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Abstract

Pb isotope composition of tree rings (Celtis Australis ) and urban aerosols have been determined to assess whether

arboreal species can be used as bio-geochemical tracers of the evolution of heavy metal pollution to the
environment. Particular care was paid to setting up a high quality analytical technique to work with arboreal species
with low Pb content. The Pb isotope composition of tree rings from 1950 to 1995 is within the range of European
aerosols and is correlated with the temporal evolution of Pb isotopes measured in air particulates from Firenze. The

entire data set (tree rings and air particulates) demonstrate that Pb isotope composition of tree rings can be used
successfully as a proxy of the atmospheric Pb isotope composition of urban areas. This, in turn, suggests that tree
rings are potentially a powerful bio-geochemical tracer for monitoring air pollution history due to human

activities. 7 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

Atmospheric pollution from fossil fuel combustion

has increased dramatically during this century (e.g.,

Murozumi et al., 1969; Chow et al., 1975; Lantzy and
MacKenzie, 1979; Shirahata et al., 1980; Nriagu and

Pacyna, 1988; Berner and Berner, 1996). The principal

gaseous pollutants are CO2, CO, SO2 and a number of

N-oxides. Fossil fuel burning also delivers a variety of
particulate matter, such as smoke particles and ¯y

ashes, to the atmosphere. Lead alkyls, in particular,

added to gasoline for their antiknock properties, are
emitted in particulate form from car exhaust and their

addition to the Earth's ecosystem has long been recog-
nised on a global scale (e.g., Chow and Johnstone,
1965; Chow et al., 1975; Manton, 1977; Nriagu, 1979;
Schaule and Patterson 1981; Settle and Patterson 1982;

Boyle et al., 1986; Patterson and Settle, 1987; Shen
and Boyle 1987; Sturges and Barrie 1989; Hopper et
al., 1991; Rosman et al., 1993; VeÂ ron et al., 1994;

Hamelin et al., 1997). Over the last decades the
increased awareness of environmental issues has led to
the recognition that anthropogenic Pb emissions to the

environment represent a serious health hazard because
of the toxicity of this metal (Patterson, 1980; Pacyna,
1986; Nriagu and Pacyna, 1988).

This paper presents the results of a reconnaissance
study of the temporal evolution of heavy metal pol-
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lution using Pb isotope analyses of tree rings in the
urban area of Firenze, Italy. The aims are twofold: (i)

to establish an analytical procedure able to produce
high quality Pb isotope data in arboreal species with
low Pb content; (ii) to determine whether arboreal

species can be used as bio-geochemical tracers to moni-
tor the temporal evolution of heavy metal pollution to
the environment. If substantiated, this technique could

be used to monitor e�orts to decrease anthropogenic
impact on the environment.

2. Rationale

The chemical element Pb (Z= 82) is composed of 4
stable isotopes: 208Pb, 207Pb, 206Pb, and 204Pb. Of these

four isotopes, only 204Pb is non radiogenic. The others
derive from the radioactive decay, through a series of
intermediate daughters, of 232Th (208Pb), 235U (207Pb),

and 238U (206Pb). The abundances of 208Pb, 207Pb, and
206Pb have, therefore, increased through time since
Earth's accretion, from their primordial values to pre-
sent day values depending on both the time-averaged

U/Th/Pb of a given reservoir and the half-lives (t ) of
the radioactive isotopes of Th and U that vary from
14 Ga (232Th) to 0.7 Ga (235U). The signi®cant di�er-

ence in half-lives, along with the variety of U/Th/Pb
values in natural materials have produced a relatively
wide range of Pb isotope ratios in the di�erent Earth

reservoirs (e.g., Faure, 1986; Dickin, 1995; Galer and
Goldstein, 1996). This makes Pb isotopes an unique
tool in environmental studies because of the well-estab-

lished di�erent isotopic composition of Pb emitted to
the atmosphere due to human activities (industrial Pb)
with respect to that of Pb present in rocks at the
Earth's surface (natural Pb) (Chow et al., 1975; Shira-

hata et al., 1980; Maring et al., 1987; Sturges and Bar-
rie, 1987; Church et al., 1990; Erel et al., 1990; Hopper
et al., 1991; VeÂ ron et al., 1992, 1994; Erel and Patter-

