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State estimation is considered for a class of switching discrete-time linear systems. The switching is assumed to be unknown among the
various system modes associated with different known matrices. The proposed scheme relies on the combination of the estimation of the
system mode with the application of a Luenberger-like observer whose gain is a function of the estimated mode. In the absence of noises,
the estimate of the mode can be chosen among the ones that are consistent with the measurements and the stability of the estimation
error is ensured under suitable conditions on the observer gains. Such conditions can be expressed by means of Linear Matrix Inequalities
(LMIs). The presence of bounded disturbances is also taken explicitly into consideration. In this situation, a novel method based on a
minimum-distance criterion is proposed in order to estimate the system mode. Also in this case the error of the resulting estimator is
proved to be exponentially bounded.

1 Introduction

In a number of engineering problems, it is often desirable to obtain reliable estimates of the state variables
for control or diagnostic purposes. Therefore, the synthesis of state observers has been of considerable
interest in classical system theory from the pioneering work of Luenberger (1969). Recently, a special
attention has been gained by hybrid systems, which allow one to describe a large class of plants with
continuous dynamics, finite-state automata, and logic decisions. The topic of this paper is the design of
state estimators for a class of hybrid systems having a discrete-time linear form that may switch from a
matrix configuration to another one in a known finite set (the index denoting such a configuration being
called the mode or the discrete state).

In the literature, among the various approaches to state estimation for switching systems, quite a diffused
paradigm is based on the idea of using a bank of filters (each of which is tuned on a specific model) to track
all the possible changes of the discrete state (see, e.g., (Bar-Shalom and Li, 1993)). When a probabilistic
description of the switching is supposed to be available, the switching is modelled by means of a hidden
finite-state Markov chain. In such framework, a major concern is the reduction of the computational burden
(see, e.g., (Zhang, 2000); (Doucet and Andrieu, 2001); (Elliott et al., 2005)).

Different approaches have been proposed in the literature to address the state estimation problem when
a probabilistic model of the switching is not available. In this context, an attempt of extending the
Luenberger observer was proposed by Alessandri and Coletta (2001), with the limitation of assuming
to know the switching times and modes exactly. In (Balluchi et al., 2002), an approach was presented for
the estimation of both the continuous state and the discrete one for a particular class of hybrid systems for
which the evolution of the discrete state is governed by a hidden finite-state machine and a discrete output
is available. Mode estimation was specifically addressed by Del Vecchio et al. (2006) under the assumption
that the continuous state variables are known exactly. Juloski et al. (2002) developed an observer for
bimodal switching linear systems with no knowledge of the switching time. For linear dynamic systems
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where only the measurement equations may switch, Babaali et al. (2004) proposed an observer that results
from the on-line solution of a nonlinear least-squares problem with local convergence properties for the
estimation error. Moreover, receding-horizon state estimation for various classes of switching discrete-time
linear systems was considered by Ferrari-Trecate et al. (2002); Alessandri et al. (2005); Pina and Botto
(2006).

The design of estimators for switching systems rises the problem of determining the switching sequence
on the basis of the observations as well as the need of introducing suitable mode-observability notions.
For unforced noise-free switching linear systems such an issue was first addressed systematically by Vidal
et al. (2002), under the assumption of a minimum dwell time between consecutive switches. More recent
advances on this topic have been developed in (Babaali and Egerstedt, 2004), where arbitrary switching
sequences were considered. In (Alessandri et al., 2005), such results were extended to comply with the
presence of bounded disturbances that corrupt the dynamics and the measures. It is important to point
out that, as shown in these papers, the possibility of exactly reconstructing the sequence of discrete states
depends on the actual value of the continuous state of the system and, even in the absence of noises, there
will always exist continuous states for which such a task turns out to be impossible.

In the first part of this paper, an estimation scheme for noise-free switching discrete-time linear systems
is proposed that is based on the combination of a Luenberger-like observer with a mode estimator. The
gain of the observer is selected in correspondence of the estimate of the switching mode. The possibility of
committing an error in the estimation of the discrete state is explicitly taken into account and dealt with.
This results in the development of novel conditions that the observer gains have to satisfy in order to ensure
the exponential stability of the estimation error and that can be integrated into the LMI formulation of
the whole problem. In the second part of the paper, the proposed observation scheme is generalized to take
into account the presence of unknown but bounded disturbances acting on the system and measurement
equations. Towards this end, a novel method for the estimation of the system mode in the noisy case is
proposed that is based on a minimum-distance criterion. Theoretical results are provided that establish
when such a method leads to the exact identification of the true switching sequence. Based on such results,
the estimation error of the proposed observer is shown to be exponentially bounded.

The main contributions of the paper are the following: i) in the noise-free case, the inevitable errors in
the estimation of the discrete state are dealt with by integrating suitable conditions into the formulation
of the problem; ii) in the presence of disturbances, a minimum-distance criterion for the estimation of the
discrete state is developed. With respect to previous results (specifically (Alessandri et al., 2005)), the
proposed estimation scheme turns out to be more computationally efficient and does not require an exact
knowledge of the form of the sets to which the system and measurement noises belong (indeed, it can
be always applied regardless of the form of such sets). Moreover, the stability of the estimation error is
ensured for a broader class of systems thanks to the novel conditions taken into account in the design of
the observer.

Before concluding this section, let us introduce some notations and basic definitions. Given a generic
vector v , ‖v‖ denotes the Euclidean norm of v and, given a positive definite matrix P , ‖v‖P denotes

the weighted norm of v , ‖v‖P
4
= (v>Pv)1/2 . Given a generic sequence {zt; t = 0, 1, . . .} and two time

instants t1 ≤ t2 , we define zt2
t1

4
= col (zt1 , zt1+1, . . . , zt2) . Furthermore, given two sequences z and z′ , let

us denote by z ⊗ z′ the sequence obtained from the concatenation of z and z′, i.e., z ⊗ z′ 4= col (z, z′).
For a symmetric positive or negative definite matrix D , σmin (D) and σmax (D) are the minimum and

maximum eigenvalues of D , respectively. The norm of a matrix B is ‖B ‖ 4
=

√
σmax ( B>B). Given

a generic matrix M , we denote by span(M) the linear space generated by a linear combination of the
columns of M .
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2 Design of the observer in the absence of noises

Let us consider a class of switching discrete-time linear systems described by

xt+1 = A(λt) xt

yt = C(λt) xt
(1)

where t = 0, 1, . . . is the time instant, xt ∈ Rn is the continuous state vector (the initial state x0 is

unknown), yt ∈ Rm is the measurement vector, and λt ∈ Λ
4
= {1, 2, . . . , M} is the discrete state. A(λ)

and C(λ), λ ∈ Λ, are n× n and m× n matrices, respectively.
If we assume to perfectly know λt, an observer for (1) can be given the form of a Luenberger observer,

i.e.,

x̂t+1 = A(λt) x̂t + L(λt) [yt − C(λt) x̂t] (2)

where t = 0, 1, . . ., x̂t is the estimate of xt, x̂0 is chosen “a priori,” and L(λt) is an n×m matrix called
the observer gain at the time t. We require that the gain L(λ) is associated with the couple (A(λ), C(λ)),
λ ∈ Λ.

