄ and ψ̄ and of the ‘‘initial layer’’ parts ϕ̃ and ψ̃ ,

ϕ(t) = ϕ̄(t)+ ϕ̃
(
t
ε

)
, ψ(t) = ψ̄(t)+ ψ̃

(
t
ε

)
.

The bulk part ϕ̄ is left unexpanded and the other parts are expanded
in terms of ε as follows

ϕ̃(τ ) = ϕ̃0(τ )+ εϕ̃1(τ )+ ε
2ϕ̃2(τ )+ · · ·

ψ̄(t) = ψ̄0(t)+ εψ̄1(t)+ ε2ψ̄2(t)+ · · · (5.3)

ψ̃(τ ) = ψ̃0(τ )+ εψ̃1(τ )+ ε
2ψ̃2(τ )+ · · · ,

with τ = t/ε. Accordingly, Eq. (5.1) for the bulk part terms of the
expansion up to the order ε2 become
∂ϕ̄

∂t
= P SP ϕ̄ + P SQψ̄0 + εP SQψ̄1

0 = Q(A+ C)Qψ̄0
0 = QSP ϕ̄ +Q(A+ C)Qψ̄1

(5.4)

while the equations for the initial layer parts read

∂ϕ̃0

∂τ
= 0,

∂ϕ̃1

∂τ
= P SQψ̃0(τ )

∂ψ̃0

∂τ
= Q(A+ C)Qψ̃0(τ )

∂ψ̃1

∂τ
= Q(A+ C)Qψ̃1(τ )+QSQψ̃0(τ )

(5.5)

and the initial conditions (5.2) yield
ϕ̄(0)+ ϕ̃0(0)+ εϕ̃1(0) = ϕ0
ψ̄0(0)+ ψ̃0(0) = ψ0
ψ̄1(0)+ ψ̃1(0) = 0.

(5.6)

System (5.4), together with (5.5)–(5.6), is an O(ε2)-approximated
version of (5.1) with (5.2), once the expansion (5.3) has been
introduced. In fact, the equations in (5.4) can be decoupled: by
Corollary 4.1, the operatorQ(A+ C)Q is invertible in (Xk)0, thus

ψ̄0 ≡ 0 (5.7)

ψ̄1 = −(Q(A+ C)Q)−1QSP ϕ̄, (5.8)

which implies

∂ϕ̄

∂t
= P SP ϕ̄ − εP SQ(Q(A+ C)Q)−1QSP ϕ̄. (5.9)

Thus, system (5.4) reduces to the system (5.8)–(5.9),with unknown
functions ϕ̄(x, v, t) = n(x, t) M(x, v) and ψ̄1. The next section
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shall be dedicated to reformulate Eq. (5.9) as an equation with un-
known n. The analysis of system (5.5), with unknown ϕ̃ and ψ̃ and
initial conditions (5.6), is postponed to Section 7: it shall provide
an appropriate initial condition for Eq. (5.9). Finally, in Sections 7
and 8 we shall establish a well-posedness result for the approx-
imated problem. In our main theorem (cf. Theorem 9.1), we shall
prove that the solutionϕ+ψ of equations (5.1) indeed differs from
[ϕ̄(t)+ϕ̃0(τ )+εϕ̃1(τ )]+[ψ̄0(t)+εψ̄1(t)+ψ̃0(τ )+εψ̃1(τ )], satis-
fying the approximated problem (5.4)–(5.6), by a term of order ε2.

6. The high-field quantum drift-diffusion equation

The aim of the present section is the reformulation of the ab-
stract equation (5.9) as an equation with unknown n.

Lemma 6.1. Let V ∈ Hk+2x with d-admissible k. Eq. (5.9) with un-
known ϕ̄(x, v, t) = n(x, t)M(x, v) can be rewritten as an evolution
equation with unknown n(x, t) of the form

∂n
∂t
−
1
νm
∇ · (n∇V )−

ε

νβm
∇ · ∇n

−
ε

ν3m2
[∇ · (n(∇ ⊗ ∇)V∇V )+∇ · ∇ · (n∇V ⊗∇V )]

−
εβ h̄2

12νm2
∇ · ∇ · (n∇ ⊗ ∇V ) = 0. (6.1)

Remark 6.1. The first line of (6.1) consists of the terms of the
classical DD equation. The second line is peculiar to the strong-field
assumption, being a correction of order ε, and consists of the
additional term

1
ν

∇V ⊗∇V
ν2m2

in the pressure tensor, and of the term

1
ν

(
(∇ ⊗ ∇)V∇V

ν2m2

)
in the drift term. Both terms are quadratic in the potential V . The
second line can also be written as

−
ε

ν3m2
∇ · [∇V ⊗∇V∇n+ n (2∇ ⊗ ∇V∇V +∆V∇V )].

This expression is the sameobtained in [11] from the semi-classical
Boltzmann equation with high-field scaling. The last line is the
quantum pressure term (cf. [32,8]). �

The proof requires the following preliminary lemmata.

Lemma 6.2. Let V ∈ Hk+2x with d-admissible k. Then the equation

(A+ C)wi = M
(
−vi +

∫
viMdv

)
, (6.2)

admits a unique solution w = D2 = (D21, . . .D2d), with D2 i ∈
(Xk+1)0, ∀ i = 1, . . . d. Moreover, let D be the matrix defined by

Dij(x) :=
∫
viD2j (x, v)dv,

then

D(x) =
1
ν

(
I

βm
+

1
ν2m2

∇V ⊗∇V +
β h̄2

12m2
∇ ⊗ ∇V

)
(x). (6.3)

Proof. Since the right-hand side of Eq. (6.2) belongs to (Xk+1)0,
it satisfies the compatibility condition (4.3) and there exist D2i ∈
(Xk+1)0,∀i = 1, . . . d satisfying (6.2). More explicitly, D2 solves