son, 1994).
Pb in arboreal species occurs as impurities, and

ranges from ppm to ppb levels (Bowen, 1979). The

uptake of heavy metals by plants can occur via the
foliar, cortical and radical apparata. In the latter case,
the plants take up Pb from the soil, whilst the source
of Pb adsorbed via the foliar and cortical apparata is

through dry and wet deposition from atmospheric
aerosol and subsequent adsorption by the plants,
although the exact mechanisms and pathways of

metals incorporation in tree rings is not fully under-
stood (Lepp, 1975; Baes and McLaughlin, 1984). The
Pb incorporated during the annual growth of tree rings

originates from two distinct components, which are
present in di�erent proportions in the potential sources
of Pb to the plants (see above). A natural Pb com-

ponent, which includes Pb derived from rock weather-
ing, and an industrial Pb component, which includes

dust from local mining activity, smelter and power
plant emission and car exhaust. Car exhausts in urban
areas, in particular, are known to be the major source

of Pb to the atmosphere (e.g., Murozumi et al., 1969;
Shirahata et al., 1980; Graney et al., 1995; Watmough
and Hutchinson, 1999), despite the introduction of

`unleaded' gasoline (Pb < 0.02 g/l, Nicholson and
Branson, 1993). Given the Pb content of urban aero-
sols (Bowen, 1979; Sturges and Barrie, 1987; Hopper

et al., 1991), it is conceivable that industrial Pb will
overwhelm the natural Pb component in urban areas,
at least during most of the 2oth century. This working
hypothesis makes tree rings a potential record of

anthropogenic Pb emission to the environment.
The ability of a vegetable organism to record the

presence of a polluting component in the atmosphere

has already been assessed (e.g., Rolfe and Jennet,
1975; Baes and McLaughlin, 1984; Sloof and Wolter-
beek, 1991). Lichens, in particular, are excellent bio-

geochemical tracers of environmental pollution (e.g.,
Lawrey and Hale, 1988; Rope and Pearson, 1990;
Lawrey, 1993; Carignan and GarieÂ py, 1995), although,

unlike tree rings, they do not record any temporal in-
formation. A few studies have used tree rings as en-
vironmental pollution monitors (Rolfe and Jennet,
1975; Baes and McLaughlin, 1984; Hagemeyer et al.,

1992; Ferretti et al., 1993; Jonsson et al., 1997; Wat-
mough and Hutchinson, 1999), although these studies
only determined concentrations of a number of trace

elements in tree rings. To date, only two studies have
used Pb isotope composition of tree rings as bio-geo-
chemical tracers of heavy metal pollution: Murozumi

et al. (1996) in Japan, and Kalin (1996, personal com-
munication) in Northern Ireland. The main drawback
that prevents a widespread use of the Pb isotope sys-
tematics in tree rings for environmental studies is that

there is no routinely accepted analytical technique to
produce the low blank procedure necessary to obtain
high quality data.

3. Sample description and analytical methods

The tree sample analysed in this study was chosen

from among those periodically cut down by the City
Hall of Firenze due to obstruction to roads (emerging
roots, bent trunks, etc.), and is from a street heavily

used by motor vehicles. The sampling site implies that
car exhaust is the dominant component in the sources
(i.e., soil and aerosol) of Pb to the tree, and hence it is

suitable to explore the possibility of using arboreal
species to monitor environmental quality. A 5 cm thick
tree slice, with a diameter of ca 60 cm, was sampled
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using an electric steel saw from the alboreal species

Celtis Australis, cut down in February 1996. The slice
was successively sawed in sectors of approximately 15±
208 each and one of these samples was selected for iso-

topic analysis based upon both the absence of fungi
and visible sign of surface decay. Tree rings of the

sample were then accurately counted and divided into
groups of 3±5 a increments following a mechanical

separation using stainless-steel blades (Watmough and
Hutchinson, 1999). Particular care was paid to
mechanically remove the parts that had been in contact

with the electric steel saw. In addition to tree rings, air
particulates provided by the Regional Agency for En-

vironmental Protection of Firenze, and representing
particulate matter in 25±30 m3 of air collected during
1990 (starting year of the survey by the local auth-

orities) and 1995, were also analysed to monitor the
evolution of heavy metal pollution in the city.