Under the knowledge of λt, the dynamics of the estimation error et
4
= xt − x̂t behaves like a switching

system and a common Lyapunov function can be searched in order to ensure the stability of the estimation
error (Alessandri and Coletta, 2001). If the switching mode λt is not known exactly, the design of a
Luenberger observer turns out to be much more difficult. In this case, at any time t one can estimate
the discrete state λt on the basis of the observation of the output of the system over a certain interval
“around” the current time t . The estimate λ̂t can be used in (2) instead of the true value λt. Then the
observer can be obtained as

x̂t+1 = A(λ̂t) x̂t + L(λ̂t)
[
yt − C(λ̂t) x̂t

]
. (3)

In the following, a possible approach for the choice of the estimate λ̂t will be proposed that ensures the
convergence of the estimation error under suitable assumptions.

2.1 Mode estimation and observability issues

In order to try to identify the discrete state λt , a first very simple idea would consist in considering as
possible estimates of λt only the discrete states λ̂t such that yt = C(λ̂t) x for some x ∈ Rn. Of course,
this would not lead to a reliable estimate λ̂t. Along the lines of (Alessandri et al., 2005), a possible strategy
is that of trying to identify the discrete state λt on the basis of the observations vector yt+ω

t−α over an
interval of the form [t − α, t + ω] . Of course, this causes a delay equal to ω in the computation of λ̂t

and so of x̂t+1. It is important to remark that a certain delay is unavoidable in order to obtain a reliable
information on the discrete state λt . Indeed (as shown by Babaali and Egerstedt (2004); Alessandri et al.
(2005)) unless the number of measures available at each time instant is at least equal to the number of
state variables (i.e., m ≥ n ), it may not be possible to detect switches that occur in the last or in the first
instants of an observation window.

Let us consider a generic sequence λ ∈ ΛN of N discrete states, and denote by λ(i) the i-th element of
such a sequence, i.e., λ

4
= col

[
λ(1), . . . , λ(N)

]
. We shall define the observability matrix associated with λ
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as

F (λ)
4
=




C(λ(1))
C(λ(2))A(λ(1))

...
C(λ(N−1))A(λ(N−2)) · · ·A(λ(1))
C(λ(N))A(λ(N−1)) · · ·A(λ(1))




.

Moreover, let Φ(λ)
4
= A(λ(N)) · · ·A(λ(1)) be the transition matrix associated with λ .

Furthermore, let us denote by Y(λ) the set of all the possible vectors of observations associated with
the switching pattern λ , i.e.,

Y(λ)
4
=

{
y ∈ RmN : y = F (λ)x̃ , x̃ ∈ Rn

}
.

Of course Y(λ) is the linear space generated by the columns of F (λ) .
Let us now consider observation sequences of length α + 1 + ω where α and ω are positive integers.

We define as Yα,ω(λ) the set of all the observation sequences that can be generated when the switching
pattern has the form λ− ⊗ λ⊗λ+ (for some λ− ∈ Λα and λ+ ∈ Λω). Using the notations introduced so
far, we have

Yα,ω(λ)
4
=

{
y ∈ Rm(α+1+ω) : y = F (λ− ⊗ λ⊗ λ+)x̃ , x̃ ∈ Rn, λ− ∈ Λα, λ+ ∈ Λω

}

=
⋃

λ−∈Λα,λ+∈Λω

Y(λ− ⊗ λ⊗ λ+) .

Moreover, given an observation sequence y ∈ Rm(α+1+ω) , let us denote by Λα,ω(y) the set of all the
discrete states consistent with the observations vector y, defined as

Λα,ω(y)
4
= {λ ∈ Λ : y ∈ Yα,ω(λ)} .

In the following, we shall consider as possible estimates of λt only the discrete states λ̂t belonging to the
set of feasible discrete states

Λα,ω(yt+ω
t−α)

4
=

{
λ ∈ Λ : yt+ω

t−α ∈ Yα,ω(λ)
}

.

Remark 1 In order to define the sets Yα,ω(λ) and Λα,ω(y) , no assumptions have been made on the
evolution of the discrete state. It is important to remark that the proposed approach is well-suited to
taking into account possible information on the evolution of the discrete state (e.g., when it is governed
by a hidden finite-state machine). With this respect, at every time instant, instead of considering all the
possible switching patterns belonging to Λα+ω+1 , one could consider a restricted set Sα,ω

t ⊆ Λα+ω+1 of all
the admissible switching patterns, i.e., of all the switching patterns consistent with the a-priori knowledge
of the law governing the evolution of the discrete state. This would lead to the introduction of a new
time-varying set Yα,ω

t (λ) , that is,

Yα,ω
t (λ)

4
=

⋃

λ−∈Λα,λ+∈Λω,(λ−⊗λ⊗λ+)∈Sα,ω
t

Y(λ− ⊗ λ⊗ λ+) ,

and to update the definition of the set Λα,ω(y) accordingly. This would add no theoretical difficulty but
some notational complication. Hence, not to complicate the presentation, in the following we shall always
suppose the law governing the evolution of the discrete state to be completely unknown.
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Of course, if no assumptions are made on system (1), it is quite possible that, at the generic time t, the
cardinality of the set Λα,ω(yt+ω

t−α) is strictly greater than one. In this case, it is impossible to determine
uniquely the current discrete state λt on the basis of the observations vector yt+ω

t−α . As shown by Babaali
and Egerstedt (2004); Alessandri et al. (2005), the possibility of distinguishing between two different
discrete states depends on the current continuous state. With this respect, let us define as Xα,ω(λ, λ′)
the set of all the continuous states x such that possible observation sequences yt+ω

t−α exist that could be
obtained if xt = x and λt = λ but would be consistent also with λt = λ′ (even for values of xt different
from x). The set Xα,ω(λ, λ′) can be determined as the set of all the continuous states x for which some
x̃ ∈ Rn, some λ− ∈ Λα, and some λ+ ∈ Λω exist such that

(i) x = Φ(λ−)x̃ (i.e., the state x may belong to the state trajectory);
(ii) λ′ ∈ Λα,ω(y) where y = F (λ− ⊗ λ ⊗ λ+) x̃ (i.e., the discrete state λ′ is consistent with possible

observation sequences associated with λ and x ).