(Θ[V ] − ν)D2(x, v) = −M(x, v)
[
v +
∇V (x)
νm

]
, (6.4)

since
∫
D2(v)dv = 0 and by (4.8). Multiplying the left-hand side

of Eq. (6.4) by v +∇V/(νm) and integrating over Rd we obtain∫ (
v +
∇V (x)
νm

)
⊗ [Θ[V ] − ν]D2(x, v)dv

= −ν

∫
viD2j (x, v)dv,

by using the skew-symmetry and D2i ∈ (Xk+1)0. Thus Eq. (6.4)
gives

ν Dij(x) =
∫ (

v +
∇V (x)
νm

)
⊗

(
v +
∇V (x)
νm

)
M(x, v)dv

=

∫
v ⊗ vM(x, v)dv −

1
ν2m2

∇V (x)⊗∇V (x). (6.5)

From (4.9), the thesis follows. �

Remark 6.2. By considering the expression (4.8) for the fluid ve-
locity, we can recognize in (6.5) the classical definition of the pres-
sure tensor in terms ofM . This is to be expected, since the function
M is the solution of the the evolution problem with ε = 0. Thus,
the term with diffusion tensor D is what we expected to find as
correction of first order in ε. By (6.3), it consists of the standard
temperature and quantum pressure tensors, and of the additional
tensor 1/(ν3m2)∇V (x) ⊗ ∇V (x), to be related to the strong-field
assumption (cf. Remark 4.2). �

Lemma 6.3. Let V ∈ Hk+2x with d-admissible k. The following
equation

(A+ C)w = −v · ∇xM +M
∫
v · ∇xMdv, (6.6)

admits a unique solution D1 ∈ (Xk+1)0 . Moreover, the vector W
defined by

W(x) :=
∫
vD1(x, v)dv

can be calculated explicitly

W(x) =
1
ν

(
2
∇ ⊗ ∇V
ν2m2

∇V (x)+
∆V∇V
ν2m2

+
β h̄2

12m2
∇ · ∇ ⊗ ∇V

)
(x). (6.7)

Proof. Under the regularity assumptions on V ,M ∈ H1k+1 := H
1
x ⊗

Xvk+1 and the right-hand side of Eq. (6.6) belongs to (Xk+1)
0, thus

there exists D1 ∈ (Xk+1)0 solving

(Θ[V ] − ν)D1(x, v) = −v · ∇xM(x, v)−M(x, v)∇ ·
∇V (x)
νm

,

which is equivalent to (6.6), since
∫
D1(v)dv = 0. Multiplying by

v +∇V/νm and integrating over Rd we obtain

ν

∫
vD1(x, v)dv

=

∫ (
v +
∇V (x)
νm

)
∇x ·

(
v +
∇V (x)
νm

)
M(x, v)dv

= ∇x ·

∫
v ⊗ vM(x, v)dv −

1
ν2m2

∆V (x)∇V (x). (6.8)
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The thesis follows directly from (4.9) and

∇ · (∇V ⊗∇V ) = ∆V∇V + (∇ ⊗ ∇) V∇V . �

Proof of Lemma 6.1. First of all, let us write the explicit expres-
sion of the operators appearing in Eq. (5.9). Observe that V ∈ Hk+2x
impliesM ∈ H1k+1. By definition,

P SP ϕ̄ = −M
∫
v · ∇x(nM)dv = −M∇x ·

(
n
∫
vMdv

)
, (6.9)

and (P SQg) = (P Sg)− (P SP g), i.e., explicitly,

(P SQg) = −M
(∫

v · ∇xgdv −
∫
∇xgdv ·

∫
vMdv

−

∫
gdv∇x ·

∫
vMdv

)
. (6.10)

MoreoverQSP ϕ̄ = (SP − P SP )ϕ̄, i.e., explicitly,

QSP ϕ̄ = n
[
−v · ∇xM +M

∫
v · ∇xMdv

]
+∇xn ·

[
M
(
−v +

∫
vMdv

)]
. (6.11)

By Lemmata 6.2 and 6.3, D2(x, v) ≡ D2,i(x, v) and D1(x, v) are so-
lutions with D2,i,D1 ∈ (Xk+1)0 of Eqs. (6.2) and (6.6), respectively.
Then, by some manipulations,

P SQ(Q(A+ C)Q)−1QSP ϕ̄ = P S(D2 · ∇n)+ P S(D1n), (6.12)

where the right-hand side can be written explicitly as

P S(D2 · ∇n) = −M
∫
v · ∇x(D2 · ∇n)dv

= −M∇x ·
[(∫

v ⊗ D2dv
)
· ∇n

]
,

P S(D1n) = −M
∫
v · ∇x(D1n)dv = −M∇x ·

[
n
∫
vD1dv

]
.

Hence, by simplifying the common factorM , Eq. (5.9) reads

∂n
∂t
= −∇x ·

(
n
∫
vMdv

)
+ ε∇x · (D · ∇n+ nW) ,

and the thesis follows by using (6.3) and (6.7). �

As a consequence of (6.12), Eq. (5.8) defining the other non-zero
term of the bulk part expansion, ψ̄1, can be rewritten as

ψ̄1(x, t) = −{D2 · ∇n+ D1n} . (6.13)

The explicit version of this expression shall be given in Eq. (8.20).

7. Rigorous results: The initial layer part

The aim of the present section is to prove the existence and
regularity of the solutions of Eq. (5.5), together with the initial
conditions (5.6). The first equation in (5.5) yields

ϕ̃0(τ ) ≡ 0,

since we expect that limτ→∞ ϕ̃0(τ ) = 0. The equation for ψ̃0 with
the appropriate initial condition coming from (5.6)–(5.7), is∂ψ̃0∂τ = Q(A+ C)Qψ̃0

ψ̃0(0) = ψ0.
(7.1)

We recall that the operatorQ(A+ C)Q on (Xk)0 reduces to

Q(A+ C)Qw = Θ[V ]w − νw, ∀w ∈ (Xk)0,

(cf. (4.13)). By the product shape in Fourier-variables of the
pseudo-differential operator (cf. (2.3)), it is more convenient to
consider the equation for F ψ̃0, that looks like

∂

∂τ
F ψ̃0(x, η, τ ) = (i δV (x, η)− ν)F ψ̃0(x, η, τ ).