All chemical and Pb isotope analyses were per-
formed at the Vrije Universiteit, Amsterdam. Special

care was paid to the determination of the amount of
tree material necessary for the isotopic analysis, and to

the selection of material laid down in the year of
growth of a given annual tree ring. First, Pb contents
of the tree rings were determined on a set of samples

covering the temporal range of this study (Table 1).
Due to the low Pb content of the Celtis Australis rings

(Table 1), the amount of material necessary for Pb iso-
tope analysis was 1±2 g, yielding 020 ng of Pb. The
considerable quantity of acids used to dissolve the

samples made it necessary to measure the Pb isotope
composition of the reagents to check for blank contri-

butions to the samples. The analyses of reagents were
performed on the pro-analysis quality and the results

on HNO3 and toluene are given in Table 2. The Pb

isotope composition of the clean lab as a whole was

also monitored by leaving 5 ml of 9N HBr in an open

beaker for 2 weeks. Second, each tree ring sample was

split into two aliquots, one of these undergoing a pre-

treatment procedure to remove exchangeable Pb that

may be mobile across tree ring boundaries. This pro-

cedure, developed for radiocarbon analyses of wood

(Kalin et al., 1995), was tested to verify whether it was

also suitable for removing exchangeable heavy metal

impurities as well. The method was as follows:

1. washing of the samples, placed in 30 ml Savillex

screw-top beakers, in ultrasonic bath with milli-Q

water for 6 h at 508C, and subsequently desiccating

in an oven at 808C for 2 days;

2. leaching in ultrasonic bath with distilled toluene for

6 h at 508C to remove resins and tars, and then rin-

sing thoroughly with milli-Q water;

3. washing in ultrasonic bath with milli-Q water for 6 h

at 508C to remove sugars, and then rinsing

thoroughly with milli-Q water;

4. drying on hotplate at 808C.

Aliquots of samples that were not leached were pro-

cessed through step 1 only. The destruction procedure,

for leached and unleached samples, did not go through

an ashing step as commonly used for organic matter

analysis (Watmough and Hutchinson, 1999), to avoid

cross contamination due to volatility of Pb and con-

sisted of:

1. oxidation on hotplate at 1208C overnight with 10 ml

of te¯on distilled 14N HNO3;

2. evaporating to dryness slowly on hotplate at 808C;

Table 1

Pb content of tree rings (C. Australis ) and air particulatesa

Sample Year Total particulate (mg/m3) [Pb]

(ng/g) (mg/g) (mg/m3)

C. Australis

CA 3943 1939±1943 28

CA 5662 1956±1962 13

CA 8690 1986±1990 54

CA 9194 1991±1994 56

CA bark 63

Air particulate

260190 1990 101 7383 0.75

280195 1995 82 7577 0.62

310195 1995 82 7923 0.65

a Pb content in tree rings by Graphite Furnace Atomic Absorption Spectrometry, whilst in air particulates by isotope dilution

thermal ionisation mass spectrometry. The volume of air sampled is between 25 (1990) and 30 (1995) m3. The Pb contents of tree

rings have been corrected for a blank contribution of 2 ppb; no correction was necessary for air particulates.
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3. further oxidation in a few ml of 14N HNO3, leaving

the sample on the hotplate at 1208C overnight and

drying slowly the following day. This step was

repeated 4 times (5, 4, 3 and 3 ml of HNO3) until

the complete destruction of organic matter;

4. dissolution in 10 ml of quartz distilled 6N HCl, on

a hotplate at 1208C for 1 day and then drying;

5. complexing of Pb into 1 ml of te¯on distilled 0.7N

HBr, and centrifuging the residue as for normal Pb

analyses.

Air particulate samples were processed using the stan-

dard dissolution procedure for rock samples (HF-

HNO3-HCl). Lead was then separated using standard

column chromatography with Dowex AG1 � 8 anion

exchange resins and HBr as eluent (e.g., Manhes et al.,

1978). The ®nal Pb fraction was treated with 2±3

drops of HClO4 to oxidise residual organics, which, in

a ®rst attempt, inhibited the measurement on the mass

spectrometer. Finally, the samples were loaded onto

single zone-re®ned Re ®laments using the silica gel

technique (e.g., Gerstenberger and Haase, 1997). The

total procedural blank was <100 pg whilst a typical

sample contained 020 ng of Pb (assuming 50% loss

for the leached samples), making the blank contri-

bution <0.5%.