In other words, Xα,ω(λ, λ′) is the set of states for which it could be impossible to uniquely determine if
λt is either λ or λ′. From the above definition, Xα,ω(λ, λ′) turns out to be the union of a finite number
of linear subspaces of Rn . The following elementary example should clarify the previous definition.

Example 1 Consider a simple linear switching system described by equation (1) with

A(1)
4
=

[
1 0

−0.5 1

]
, A(2)

4
=

[
3 0

−2 1

]
,

C(1)
4
= [−1 − 2 ], C(2)

4
= [−1 − 2 ] . (4)

Suppose that, at every time t = 0, 1, . . . , we would like to determine the discrete state λt on the basis of
the observations vector yt+2

t (this corresponds to the choice α = 0 and ω = 2 ). Since we have

F (1, 1, 1) = F (1, 1, 2) =



−1 −2

0 −2
1 −2


 , F (1, 2, 1) = F (1, 2, 2) =



−1 −2

0 −2
2 −2


 ,

F (2, 1, 1) = F (2, 1, 2) =



−1 −2

1 −2
4 −2


 , F (2, 2, 1) = F (2, 2, 2) =



−1 −2

1 −2
7 −2


 ,

it is immediate to verify that it is impossible to distinguish between the two discrete states if and only if
xt = [0 k]> for any k ∈ R. Hence, in this case, X 0,2(1, 2) = X 0,2(2, 1) = {x = [0 k]>, k ∈ R} . 4

2.2 Stability analysis of the estimation error

By exploiting the definition of the sets Xα,ω(λ, λ′) , it is possible to give sufficient conditions that the gains
of observer (3) have to satisfy in order to ensure the convergence of the estimation error. More specifically,
the following theorem can be stated.

Theorem 2.1 Suppose that the gains L(λ), λ ∈ Λ satisfy the following conditions:

(i) [A(λ)− L(λ) C(λ)]> P [A(λ)− L(λ)C(λ)]− P < 0 , for λ ∈ Λ , where P = P> > 0;
(ii) {[A(λ)−A(λ′)]− L(λ′) [C(λ)− C(λ′)]}x = 0 , for every x ∈ Xα,ω(λ, λ′) and for every λ 6= λ′ .

Furthermore, suppose that, at any time t = α, α + 1, . . . , the estimate λ̂t is chosen inside the set
Λα,ω(yt+ω

t−α) . Then observer (3) involves an estimation error et
4
= xt − x̂t exponentially convergent to
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zero, i.e., there exist h > 0 and 0 < β < 1 such that

‖et‖ ≤ h βt−α ‖eα‖ , t = α, α + 1, . . . . (5)

The basic idea behind Theorem 2.1 is quite simple. Condition (i) is quite classical and ensures the
existence of a quadratic Lyapunov function for the error dynamics; since from (1) and (3) we have

et+1 =
[
A(λ̂t)− L(λ̂t)C(λ̂t)

]
et +

{[
A(λt)−A(λ̂t)

]
− L(λ̂t)

[
C(λt)− C(λ̂t)

]}
xt ,

for t = α, α + 1, . . . , it should be evident that condition (ii) leads to decoupling the error dynamics from
that of the system.

Some remarks on the conditions of Theorem 2.1 are important. Let us first consider condition (i). As it is
well known, necessary conditions for the Lyapunov inequalities to hold are that all the pairs (A(λ), C(λ))
are detectable. Note that, though each inequality in (i) separately admits a solution if and only if the
pairs (A(λ), C(λ)) are detectable, indeed, in order to ensure stability, a more restrictive condition is
required, i.e., the existence of a matrix P satisfying all the inequalities. In general, the existence of a
common quadratic Lyapunov function turns out to be a quite restrictive requirement. Recently, Daafouz
et al. (2002b) proposed less conservative conditions to ensure the stability of a switching system that
are based on the use of switching quadratic Lyapunov functions. Later on (see Daafouz et al., 2002a),
such conditions have been applied to the design of state-feedback controllers and Luenberger observers
(under the assumption that the switching signal is available in real time). It is important to point out
that Theorem 2.1 could be easily modified to take into account such results (this would just require the
replacement of condition (i) with the one of Theorem 4 in (Daafouz et al., 2002a)). However, in order
to focus on the effects of the unknown switches in the dynamics of the estimation error, we decided to
avoid such complications. In the light of the above discussion, we believe this can be done without loss of
generality.

Let us now consider condition (ii) of Theorem 2.1. First, recall that each set Xα,ω(λ, λ′) is the union of
a finite number, say Ns(λ, λ′), of linear subspaces of Rn and, consequently, can be written as

Xα,ω(λ, λ′) =
Ns(λ,λ′)⋃

i=1

span
(
Bi(λ, λ′)

)

where the matrix Bi(λ, λ′) represents a basis of the i-th linear subspace composing Xα,ω(λ, λ′) . Thus,
since each equality in condition (ii) depends affinely on the vector x, it has to be checked only for the
bases Bi(λ, λ′) with i = 1, . . . , Ns(λ, λ′) . In other words, each equality in condition (ii) turns out to be
equivalent to the Ns(λ, λ′) conditions

{
[A(λ)−A(λ′)]− L(λ′)[C(λ)− C(λ′)]

}
Bi(λ, λ′) = 0 (6)

for i = 1, . . . , Ns(λ, λ′) . In general, such conditions may be quite restrictive since they impose a hard
constraint on the structure of the gains L(λ). For the reader’s convenience, this is illustrated by means of
the following elementary example.

Example 2 Consider a simple linear switching system described by equation (1) with

A(1)
4
=

[
0.5 2
0 1

]
, A(2)

4
=

[
0.5 2
0 1

]
,

C(1)
4
=

[
1 0

−1 1

]
, C(2)

4
=

[−1 2
1 −1

]
. (7)
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Suppose that, at every time t = 0, 1, . . . , we would like to determine the discrete state λt on the basis of
the observations vector yt

t−1 (this corresponds to the choice α = 1 and ω = 0 ). In this case, we have

F (1, 1) =




1 0
−1 1

0.5 2
−0.5 −1


 , F (1, 2) =




1 0
−1 1
−0.5 0

0.5 1


 , F (2, 1) =




−1 2
1 −1
0.5 2

−0.5 −1


 , F (2, 2) =




−1 2
1 −1

−0.5 0
0.5 1


 .

Thus, it can be seen that the sets of continuous states for which it is not possible to distinguish between
the two discrete states are given by

X 1,0(1, 2) = X 1,0(2, 1) = span
([

1
1

]) ⋃
span

([
1
0

])
.

