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Abstract

Cerato-platanin (CP), a protein of about 12.4 kDa from Ceratocystis fimbriata f. sp. platani (Cfp), accumulated in the mycelium

and was located in the cell walls of Cfp ascospores, hyphae and conidia suggesting that this protein had a role in forming the fungal

cell wall apart from the already known fact that it is secreted early in culture and elicits phytoalexin synthesis and/or plant cell death.

The finding was obtained with three immunological techniques: a quantitative ELISA which determines the amount of CP in the

mycelium, an immunofluorescence assay, and immunogold labelling to define the exact localization of CP in the Cfp cells.

� 2004 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Cerato-platanin (CP), a small, moderately hydro-

phobic protein consisting of 120 amino acids, is pro-
duced by the Ascomycete Ceratocystis fimbriata (Ell.

and Halst.) Davidson f. sp. platani Walter (Cfp) [1]. Cfp

is the causative agent of canker stain of plane, a severe

disease with a high incidence in European populations

of Platanus acerifolia (Ait.) Willd. [2,3]. CP is reported

to be released abundantly in shake culture at an early

stage, and to elicit defense-related responses, such as

phytoalexin synthesis and/or cell death, in both host and
non-host plants [1,4,5].

According to various databases (SwissProt, EMBL

and GenBankTM), CP is the reference protein of a small

protein family that includes three other proteins pro-

duced by other Ascomycota: the snodprot1 protein,
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from Phaeosphaeria nodorum (SwissProt Accession no.

O74238), the allergen Asp f 15 precursor (Asp f 13),

from Aspergillus fumigatus (SwissProt O60022), and the

heat-stable 19 kDa antigen (CS-Ag), from Coccidioides

immitis (SwissProt Q00398). In addition, Wilson et al.

[6] have recently characterized the gene sp1 from Lep-

tosphaeria maculans; this gene encoded a secreted pro-

tein closely related to the CP protein family. All these

proteins are characterized by high sequence homology,

but not always by clear functional similarities. However,

they are all secreted, and in some cases seem to be in-

volved in biological recognition phenomena. Snodprot1
is produced during infection of wheat leaves by

P. nodorum [7]. The Asp f 15 precursor (Asp f 13) has

been characterized together with many other allergens

from A. fumigatus in order to find a serological proce-

dure to diagnose allergic bronchopulmonary aspergil-

losis, a severe disease of the lungs in humans caused by

A. fumigatus [8]. CS-Ag is one of a class of trypsin-like

serine proteinases produced by both the saprophytic and
the parasitic phases of C. immitis, causing San Joaquin
. Published by Elsevier B.V. All rights reserved.
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Valley fever or coccidioidomycosis, a human respiratory

disease, and was proposed as a Coccidioides-specific

antigen for the diagnosis of this fungus [9]. The re-

combinant SP1 protein induced an autofluorescence

response on host leaves [6].
Cerato-platanin shares some structural and func-

tional characteristics with the hydrophobin family: (i) a

low molecular mass; (ii) hydrophobicity; (iii) the se-

quence Cys–Ser–Asn is aligned with the signature se-

quence of the hydrophobins (Cys–Cys–Asn), except for

the conservative substitution Cys! Ser; (iiii) the high

homology of the N-terminal region of CP with that of

cerato-ulmin, a hydrophobin from Ophiostoma spp. [10–
12]. However, CP differs from the hydrophobins in

having only four cysteines, all involved in two disulphide

bonds, and in having a distinctive hydropathicity profile,

unlike that of both class I and class II hydrophobins.

In the present paper we show that CP is located in the

mycelial cell walls of Cfp by three different methods, all

based on the immunorelationship between CP and a CP-

specific rabbit antiserum.
2. Materials and methods

2.1. Fungal cultures

The origin of the reference Cfp strain Cf AF 100 has

been previously described [1]. Details of the other Cfp

strains (CF 3, CF 5, CF 6, CF 7, CF 8, CF 9, CF 11, CF

12, CF 15, CF 16, CF 17, CF 18, CF 22, CF 23, CF 24,

CF 25, CF 27, CF 42) are given in Santini and Capretti

[13]. The strains were routinely cultured on potato

dextrose agar (PDA) (Difco, Detroit, MI, USA). For

long-term storage, conidia and mycelial fragments col-

lected from 4-day-old liquid shaken mini cultures (3 ml)

in potato dextrose broth (PDB) were resuspended in
10% (v/v) glycerol and stored at )70 �C.