4. Results

The Pb content of the tree rings of Celtis Australis
and of the air particulates are reported in Table 1,
whilst Pb isotope compositions are given in Table 2.

The total procedural blank obtained for Pb isotope
analyses (<100 pg) establishes a negligible contri-
bution to the samples. This is further corroborated by

Fig. 1, in that the inverse correlation delineated by the
tree ring samples on the 207Pb/204Pb vs 207Pb/206Pb dia-
gram is opposite to that expected if the blank (which

may re¯ect the Pb isotope composition of Amsterdam
air at the time of analyses) contributed signi®cantly to

the Pb isotope composition of the samples. Given the
amount of reagents used to dissolve the samples, this
is an excellent result con®rming the high quality of the

procedure adopted to perform the isotopic analyses.
The Pb content in the air particulates of 1990 and

1995 is 07500 ppm, corresponding to a Pb content in

the air of ca 0.65 mg/m3 (Table 1). This absolute con-
tent is higher than that measured in other urban air

world-wide, such as in Belfast, Northern Ireland, in
1994 (ca 0.4 mg/m3) (Kalin, 1996, personal communi-
cation), and in Broken Hill, Australia, in 1991±1992

(0.06±0.39 mg/m3) (Gulson et al., 1994), and clearly
reveals a large anthropogenic Pb emission to the en-

Table 2

Pb isotope composition of tree rings (C. Australis ), air particulates and blanksa

Sample Year Wt (mg) 208Pb/204Pb 207Pb/204Pb 206Pb/204Pb 208Pb/206Pb 207Pb/206Pb 208Pb/207Pb

C. Australis (unleached)

CA 5055 1950±1955 1056 38.221 15.609 18.253 2.09406 0.85521 2.44863

CA 6366 1963±1966 893 38.281 15.623 18.277 2.09442 0.85482 2.45014

CA 8385 1983±1985 751 38.144 15.612 18.172 2.09908 0.85912 2.44330

CA 9195 1991±1995 588 38.032 15.597 18.101 2.10109 0.86166 2.43844

C. Australis (leached)

CA 5055 T 1950±1955 1922 38.329 15.633 18.298 2.09460 0.85433 2.45179

CA 6366 T 1963±1966 1894 38.260 15.629 18.246 2.09695 0.85657 2.44809

CA 8385 T 1983±1985 1303 38.182 15.623 18.184 2.09979 0.85918 2.44390

CA 9195 T 1991±1995 1092 38.078 15.613 18.117 2.10180 0.86178 2.43893

Air particulate

260190 1990 0.205 38.141 15.630 18.172 2.09898 0.86010 2.44036

280195 1995 0.146 37.899 15.616 17.956 2.11076 0.86969 2.42701

310195 1995 0.225 37.809 15.602 17.894 2.11291 0.87191 2.42333

Blanks (ion counting runs)

HBr blank 37.60 15.62 17.69 2.1238 0.8827 2.4064

HBr blank 37.66 15.63 17.75 2.1230 0.8816 2.4080

HNO3 blank 37.65 15.61 17.77 2.1188 0.8784 2.4125

Toluene blank 37.65 15.61 17.88 2.1056 0.8732 2.4078

a Pb isotopes were determined by solid-source thermal ionisation mass spectrometry using a Finningan MAT 262 mass spec-

trometer equipped with nine movable Faradays collectors. Pb isotope compositions were measured in static mode and are presented

normalised to NIST SRM981, using a linear fractionation correction of 1.4 - per amu, based on repeated analyses of 20 ng of the

standard. The external precision of NIST SRM981 was 208Pb/204Pb=36.501224, 207Pb/204Pb=15.42629, 206Pb/204Pb=16.89029,
207Pb/206Pb=0.91334213, 208Pb/207Pb=2.36611234, 208Pb/206Pb=2.16108261 (2s, n= 10). The Pb isotope compositions of the

blanks were determined in peak jumping mode using the ion counter.
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vironment when compared to aerosol Pb from rela-
tively remote sites such as Aspvreten in Sweden

(Pb=2±50 ng/m3 in 1988) (Hopper et al., 1991). In
Firenze, there has been >500% increase in Pb content
with respect to the European average of the 1970s

(0.12 mg/m3) (Bowen, 1979). The result is perhaps
unexpected given the introduction in the early 1990s of
`unleaded' gasoline (Pb < 0.02 g/l) (Nicholson and