As a consequence, in order for the gain L(1) to fulfill condition (ii) of Theorem 2.1 it must be

L(1) [C(2)− C(1)]
[
1
1

]
= 0 , L(1) [C(2)− C(1)]

[
1
0

]
= 0 .

It is immediate to verify that the first equality is always verified, while the second one is satisfied if and
only if the gain L(1) assumes the form

L(1) =
[
a a
c c

]

for any a, c ∈ R. Analogous considerations can be made for the gain L(2). 4
As shown in the above example, generally speaking condition (ii) greatly reduces the degrees of freedom

available in the choice of the gain matrices L(λ). This may even lead to make the conditions of Theorem
2.1 globally unfeasible. However, it is important to remark that there are some special non-trivial cases in
which condition (ii) holds regardless of the choice of the gains L(λ) . More specifically, condition (ii) holds
if

(a) Xα,ω(λ, λ′) = {0} for every λ 6= λ′; or
(b) [A(λ)−A(λ′)]x = 0 and [C(λ)− C(λ′)]x = 0 for every x ∈ Xα,ω(λ, λ′) and for every λ 6= λ′ .

Even if case (a) is actually a subcase of (b), for the sake of clarity, we prefer to consider such two cases
separately.

First note that (a) corresponds to the complete observability of the discrete state λt : in this case, unless
xt = 0 , the set of feasible discrete states Λα,ω(yt+ω

t−α) has always cardinality 1 and therefore the current
discrete state λt can be determined uniquely on the basis of the observations vector yt+ω

t−α . As shown by
Alessandri et al. (2005); Babaali and Egerstedt (2004), where the results presented in (Vidal et al., 2002)
are extended, a necessary and sufficient condition for (a) to hold is that the rank of the joint observability
matrix [F (λ− ⊗ λ⊗ λ+) F (λ′− ⊗ λ′ ⊗ λ′+)] is equal to 2n for every λ 6= λ′ and every λ−, λ′− ∈ Λα and
λ+,λ′+ ∈ Λω .

With this respect, it is worth noting that the stability results by Alessandri et al. (2005) in the frame-
work of receding-horizon estimation were derived under an assumption similar to (a) (see Theorem 2 in
(Alessandri et al., 2005)). In the light of Theorem 2.1, the Luenberger-like estimation scheme proposed in
this paper can be applied to a broader class of switching systems.

A situation for which condition (a) does not hold, but falling within case (b), is given by the simple
system considered in Example 1, for which

[A(1)−A(2)]
[

0
k

]
=

[
0
0

]
, [C(1)− C(2)]

[
0
k

]
= 0 .
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It is worth noting that Theorem 2.1 ensures the convergence of the estimation error regardless of the
values of the estimates λ̂t, t = α, α+1, . . . , as long as they are chosen inside the sets Λα,ω(yt+ω

t−α) . However,
it should be clear that a sensible choice of such estimates could improve the performance of the proposed
observer. With this respect, a reasonable criterion results from the minimum residual evaluation test, i.e.,

λ̂t = arg min
λ∈Λα,ω(yt+ω

t−α)
‖yt − C(λ)x̂t‖2 .

2.3 An LMI-based approach for the synthesis of optimized observers

As it is difficult to find a common Lyapunov function once the gains have been selected, it is preferable to
simultaneously choose the matrices L(λ) and P . This problem may be reduced to a simpler form that is
well-suited to being solved by means of an LMI method. Likewise in Alessandri and Coletta (2001), using
the Schur lemma and applying the change of variables Y (λ) = P L(λ) , each inequality in condition (i) of
Theorem 2.1 turns out to be equivalent to

[
P (P A(λ)− Y (λ) C(λ))>

P A(λ)− Y (λ)C(λ) P

]
> 0 . (8)

Moreover, recalling (6), each equality in condition (ii) of Theorem 2.1 can be rewritten as

{
P [A(λ)−A(λ′)]− Y (λ′)[C(λ)− C(λ′)]

}
Bi(λ, λ′) = 0 (9)

for i = 1, . . . , Ns(λ, λ′) .
By exploiting (8) and (9), observer (3) can be constructed by solving the following LMI problem.

Problem 1 Find P = P> > 0 and Y (λ) , λ ∈ Λ, such that conditions (8) and (9) are satisfied for any
λ, λ′ ∈ Λ and take the observer gains L(λ) = P−1 Y (λ) .

The satisfaction of the Lyapunov inequalities (8) and of the equalities (9) guarantees to get an exponen-
tially stable error dynamics. In addition, an upper bound on a quadratic cost function of the estimation
error can be found and, consequently, the gains of observer (3) may be selected so as to minimize it. To
this end, consider the performance index

J = lim
N→∞

N∑
t=α

e>t Qet (10)

where the matrix Q > 0 can be arbitrarily chosen. An observer of the type (3) can be designed by
finding the gain matrices such that the stability requirements be satisfied and an upper bound on (10)
be minimized. To this aim, let Problem 1 be solvable, i.e., there exists a symmetric matrix P > 0 that
satisfies inequalities (8). Then, given a symmetric weight matrix Q > 0, there exists a scalar µ > 0 such
that

[A(λ)− L(λ)C(λ)]>
P

µ
[A(λ)− L(λ)C(λ)]− P

µ
< −Q , λ ∈ Λ. (11)

If we apply (11) at time t , we obtain

e>t

{[
A(λ̂t)− L(λ̂t)C(λ̂t)

]> P

µ

[
A(λ̂t)− L(λ̂t)C(λ̂t)

]
− P

µ

}
et ≤ −e>t Q et . (12)
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Note that, when condition (ii) of Theorem 2.1 holds (i.e., all the equalities (9) are satisfied), the error
dynamics turns out to be

et+1 =
[
A(λ̂t)− L(λ̂t)C(λ̂t)

]
et , t = α, α + 1, . . . . (13)

Thus, summing all the inequalities (12) from t = α to t = N and applying repeatedly (13), we obtain

N∑
t=α

e>t Qet ≤ e>α
P

µ
eα − e>N

[
A(λ̂N )− L(λ̂N )C(λ̂N )

]> P

µ

[
A(λ̂N )− L(λ̂N )C(λ̂N )

]
eN .

The limit for N →∞ provides an upper bound on the cost functions as follows:

J = lim
N→∞

N∑
t=α

e>t Qet ≤ e>α
P

µ
eα .

This upper bound can be minimized by reducing the maximum eigenvalue of
P

µ
. To this end, let us

consider a scalar ν > 0 such that νI >
P

µ
. Moreover, using the Schur Lemma, note that (11) can be

equivalently written as

[
P − µQ (P A(λ)− Y (λ) C(λ))>

P A(λ)− Y (λ) C(λ) P

]
> 0 (14)

for λ ∈ Λ. Therefore, the observer can be designed by solving the following problem.

