
10 April 2024

Session and Union Types for Object Oriented Programming / L. Bettini; S. Capecchi; M. Dezani-Ciancaglini;
E. Giachino; B. Venneri.. - STAMPA. - (2008), pp. 659-680. [10.1007/978-3-540-68679-8_41]

Original Citation:

Session and Union Types for Object Oriented Programming

Publisher:

Published version:
10.1007/978-3-540-68679-8_41

Terms of use:

Publisher copyright claim:

(Article begins on next page)

La pubblicazione è resa disponibile sotto le norme e i termini della licenza di deposito, secondo quanto
stabilito dalla Policy per l'accesso aperto dell'Università degli Studi di Firenze
(https://www.sba.unifi.it/upload/policy-oa-2016-1.pdf)

Availability:
This version is available at: 2158/319871 since: 2017-05-26T11:19:46Z

Springer

Questa è la Versione finale referata (Post print/Accepted manuscript) della seguente pubblicazione:

FLORE
Repository istituzionale dell'Università degli Studi

di Firenze

Open Access

DOI:

Session and Union Types for Object Oriented
Programming�

Lorenzo Bettini1, Sara Capecchi1, Mariangiola Dezani-Ciancaglini1,
Elena Giachino1, and Betti Venneri2

1 Dipartimento di Informatica, Università di Torino
2 Dipartimento di Sistemi e Informatica, Università di Firenze

Dedicated to Ugo Montanari on the Occasion of his 65th Birthday

Abstract. In network applications it is crucial to have a mechanism to guarantee
that communications evolve correctly according to the agreed protocol. Session
types offer a method for abstracting and validating structured communication se-
quences (sessions). In this paper we propose union types for refining and enhanc-
ing the flexibility of session types in the context of communication centred and
object oriented programming. We demonstrate our ideas through an example and
a calculus formalising the main issues of the present approach. The type system
garantees that, in well-typed executable programs, after a session has started, the
values sent and received will be of the appropriate type, and no process can get
stuck forever.

Keywords: Sessions, Object Oriented Programming, Session Types, Union Types.

1 Introduction

Writing safe communication protocols has become a central issue in the theory and
practice of concurrent and distributed computing. The actual standards still leave to the
programmer much of the responsibility in guaranteeing that the communication will
evolve as agreed by all the involved agents.

Session types [26, 27] offer a method for abstracting and validating structured com-
munication sequences (sessions). This is achieved by giving types to communication
channels, in terms of the types of values sent or received, e.g., the type ���������	

expresses that an integer will be received and then a boolean value will be sent. A ses-
sion involves channels of dual session type, thus guaranteeing that, after a session has
started, the values sent and received will be of the appropriate type. Since the specifica-
tion of a session is a type, the conformance test of programs with respect to specifica-
tions becomes type checking.

The popularity of class-based object oriented languages justifies the interest in
searching for class definitions which naturally include communication primitives. For

� This work has been partially supported by MIUR project EOS DUE and by EU Project
Software Engineering for Service-Oriented Overlay Computers (SENSORIA, contract IST-
3-016004-IP-09).

P. Degano et al. (Eds.): Montanari Festschrift, LNCS 5065, pp. 659–680, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

660 L. Bettini et al.

this reason, an amalgamation of communication centred and object oriented program-
ming has been first proposed in [18], where methods are unified with sessions and
choices are based on the classes of exchanged objects.

Union types have been shown useful for enhancing the flexibility of subtyping in
various settings [1, 21, 11, 10, 29]. For example a bank can answer
�� or ��� accord-
ing to the balance between an account and an item price. If
�� and ��� are objects
of classes � and ������
 respectively, then the class of the object ������ is natu-
rally the union of the two classes � and ������
, i.e. �∨������
. Without union
types typing ������ would require a superclass of both � and ������
 to be already
defined, and this superclass could include unwanted objects. With union types we can
express communications between parties which manipulate heterogeneous objects just
by sending and receiving objects which belong to subclasses of one of the classes in
the union. In this way the flexibility of object-oriented depth-subtyping is enhanced, by
strongly improving the expressiveness of choices based on the classes of sent/received
objects.

The aim of the present paper is to discuss and formalise the use of union types for
session-centred communications in a core object-oriented calculus. A preliminary ver-
sion of the basic calculus, without union types, is defined in [18]. In the present paper,
the calculus of [18] is formally revised, so that typing and semantics are rather cleaner
and simpler. Furthermore, the extension to union types, which is the main novelty of
the present proposal, poses specific problems in formulating reduction and typing rules
to ensure that communications are safe while flexible.

We first present an example which illustrates the main features of our approach and
then we formalise these features through a featherweight representation. We call SAM∨

(Sessions Amalgamated with Methods plus union types) the language of the example
and FSAM∨ the formalising calculus.

SAM∨ Overview. SAM∨, as the language of [18], is concerned with the amalgamation
of the object oriented features with the session part, but it is agnostic w.r.t. to the remain-
ing features of the language, such as whether the language is distributed or concurrent,
and the features for synchronisation.

In SAM∨, sessions and methods are “amalgamated”: invocation takes place on an
object and the execution takes place immediately and concurrently with the request-
ing thread (indeed, SAM∨ is multi-threaded and the communication is asynchronous).
Thus, it keeps the method-like invocation mechanism while involving two threads, typ-
ical of session based communication mechanisms. The body is determined by the class
of the receiving object (avoiding in this way the usual branch/select primitives [27]),
and any number of communications interleaved with computation is possible. Sessions
are defined in a class, which can have also fields. We believe that the above amalga-
mated model of session naturally reflects our intuition of services. Furthermore, it can
neatly encode “standard” methods.

A thread can make a session request through �.�{�′}, where � is an expression
denoting an object, � is the name of a session defined in the object’s class; then, � is
evaluated to an object �, and the session body of � in �’s class is executed concurrently
with �′, introducing a new pair of fresh channels � and �̃ (one for each communication

Session and Union Types for Object Oriented Programming 661

direction) to perform communications between the session body and �′1. Notice that
channels are implicit, and are not written by the programmer. At every step, in each
thread, there is only one single active channel on which communications are performed.