Thus, we define, for allw ∈ L2(R6;R), the semigroup G(τ )

G(τ )w(x, v) := F −1
(
e(i δV (x,η)−ν)τFw(x, η)

)
= e−ντF −1

(
ei δV (x,η)τFw(x, η)

)
, ∀ τ ≥ 0. (7.2)

The function ψ̃0(τ ) ≡ G(τ )ψ0 formally satisfies system (7.1).
Moreover,

Lemma 7.1. If w ∈ (Xk)0 and V ∈ Hkx with d-admissible k, then
there exist 0 < νk < ν, and a constant C(‖V‖Hkx ) > 0, such that

‖G(τ )w‖Xk ≤ C(‖V‖Hkx )e
−νkτ‖w‖Xk . (7.3)

If, in addition,w ∈ (H jk)
0 and V ∈ Hk+jx , then

‖G(τ )w‖H jk
≤ C(‖V‖Hk+jx

)e−νk+jτ‖w‖H jk
, (7.4)

with appropriate C(‖V‖Hk+jx
) > 0, and 0 < νk+j < 1. Eq. (7.2)

defines a strongly continuous semigroup on (Xk)0 (respectively on
(H jk)

0).

Proof. By definition we have

‖G(τ )w‖Xk ≤ Ce
−ντ

(
‖ei δV (x,η)τFw(x, η)‖L2x,η

+‖∇
k
ηe
i δV (x,η)τFw(x, η)‖L2x,η

)
≤ Ce−ντ

(
‖w‖L2x,v

+ Pk(τ‖V‖Hkx )‖w‖Xk
)

≤ e−νkτ max
τ≥0
{e−(ν−νk)τPk(τ‖V‖Hkx )}‖w‖Xk ,

where 0 < νk < ν and Pk is a polynomial of degree k. The
estimate (7.4) can be proved analogously. The last assertion follows
immediately by applying the Hille–Yosida Thm., thanks to (7.3)
(respectively (7.4)). �

With Lemmata 4.1 and 7.1 we can prove the following proposition.

Proposition 7.1. If w0 ∈ H1k+1 and V ∈ H
k+2
x , with d-admissible

k, then all terms of the initial layer expansion are well-defined and
satisfy the following estimates:

‖ψ̃0(τ )‖Xk ≤ M1e
−νkτ‖w0‖Xk , (7.5)

‖ϕ̃1(τ )‖Xk ≤ M2e
−νk+2τ‖w0‖H1k+1

, (7.6)

‖ψ̃1(τ )‖Xk ≤ M3e
−νk+2τ‖w0‖H1k+1

, (7.7)

for some constantsM1,M2 andM3 (depending on the norms of V ).

Proof. The unique solution of system (7.1) is

ψ̃0(τ ) = G(τ )ψ0, (7.8)

and (7.5) follows immediately from (7.3) since ψ0 = Pw0 ∈ Xk.
Now we consider the second equation in Eq. (5.5), the following
one:
∂ϕ̃1

∂τ
(τ ) = P SQψ̃0(τ ).
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The right-hand side iswell-defined by considering the definition of
the operatorP SQ (cf. (6.10)), togetherwith Lemma 7.1, sinceψ0 ∈
(H1k+1)

0 and V ∈ Hk+2x . By integrating with respect to τ and taking
into account that initial layer should satisfy limτ→∞ ϕ̃1(τ ) = 0, we
obtain

ϕ̃1(τ ) = −

∫
∞

τ

P SQψ̃0(s)ds

= −

∫
∞

τ

P SQ[Q(A+ C)Q]−1[Q(A+ C)Q]G(s)ψ0ds

= −P SQ[Q(A+ C)Q]−1
∫
∞

τ

Q(A+ C)QG(s)ψ0ds.

The last integral is well-defined since the integrand Q(A + C)
QG(s)ψ0 is equal toG(s)Q(A+C)Qψ0, which is continuous inH1k+1
(by Lemma 7.1).MoreoverP SQ[Q(A+C)Q]−1 ∈ L(H1k+1, Xk) (by
Corollary 4.1), then it can be taken outside the integral. Since

Q(A+ C)QG(s)ψ0 =
∂G(s)ψ0
∂s

,

thanks to the exponential decay of G in H1k+1 and the continuity of
the operator P SQ[Q(A+ C)Q]−1, we obtain

ϕ̃1(τ ) = P SQ[Q(A+ C)Q]−1G(τ )ψ0, (7.9)

and, in particular,

ϕ̃1(0) = P SQ[Q(A+ C)Q]−1ψ0,

which provides the initial datum. Then, (7.6) follows from the es-
timate

‖ϕ̃1(τ )‖Xk ≤ |||P SQ[Q(A+ C)Q]−1|||‖G(τ )ψ0‖H1k+1

≤ M2e−νk+2τ‖ψ0‖H1k+1 , (7.10)

where ||| · ||| denotes the norm inL(H1k+1, Xk). Finally, we prove that
the equation

∂ψ̃1

∂τ
(τ ) = Q(A+ C)Qψ̃1(τ )+QSQψ̃0(τ )

is classically solvable. The initial condition for ψ̃1 can be obtained
from Eq. (5.6), together with Eq. (5.8) for ψ̄1,

ψ̃1(0) = −ψ̄1(0) = [Q(A+ C)Q]−1QSP ϕ̄(0),

and by considering

ϕ̄(0) = ϕ0 − ϕ̃0(0)− εϕ̃1(0)

= ϕ0 − εP SQ[Q(A+ C)Q]−1ψ0. (7.11)

Since ψ̃1(0) is by itself a correction of order ε, we neglect the term
of order ε in the expression for ϕ̄(0), which yields

ψ̃1(0) = [Q(A+ C)Q]−1QSPϕ0.