Problem 2 Given a symmetric positive definite matrix Q, find ν > 0, δ > 0 , P = P> > 0, and Y (λ),
λ ∈ Λ, that minimize ν under the constraints (14) for λ ∈ Λ, (9) for λ, λ′ ∈ Λ, and

νI − P

µ
> 0 .

Then take the observer gains L(λ) = P−1 Y (λ), for any λ ∈ Λ.

Problem 2 can be solved by using LMI-based iterative optimization methods as the conditions are LMIs
if either µ or ν is kept constant.

Example 1 (continued) Let us now consider once again the simple system described in Example 1.
Furthermore, suppose that the weight matrix Q is chosen to be equal to I . By using the routines of the
Matlab LMI Toolbox, the following solution of Problem 2 was obtained:

L(1) =
[

1.3596
−1.8597

]
, L(2) =

[
4.0815

−3.9012

]
.

It is immediate to verify that such gains satisfy condition (i) of Theorem 3.2 with the Lyapunov

P =
[
212.2196 242.1431
242.1431 281.5651

]
.

Since for the considered system condition (ii) is automatically verified, such gains involve an estima-
tion error exponentially convergent to zero, provided that the estimates λ̂t are chosen inside the sets
Λα,ω(yt+ω

t−α), t = α, α + 1, . . . . 4
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3 Design of the observer in the presence of bounded noises

It is natural to ask whether the estimation scheme proposed in the previous section can be generalized
in order to take into account the presence of noises affecting the system and the measurement equations.
With this respect, let us now suppose that system (1) is affected by noises, i.e., let us consider the noisy
switching discrete-time linear system

xt+1 = A(λt) xt + wt

yt = C(λt) xt + vt
(15)

where wt ∈ W ⊂ Rn is the system noise vector and vt ∈ V ⊂ Rm is the measurement noise vector. We
assume the statistics of wt and vt to be unknown.

First, it is important to remark that the definition of Λα,ω(y) given in the previous section should be
modified in order to take into account the presence of noises. Indeed, if the noise vectors are not identically
null, in general the noisy observations vector yt+ω

t−α does not belong to the set Yα,ω(λt) . However, if the
noise vectors are “small,” it is reasonable to think that yt+ω

t−α is “close” (in some sense) to such a set. This
simple intuition leads us to adopt a minimum-distance criterion for the estimation of the discrete state.

Towards this end, given a generic switching sequence λ ∈ ΛN , let us denote by d(y,λ) the distance
between the observation sequence y ∈ RmN and the linear subspace Y(λ) . Clearly, d(y, λ) can be
obtained as

d(y, λ) = ‖ [I −Π(λ)]y ‖

where Π(λ) is the matrix of the orthogonal projection on the linear subspace Y(λ). Then the distance
dα,ω(y, λ) between the observations vector y and the set Yα,ω(λ) can be obtained as

dα,ω(y, λ) = min
λ−∈Λα,λ+∈Λω

d(y, λ− ⊗ λ⊗ λ+) .

The above-defined quantities allow one to define a new set Λ̄α,ω(y) of “candidate” discrete states in the
presence of noises that is made up of all the discrete states λ ∈ Λ with minimum distance dα,ω(y, λ), i.e.,

Λ̄α,ω(y)
4
=

{
λ ∈ Λ : dα,ω(y, λ) ≤ dα,ω(y, λ′) , ∀λ′ ∈ Λ

}
.

At every time t = α, α+1, . . ., the estimate λ̂t of the discrete state λt is chosen inside the set Λ̄α,ω(yt+ω
t−α).

It is important to note that such a criterion can be always applied regardless of the form of the sets W
and V to which the system and measurement noises belong. Moreover, an exact knowledge of the form of
such sets is not required.

By exploiting the foregoing definitions, in the noisy case the estimator can be obtained as

x̂t+1 = A(λ̂t) x̂t + L(λ̂t)
[
yt − C(λ̂t) x̂t

]

λ̂t ∈ Λ̄α,ω(yt+ω
t−α)

(16)

for t = α, α + 1, . . . .
In Section 2, it has been pointed out that, in the absence of noises, the possibility of distinguishing

between the actual discrete state λt = λ and another discrete state λ′ on the basis of the observations
vector yt+ω

t−α depends on the actual continuous state xt . With this respect, the set Xα,ω(λ, λ′) has been
defined. Such a set turned out to be quite important in the design of the filter gains in order to ensure the
convergence of the estimation error (see condition (ii) of Theorem 2.1). Of course, it would be interesting
to know whether similar considerations hold also in the noisy case when the estimate λ̂t is chosen inside
the set Λ̄α,ω

t (i.e., according to a minimum-distance criterion). Towards this end, a new set X̄α,ω(λ, λ′)
can be defined that represents the generalization of the set Xα,ω(λ, λ′). This set is made up of all the
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continuous states x such that possible observation sequences y exist that could be obtained if xt = x
and λt = λ but the distance dα,ω(y, λ′) is minimal.

In order to define formally the set X̄α,ω(λ, λ′), some preliminary definitions are needed. Given a generic

sequence λ ∈ ΛN of N discrete states, i.e., λ
4
= col

[
λ(1), . . . , λ(N)

]
, let us define

H(λ)
4
=




0 · · · 0
C(λ(2)) · · · 0

C(λ(3))A(λ(2)) · · · 0
...

. . .
...

C(λ(N))
N−2∏

i=1

A(λ(N−i)) · · · C(λ(N))




and

Γ(λ)
4
=

[
N−1∏

i=1

A(λ(N−i)) . . . A(λ(1)) I

]
.

By exploiting such definitions, the set X̄α,ω(λ, λ′) can be determined as the set of all the continuous states
x for which some x̃ ∈ Rn, some λ− ∈ Λα, some λ+ ∈ Λω , some w− ∈ Wα, some w+ ∈ Wω, and some
v ∈ Vα+1+ω exist such that

(i) x = Φ(λ−)x̃ + Γ(λ−)w− (i.e., the state x may belong to the state trajectory);
(ii) λ′ ∈ Λ̄α,ω(y) where y = F (λ− ⊗ λ⊗ λ+) x̃ + H(λ− ⊗ λ⊗ λ+) (w− ⊗w+) + v (i.e., the discrete state

λ′ may be a candidate discrete state for possible observation sequences associated with λ and x ).

In other words, X̄α,ω(λ, λ′) is the set of continuous states for which the minimum-distance criterion may
lead to choose as possible estimate λ′ instead of λ.