The expressions ����(�) and ���(�) send and receive objects on the active channel,
respectively. The expression �����(�){�1 ⇒ �1 � . . .��n ⇒ �n} (where C means Case)
evaluates � to an object and sends it on the active channel, and then continues with �i,
where �i is the class that best fits the class of the object sent. The counter part of �����
is the expression ����(�){�1 ⇒ �1 � . . . � �n ⇒ �n}, where the choice is based on the
class of the object received. The expression �����(�){�1 ⇒ �1 � . . .��n ⇒ �n} (where
W means While) is similar to �����(�){�1 ⇒ �1 � . . .��n ⇒ �n}, except that it allows
for enclosed ����, which continues the execution at the nearest enclosing �����. The
expression ����(�){�1 ⇒ �1 � . . .��n ⇒ �n} has the obvious meaning. Finally, �•�{}
delegates the current session to the object resulting from the evaluation of �; the body
of the session � in the class of that object is executed concurrently, using the current
session. At the end, the final value of the body is passed to the current thread.

Related Papers. We describe FSAM∨ following Featherweight Java [30], which today
has become a standard for class based object calculi.

Session Types have been first introduced to model communication protocols between
π-calculus processes [26, 32, 27]. They have been made more expressive by enriching
them with correspondence assertions [3], subtyping [24], bounded polymorphism [23]
and safer by assuring deadlock-freedom [14]. More recently session types have been
extended to multi-party communications [2, 9].

Session types have been developed also for CORBA [33], for functional languages
[25, 34], for boxed ambients [22], for the W3C standard description language for Web
Services CDL [8, 35, 31, 28], for operating systems [19], and for object oriented pro-
gramming languages [17,16,13,15,18,6]. In [6] generic types are added to a language/-
calculus based on the approach of [18]; independently from the different typing exten-
sions, FSAM∨ improves the definition of the calculi of [18] and [6], both in syntax
and in operational semantics.

Union types have been proved useful for functional languages [1, 11], for object-
oriented languages [29], for languages manipulating semi-structured data [21] and for
the π-calculus [10]. We will tell more on the relations between the present paper and
[29] at the end of Subsection 6.1.

There are many concurrent object-oriented languages and calculi in the literature; for
this topic we refer to the related work section of [20].

Paper Structure. In Section 2 we describe SAM∨ in terms of an example. We then
proceed by formalising the calculus FSAM∨, its typing and semantics. Section 7 draws
some future work directions.

2 An Example

In this section, we describe SAM∨ through an example, which expresses a typical col-
laboration pattern, c.f. [35, 7, 8], and which refines the example of [18]. This simple

1 � and �̃ play for channels a role similar to that of ���� for objects.

662 L. Bettini et al.

1 sessiontype Shopping ST =

2 !Item.?Money.μα.!{ OK ⇒ !AccntNr.!Money.?{OK ⇒ ?Date, NoMoney ⇒ ε },
3 NoDeal ⇒ ε ,
4 MakeAnOffer ⇒ ? { Money ⇒ α, NoDeal ⇒ ε } }
5

6 sessiontype ExaminePrice ST = ?Money.!Ok∨NoDeal∨MakeAnOffer
7

8 sessiontype Sell ST =

9 ?Item.!Money.μα.?{ OK ⇒ ?AccntNr.?Money.!{ OK⇒!Date, NoMoney ⇒ ε },
10 NoDeal ⇒ ε,
11 MakeAnOffer ⇒ ! { Money ⇒ α, NoDeal ⇒ ε } }
12

13 sessiontype CalDelDate ST = ?Item.!Date

14

15 sessiontype CalNewPrice ST = ?Money.!Money∨NoDeal
16

17 sessiontype CreditCheck ST = ?AccntNr.?Money

Fig. 1. Session types for the buyer-seller example

protocol contains essential features which demonstrate the expressiveness of the id-
ioms of SAM∨. The buyer negotiates a price from a seller, and if and when they have
reached agreement, he sends his bank account number so that it gets verified that he
has enough money. If he has enough money, he receives the delivery date, otherwise the
deal falls through. The seller delegates to a bank the part of the session that checks the
money in the account. Such delegation has traditionally been expressed through higher
order sessions; instead, SAM∨ can delegate the current session through a session call as
in [18,6]. The negotiation allows several rounds: the buyer may either accept the price,
or break the negotiation, or require a better deal by sending different kinds of answers;
in the latter case, the seller might respond by sending a better price, or might break the
negotiation sending a negative answer. Thus, branch selection in control structures is
based on the dynamic class of an object sent.

The session types �������� �� and ��		 �� (see Figure 1) describe the communi-
cation pattern between the �
�� and the ��		��.

The session type �������� �� describes the above protocol from the point of view
of the buyer. The part �!��"������
 indicates sending an !��" followed by receipt
of a ����
. The recursive type μα .! { � ⇒ ..., ��#��	 ⇒ ..., �����$$�� ⇒
... } describes the negotiation part, whereby an object is sent, and then, depending on
whether the actual object sent belongs to class �, ��#��	, or ����%�$$��, the first,
second or third branch is taken. In the first branch, the account number and the price is
sent; then, either � followed by a #���, or a ������
 is received. In the third branch,
a further object is received, and if that object is a ����
, then the negotiation resumes
on the basis of it, whereas if it is a ��#��	, the negotiation ends.

Note that in both �������� �� and ��		 �� the recursion variable is nested inside
multiple choices, so that this behaviour could not have been expressed using regular
expressions as in [15]. The use of recursive types has also other advantages, like that
of allowing iterative expressions with multiple exit points and multiple recursions. In

Session and Union Types for Object Oriented Programming 663

1 class Buyer {

2 AccntNr accnt; Seller seller;

3

4 String∨Date Shopping ST shopping
5 { Item prodId :=;

6 seller.sell{

7 send(prodID);

8 Money price := rec;

9 examinePrice{send(price);

10 OK∨NoDeal∨MakeAnOffer resp := rec};
11 sendW(resp){

12 OK ⇒ { send(accnt); send(price);

13 recC(x) { OK ⇒ Date delivDate:=rec; �
14 NoMoney ⇒ new String("no money"); } }�
15 NoDeal ⇒ new String("refusing proposed price") �
16 MakeAnOffer ⇒ {

17 recC(x) { Money ⇒ examinePrice{send(x);

18 resp := rec};

19 cont; �
20 NoDeal ⇒ new String("offer refused")}

21 }

22 } //end of session call sell

23 } //end of session shopping

24

25 Object ExaminePrice ST examinePrice

26 { Money price := rec

27 ... //code for decision

28 send(resp)

29 } // end of session examinePrice

30 }

Fig. 2. The class ���	

Figure 2 we show the implementation of the class �
��. It has the fields ����� and
��		��, which will contain the account number and the ��		�� used to buy products.