Branson, 1993), but is indicative of a dramatic increase
in automobile tra�c in the last decades.
The Pb content of the rings of the C. Australis is in

the order of a few tens of ppb (Table 1), and it is
noted that the measured Pb content is lower than that
previously reported in other vascular plants. For
example, Rolfe and Jennet (1975) reported 2±13 ppm

of Pb in tree rings from Illinois; Ferretti et al. (1993)
measured 0.6±7 ppm of Pb in tree rings from Italy;
Murozumi et al. (1996) found 3±73 ppm of Pb in tree

rings from Japan. In the general compilation of Pb
content in vascular plants, Bowen (1979) reported a
range of 0.9±13 ppm. Direct comparison with the pre-

sent data is, however, di�cult to interpret in terms of
environmental pollution monitoring due to seasonal-
daily variations in the concentration of Pb in aerosols,

the in¯uence of particle size and atmospheric con-
ditions, and a number of physiological factors control-
ling heavy metal uptake by plants (e.g., Pacyna, 1987;
Jonsson et al., 1997). In addition, the exact mechan-

isms and pathways of metals incorporation in tree
rings is not fully understood (Lepp, 1975; Baes and
McLaughlin, 1984), and di�erent vegetable species can

have di�erent adsorption coe�cients for Pb (Bowen,
1979). Overall, these parameters are di�cult to quan-

tify and can lead to equivocal results when comparing
the pollution history of di�erent areas on the basis of

the absolute contents of heavy metal pollutants in
arboreal species. In contrast, the Pb isotope compo-
sition of plants, irrespective of Pb concentration, can

be used unambiguously to trace the evolution of heavy
metal pollution due to anthropogenic emissions, given
the contrasting isotopic ratios of industrial and natural

Pb, and the fact that Pb isotopes are not measurably
fractionated during industrial or biological consump-
tion processes (Ault et al., 1970).

5. Discussion

This reconnaissance study was designed (i) to estab-

lish an analytical procedure able to produce high qual-
ity Pb isotope data in arboreal species, and (ii) to
assess whether arboreal species can be used as bio-geo-

chemical tracers of heavy metal pollution.
The analytical procedure was aimed at obtaining a

low Pb blank and to test the e�ectiveness of the leach-

ing procedure, developed for radiocarbon analysis
(Kalin et al., 1995), for removing exchangeable Pb
across tree ring boundaries. The occurrence of radial

(inward and outward) transport of heavy metals within
the stem of trees is still controversial and may vary
from species to species (e.g., Baes and Ragsdale, 1981;
Hagemeyer et al., 1992; Jonsson et al., 1997; Wat-

mough and Hutchinson, 1999). Leached-unleached tree
ring sample pairs of 1950±1955 and 1963±1966 have
di�erent Pb isotope composition, whilst the two

youngest leached-unleached pairs are within error

Fig. 2. 208Pb/206Pb vs 207Pb/206Pb diagram for the tree rings

of the C. Australis. The two oldest leached±unleached pairs

have di�erent Pb isotope composition and provide evidence

for radial transport of Pb within the stem of the C. Australis.

The error ellipse represents the external reproducibility of the

NIST SRM981 Pb standard at 95% con®dence level (2s ).

Fig. 1. 207Pb/204Pb vs 207Pb/206Pb diagram for the tree rings

of the C. Australis and blanks. The trend exhibited by tree

rings is opposite to that expected if blank contributed signi®-

cantly to the samples. The error ellipse represents the external

reproducibility of the NIST SRM981 Pb standard at 95%

con®dence level (2s ).
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(Fig. 2). These data establish that in the oldest tree
rings there has been some radial transport of Pb, both

outward and inward, and provide evidence for the
e�ective removal of exchangeable Pb from leached
samples by adopting the same leaching procedure used

for radiocarbon analysis. It is unclear why radial trans-
port of Pb a�ected only the oldest tree rings, but the
di�erent isotopic composition between leached-

unleached pairs (Figs. 1 and 2) implies that it is necess-
ary to perfom a leaching procedure before using arbor-
eal species as bio-geochemical tracers of heavy metal

pollution.
A compilation of relevant Pb isotope data on aero-

sol and gasoline, and representative Pb isotope data of
sediments and Pb ores are reported in Fig. 3. On a glo-

bal scale, there is the expected di�erence between Pb
isotope abundances in natural rocks at the Earth's sur-
face (sediments) and that of industrial Pb obtained

from ore bodies. The distinct anthropogenic signatures
of US, Australian and European aerosols (Fig. 3)
re¯ect the variety of Pb ores used in di�erent industrial

activities and di�erent countries (Chow et al., 1975;
Sturges and Barrie, 1987; Church et al., 1990; Hopper

et al., 1991; VeÂ ron et al., 1992; Craig et al., 1996;