In the experiments described below, mycelial frac-

tions including aerial hyphae and hyaline and cylindrical

conidia were carefully collected from the surface of a 6-

day-old culture, centrifuged at 5000g for 10 min, washed

three times with 0.9% (w/v) NaCl and twice with dis-

tilled water, and then resuspended to obtain the ap-

propriate concentrations of hyphae and conidia. The
ascospores were collected from mature perithecia pro-

duced on the surface of 2–3-week-old cultures on PDA,

and diluted in octane.

2.2. Purification of CP and antiserum preparation

Cerato-platanin was purified from culture filtrate of

Cfp strain Cf AF 100 according to the procedure in
Pazzagli et al. [1]. Rabbit CP-specific antiserum was

prepared according to Scala et al. [9], divided into 1 ml

aliquots and stored at )20 �C. Pre-immune serum was
collected from a rabbit before the first injection and

stored at )20 �C to be used as a negative control.

2.3. Quantitative ELISA

The amount of CP in Cfpmycelium was quantified by

ELISA. A freeze-dried aliquot (10 mg) of each sample

was extracted for 2 min with 500 ll of 60% (v/v) ethanol

and centrifuged for 5 min at 13000g. The supernatant

was dried under vacuum. The residue was solubilized in

500 ll phosphate buffered saline (PBS), 0.1 M, pH 7.2,

and used for coating the wells (50 ll per well) (Falcon

3911 Microtest flexible plates, Becton Dickinson Lab-
ware, Oxnar, CA, USA) in the ELISA. The culture fil-

trates were serially twofold diluted, from 1:1 to 1:8; 50 ll
samples of each dilution were added in triplicate to the

wells and maintained at 37 �C for 3 h. Serial dilutions of

CP and uninoculated PDB were used as positive and

negative controls respectively. The wells were washed

three times with cold PBS and any remaining binding

sites were blocked with 50 ll per well of 0.5% (w/v)
gelatin in PBS for 2 h at 37 �C. After saturation, 50 ll of
CP antiserum, diluted 1:1000 in PBS containing 0.25%

(w/v) gelatin and 0.2% (v/v) Tween 20, was added.

Rabbit pre-immune serum was used in the control wells.

After overnight incubation, the multiwell plates were

washed with cold PBS and incubated at 37 �C for 2 h in

the presence of 50 ll per well of goat anti-rabbit IgG/

peroxidase (Sigma–Aldrich, St. Louis, MO, USA) di-
luted 1:2000 in PBS containing 0.25% (w/v) gelatin and

0.2% (v/v) Tween 20. The wells were washed three times

with cold PBS, after which a 150 ll substrate solution

(0.4 mgml�1 o-phenylenediamine dihydrochloride,

0.012% (v/v) H2O2 in 0.1 M citrate-phosphate buffer,

pH 5.0) was added; after 30 min of incubation at room

temperature in the dark, the optical density at 492 nm

(OD492) was measured with a Model 550 Microplate
reader (Bio-Rad, Hercules, CA, USA). The concentra-

tion of CP in the samples was determined using a

standard curve. The standard linear calibration curves

at OD492 vs. the log of the purified CP concentration

had a correlation coefficient >0.95 using purified CP

over concentrations ranging from 3 ng to 1 lg per well.

The concentration of 1 lg per well gave an OD492 of

about 0.700. Negative samples always yielded an
OD492 < 0:030.