The class �
�� supports two sessions called �������� and ���"���&����. Ses-
sion �������� has session type �������� �� and return type ������∨#���. The
union type ������∨#��� describes the possible results of the negotiation: in case of
success the session ends returning the date of the delivery of the item; in case of failure
it returns a string describing the reason. In the body of this session the desired product
is determined and stored in ����!� (line 5). Then, a session request is made to the
��		�� to run session ��		 (line 6). Thus, the ��		�� will run the body of ��		 in
parallel with the remaining part of the session body of ��������, and a connection will
be created between the two threads. On this connection, the �
�� will send an !��"

(line 7), receive a ����
 and store it in ����� (line 8). Based on its value the �
��

will calculate his response calling session ���"���&���� which returns the answer in
���� (lines 9 and 10). Let us notice that ����’s type is the union of all the possible
answers’ type. On line 11, the �
�� enters a loop with �����, where he sends ����,
and branches according to its class. If ���� is �, indicating acceptance of the price,

664 L. Bettini et al.

1 class Seller {

2 Bank bank;

3

4 String∨Item Sell ST sell
5 { Item prodID := rec;

6 Money price=...;

7 send(price);

8 recW(x){

9 OK ⇒ { sendC(bank•check{ })
10 {OK ⇒ calDelDate{send(prodID);

11 Date date := rec};

12 send(date); prodID �
13 NoMoney ⇒ new String("failed bank transaction");

} } �
14 NoDeal ⇒ new String("proposal refused by buyer") �
15 MakeAnOffer ⇒ { calNewPrice{send(price);

16 Money∨NoDeal resp := rec} ;
17 sendC(resp){ Money ⇒ cont �
18 NoDeal ⇒ new String("refusing

proposed price"); } }

19 }

20 } //end of session sell

21

22 Object CalDelDate ST calDelDate

23 { Item item := rec

24 ... //code for calculate date

25 send(date)

26 } // end of session calDelDate

27

28 Object CalNewPrice ST calNewPrice

29 { Money price := rec

30 ... //code for response (if the answer is positive then the field

31 //price is updated with the new price)

32 sendC(resp)

33 } // end of session calNewPrice

34 }

Fig. 3. The class �	��	

then the �
�� will send his account number, and price (line 12); and will receive an
object which may be �, in which case he will receive a #��� and store it in ��	�'#���
(line 13), or will receive a ������
 (line 14). In this case the reason of failure is stored
in the string $��	 ��. If ���� is ��#��	, indicating that the price is unacceptable,
then the session terminates. If the response is ����%�$$��, inviting the ��		�� to
make a better offer, then the rest depends on the other party’s response, indeed Line 17
contains ���� indicating that a value will be received, and the remaining steps will be
determined by its class. If the value received is a ����
 then session ���"���&����

is called, which returns the �
��’s reaction in ����, and the recursion will continue
(line 19). If the value received is ��#��	, then the loop will be abandoned.

Session and Union Types for Object Oriented Programming 665

1 class Bank {

2 Ok∨NoMoney CreditCheck ST check
3 { AccntNr accnt := rec;

4 Money amt := rec;

5 // code for check

6 If(response) then new Ok else new NoMoney;

7 }// end of session check

8 }

Fig. 4. The class ���

Notice that in order to get an arbitrary number of repetitions, it is crucial to allow
objects of different classes to be sent in the different iterations of while loops.

The session type ��		 �� describes the protocol from the point of view of the
��		��, and is “dual” to �������� ��. We now consider the class ��		��, from
Figure 3. The session body for ��		 starts by receiving the description of an !��",
calculating and sending its price. Then, in line 8, it enters a ���� loop, which is the
counterpart to the ����� loop from �������� and performs all the ��		��’s negotia-
tion. The interesting feature shown here is delegation, on line 9, whereby, the ���� is
requested to continue the session, using the current connection, and by application of
the session body �����. At the end of the execution of ����� the session will continue
according to the bank answer (� or ������
).

The session type for ����� from class ���� in Figure 4 is the receipt of a %������
and a ����
 followed by sending either �, or a ������
 object. Note that the session
body for ����� is not aware whether it will be called through a session request, or
through delegation. The return type of ����� is the union of the types of the possible
answers, i.e. �∨������
.

Notice that the sessions ���"���&����, ��	���#��� and ��	���&���� are exam-
ples of the implementation in SAM∨of methods, since they start by receiving arguments
and after elaborating them send a result.

3 Syntax

This section presents the syntax of FSAM∨ (Figure 5), a minimal concurrent and im-
perative core calculus, based on Featherweight Java [30] (abbreviated with FJ).
FSAM∨ supports the basic object-oriented features and session request, session del-
egation, branching sending/receiving and loops. In details, FSAM∨ encompasses the
following linguistic features: basic object oriented expressions, session bodies and com-
munication constructs that combine send/receive with branching and loops.

We use grey to indicate expressions that are produced during the reduction process,
but do not occur in the source code of a program. We also use the standard convention
of denoting with ξ a sequence of elements ξ1, ...,ξn.

Union types are defined as in [29]: they are built out of class names by the union
operator (denoted by ∨).

Programs are defined from a collection of classes. The metavariables � and #, possi-
bly with subscripts, range over class names. Each class has a name, a list of fields of the

666 L. Bettini et al.

(union type) � ::= � | �∨�

(class) � ::= ���� � � � { ��; � }
(session) � ::= ���{ 	 }
(expression) 	 ::= � | ���� | ���� | � | 	� 	 | 	.�:= 	 | 	.� | �	� �()

| 	.�{	} | 	•�{ � }
| �. �	���(){� ⇒ 	�� ⇒ 	}
| �.
	��(�){� ⇒ 	�� ⇒ 	}
| �. �	���(){� ⇒ 	�� ⇒ 	}
| �.
	��(�){� ⇒ 	�� ⇒ 	}

(parallel threads) P ::= 	 | P || P

Fig. 5. Syntax, where syntax occurring only at runtime appears shaded . Syntax for session types
� is in Figure 9.

form �$, where $ represents the field name and � its type, and a list of sessions of the
form ���{ � }, where � is the return type, � the session type, � the session name, and �
the session body. For the sake of conciseness the symbol � represents class extension,
as in [30]. All classes are defined as extensions of the topmost class �(���.