Michel et al., 1998). These aerosols lie on mixing lines
between pre-Cambrian, Phanerozoic and the anoma-
lously radiogenic Pb ores of the Mississippi Valley.

The Pb isotope composition of sediments, the other
potential source of aerosol Pb, is generally o� these
linear trends (Fig. 3), pointing to their negligible con-

tribution to the global inventory of aerosol Pb. This is
not a surprise given that the world consumption of

industrial Pb reached 5.7 � 106 tons in 1996 (Michel et
al., 1998).
The Pb isotope composition of aerosol measured in

the air particulates of Firenze is, as expected, within
the range of other European aerosols (Fig. 3). The

result relevant to the present study is that the Pb iso-
tope signature of the C. Australis tree rings lies within
the ®eld of European aerosols (Fig. 3), demonstrating

that tree rings can be used successfully as a proxy of
atmospheric Pb isotope composition to monitor the
evolution of heavy metal pollution in urban areas.

Moreover, the data establish that Pb isotopes in arbor-
eal species can potentially be used to trace the tem-

poral variations of air mass trajectories in the
troposphere as is the case for surface ocean waters and
ice cores (e.g., Rosman et al., 1993; VeÂ ron et al., 1993,

1994; Hamelin et al., 1997).
The di�erence between the Pb isotope record of tree

rings and air particulates is that the former represent
yearly averages, whilst the latter are single-day
measurements. With this limitation in mind, the vari-

ation in Pb uptake by the C. Australis between 1950
and 1995, exhibits a progressive increase of 207Pb/206Pb
and a concomitant decrease of 206Pb/204Pb and
208Pb/207Pb. This variation is correlated with the tem-
poral change of atmospheric Pb isotopes measured in

air particulates (Fig. 4). A detailed assessment of the
origin of the evolution of the Pb isotope signature
(tree rings and air particulates) is beyond the scope of

the paper, owing to the limited number of samples
analysed, but some general comments can be made.

The shift in Pb isotope signature of tree rings and
aerosols is consistent with the trend observed in
ombrotrophic peat bogs from Switzerland (Shotyk et

al., 1996) and Norway (Dunlap et al., 1999), although
the absolute values are di�erent (Fig. 4). Ombrotrophic
bogs are hydrologically isolated from the in¯uence of

local groundwaters and surface waters and have negli-
gible interaction with their substrate (Livett et al.,

1979; Shotyk, 1988). They represent, therefore, excel-
lent traps of long-term atmospheric heavy metal depo-
sition (Shotyk et al., 1996; Dunlap et al., 1999). The

shift in Pb isotope signature observed in peat bogs
during the 19th and 20th centuries was successively
caused by Pb ore smelting and Pb alkyls added to

gasoline (Shotyk et al., 1996; Dunlap et al., 1999). The
Pb isotope record in tree rings is consistent with this

Fig. 3. Compilation of relevant Pb isotope data on aerosol

and gasoline, and representative Pb isotope data of sediments

and Pb ores. w: aerosol; q: gasoline; *: Pb ores; +: sedi-

ment. On a global scale, the distinct industrial Pb isotope sig-

natures of US, Australian and European aerosols, plot on

mixing lines between pre-Cambrian, Phanerozoic and the

anomalously radiogenic ores of the Mississippi Valley. The Pb

isotope composition of the C. Australis tree rings lies in the

®eld of European aerosols, demonstrating that tree rings can

be used as bio-geochemical tracers of heavy metal pollution

to the environment. Data sources: (Brown, 1962; Chow and

Jonhstone, 1965; Chow and Earl, 1972; Stacey and Kramers,

1975; Elbaz-Poulichet et al., 1984; SanÄ udo-Wilhelmy and Fle-

gal, 1994; Maring et al., 1987; Ben Othman et al., 1989; Hop-

per et al., 1991; Asmeron and Jacobsen, 1993; Gulson et al.,

1994; Erel et al., 1997; VeÂ ron et al., 1999). Error (2s ) within
symbol size.
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explanation, although the time span of the present

data is restricted to the second half of the 20th cen-

tury.