2.4. Immunofluorescence assay

Aliquots (20 ll) of hyphal, conidial and ascospore

suspensions at a concentration of about 105 cells ml�1

were dispensed to 12-well Multitest slides (ICN Bio-

medicals, Aurora, OH, USA) and dried at 60 �C. The
wells were washed with PBS, filled with 20 ll of CP

antiserum diluted 1:100 in PBS and incubated for 2 h at

room temperature. Control wells were filled with pre-
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immune serum diluted 1:100. After washing three times

with PBS, the wells were filled with 20 ll each of a 1:40

dilution of goat antirabbit IG-fluorescein isothiocyanate

conjugate (Sigma–Aldrich) in PBS and incubated for 2 h

at room temperature. The slides were washed with dis-
tilled water and examined under a Leitz Phloemopack

2.1 microscope with an incidence light excitation system,

equipped with UV filters and a 75-W Leitz 100Z Xenon

lamp.

2.5. Immunogold labelling

Hyphae, conidia and ascospores were fixed in 2.5%
(v/v) glutaraldehyde in 0.1 M Na-phosphate buffer (pH

7.2) overnight at 4 �C. After washing in the same buffer

the material was postfixed in 1% OsO4 buffer for 1 h,

washed three times with buffer, and dehydrated in an

ethanol series of 30, 50, 70, 90 and 100% (v/v), at room

temperature. The samples were infiltrated in 2:1 (v/v)

ethanol:LR White (Sigma) for 1 h; 1:2 (v/v) ethanol:LR

White for 2 h; 100% LR White overnight at 4 �C and
finally embedded in LR White resin according to the

method of Tagu et al. [14] with modifications. Ultrathin

sections were cut with an LKB ultramicrotome, col-

lected on formvar-coated gold grids and processed for

immunogold labelling to localize the CP. The sections,

collected on formvar-coated gold grids, were first incu-

bated in PBS with 1% bovine serum albumin (BSA,

British BioCell International, Cardiff, UK) (pH 8.2) for
20 min. They were then incubated for 1–2 h in CP an-

tiserum (primary antibody) diluted 1:100 in the first

buffer. The grids were washed five times for 5 min with

the buffer, then incubated for 30 min at room temper-
Fig. 1. Immunofluorescence labelling of hyphae and conidia (A, scale bar
ature on a drop of goat anti-rabbit IgG antibodies

conjugated to 10 nm gold particles (Sigma) diluted 1:20

in the buffer [15] (modified). After rinsing with the buffer

and distilled water, the grids were stained with uranyl

acetate and lead citrate. Examination was in a Philips
EM 201C transmission electron microscope operating at

80 kV.

Control reactions were performed under the same

conditions using pre-immune serum instead of the CP

antiserum, or the gold-conjugated secondary antibody

(goat anti-rabbit IgG) alone.
2.6. Statistical analysis

ELISA data of the CP content of Cfp isolate myce-

lium were analysed by ANOVA, fixed model. Homo-

geneous groups were identified by means of the Tukey

HSD test.
3. Results and discussion

The cellular content of CP in Cfp mycelium, as

quantified by ELISA, was 16.61� 0.42 ngmg�1 fresh

weight mycelium for the reference isolate CF AF 100.

Results with the other isolates did not differ statistically

from that of the reference isolate.

The IF assay showed that CP occurred on the surface

of the conidia, hyphae and ascospores of Cfp isolate CF
AF 100 (Fig. 1). The fluorescence reaction remained

intense even after numerous washes with 80% ethanol,

suggesting that the CP was a stable component of the
¼ 50 lm) and ascospores (B, scale bar¼ 10 lm) with CP antiserum.
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fungal surface. No fluorescence was observed in sam-

ples treated with rabbit pre-immune serum (data not

shown).

Immunoelectron microscopy showed unequivocally

that CP was a component of the Cfp cell walls. The
positive reaction was located on the walls of hyphae

(Fig. 2(A) and (B)), conidia (Fig. 2(C)) and ascospores

(Fig. 2(D) and (E)) of Cfp. CP was more abundant on

the ascospore and conidial wall than on the hyphal wall

(Fig. 2(C)–(E)). Labelling on the conidia was distributed

across the entire thickness of the wall, while on the as-

cospore wall the gold granules were located more den-

sely on the electron-transparent layer near the
plasmamembrane than on the more outward layer.