Expressions include variables, that are both standard term variables � and the special
variables ���� and ����. The variable ���� is considered implicitly bound in any ses-
sion declaration. Instead, ����� and ���� are the only binders for ����, that represents
the continuation by recursive computation. Let us notice that free occurrences of ����
in � are not bound in the expression �����(�){. . .}: actually no occurrence of ���� can
appear in � if this expression is typable (see rule SENDW-T in Figure 11).

In a session request �.�{�′} we call the expression �′ the co-body of the request
(since it will be evaluated concurrently with the body of requested session).

In the session delegation expression, �•�{�}, the channel � is added by the opera-
tional semantics in order to keep track of the channel to pass to the delegated session.

Channels are implicit in the source language syntax. At runtime, communication
channels � are introduced at each new session request. We denote the dual with ˜...,
where �̃ is again a runtime channel, and where ˜... is an involution: ˜̃� = �. Whenever a
thread uses a channel �, the other participant in the communication uses its dual �̃. The
operational semantics associates to � and �̃ two different queues of messages; when a
thread, which uses the channel �, wants to receive a message it will inspect the queue
associated to �, while, when it sends a message it will add it to the queue associated to
�̃ (see Section 5).

The body of a communication expression is a pair of alternatives {�1 ⇒ �1 � �2 ⇒
�2}, whose choice depends on the class of the object that is sent or received. In par-
ticular, in case of ����� and ���� the expressions �i can contain ����, representing
recursive computations.

With respect to SAM∨ we only have binary choices as bodies of communication ex-
pressions in FSAM∨, since the other forms can be encoded with them. First of all, a
unary choice {� ⇒ �} can be simply encoded as {� ⇒ � � � ⇒ ��� �(���()}, since
sending or receiving an object of class � will always choose the first alternative. With

Session and Union Types for Object Oriented Programming 667

unary choices we can encode the two communication constructs used in the example,
i.e., ���� for sending, and ��� for receiving, that we omit from FSAM∨: the ex-
pression �����(�){�(���⇒ ��� �(���()} encodes ����(�) and in a similar way,
����(�){�(���⇒ �} encodes ���.

With binary choices we can also encode n-ary choices for n > 2, getting in this way
the constructs used in the example of Section 2. The informal idea of such encoding,
given the set of classes to be used in the choices, is to take the first (in the left to right
order) relative minimum from this set and use it to define the first branch; the second
branch will use �(��� and we iterate this procedure to write the expression of this
second branch, until we remain with only two choices. Thus, for instance, consider the
choice {�1 ⇒ �1 ��2 ⇒ �2 ��3 ⇒ �3}, where �1 is not related to the other classes and �2

is a subclass of �3; we can encode this choice with the (nested) binary choice: {�1 ⇒ �1 �
�(���⇒ {�2 ⇒ �2 ��3 ⇒ �3}}. Notice that this encoding is correct also if �2 = �3.

The types used for selecting branches in a choice are class names. This simplifies
the formal treatment and the proofs, but, again, we can encode choices with arbitrary
union types by n-ary choices in a straightforward way; e.g., {�1 ∨�2 ⇒ ���3 ⇒ �′} is
encoded as {�1 ⇒ ���2 ⇒ ���3 ⇒ �′}.

A runtime expression is either a user expression (i.e. an expression in Figure 5 with-
out shaded syntax) or an expression containing channels and/or object indentifiers.
Furthermore, threads of runtime expressions can occur at runtime (see the operational
semantics). Parallel threads are ranged over by P. Fully evaluated objects will be repre-
sented by object identifiers denoted by �.

The main novelty of FSAM∨ w.r.t. FJ is that session invocation can involve the
creation of concurrent and communicating threads. Other minor differences are: we do
not have cast and overriding, which are orthogonal to our approach; we do not have
explicit constructors, then in the object instantiation expression ��� �(�), the values �
to which � reduce are the initial values of the fields.

Notice that standard methods can be seen as special cases of sessions. In fact, a
method declaration can be (informally) encoded as a session with nested ����s (one
for each parameter) and with one ����� returning the method body. Similarly, method
calls are special cases of session requests: the passing of arguments is encoded as nested
�����s (one for each argument) and the object returned by the method body is retrieved
via one ����. This encoding will use unary choices that can be rendered with binary
choices as explained above.

4 Auxiliary Functions

As in FJ, a class table CT is a mapping from class names to class declarations with
domain D(CT). Then a program is a pair (CT,�) of a class table (containing all the
class definitions of the program) and an expression � (an expression belonging to the
source language representing the program’s main entry point). The class �(��� has
no fields and its declaration does not appear in CT. As in FJ, from any CT we can
read off the subtype relation between classes, as the transitive closure of � clause;
moreover this relation is extended in order to relate types built out of union (Figure 6).
As usual considering union types modulo the equivalence relation induced by <: we
get the commutativity and associativity of ∨ . Therefore each union type can be written

668 L. Bettini et al.

� <: �
� <: �′ �′ <: �′′

� <: �′′
���� � � � { ��; � } ∈ ��

� <: �

� <: �∨�′ �′ <: �∨�′ �′ <: � �′′ <: �

�′ ∨�′′ <: �

fields(���	��) = •
fields(�) = �′ �′ ���� � � � { ��; � }

fields(�) = ��,�′ �′

fields(�) = ��

ftypew(�i,�) = ftyper(�i,�) = �i

ftypew(�,�1 ∨�2) =

⎧
⎪⎨

⎪⎩

ftypew(�,�1) if ftypew(�,�1) <: ftypew(�,�2),
ftypew(�,�2) if ftypew(�,�2) <: ftypew(�,�1),
⊥ otherwise.

ftyper(�,�1 ∨�2) = ftyper(�,�1)∨ ftyper(�,�2)

���� � � � { ��; � } ���{ 	 } ∈ �

stype(�,�) = {�}
���� � � � { ��; � } � � �

stype(�,�) = stype(�,�)

stype(�,�1 ∨�2) = stype(�,�1)∪ stype(�,�2)

���� � � � { ��; � } ���{ 	 } ∈ �

rtype(�,�) = �

���� � � � { ��; � } � � �

rtype(�,�) = rtype(�,�)

rtype(�,�1 ∨�2) = rtype(�,�1)∨ rtype(�,�2)

���� � � � { ��; � } ���{ 	 } ∈ �

sbody(�,�) = 	

���� � � � { ��; � } � � �

sbody(�,�) = sbody(�,�)

Fig. 6. Subtyping and Lookup Functions

as �1 ∨ . . .∨�n for n ≥ 1: we say that the classes �1, . . . ,�n build the union type �1 ∨
. . .∨�n. A union type �1 ∨ . . .∨�n is proper if n > 1.