By Lemma 7.1, G is a semigroup on (H1k+1)
0 and, thanks to the

assumption on w0, ψ0 is in D(Q(A + C)Q) when the operator
Q(A+C)Q is defined inD(S)∩(H1k+1)

0. Therefore ψ̃0(τ ) = G(τ )ψ0
is differentiable on [0,∞[ in Xk+1 so that the inhomogeneous term
QSQψ̃0(τ ) is differentiable on [0,∞[ in Xk. This, together with
ψ̃1(0) = (Q(A+ C)Q)−1QSPϕ0 ∈ D(Q(A+ C)Q), shows that

ψ̃1(τ ) = G(τ )ψ̃1(0)+
∫ τ

0
G(τ − σ)QSQG(σ )ψ0dσ (7.12)

is a classical solution. The estimate (7.7) follows from [Q(A +
C)Q]−1QSP ∈ L(H1k , Xk) and from (7.5):

‖ψ̃1(τ )‖Xk

≤ K1e−νkτ‖ϕ0‖Xk + K2e
−νkτ

∫ τ

0
e(νk−νk+2)σ‖ψ0‖H1k+1dσ

≤ K1e−νkτ‖ϕ0‖Xk + K3e
−νk+2τ‖ψ0‖H1k+1

≤ M3e−νk+2τ‖w0‖H1k+1 . �

In order to obtain an initial value for Eq. (6.1) with unknown ϕ̄ =
nM , we consider again (7.11). Let us call n0(x) =

∫
w0(x, v)dv,

such that ϕ0 = n0M and, by dividing both sides of the expression
(7.11) byM , it yields

n(x, 0) = n0(x)+ ε
∫
v · ∇xF

−1
(

F ψ0

iδV − ν

)
(x, v)dv, (7.13)

by using the explicit expression the operator (Q(A + C)Q)−1

(cf. (4.13)). In the following we shall call

n(x, 0) = n0(x)+ εn1(x) with

n1(x) :=
∫
v · ∇xF

−1
(

F ψ0

iδV − ν

)
(x, v)dv. (7.14)

The explicit expression for (7.9) can be obtained analogously and
reads

ϕ̃1(τ ) = −M
∫
v · ∇xF

−1
(

F G(τ )ψ0
iδV − ν

)
dv.

8. Well-posedness of the high-field QDD equation

In this section, we establish a well-posedness and regularity
result for Eq. (6.1), with a given external potential V . The equation
can be rewritten in divergence form as

∂n
∂t
−Dn− Gn− En = 0, (8.1)

where we denote

Dn = ε∇ · (D∇n), Gn = ε∇ · (W n), En = ∇ · (E n)

with

D ≡ D(x)

:=
1
ν

(
I

βm
+

1
ν2m2

∇V ⊗∇V +
β h̄2

12m2
∇ ⊗ ∇V

)
(x),

W ≡ W(x)

:=
1
ν

(
2
∇ ⊗ ∇V
ν2m2

∇V +
∆V∇V
ν2m2

+
β h̄2

12m2
∇ · ∇ ⊗ ∇V

)
(x) ,

E ≡ E(x) :=
∇V (x)
νm

, ∀ x ∈ Rd.

Assumption 8.1. V belongs to Hk+2x with d-admissible k and is
such that

∃ c > 0 s.t. D(x) y⊗ y ≥ c|y|2, ∀ x, y ∈ Rd.

This is a technical assumption implying that D is a uniformly
elliptic differential operator and thus ensuring the well-posedness
of the drift-diffusion equation. A modified version of the well-
posedness theorem will be the subject of future work.
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Proposition 8.1. Let V satisfy Assumption 8.1 and, in addition,∇∆V
∈ W j−1,∞x with j ∈ N. Then the unique global solution n = n(t) of
Eq. (8.1) with n(0) ∈ L2x satisfies n(t) ∈ H

j
x for t > 0, and the

following estimate

‖n(t)‖H jx ≤ Mj(εt)
−j/2
‖n(0)‖L2x (8.2)

holds with Mj > 0, for ε, t → 0+.

In the following, by ∇F ∈ L2(Rdx) we mean ∇F ∈ (L
2
x)
d. Moreover,

we consider 0 < ε < 1 and the constants are independent of ε,
unless specified.

Proof. By Assumption 8.1 on the potential V , the operator D de-
fined on D(D) = H2x generates an analytic contraction semigroup
(T (t))t≥0 on L2x (cf. Thm.VI.5.22 of [39]).
Let us derive here a basic estimate we shall use intensively in

the following. By Assumption 8.1, for all u ∈ H2x

‖∇ · ∇u‖L2x ≤ C‖D∇ ⊗ ∇u‖L2x ≤
C
ε
(‖Du‖L2x + ‖divD · ∇u‖L2x ),

where the second inequality follows from the definition of the op-
eratorD . Moreover, by using that for all u ∈ H2x ,

‖∇u‖L2x ≤ Cδ‖u‖L2x + δ‖∇ · ∇u‖L2x , ∀ δ > 0, (8.3)

with Cδ > 0, it holds

‖divD · ∇u‖L2x ≤ ‖divD‖L∞x (Cδ‖u‖L2x + δ‖∇ · ∇u‖L2x ), ∀ δ > 0,

with Cδ > 0. Thus,

‖∇ · ∇u‖L2x ≤
c

ε(1− δ‖divD‖L∞x /ε)
(‖divD‖L∞x Cδ‖u‖L2x + ‖Du‖L2x ),

and, in conclusion, for an appropriate choice of δ > 0, some con-
stant C > 0 exists such that

‖∇ · ∇u‖L2x ≤
C
ε
(‖u‖L2x + ‖Du‖L2x ). (8.4)

The operator G can be written as G = G1+G2 with G1f := εW ·∇f
defined on H1x , and G2f := ε∇ ·Wf , defined on L2x . The operator G1
isD-bounded, i.e., for all n ∈ D(D),

‖G1n‖L2x ≤ ε‖W‖L∞x C(‖n‖L2x + ‖∇ · ∇n‖L2x ) (8.5)