There was labelling also on the fibrillar material at the

surface of ascospores (Fig. 2(D) and (E)). No labelling

was found on control sections where pre-immune serum
Fig. 2. Transmission electron microscopy of immunogold labelling of Cerato

wall. Scale bar¼ 0.3 lm. C: labelling distributed across the conidial wall. Sca

fibrillar material on the surface of ascospores (arrowhead). Scale bar¼ 0.3

plasmamembrane; w, wall.
was used or where the first antibody was omitted (data

not shown).

All the experimental evidence demonstrated that CP

was a significant component of the cell walls of Cfp

conidia, hyphae and ascospores and of the fibrillar
material at the surface of Cfp ascospores. This finding

suggests that this protein may have some new structural

functions, apart from the already known fact that it is

secreted early in culture and elicits phytoalexin synthesis

and/or cell death in both host and non-host plants

[1,4,5]. CP resembles the hydrophobins, known to be

located on the surface of the conidial and hyphal walls,

where they form insoluble complexes that have a
structural role in forming aerial hyphae [16–19]. Hy-

drophobins are also often excreted abundantly in the

form of monomeric proteins into the culture medium by

submerged feeding hyphae, and/or they are involved in
cystis fimbriata f. sp. platani. A, B: Hyphae with gold granules on the

le bar¼ 0.2 lm. D, E: Gold granules on the ascospore wall and on the

lm. Abbreviations: g, golgi body; m, mitochondrion; n, nucleus; pm,



S. Boddi et al. / FEMS Microbiology Letters 233 (2004) 341–346 345
ensuring contact and communication between the fun-

gus and its environment. In the outermost layer of the

fungal cell walls the hydrophobins self-assemble into

polymeric and amphipatic monolayers with a higher

content of beta-sheets than the monomeric proteins, as
has been demonstrated in the case of amyloid fibrils

[20,21]. Other hydrophobic cell wall proteins make the

cell walls hydrophobic as well and have a role in

the formation of aerial hyphal structures, or in securing

the adhesion of the hyphae to the hydrophobic surface

of the host [22,23]. However, the capacity of being se-

creted into the environment and of being involved in

biological recognition phenomena with other organisms,
is a characteristic common only to some of the hydro-

phobins and CP family members. The phytopathogenic

fungi are reported to produce proteins a morphologic

and/or pathogenic role. In all these cases elucidation of

the protein functions was facilited through our obtain-

ing fungal mutants with traditional mutagenesis meth-

ods, and was made more effective by targeted gene

disruption. Thus cerato-ulmin hydrophobin from the
Ophiostoma species was shown to be involved in causing

the hydrophobicity of the mycelium grown on solid

culture, its adhesion to vector insects, and elm wilting

symptom expression [24–27]. Disruption of the gene

codifing unsecreted MPG1 hydrophobin produced mu-

tants of Magnaporthe grisea with lower levels of viru-

lence, conidiation and appressorium formation [28,29],

while in the case of the SC3 gene of Schizophyllum

commune the composition of the fungal cell wall was

affected by its disruption [30]. The HCf-1 hydrophobin

of Cladosporium fulvum was demonstrated to be re-

quired for efficient water-mediated dispersal of conidia

[31]. In other cases the targeted deletion of genes did not

lead to differences in the morphology and hydropho-

bicity of spores, or in virulence on the host plant, as was

the case with the cpph1 hydrophobin gene of Claviceps
purpurea [32], and the sp1 CP family member protein

gene from Leptosphaeria maculans [6].

At the moment, the role of CP presence in the fungal

cell wall is unclear, but our research group, having se-

quenced the cp gene (NCBI accession number

AJ311644), is now focusing on targeted mutants unable

to produce CP. These will help to elucidate the role of

CP in the pathogenesis of plane canker stain and in the
structural integrity of cell walls and/or their morpho-

genesis. Studies are also under way to determine whether

CP self-assembles at the interface between the fungal

cells and the air, and whether this modifies the beta-

structure content.
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