We assume a fixed CT that satisfies some usual sanity conditions as in FJ [30].
Thus, in the following, instead of writing CT(�) = �	��� . . . we will simply write
�	��� �

We define auxiliary functions (see Figure 6) to lookup fields and sessions from CT;
these functions are used in the typing rules and in the operational semantics. The fields
lookup function is as in FJ. As for field type lookup we distinguish between the contexts
where the field is used for reading (ftyper) from those where it is for writing (ftypew). The
stype and rtype return a set of session types and the return type of a session, respectively,
while sbody returns the body of a session. As in FJ these functions may have to inspect
the class hierarchy in case the required element is not present in the current class.

Notice that the type lookup functions take a type as argument (not simply a class
name) because the receiver expression of a field/session access may be of a proper
union type. As for field type lookup, when the field is used in read mode, in case of
a proper union type, we simply return the union type of the result of ftyper invoked
on the argument types (if both retrievals succeed). On the contrary, when a field is
updated, due to the contravariance relation, in case of a proper union type we must

Session and Union Types for Object Oriented Programming 669

	���=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

	1����	2��� if 	 = 	1�	2,

	1���.� if 	 = 	1.�,

	1���.���	2��� if 	 = 	1.���	2,

	1��� �{	2} if 	 = 	1 �{	2},
	1���•�{�} if 	 = 	1•�{ },
�.�	���(0���){� ⇒ 	���} if 	 = �	���(0){� ⇒ 	},
�.
	��(�){� ⇒ 	���} if 	 =
	��(�){� ⇒ 	},
�.�	���(){� ⇒ 	���} if 	 = �	���(){� ⇒ 	},
�.
	��(�){� ⇒ 	���} if 	 =
	��(�){� ⇒ 	},
	 otherwise.

			′/����
 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

	1		′/����
�	2		′/����
 if 	 = 	1�	2,

	1		′/����
.� if 	 = 	1.�,

	1		′/����
.���	2		′/����
 if 	 = 	1.���	2,

	1		′/����
 �{	2} if 	 = 	1 �{	2},
	1		′/����
•�{�} if 	 = 	1•�{�},
�.�	���(0){� ⇒ 			′/����
} if 	 = �.�	���(0){� ⇒ 	},
�.
	��(�){� ⇒ 			′/����
} if 	 = �.
	��(�){� ⇒ 	},
	′ if 	 = ����,

	 otherwise.

Fig. 7. Channel Addition and Continuation Replacement

return the intersection of the result of ftypew on the arguments; however, in the absence
of multiple inheritance, the only possible cases are those listed in Figure 6, thus we can
avoid introducing intersection types.

As for the stype lookup function, it returns a set of session types; in case it is invoked
with a class name as argument, it will return a singleton. The interesting case is when
it is invoked with a proper union type: it will return the union of the sets corresponding
to the argument types, so that we have all the session types of the classes that build
the union type (see how it is used in the typing system, Figures 11 and 13). The rtype
lookup function behaves in a covariant way since the resulting object cannot be used in
writing mode. We notice that sbody is only invoked with a class name as type argument,
since we invoke sessions on objects only, and all objects have a class name as type.

It is easy to verify that all lookup functions applied to equivalent union types return
either equivalent union types or the same sets of session types, whenever they are defined.

5 Operational Semantics

Objects passed in asynchronous communications are stored in a heap. A heap h is a finite
mapping with domain consisting of objects and channel names. Its syntax is given by:

h ::= [] | � �→ (�,$: �) | � �→ � | h ::h

where :: denotes heap concatenation.

670 L. Bettini et al.

During evaluation, any expression ��� �(�) will be replaced by a new object iden-
tifier �. The heap will then maps the object identifier � to the pair (�,$: �) of its class
name � and the list of its fields with corresponding objects �; this mapping is denoted
by � �→ (�,$: �).

The form h[� �→ h(�)[$ �→ �′]] denotes the update of the field $ of the object � with
the object �′.

Channel names are mapped to queues of objects: � �→ �. The heap produced by
h[� �→ �] maps the channel � to the queue �. With some abuse of notation we write
� :: � and � :: � to denote the queue whose first and last element is �, respectively.

Heap membership for object identifiers and channels is checked using standard set
notation, by identifying h with its domain, we can also write � ∈ h, and � ∈ h.

The values that can result from normal termination are parallel threads of fully eval-
uated objects.

In the reduction rules we make use of the special channel addition operation �...�,
and of the continuation replacement operation 	.../����
 (their formal definitions are
in Figure 7, where {� ⇒ �} is short for {�1 ⇒ �1 � �2 ⇒ �2}). We denote by ���� the
source expression � in which all occurrences of receive, send, and delegation expres-
sions which are not within the co-body of a session request are extended, so that they ex-
plicitly mention the channel � they will use (remember that channel names are not writ-
ten by the programmer). Also, we denote by �	�′/����
 the expression � in which all
occurrences of ����, that are not within the co-body of a session request or within the
body of a send/receive loop, are replaced by �′, thus preserving the correct nested struc-
ture of while expressions. For example ����(�){�1 ⇒ ���2 ⇒ ����}���	�′/����
=
�.����(�){�1 ⇒ ���2 ⇒ �′}.

The reduction is a relation between pairs of threads and heaps:

P,h −→ P′,h′

Reduction rules use evaluation contexts (based on runtime syntax) that capture the no-
tion of the “next subexpression to be reduced”:

E ::= [−] | E ;� | E .$ | E .$:= � | �.$:= E | E .�{�} |
E •�{�} | �.�����(E){�1 ⇒ �1 ��2 ⇒ �2}

The explicit mention of the evaluation context is needed in rule SESSREQ-R (Figure 8),
in which a new thread is generated in parallel with the evaluation context.