≤ ‖W‖L∞x (C‖n‖L2x + C‖Dn‖L2x )

≤ b‖n‖L2x + a‖Dn‖L2x , (8.6)

by using (8.4) and ε < 1. Moreover, theD-bound a1 defined by

a1 := inf {a ≥ 0 | ∃ b > 0 s.t. (8.6) holds}

is zero, by substituting (8.5) with (8.3). The operator G2f := ε∇ ·
Wf , defined on L2x , is bounded. The operator E can be written as
E = E1 + E2 with E1f := E · ∇f , defined on H1x ,D-bounded with
D-bound a2 = 0, since, for all n ∈ D(D),

‖E1n‖L2x ≤ ‖E‖L∞x (Cδ‖n‖L2x + δ‖∇ · ∇n‖L2x )

≤ C ‖E‖L∞x

(
Cδ‖n‖L2x +

δ

ε
(‖n‖L2x + ‖Dn‖L2x )

)
, ∀ δ > 0, (8.7)

by using (8.3) and (8.4). The operator E2f := ∇ · Ef is defined on L2x
and bounded.
Thus, by Thm. III.2.10 of [39], (D + G+ E,D(D)) generates an

analytic semigroup on L2x that we shall denote by (S(t))t≥0. More
precisely

‖(D + G+ E)αS(t)u‖L2x ≤ Mαt
−α
‖u‖L2x , t → 0+,∀α ≥ 0 (8.8)

withMα independent of ε, by employing Lemma III.2.6 of [39].

In order to derive estimate (8.2), let us start from the following
inequality

εm/2‖u‖Hmx ≤ C‖(D + G+ E)m/2u‖L2x (8.9)

that is yielded by similar arguments to (8.4). By combining (8.9)
with (8.8), we get

‖S(t)u‖H jx ≤ Cε
−j/2
‖(D + G+ E)j/2S(t)u‖L2x

≤ Cj(εt)−j/2‖u‖L2x , (8.10)

which holds for all u ∈ L2x and for small t . �

The singularity with respect to t in (8.2) can be easily removed:

Corollary 8.1. Let the assumptions of the Proposition 8.1 hold. In
addition, let n(0) belong to H jx. Then the solution n(t) belongs to H

j
x

for all t > 0 and satisfies

‖n(t)‖H jx ≤ Cε
−j/2
‖n(0)‖H jx , (8.11)

for ε, t → 0+.

Proof. The following inequality holds

εm/2‖u‖Hmx ≤ C‖(D + G+ E)m/2u‖L2x ≤ C‖u‖Hmx (8.12)

for all u ∈ D((D + G + E)m/2), with m ≤ j, and for ε → 0+

(cf. (8.9)). Then, in particular,

‖S(t)u‖Hmx ≤ Cε
−m/2
‖(D + G+ E)m/2S(t)u‖L2x

≤ Cε−m/2‖(D + G+ E)m/2u‖L2x

≤ Cε−m/2‖u‖Hmx , (8.13)

which holds for all u ∈ D((D + G + E)m/2), for small t and ε: the
first inequality sign corresponds to the first one in Eq. (8.12), the
second inequality follows by exchanging (D+G+E)m/2 with S(t)
and the third one comes from Eq. (8.12). �

Remark 8.1. Observe that in the low-field case, the QDD equation
looks like Eq. (8.1) withW ≡ 0 and

D ≡ D(x) :=
1
ν

(
I

βm
+
β h̄2

12m2
∇ ⊗ ∇V

)
(x).

The corresponding well-posedness result requires the sole As-
sumption 8.1 on the potential V . Additionally, in order to establish
the estimate (8.2) for all j ∈ N, the assumption ∆V ∈ W j−1,∞x is
to be added. This result is to be compared with the analysis in [5],
where the fourth order non-linear equation, obtained by the ap-
proximation ∇ log n = −β∇V + O(h̄2), is tackled, cf. [32]. �

By increasing regularity of the initial datum, we can remove the
singular behavior of the estimate (8.2) with respect to t and ε.

Corollary 8.2. Let V satisfy Assumption 8.1 and ∇∆V ∈ W 2j−1,∞x .
Then the solution n(t) of Eq. (8.1) with n(0) ∈ D(D j) satisfies, for
ε, t → 0+

‖n(t)‖H jx ≤ C‖n(0)‖H2jx . (8.14)

Moreover, the following refinement holds

‖n(t)‖H jx ≤ C‖n(0)‖H jx . (8.15)
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Proof. We prove the thesis in the case j = 1. For j > 1 the thesis
follows by an induction procedure similarly to [22]. Due to the
regularity with respect to the variable x of the solution n(t), for
t > 0, we can find the evolution equation for∇n by differentiating

∇

(
∂

∂t
n
)
=

∂

∂t
(∇n) = ∇(D + G+ E)n

= (D + G+ E)∇n− [(D + G+ E),∇]n,

where we denote by [(D+G+E),∇] the commutator among the
two operators. Since

−[(D + G+ E), ∂k]

= ε
∑
i,j

∂i
(
∂kDij∂jn

)
+

∑
i

∂i (∂k (εWi + Ei) n)

=: (D ′ + G′ + E ′)n,

∇n satisfies

∂

∂t
(∇n) = (D + G+ E)∇n+ (D ′ + G′ + E ′)n. (8.16)

The solution of the previous equation can be expressed by the
Duhamel formula via the analytic semigroup S(t) generated by
(D + G+ E), as

∇n(t) = S(t)∇n(0)+
∫ t

0
S(t − s)(D ′ + G′ + E ′)n(s)ds. (8.17)

Moreover we can estimate

‖∇n(t)‖L2x ≤ C‖∇n(0)‖L2x + C
∫ t

0
‖(D ′ + G′ + E ′)n(s)‖L2xds

≤ C‖∇n(0)‖L2x + C
∫ t

0
(ε‖n(s)‖H2x + ‖n(s)‖H1x )ds

≤ C‖n(0)‖H2x + C
∫ t

0
‖∇n(s)‖L2xds. (8.18)

by using (8.11) with j = 2, provided n(0) ∈ H2x . Therefore, by
Gronwall lemma, we derive (8.14). In order to prove (8.15), we
apply the first inequality in (8.10) with j = 2 to the function
n(t) = S(t)n(0) and we obtain

‖n(t)‖H2x ≤
C
ε
‖(D + G+ E)S(t)n(0)‖L2x .