The di�erence in absolute values between peat bogs

and tree rings and air particulates from Firenze (Fig. 4)

could be due to a number of reasons. For example, (i)

the peat bogs are located in remote areas and their Pb

isotope record represents European averages of air-

borne Pb (Dunlap et al., 1999), whilst tree rings and

air particulates represent a local record; (ii) the peat

bogs have negligible vertical downward migration of

Pb (Shotyk et al., 1996), whilst tree rings can possibly

record a time-integrated industrial Pb emission.

The latter reason, in particular, could explain why

the increase/decrease of Pb isotopes in tree rings is less

steep than in peat bogs (Fig. 4), and would indicate

that the main source of Pb to the C. Australis is the

soil. The industrial Pb content of urban soils over-

whelms the natural Pb content from rock weathering

(e.g., Lagerwer� and Specht, 1970; Rolfe and Jennet,

1975; Thornton, 1991; Paterson et al., 1996; Kelly et

al., 1996), and provides us with a record of time-inte-

grated Pb load due to human activities. This means

that the Pb uptake by the C. Australis could represent

a mixture between industrial Pb from ore smelting (and

possibly coal burning and power plant given the lo-

cation of the sampling site in an urban area), and a

progressively increasing amount of industrial Pb from

car exhaust which started to accumulate in the soil

with the introduction of leaded gasoline.

Finally, the di�erent Pb isotope signature for 1990

and 1995 air particulates demonstrates a change in the

Fig. 4. Temporal variation of Pb isotopes in the tree rings of the C. Australis and air particulates. The coherent trend exhibited by

the tree rings implies that the Pb isotope signature of the urban air of Firenze can be traced back to 1950, even though collection

of air samples only started in 1990. The airborne Pb isotope signature measured in ombrotrophic peat bogs from Norway (Dunlap

et al., 1999) and Switzerland (Shotyk et al., 1996) during the 20th century is reported for reference. Errors (2s ) within symbol size.
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anthropogenic Pb emission from car exhaust to the
urban air of Firenze. Similar changes have been docu-

mented in other case studies (e.g., Shirahata et al.,
1980; Erel and Patterson, 1994; Erel et al., 1997). The
diagrams in Fig. 4 also reveal that the Pb ores used for

the production of Pb alkyls and emitted from car
exhaust in the city of Firenze (air particulates of 1990
and 1995), are di�erent from the average European

airborne Pb recorded by the Swiss and Norwegian
peat bogs during the same time span. Providing evi-
dence of the switch in Pb ore consumption is, however,

di�cult because despite the knowledge of the major Pb
producing countries (USA, Australia, Canada, former
USSR, China, PeruÁ and Mexico) (Crowson, 1984;
Craig et al., 1996; Michel et al., 1998), the source of

Pb used in the production of gasoline additives at
di�erent times by various companies is not readily
available, and is often considered con®dential by com-

mercial consumers (Hopper et al., 1991; Graney et al.,
1995). This is a misfortune for geochemists, because if
this information were available, Pb isotopes in aerosols

could readily trace the temporal change of industrial
Pb, given the unique isotopic signature of each mining
district from which Pb is extracted for industrial use.

For example, the 207Pb/206Pb in the USA urban air
changed from ca 0.88 in the 1960s to ca 0.82 in the
1980s due to a shift in the major use of Pb produced
from the anomalously radiogenic ores of the Missis-

sippi Valley (Shirahata et al., 1980; Sturges and Barrie,
1987; Erel and Patterson, 1994).
The important conclusion is that the data reported

here establish that the Pb isotope composition of tree
rings can be a powerful bio-geochemical tracer for
monitoring heavy metal pollution history of urban

areas. In addition to temporal tracers, tree rings could
also be used as bio-geochemical tracers to map the
extent of environmental pollution due to anthropo-
genic emissions by the di�erent countries. In other

words, the Pb isotope record preserved in tree rings,
when combined with records of land development, Pb
ore sources, and industrial Pb consumption, can be

used for quantitative estimates of the pollution history
of a given region, and provide a substantial contri-
bution to environmental studies.
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