Reduction rules are in Figure 8. Rule PAR-R models the execution of parallel threads.
In this rule parallel composition is considered modulo structural equivalence. As usual,
we define structural equivalence rules asserting that parallel composition is associative
and commutative:

P || P1 ≡ P1 || P P || (P1 || P2) ≡ (P || P1) || P2 P ≡ P′ ⇒ P || P1 ≡ P′ || P1

The successive four rules define the execution of standard object-oriented constructions.
Rule SESSREQ-R models the connection between the co-body � of a session request

�.�{�} and the body �′ of the session �, in the class of the object �. This connection is

Session and Union Types for Object Oriented Programming 671

PAR-R
	,h −→ P,h′

	 || P1,h −→ P || P1,h
′

SEQ-R
E [�;],h −→ E [],h

FLD-R
h(�) = (�,� : �)

E [�.�i],h −→ E [�i],h
NEWC-R

fields(�) = �� � � h

E [�	��(�)],h −→ E [�],h :: [� �→ (�,� : �)]

FLDASS-R
E [�.� := �

′],h −→ E [�′],h[� �→ h(�)[� �→ �
′]]

SESSREQ-R
h(�) = (�,) sbody(�,�) = 	′ �, �̃ � h

E [�.�{	}],h −→ E [���] || [�/����]	′��̃�,h[�, �̃ �→ ()]

SESSDEL-R
h(�) = (�,) sbody(�,�) = 	

E [�•�{�}],h −→ E [[�/����]	���],h
SENDCASE-R

h(�̃) = � h(�) = (�,) � ⇓ {�1,�2} = �i

E [�.�	���(�){�1 ⇒ 	1 ��2 ⇒ 	2}],h −→ E [i],h[�̃ �→ � :: �]

RECEIVECASE-R
h(�) = � :: � h(�) = (�,) � ⇓ {�1,�2} = �i

E [�.
	��(�){�1 ⇒ 	1 ��2 ⇒ 	2}],h −→ E [[�/�]	i],h[� �→ �]

SENDWHILE-R
E [�.�	���(){�1 ⇒ 	1 ��2 ⇒ 	2}],h −→ E [�.�	���(){�1 ⇒ 	′

1 ��2 ⇒ 	′
2}],h

where 	′
i = 		i/����
�.�	���(){�1 ⇒ 	1 ��2 ⇒ 	2}/����

RECEIVEWHILE-R
E [�.
	��(�){�1 ⇒ 	1 ��2 ⇒ 	2}],h −→ E [�.
	��(�){�1 ⇒ 	′

1 ��2 ⇒ 	′
2}],h

where 	′
i = 		i/����
�.
	��(�){�1 ⇒ 	1 ��2 ⇒ 	2}/����

Fig. 8. Reduction Rules

established through a pair of fresh channels �, �̃. For this purpose the expression �.�{�}
reduces, in the same context, to its own co-body ���� and in parallel, outside the context,
it spawns the body [�/����]�′��̃� of the called session. The explicit substitution of � in
� and of �̃ in �′ ensures that the communication is on the fresh dual channels � and �̃.
Thus, an object can serve any number of session requests. For example,

�.�{�����(5){�1 ⇒ �1 ��2 ⇒ �2}};��� �() −→
�.�����(5){�1 ⇒ �1�����2 ⇒ �2���};��� �() ||
�̃.����(�){�′

1 ⇒ [�/����]�′
1��̃���

′
2 ⇒ [�/����]�′

2��̃�}

if ����(�){�′
1 ⇒ �′

1 ��′
2 ⇒ �′

2} is the body of session � in the class of the object �.
Notice that there is no ambiguity in this rule, since

(�.�����(5){�1 ⇒ �1�����2 ⇒ �2���} ||
�̃.����(�){�′

1 ⇒ [�/����]�′
1��̃���

′
2 ⇒ [�/����]�′

2��̃�});��� �()

is not a thread according to the syntax of FSAM∨.
Rule SESSDEL-R replaces the session delegation � • �{�} by [�/����]����, where

� is the body of the session �, in the class of the object �. This allows a part of the
communication to be delegated via the channel � to the object �: this delegation is

672 L. Bettini et al.

transparent for the thread using the dual channel �̃. When the delegated job is over, the
original thread can resume the communication via the channel �. For example
�•�{�} −→ �.����(�){�1 ⇒ [�/����]�1�����2 ⇒ [�/����]�2���}
if ����(�){�1 ⇒ �1 ��2 ⇒ �2} is the body of session � in the class of the object �.

The communication rule for �����, SENDCASE-R, puts the object �, i.e. the result
of evaluating the expression �, in the queue associated to the dual channel �̃ of the
communication channel �. The computation then proceeds with the expression �i, if
�1 � �2 and �i is the smallest class in {�1,�2} to which the object � belongs. Otherwise,
if �1 = �2 and � belongs both to �1 and to �2, then the computation proceeds with
�1

2. This is given by the condition h(�) = (�,) and by the following definition of
� ⇓ {�1,�2} = �i, using the subtyping relation (Figure 6):

� ⇓ {�1,�2} =

⎧
⎪⎨

⎪⎩

�i if � <: �i and � <: � j with i � j imply � j �<: �i,

�1 if � <: �1 = �2,

⊥ otherwise.
Dually the receive communication rule takes an object � from the queue associated to
channel � and returns the expression [�/�]�i, if h(�) = (�,) and � ⇓ {�1,�2} = �i.

In rules SENDCASE-R and RECEIVECASE-R it is understood that the transition
cannot fire if � ⇓ {�1,�2} = ⊥. However we will see that � ⇓ {�1,�2} is always defined
in well-typed expressions.

Rules SENDWHILE-R and RECEIVEWHILE-R simply realize the repetition using
the case communication expressions. Note that �����(E){�1 ⇒ �1 � �2 ⇒ �2} is not
an evaluation context, since we do not want to reduce the expression which controls the
loop before the application of rule SENDWHILE-R, in which the ����� expression is
unfolded.