The following technical lemma gives a characterization of such a set as a function of the set Xα,ω(λ, λ′).

Lemma 3.1 Suppose that the sets W and V are bounded. Then, for any λ, λ′ ∈ Λ, each vector x ∈
X̄α,ω(λ, λ′) can be written as

x = xh + xb (17)

where xh ∈ Xα,ω(λ, λ′) and xb is norm-bounded, i.e., there exists a suitable constant k(λ, λ′) (see the
proof) such that ‖xb‖ ≤ k(λ, λ′) .

Lemma 3.1 ensures that, as long as the current state xt = x is “far enough” from the set Xα,ω(λ, λ′) ,
then, even in the presence of bounded noises, it is possible to distinguish between the discrete states λ
and λ′ on the basis of the observations vector yt+ω

t−α and according to a minimum-distance criterion. In
the light of such a result, the following theorem can be stated.

Theorem 3.2 Suppose that the sets W and V are bounded. Furthermore, suppose that the gains
L(λ), λ ∈ Λ satisfy conditions (i) and (ii) of Theorem 2.1. Then observer (16) involves an estimation
error that can be upper bounded as

‖et‖ ≤ hβt−α ‖eα‖+
1− βt−α

1− β
γ , t = α, α + 1, . . . , (18)

for some 0 < β < 1 , h > 0 , and γ > 0 (see the proof).

Note that, since β < 1 , the upper bound on the estimation error given in Theorem 3.2 converges
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exponentially to the asymptotic value γ/(1− β) .
Of course, in this case, the presence of disturbances makes it impossible to achieve the convergence to

zero of the estimation error. However, Theorem 3.2 ensures that, under suitable assumptions, the proposed
estimation scheme always provides an asymptotically bounded estimation error. Moreover, it is important
to point out that the asymptotic upper bound γ/(1−β) depends on the “amplitude” of the noises (i.e., on
the sets W and V): the smaller the noises the smaller is the upper bound. When the noises are identically
null (i.e., W = {0} and V = {0}), it turns out that γ = 0 and so, in this particular case, Theorem 3.2
provides the same convergence result of Theorem 2.1.

4 Simulation results

In this section, a simulation example is given to illustrate the effectiveness of the proposed approach to
state estimation for switching linear systems. Let us consider the discretized equations of an undamped
oscillator that may switch between two different frequencies

A(1) =




cos (ω1∆) −ω1 sin (ω1∆)
1
ω1

sin (ω1∆) cos (ω1∆)


 , A(2) =




cos (ω2∆) −ω2 sin (ω1∆)
1
ω2

sin (ω2∆) cos (ω2∆)


 ,

C(1) = C(2) =
[
0 1

]
(19)

where ω1 = 1, ω2 = 2, and the sampling time ∆ is equal to 0.1. Note that both the system matrices have
the two eigenvalues on the unit circle. However, due to the switching nature of the system, the trajectory
of the continuous state may show a divergent behavior even in the absence of noises. We assume that the
considered system has a minimum dwell time (i.e., the minimum number of steps between a switch and
the next one) equal to 7 . Moreover, we assume that x0 , wt and vt , t = 0, 1, . . ., are independent random
variables uniformly distributed in the sets X0 = [−x̄, x̄]2, W = [−w̄, w̄]2, and V = [−v̄, v̄] , respectively.

It is immediate to verify that, for the considered switching system, by choosing α = 1 and ω = 2 it
is possible to ensure the complete observability of the discrete state since it turns out that X 1,2(1, 2) =
X 1,2(2, 1) = {0} . Thus, in this case, condition (ii) of Theorem 2.1 is automatically verified.

In the following, for the sake of brevity, we shall refer to the estimator (16) (where the gains are
chosen by solving Problem 2 with Q equal to the identity matrix) as the Minimum-Distance Switching
Luenberger Observer (MDSLO). In order to evaluate the ability of the proposed estimation scheme to
deal with unknown switches in the discrete state, we compare the proposed filter with the Luenberger
switching observer obtained exploiting the exact knowledge of the discrete state instead of estimating it.
Such an estimator corresponds to the one proposed by Alessandri and Coletta (2001) and will be called
the Switching Luenberger Observer with Perfect Information (SLOPI).

In Fig. 1, the behaviors of the true values and the estimates of the two state components are shown
for a randomly chosen simulation. In Figs. 2 and 3, the plots of the Root Mean Square Errors (RMSEs)
(computed over 104 randomly chosen simulations) for the considered filters are shown in two different noise
situations. Note that in both cases the proposed observer provides asymptotic performances similar to those
of the SLOPI. This behavior is due to the divergence of the continuous state in most simulation runs. In
fact, since in the considered framework we have X 1,2(1, 2) = X 1,2(2, 1) = {0}, in the presence of bounded
disturbances the sets X̄ 1,2(1, 2) and X̄ 1,2(2, 1) turn out to be bounded (see Lemma 3.1). As a consequence,
the divergent trajectories of the continuous state eventually escape the set X̄ 1,2(1, 2) ∪ X̄ 1,2(2, 1), thus
making it possible to exactly identify the discrete state on the basis of the observations by means of the
proposed minimum-distance criterion. As to the transient behavior, the higher the noises the slower is the
convergence speed of the MDSLO. This is consistent with the fact that higher noises make it more difficult
to determine the discrete state on the basis of the observations sequence.
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Figure 1. True values and estimates obtained with the MDSLO of the first (a) and the second (b) component of the state for a
randomly chosen simulation with x̄ = 10, w̄ = 0.1, v̄ = 0.1.

5 Conclusions

The main topic of this paper is the problem of constructing observers for switching discrete-time linear
systems where the law governing the evolution of the discrete state is supposed to be unknown. Conditions
ensuring the stability of the error dynamics for these observers have been found and an LMI formulation for
such conditions has been presented. The proposed estimation scheme has been suitably modified in order
to provide an exponentially bounded estimation error in the presence of bounded disturbances affecting



June 8, 2007 12:57 International Journal of Control TCON-2006-0323

14

0 50 100 150 200 250 300 350 400
0

5

10

15

time t

RMSE

MDSLO
SLOPI

Figure 2. RMSEs of the considered filters for x̄ = 10, w̄ = 0.01, and v̄ = 0.01.
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Figure 3. RMSEs of the considered filters for x̄ = 10, w̄ = 0.1, and v̄ = 0.1.

both the system and the measurement equations. With respect to previous results, the conditions ensuring
the stability of the estimation error have been relaxed, thus making the approach applicable to a more
general class of switching systems.
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Appendix A: Proofs

Proof of Theorem 2.1: Let us consider the error dynamics computed by means of (1) and (3)

et+1 =
[
A(λ̂t)− L(λ̂t)C(λ̂t)