Then we use (8.8) for the term (D + G + E)1/2S(t)[(D + G +
E)1/2n(0)]with j = 1, and we get

‖n(t)‖H2x ≤
C
ε
‖(D + G+ E)1/2S(t)(D + G+ E)1/2n(0)‖L2x

≤
C
ε
t−1/2‖(D + G+ E)1/2n(0)‖L2x

≤
C
ε
t−1/2‖n(0)‖H1x , (8.19)

where for the last inequality the estimate (8.12) with m = 1 is
used. Hence it holds for all n(0) ∈ D((D + G + E)1/2) ≡ H1x . By
using (8.19) in the second line of (8.18) and using integrability of
t−1/2, we get (8.15) in the case j = 1. �

The other (non-null) term of the bulk part is ψ̄1, which is of first
order in ε. Since it satisfies

ψ̄1 = −(Q(A+ C)Q)−1QSP (nM)

(cf. Eq. (5.8)), by using the definitions (6.11) and (4.13), it can be
written explicitly as

ψ̄1(x, v, t)

= ∇n(x, t) · F −1
{

1
iδV − ν

F

(
vM +

M∇V
νm

)}
(x, v)

+ n(x, t)F −1
{

1
iδV − ν

F

(
v · ∇xM +

M∆V
νm

)}
(x, v),

∀ (x, v, t) ∈ R2d × R+. (8.20)
Thus, the estimates for the solution n in the previous corollary are
the crucial ingredient to establish well-posedness of the definition
(8.20) and the behavior with respect to time of the function ψ̄1 and
of its derivatives.
Another fundamental aspect is the shape of the initial datum

n(0) for Eq. (8.1): by (7.14), it is given by n(0) = n0 + εn1, and the
following estimate holds
‖n(0)‖H jx ≤ ‖n0‖H jx + ε‖n1‖H jx

≤ ‖w0‖H jk
+ ε C(‖V‖Hk+j+2x

)‖w0‖H j+1k+1
, (8.21)

for all d-admissible k, by using the estimate (4.12).

Proposition 8.2. Let n be a solution of the drift-diffusion (8.1) with
initial value n(0) given by (7.14), with w0 ∈ H4k+1, and with V
satisfying Assumption 8.1 and ∇∆V ∈ W 5,∞x . Then ψ̄1 is strongly
differentiable with respect to t > 0, and for every t > 0 it satisfies

ψ̄1(t) ∈ D(Q(A+ C)Q) ∩D(QSQ).

Moreover there exists a constant M > 0 such that, for ε, t → 0+,∥∥∂tψ̄1(t)∥∥Xk ≤ M‖w0‖H4k+1 , (8.22)∥∥∂tψ̄1(t)∥∥H1k ≤ M(1+ 1/t)‖w0‖H4k+1 , (8.23)∥∥SQ ψ̄1(t)∥∥H1k ≤ M‖w0‖H4k+1 . (8.24)

Proof. If we differentiate with respect to t the expression (8.20),
the only t-dependent functions are ∇n and n, explicitly

∂tψ̄1(x, v, t) = ∂t(∇n)(x, t) · A(x, v)+ ∂tn(x, t) B(x, v),

∀ (x, v, t) ∈ R2d × R+ (8.25)

where the functions Ai, B, defined in (8.20), are sufficiently regular,
because of the assumptions on V . The differentiability of n with
respect to t follows fromanalyticity of the semigroup (S(t))t≥0. The
differentiability of∇n, instead, follows from the expression (8.17):
since each term is continuously differentiable in time, so is ∇n.
Moreover, by using ∂t∇n = ∇∂tn and the evolution equation

for n,

‖∂t(∇n)‖L2x = ‖∇(D + G+ E)S(t)n(0)‖L2x
≤ ‖(D + G+ E)S(t)n0‖H1x + ε‖(D + G+ E)S(t)n1‖H1x
≤ ‖S(t)n0‖H3x + ε‖S(t)n1‖H3x ≤ C(‖w0‖H3k + ε‖w0‖H4k+1)

≤ C‖w0‖H4k+1 (8.26)

where we split n(0) = n0 + εn1 and we use (8.15), together with
(8.21). Similarly,

‖∂t(∇n)‖H1x ≤ C
(
‖∇(D + G+ E)S(t)n(0)‖L2x

+‖∇ · ∇(D + G+ E)S(t)n(0)‖L2x

)
≤ C

(
‖w0‖H4k+1

+ ‖(D + G+ E)n0‖H2x

+
ε

εt
‖(D + G+ E)n1‖L2x

)
≤ C

(
‖w0‖H4k+1

+ ‖w0‖H4k
+
1
t
‖w0‖H3k+1

)
, (8.27)
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where the first term in the inequality comes from (8.26). To obtain
the second and the third terms, first commute S(t)with (D+G+E)
and use n(0) = n0 + εn1, then apply estimate (8.15) to get the
second term and (8.2) to get the third one.
Finally, inequality (8.27) follows from estimates (8.12) and

(8.21). In order to prove (8.24), let us consider again the abstract
definition of ψ̄1 (see (5.8)):

ψ̄1(t) = −(Q(A+ C)Q)−1(QSP )(n(t)M).

SinceQSP ϕ̄ reads (see (6.11))

QSPnM = n
[
−v · ∇xM +M

∫
v · ∇xMdv

]
+∇xn ·

[
M
(
−v +

∫
vMdv

)]
,

under the present hypotheses,QSP (nM) belongs toH2k , thus ψ̄1(t)
∈ D(Q(A+ C)Q) ∩D(QSQ). By (8.20),

SQψ̄1(x, v, t) = ∇ · ∇n(x, t) v · A(x, v)
+∇n(x, t) · (v · ∇ · A+ vB)(x, v)
+ n(x, t) v · ∇B(x, v).