Only communication and delegation expressions containing explicit channels can be
reduced. So, for example, �����)�*{�} and �•�{} are stuck; however, as we will see
in Subsection 6.1, the latter cannot be typed and the former is not an initial expression
(type soundness is only guaranteed for initial expressions).

6 Typing

Session types, ranged over by �, describe the communications that take place during
a session. The syntax of session types is in Figure 9, where we use † as a symbol that
stands for either ! or ?. By ε we denote the empty communication, and the concatenation
�1.�2 expresses the communications in �1 followed by those in �2. The session type ε
is the neutral element of concatenation, so that ε.� = � = �.ε for all �.

The types !{�1 ⇒ �1 ��2 ⇒ �2} and ?{�1 ⇒ �1 ��2 ⇒ �2} express the sending and
the receiving of an object, respectively: depending on the class of this object the com-
munication will proceed with one of the �i. In μα.†{�1 ⇒ �1 ��2 ⇒ �2} the session
type variable α can occur inside �i with the usual meaning of representing the whole
session type. We consider recursive session types modulo fold/unfold: i.e., μ α.� =

2 In this particular case, there is no other motivation for selecting the smallest index but to avoid
introducing non-deterministic choices. From this point of view, alternative solutions could be
just as sound: for instance, the selection of the greatest index or linguistic restrictions on the
expressions 	i, e.g., the condition 	1 = 	2 whenever �1 = �2.

Session and Union Types for Object Oriented Programming 673

† ::= ! | ? direction
� ::= ε | α | � | †{� ⇒ ��� ⇒ �} | μα.†{� ⇒ ��� ⇒ �} | �.� session type

Fig. 9. Syntax of Session Types

[μ α.�/α]�. So we equate μα.†{�1 ⇒ �1 ��2 ⇒ �2} to †{�1 ⇒ �1 ��2 ⇒ �2} when α
does not occur in †{�1 ⇒ �1 ��2 ⇒ �2}.

The type � is used only as session type for the command ����: it plays the role of
a place holder which will be replaced by a type variable when the while expression is
completed (see rules SENDW-T and RECEIVEW-T in Figure 11).

We say that a session type is closed if it does not contain occurrences of free session
type variables and of �. Therefore, each closed session type has one of the following
shapes:

– ε;
– μα.†{�1 ⇒ �1 ��2 ⇒ �2} or †{�1 ⇒ �1 ��2 ⇒ �2};

or a concatenation of the session types above. For simplicity we will use in definitions
unfolded recursive types whenever possible.

6.1 Typing of Channel Free Expressions

In this subsection we define typing for user expressions, in which communication chan-
nels are implicit. For technical reasons it is useful to consider also expressions with
occurrences of object identifiers, which are not directly expressible in user syntax. We
call these expressions channel free expressions. The term environments therefore will
contain also type assignments to object identifiers. This permits a simpler formulation
of the runtime typing rules, as we will see in next subsection.

The typing judgement has the shape

Γ � � : � � �

where Γ is a term environment, which maps ����, ����, variables and objects to types,
and � represents the session type of the (implicit) active channel.

In order to allow (possible) multiple occurrences of a variable or ���� with different
types inside an expression, we define the following “update” operation on Γ (+ ranges
over ����, ����, term variables, and object identifiers):

Γ (+ : �)(+′) =
{
� if +′ = +

Γ (+′) otherwise.

Thus, the operation Γ (+ : �) has the effect of adding + : � to Γ , but after deleting a
declaration of + from Γ (if there is one). This will avoid checking well-formedness of
term environments and does not require an explicit weakening rule to add an assumption
on the ���� variable (when typing nested while communication expressions).

To assure a safe communication between two threads we must require their session
types to be dual, i.e., that each send will correspond to a receive and vice versa. The
duality is then the symmetric relation generated by the rules of Figure 10, in which we
consider folded recursive types, otherwise the definition would not be well-founded.

674 L. Bettini et al.

ε � ε α � α
�1 � �′

1 �2 � �′
2

�1.�2 � �′
1.�

′
2

�1 ∨�2 <: �′
1 ∨�′

2 �i ⇓ {�′
1,�

′
2} = �′

j ⇒ �i � �′
j �′

l ⇓ {�1,�2} = �k ⇒ �k � �′
l

μα.!{�1 ⇒ �1 ��2 ⇒ �2} � μα.?{�′
1 ⇒ �′

1 ��′
2 ⇒ �′

2}

Fig. 10. Duality Relation

The exchanged values must also be of one of the classes expected by the receiver. All
possible choices on the basis of the class of the exchanged value must continue with
session types which are dual of each other. For this reason we have to perform checks
on the type of the exchanged values in both directions:

– for any sent value of type �i such that �i ⇓ {�′
1,�

′
2} = �′

j for some 1 ≤ j ≤ 2 we
require �i � �′

j;
– for any received value of type �′

l such that �′
l ⇓ {�1,�2} = �k for some 1 ≤ k ≤ 2

we require �k � �′
l .

For instance, let us consider the session types !{����� ⇒ �1 � ������ ⇒ �2} and
?{������	� ⇒ �3 � �(��� ⇒ �4} where ������	� <: �����. At run time a
������	� can be sent as a �����, thus the types �1 and �3 have to be dual. Notice
that, thanks to the absence of generics we can be more flexible w.r.t. [6]: the types used
in the choices (actually their union) of the send can be subtypes of the ones expected
(in the dual receive).

Typing rules for channel free expressions are in Figure 11. For the sake of simplicity
in rule NEWC-T we require that the initialisation of an object does not involve com-
munications. Notice that in rule SEQ-T we use session type concatenation to represent
that first the communications in �1 and then those in �2 are performed.

The rule for session request SESSREQ-T relies on the duality relation (Figure 10)
to assure that all the bodies of the session � in the classes which build the union type
� and the co-body �′ of the request will communicate properly. In typing session del-
egation (rule SESSDEL-T) we take into account that the whole expression will be re-
placed by the session body defined in the class of the expression to which the session
is delegated (cf. the reduction rule SESSDEL-R, Figure 8). Notice that the condition
stype(�,�)={�′} does not imply � be one class, but only that all definitions of � in the
classes which build � have the same session types. If a session has session type ε , then
it is meaningless to use it in a delegation, while it is sensible to use it in a request. For
this reason we require �′ � ε in rule SESSDEL-T.