]
et +

[
A(λt)−A(λ̂t)

]
xt − L(λ̂t)

[
C(λt)− C(λ̂t)

]
xt, t = 0, 1, . . . .(A1)

There may be two cases, i.e., either λ̂t = λt or λ̂t 6= λt. In the former case, (A1) yields

et+1 = [A(λt)− L(λt) C(λt)] et, t = 0, 1, . . . . (A2)
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In the latter, since λ̂t ∈ Λα,ω(yt+ω
t−α), it is immediate to see that xt must belong to Xα,ω(λt, λ̂t) . Conse-

quently, by applying condition (ii), we have

{[
A(λt)−A(λ̂t)

]
− L(λ̂t)

[
C(λt)− C(λ̂t)

]}
xt = 0

and then, from (A1),

et+1 =
[
A(λ̂t)− L(λ̂t) C(λ̂t)

]
et, t = 0, 1, . . . . (A3)

By referring to either (A2) or (A3), let us consider the norm weighted by the positive definite matrix P ,
i.e., ‖et‖P = (e>t P et)1/2, and its induced matrix norm. If we define

β
4
= max

λ∈Λ
‖A(λ)− L(λ)C(λ)‖P ,

we obtain ‖et+1‖P ≤ β ‖et‖P and so

‖et‖P ≤ βt−α‖eα‖P .

Clearly, condition (i) implies β < 1 . Then, in order to conclude this
proof, it is sufficient to note that ‖eα‖P ≤ [σmax(P )]1/2‖eα‖ and ‖et‖P ≥
[σmin(P )]1/2‖et‖ and, consequently, to define h

4
= [σmax(P )/σmin(P )]1/2 .

Proof of Lemma 3.1: Let us consider a continuous state x obtained as

x = Φ(λ−) x̃ + Γ(λ−)w− (A4)

for some x̃ ∈ Rn, some λ− ∈ Λα, and some w− ∈ Wα . By definition, in order for x to belong to the
set X̄α,ω, there must exist some λ+ ∈ Λω, some w+ ∈ Wω, and some v ∈ Vα+1+ω such that, for the
observation sequence

y = F (λ− ⊗ λ⊗ λ+) x̃ + H(λ− ⊗ λ⊗ λ+) (w− ⊗w+) + v ,

it turns out that λ′ ∈ Λ̄α,ω(y) (i.e., y can lead to choose λ′ as a candidate estimate of the discrete state).
Recalling the definition of the set Λ̄α,ω(y) , a discrete state λ′ 6= λ may belong to Λ̄α,ω(y) only if

dα,ω(y, λ′) ≤ dα,ω(y, λ)

or, equivalently, only if there exist some λ′− ∈ Λα and some λ′+ ∈ Λω such that

d(y, λ′− ⊗ λ′ ⊗ λ′+) ≤ d(y, λ− ⊗ λ⊗ λ+) . (A5)

First note that the distance d(y,λ′− ⊗ λ′ ⊗ λ′+) can be written as

d(y, λ′− ⊗ λ′ ⊗ λ′+) =
∥∥ [

I −Π(λ′− ⊗ λ′ ⊗ λ′+)
]
[F (λ− ⊗ λ⊗ λ+) x̃ + H(λ− ⊗ λ⊗ λ+) (w− ⊗w+) + v]

∥∥ .

Thus, by using the reverse triangular inequality and by defining the quantity

δ α,ω 4
= sup

λ,λ′∈Λα+1+ω ;
w∈Wα+ω ;v∈Vα+1+ω

∥∥ [
I −Π(λ′)

]
[H(λ)w + v]

∥∥ ,
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one can obtain the lower bound

d(y, λ′− ⊗ λ′ ⊗ λ′+) ≥ ∥∥ [
I −Π(λ′− ⊗ λ′ ⊗ λ′+)

]
F (λ− ⊗ λ⊗ λ+)x̃

∥∥
−∥∥ [

I −Π(λ′− ⊗ λ′ ⊗ λ′+)
]
[H(λ− ⊗ λ⊗ λ+) (w− ⊗w+) + v]

∥∥
≥ ∥∥ [

I −Π(λ′− ⊗ λ′ ⊗ λ′+)
]
F (λ− ⊗ λ⊗ λ+)x̃

∥∥− δ α,ω .

Note that the boundedness of the sets W and V ensures the finiteness of the scalar δ α,ω .
As to the distance d(y, λ− ⊗ λ ⊗ λ+), since by definition the term F (λ− ⊗ λ ⊗ λ+)x̃ belongs to the

subspace Y(λ− ⊗ λ⊗ λ+), one can obtain the upper bound

d(y,λ− ⊗ λ⊗ λ+) = ‖ [I −Π(λ− ⊗ λ⊗ λ+)] [H(λ− ⊗ λ⊗ λ+)(w− ⊗w+) + v] ‖ ≤ δ α,ω .

As a consequence, inequality (A5) may hold only if the continuous state x̃ is such that

∥∥ [
I −Π(λ′− ⊗ λ′ ⊗ λ′+)

]
F (λ− ⊗ λ⊗ λ+) x̃

∥∥− δ α,ω ≤ δ α,ω

or, equivalently,

∥∥ [
I −Π(λ′− ⊗ λ′ ⊗ λ′+)

]
F (λ− ⊗ λ⊗ λ+) x̃

∥∥ ≤ 2 δ α,ω . (A6)

Let us now decompose the state space into two orthogonal subspaces: the null space of[
I −Π(λ′− ⊗ λ′ ⊗ λ′+)

]
F (λ− ⊗ λ⊗ λ+) defined as

N (
λ− ⊗ λ⊗ λ+, λ′− ⊗ λ′ ⊗ λ′+

) 4
=

{
x̃ ∈ Rn :

[
I −Π(λ′− ⊗ λ′ ⊗ λ′+)

]
F (λ− ⊗ λ⊗ λ+) x̃ = 0

}

and its orthogonal space N⊥ (
λ− ⊗ λ⊗ λ+,λ′− ⊗ λ′ ⊗ λ′+

)
with respect to the Euclidean scalar product.

By exploiting such a decomposition, the state vector x̃ can be written as

x̃ = x̃h + x̃b (A7)

where x̃h ∈ N (
λ− ⊗ λ⊗ λ+, λ′− ⊗ λ′ ⊗ λ′+

)
and x̃b ∈ N⊥ (

λ− ⊗ λ⊗ λ+, λ′− ⊗ λ′ ⊗ λ′+
)
.

There are two possible cases.