Thus, in order to estimate‖SQψ̄1(t)‖Xk and‖SQψ̄1(t)‖H1k , it is nec-
essary to evaluate ‖∇ ·∇n(t)‖L2x and ‖∇ ·∇n(t)‖H1x , ‖∇n(t)‖L2x and
‖∇n(t)‖H1x , respectively. In particular,

‖∇ · ∇n(t)‖H1x ≤ C‖S(t)n(0)‖H3x ≤ C‖n(0)‖H3x
≤ C‖w0‖H3k + εC‖w0‖H4k+1 ,

again by (8.15). Thus,we can conclude byusing the regularity prop-
erties of Ai, B. �

Remark 8.2. Observe that it is possible to remove the singularity
for t → 0+ in the estimate (8.23), by assuming w0 ∈ H5k+1 and
modifying last two lines of (8.27) as follows

‖∂t(∇n)‖H1x ≤ C
(
‖w0‖H4k+1

+ ‖(D + G+ E)n0‖H2x

+ ε‖(D + G+ E)n1‖H2x

)
≤ C

(
‖w0‖H4k+1

+ ‖w0‖H4k
+ ε‖w0‖H5k+1

)
. � (8.28)

9. Estimate of the error

In this section we prove rigorously that the high-field QDD
equation, derived from the asymptotic expansion up to the first or-
der in ε, is an approximation of order ε2 of the high-field Wigner-
BGK system (3.5). To this aim, we consider the errors obtained by
replacing the functions Pw = ϕ and Qw = ψ by the terms of
their expansion up to first order in ε. We shall prove the following

Theorem 9.1. If the initial value w0 belongs to H4k+1 and V satisfies
Assumption 8.1 and ∇∆V ∈ W 5,∞x , then for any T , 0 < T < ∞,
there is a constant C independent of ε such that∥∥∥ϕ(t)+ ψ(t)− [ϕ̄(t)+ εψ̄1(t)+ ψ̃0(t/ε)+ εϕ̃1(t/ε)
+ εψ̃1(t/ε)]

∥∥∥
Xk
≤ Cε2, (9.1)

uniformly for 0 ≤ t ≤ T .

This result relies on the estimates established in Propositions 7.1
and 8.2, about the behavior with respect to time of the initial layer
functions ϕ̃1, ψ̃1 and the bulk functions. Let us split the error in two
contributions

y(t) = ϕ(t)− [ϕ̄(t)+ εϕ̃1(τ )],

z(t) = ψ(t)− [ψ̃0(τ )+ εψ̄1(t)+ εψ̃1(τ )]
(9.2)

where τ = t
ε
. The evolution equations for the errors y and z can

be deduced from those satisfied by their components (cf. systems
(5.1), (5.4), (5.5)). Hence, we have
∂y
∂t
= P SP y+ P SQz + f

∂z
∂t
= QSP y+QSQz +

1
ε

Q(A+ C)Qz + g
(9.3)

with initial conditions

y(0) = 0, z(0) = O(ε2),

and inhomogeneous terms f and g defined by

f (t) = ε
[
P SP ϕ̃1(τ )+ P SQψ̃1(τ )

]
g(t) = ε

[
−
∂ψ̄1

∂t
+QSQψ̄1(t)+QSP ϕ̃1(τ )+QSQψ̃1(τ )

]
.

It is convenient to separate the evolution of the error due to the
initial layer from that related to the bulk part. Let us define

r = y+ z = ri + rb

with

ri = −εϕ̃1 − ψ̃0 − εψ̃1, rb = ϕ + ψ − ϕ̄ − εψ̄1. (9.4)

The derivation of estimate (9.1) is split according to (9.4) in the next
two Lemmata.

Lemma 9.1. Under the assumptions V ∈ Hk+4x and w0 ∈ H2k+2, for
any T , 0 < T <∞, there is a constant C independent of ε such that

‖ri(t)‖Xk ≤ Cε
2, (9.5)

uniformly for 0 ≤ t ≤ T .

Proof. The initial layer error ri = ri(t) satisfies the equation

∂ri
∂t
(t) = Sri(t)+

1
ε
(A+ C)ri(t)+ εS(ϕ̃1 + ψ̃1)

(
t
ε

)
,

ri(0) = 0. (9.6)

The operator S + (A + C)/ε generates an uniformly bounded
semigroup in Xk, Z(t), cf. [40]. Thus, the mild solution of (9.6) is
given by

ri(t) = Z(t)ri(0)+ ε
∫ t

0
Z(t − s)S(ϕ̃1 + ψ̃1)(s/ε)ds,

with

‖ri(t)‖Xk ≤ Cε
∫ t

0
‖S(ϕ̃1 + ψ̃1) (s/ε) ‖Xkds. (9.7)

The estimate of ‖S(ϕ̃1 + ψ̃1) (s/ε) ‖Xk is a bit tedious, thus we
simply sketch it. It is convenient to use the projections P ,Q

and evaluate P SP ϕ̃1, QSP ϕ̃1, P SQψ̃1, and QSQψ̃1 separately.
By their definitions (cf. (6.9), (6.11)) P SP ,QSP ∈ L(H1k , Xk),
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providedV ∈ Hk+2x , thus the followingmodification of the estimate
(7.10) for ϕ̃1 holds,

‖P SP ϕ̃1(τ )‖Xk
≤ |||P SP ||||||P SQ[Q(A+ C)Q]−1||| ‖G(τ )ψ0‖H2k+1

≤ Me−νk+3τ‖ψ0‖H2k+1 , (9.8)

since P SQ[Q(A + C)Q]−1 ∈ L(H2k+1,H
1
k ), provided V ∈ H

k+4
x .

Analogously,

‖QSP ϕ̃1(τ )‖Xk ≤ |||QSP ||||||P SQ[Q(A+ C)Q]−1|||‖G(τ )ψ0‖H2k+1

≤ Me−νk+3τ‖ψ0‖H2k+1 . (9.9)

Let us recall the expression for ψ̃1 (cf. (7.12))

ψ̃1(τ ) = G(τ )ψ̃1(0)+
∫ τ

0
G(τ − σ)QSQG(σ )ψ0dσ .

We evaluate ‖P SQψ̃1(τ )‖Xk and ‖QSQψ̃1(τ )‖Xk . Both P SQ and
QSQ belong to L(H1k+1, Xk). Moreover [Q(A + C)Q]−1QSP ∈
L(H1k , Xk) by definition, provided V ∈ H

k
x ; thus

‖QSQG(τ )ψ̃1(0)‖Xk
≤ |||QSQG(τ )|||‖(Q(A+ C)Q)−1QSPϕ0‖H1k+1
≤ Ke−νkτ‖ϕ0‖H2k+1 ,

provided V ∈ Hk+2x . Concerning the second term, we obtain∥∥∥∥QSQ ∫ τ

0
G(τ − σ)QSQG(σ )ψ0dσ

∥∥∥∥
Xk

≤ |||QSQ|||
∥∥∥∥∫ τ

0
G(τ − σ)QSQG(σ )ψ0dσ

∥∥∥∥
H1k+1

≤ Ke−νk+2τ
∫ τ

0
e(νk+2−νk+4)σ‖ϕ0‖H2k+2

≤ Ke−νk+4τ‖ϕ0‖H2k+2 ,

provided V ∈ Hk+4x . In conclusion,

‖QSQψ̃1(τ )‖Xk ≤ Ke
−νk+4τ‖ϕ0‖H2k+2

,

and analogously,

‖P SQψ̃1(τ )‖Xk ≤ L e
−νk+4τ‖ϕ0‖H2k+2

,

for some constant L > 0. Finally, it is possible to find constants
ν̄ > 0 andM(‖V‖Hk+4x

) > 0 such that

‖S(ϕ̃1 + ψ̃1)(τ )‖Xk ≤ M(‖V‖Hk+4x
) e−ν̄τ‖w0‖H2k+2 .

Coming back to the estimate (9.7) of ri, for any time t we have

‖ri(t)‖Xk = CMε
∫ t

0
e−ν̄s/ε‖w0‖H2k+2ds ≤ C‖f0‖H2k+2ε

2. �

Lemma 9.2. Under the assumptions of Proposition 8.2, for any T ,
0 < T <∞, there is a constant C independent of ε such that

‖rb(t)‖Xk ≤ Cε
2, (9.10)

uniformly for 0 ≤ t ≤ T .

Proof. The error of the bulk part of the asymptotic expansion
satisfies (9.3) with f = 0 and, instead of g ,

gb(t) = ε
[
−
∂ψ̄1

∂t
+QSQψ̄1(t)

]
.

Since the inhomogeneous term gb(t) has a non-uniform behavior
with respect to ε for small times, we split the inhomogeneous term
g(t) into the sum of two functions, say gb0 and gb1, as follows

gb0(t) = ηεgb(t), gb1 = gb(t)− gb0(t),

where ηε is a non-increasing C∞-function such that

ηε(t) =
{
1 for t < ε/2,
0 for t > 3ε/2.

Wewrite the error rb as the sum of two parts rb = rb0+ rb1, solving
the equation

∂rb0
∂t
= Srb0 +

1
ε
(A+ C)rb0 + εgb0, rb0(0) = 0,

and an analogous one with the inhomogeneous term gb1. Concern-
ing the error rb0, Proposition 8.2 yields the following estimate

‖rb0(t)‖Xk ≤ Kε
∫ 3ε/2

0
‖gb0(s)‖Xkds

≤ Kε
∫ 3ε/2

0

(∥∥∥∥∂ψ̄1∂s (s)
∥∥∥∥
Xk

+
∥∥SQ ψ̄1(s)∥∥Xk

)

≤ Kε
∫ 3ε/2

0
‖w0‖H4k+1

ds ≤ K‖w0‖H4k+1ε
2.

Finally, we consider the evolution equation for rb1 and represent
it as

rb1 = r̂b1 + h(t),

where the auxiliary function h solves the problem

∂h
∂t
=
1
ε

Q(A+ C)Qh+ εgb1, h(0) = 0.

Consequently, the function r̂b1 satisfies the initial value problem

∂ r̂b1
∂t
= Sr̂b1 +

1
ε
(A+ C)r̂b1 + SQh, r̂b1(0) = 0,

thus it can be easily estimated in terms of the auxiliary function h as

‖r̂b1(t)‖Xk ≤
∫ t

ε/2
‖SQh(s)ds‖Xkds.

Again by the properties of the operator (A + C), the solution h is
given by

h(t) =


0 for t < ε/2,

ε

∫ t

ε/2
Gε(t − s)gb1(s)ds for t > ε/2,

where Gε(τ ) is the bounded semigroup generated by (1/ε)Q(A+
C)Q. Finally, applying again Proposition 8.2

‖r̂b1(t)‖Xk ≤ ε
∫ t

ε/2
‖SQh(s)ds‖Xkds

≤ εK
∫ t

ε/2

∫ s

ε/2
e−νk+1

s−s′
ε ‖gb1(s′)‖H1k ds

′ds

≤ εK
∫ t

ε/2

∫ s

ε/2
e−νk+1

s−s′
ε

(
1+

1
s

)
‖w0‖H4k+1

ds′ds

≤ K‖w0‖H4k+1ε
2,
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for any t ∈ [0, T ], where the constant K depends on T . In conclu-
sion,

‖rb(t)‖Xk ≤ K‖w0‖H4k+1ε
2.

These two Lemmata prove Theorem 9.1 and consequently demon-
strate rigorously that the high-field QDD equation (6.1) is an
approximation of order ε2 of the high-field Wigner-BGK equa-
tion (3.2).
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