(i) The matrix
[
I −Π(λ′− ⊗ λ′ ⊗ λ′+)

]
F (λ− ⊗ λ ⊗ λ+) is null. Then the decomposition (A7) is always

given by x̃h = x̃ and x̃b = 0 . Note that this is a trivial case, in that inequality (A6) turns out to be
satisfied for any x̃ ∈ Rn.

(ii) The matrix
[
I −Π(λ′− ⊗ λ′ ⊗ λ′+)

]
F (λ−⊗λ⊗λ+) is not null. In this case, it is immediate to see that

the term
∥∥ [

I −Π(λ′− ⊗ λ′ ⊗ λ′+)
]
F (λ− ⊗ λ⊗ λ+) x̃

∥∥ can be lower bounded as

∥∥ [
I −Π(λ′− ⊗ λ′ ⊗ λ′+)

]
F (λ− ⊗ λ⊗ λ+) x̃

∥∥ ≥ σ
{[

I −Π(λ′− ⊗ λ′ ⊗ λ′+)
]
F (λ− ⊗ λ⊗ λ+)

} ‖x̃b‖

where, given a matrix M , σ(M) denotes its minimum non-null singular value. Thus, inequality (A5)
may hold only for continuous states x̃ of the form (A7), where the orthogonal component x̃b is such
that

‖x̃b‖ ≤ 2 δ α,ω

σ
{[

I −Π(λ′− ⊗ λ′ ⊗ λ′+)
]
F (λ− ⊗ λ⊗ λ+)

} .

Recalling (17), each continuous state x belonging to the set X̄α,ω(λ, λ′) can be written as

x = Φ(λ−) x̃h + Φ(λ−) x̃b + Γ(λ−)w− .
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Now, by defining

xh 4
= Φ(λ−) x̃h ,

xb 4= Φ(λ−) x̃b + Γ(λ−)w− ,

we obtain (17).
First note that x̃h belongs to the null space of

[
I −Π(λ′− ⊗ λ′ ⊗ λ′+)

]
F (λ− ⊗ λ ⊗ λ+) and then the

observation sequence yh = F (λ− ⊗ λ ⊗ λ+) x̃h is such that λ′ ∈ Λα,ω(yh). As a consequence, recalling
the definition of the set Xα,ω(λ, λ′) given in Section 2, it turns out that xh ∈ Xα,ω(λ, λ′) .

Let us now consider xb. In case (i), since we have x̃b = 0, by defining the constant

k(i)(λ, λ′) 4= sup
λ−∈Λα,w−∈Wα

{‖Γ(λ−)‖ ‖w−‖}

it turns out that ‖xb‖ ≤ k(i)(λ, λ′). As to case (ii), one can easily see that xb can be upper bounded as

‖xb‖ ≤ ‖Φ(λ−)‖ 2 δ α,ω

σ
{[

I −Π(λ′− ⊗ λ′ ⊗ λ′+)
]
F (λ− ⊗ λ⊗ λ+)

} + ‖Γ(λ−)‖ ‖w−‖ .

Then it is immediate to verify that ‖xb‖ ≤ k(ii)(λ, λ′) with the constant k(ii)(λ, λ′) defined as

k(ii)(λ, λ′) 4= sup
λ−, λ′−, λ+, λ′+,w−

{
‖Φ(λ−)‖ 2 δ α,ω

σ
{[

I −Π(λ′− ⊗ λ′ ⊗ λ′+)
]
F (λ− ⊗ λ⊗ λ+)

} + ‖Γ(λ−)‖ ‖w−‖
}

where the supremum is extended to every w− ∈ Wα , every λ−, λ′− ∈ Λα, and every λ+, λ′+ ∈ Λω such
that

[
I −Π(λ′− ⊗ λ′ ⊗ λ′+)

]
F (λ− ⊗ λ⊗ λ+) is not null.

Note that the boundedness of the set W and the finiteness of the set Λ en-
sure that both k(i)(λ, λ′) and k(ii)(λ, λ′) are finite. In order to end the proof, it
is sufficient to choose k(λ, λ′) as the maximum between k(i)(λ, λ′) and k(ii)(λ, λ′).

Proof of Theorem 3.2: The error dynamics computed by means of (15) and (16) is

et+1=
[
A(λ̂t)− L(λ̂t) C(λ̂t)

]
et +

[
A(λt)−A(λ̂t)

]
xt

−L(λ̂t)
[
C(λt)− C(λ̂t)

]
xt + wt − L(λ̂t)vt (A8)

for t = 0, 1, . . . . There may be two cases, i.e., either λ̂t = λt or λ̂t 6= λt. In the former case, (A8) yields

et+1 = [A(λt)− L(λt) C(λt)] et + wt − L(λ̂t)vt .

In the latter, since λ̂t belongs to Λ̄α,ω(yt+ω
t−α) , the state xt must belong to X̄α,ω(λt, λ̂t) . Hence, in the

light of Lemma 3.1, there exist a vector xh
t ∈ Xα,ω(λt, λ̂t) and a vector xb

t , with ‖xb
t‖ ≤ k(λt, λ̂t) , such

that xt = xh
t + xb

t . Since condition (ii) implies

{[
A(λt)−A(λ̂t)

]
− L(λ̂t)

[
C(λt)− C(λ̂t)

]}
x̃h

t = 0 ,
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in this case the error dynamics can be written as

et+1 =
[
A(λ̂t)− L(λ̂t) C(λ̂t)

]
et +

{[
A(λt)−A(λ̂t)

]
− L(λ̂t)

[
C(λt)− C(λ̂t)

]}
xb

t + wt − L(λ̂t)vt .

Consider now the norm weighted by the positive definite matrix P , i.e., ‖et‖P = (e>t P et)1/2 . If we define
the constants β as in the proof of Theorem 2.1 and γ̄ as

γ̄ = max
λ,λ′,xb,w,v

∥∥∥∥
{ [

A(λ)−A(λ′)
]− L(λ′)

[
C(λ)− C(λ′)

] }
xb + w − L(λ′)v

∥∥∥∥
P

with λ, λ′ ∈ Λ , ‖xb‖ ≤ k(λ, λ′) , w ∈ W , and v ∈ V , then, by means of triangular inequality, we obtain
‖et+1‖P ≤ β ‖et‖P + γ̄ and so

‖et‖P ≤ βt−α‖eα‖P +
1− βt−α

1− β
γ̄ .

Clearly, condition (i) implies β < 1 and Lemma 3.1 ensures that γ̄ < +∞ . Then, in or-
der to conclude this proof, it is sufficient to note that ‖eα‖P ≤ [σmax(P )]1/2‖eα‖ and ‖et‖P ≥
[σmin(P )]1/2‖et‖ and, consequently, to define h

4
= [σmax(P )/σmin(P )]1/2 and γ = γ̄/[σmin(P )]1/2 .