Rules SENDC-T and RECEIVEC-T require all possible alternative expressions to
have the same type �, but they can implement different communication sequences �i.
Rule SENDC-T prescribes that the class type of � is the union type of the classes used
in the choice. Without union types the typing rule for the same construct in [18] was
much more demanding and less clear. The typing rules for the while communication
expressions are similar, but they also discharge the assumption on ���� and replace the
occurrences of � in session types by a fresh variable α which will be bound by μ . In
rule SENDW-T typing � with session type ε prevents � from containing occurrences

Session and Union Types for Object Oriented Programming 675

AXIOM-T
Γ � ! : Γ (!) � ε ! � ����

CONT-T
Γ � ���� : Γ (����) � �

SUB-T
Γ � 	 : � � � � <: �′

Γ � 	 : �′ � �
NEWC-T
fields(�) = �� Γ � 	i : �i � ε

Γ � �	��() : � � ε

FLD-T
Γ � 	 : � � �

Γ � 	.� : ftyper(�,�) � �

SEQ-T
Γ � 	 : � � � Γ � 	′ : �′ � �′

Γ � 	�	′ : �′ � �.�′

FLDASS-T
Γ � 	 : � � � Γ � 	′ : ftypew(�,�) � �′

Γ � 	.� := 	′ : ftypew(�,�) � �.�′

SESSREQ-T
Γ � 	 : � � � Γ � 	′ : �′ � �′ �′ � �′′ ∀�′′ ∈ stype(�,�)

Γ � 	.�{	′} : �′ � �

SESSDEL-T
Γ � 	 : � � � stype(�,�) = {�′} �′ � ε rtype(�,�) = �′

Γ � 	•�{} : �′ � �.�′

SENDC-T
Γ � 	 : �1 ∨�2 � � Γ � 	i : � � �i

Γ � �	���(){�1 ⇒ 	1 ��2 ⇒ 	2} : � � �.!{�1 ⇒ �1 ��2 ⇒ �2}
RECEIVEC-T

Γ (� : �i) � 	i : � � �i

Γ �
	��(�){�1 ⇒ 	1 ��2 ⇒ 	2} : ��?{�1 ⇒ �1 ��2 ⇒ �2}
SENDW-T

Γ � 	 : �1 ∨�2 � ε Γ (���� : �) � 	i : � � �i α fresh in �1,�2

Γ � �	���(){�1 ⇒ 	1 ��2 ⇒ 	2} : � � μα.!{�1 ⇒ [α/�]�1 ��2 ⇒ [α/�]�2}
RECEIVEW-T

Γ (���� : �)(� : �i) � 	i : � � �i α fresh in �1,�2

Γ �
	��(�){�1 ⇒ 	1 ��2 ⇒ 	2} : � � μα.?{�1 ⇒ [α/�]�1 ��2 ⇒ [α/�]�2}

Fig. 11. Typing Rules for Channel Free Expressions

of communications and ����3. Notice that requiring that both branch expressions in a
choice operation have the same union type � does not imply that we require them to be
of the same class: in fact, � can be a proper union type. For instance, we may have that
Γ � �1 : �1 � �1 and Γ � �2 : �2 � �2; by subsumption (rule SUB-T) we also have that
Γ � �1 : �1 ∨�2 � �1 and Γ � �2 : �1 ∨�2 � �2. Then, � = �1 ∨�2.

Figure 12 defines well-formed class tables. Rule SESS-WF type checks the session
bodies with respect to the current class � taking as term environment the association
between ���� and �. Notice that � has no dual type, so sessions whose bodies would
be typed with types containing � would be useless. This justifies the condition that �
must be closed in rule SESS-WF.

A last remark is that, since no typing rule generates free session type variables, then
all session types in typing judgements are closed unless they contain occurrences of �.

3 Note that this typing allows 	 to contain session requests, since the execution of these requests
will use different channels to communicate.

676 L. Bettini et al.

SESS-WF
{���� : �} � 	 : � � � � is closed

���{ 	 } �� in �

CLASS-WF
� �� � �� in �

���� � � � { ��; � } ��

Fig. 12. Well-formed Class Tables

The rules, presented in this section, define how the type system checks that the
declarative part of the program and the main part are well-typed, also with respect to
session types used in declarations of sessions. However, when considering well-typed
executable programs, we require that they are closed with respect to term variables and
that all communication expressions occur inside session co-bodies, that is, that they are
typed in the empty type environment with an empty session type. Namely, an initial
expression � is such that /0 � � : � � ε for some �. It is easy to verify that the set of
initial expressions is the set of closed and well-typed user expression. For example, let
us consider the stuck expressions �����)�*{�} and �•�{}:

– �����)�*{�} is well-typed but its session type is not empty,
– �•�{} is not well-typed.

We conclude this subsection by comparing FSAM∨ with FJ ∨ , an extension of FJ
with union types, proposed by Igarashi and Nagira in [29]. They define union types as in
the present paper: the essential difference is that they have traditional methods instead
of sessions.

The method signatures are of the shape �→ �, where both the parameter types � and
the return type � are union types. The method type lookup function applied to a method
name " and to a union type � gives a set of method signatures, i.e. all the signatures
which " has in the classes which build �. This is similar to our stype function, which
returns a set of session types.

The rule of method call checks that the types of the parameters agree with all the
signatures found by the method type lookup function for the union type of the object.
Also our rule SESSREQ-T requires the session type of the co-body be dual to all the
session types returned by the stype function.

It is easy to check that the encoding of methods by sessions sketched at the end of
Section 3 extends without changes to methods with union types.

6.2 Typing of Runtime Expressions

During evaluation of well-typed programs, channel names are made explicit in send and
receive expressions, as well as in session delegation. Thus, in order to show how well-
typedness is preserved under evaluation, we need to define new typing rules for runtime
expressions. Furthermore, in typing runtime expressions, we must take into account the
session types of more than one channel: runtime expressions contain explicit channel
names (used for communication) thus session types must be associated with channel
names in an appropriate way. Then judgements have the form

Γ ��� : � � Σ

where Σ denotes a session environment which maps channels to session types.

Session and Union Types for Object Oriented Programming 677

AXIOM-RT
Γ �� ! : Γ (!) � /0 ! � ����

FLD-RT
Γ �� 	 : � � Σ

Γ �� 	.� : ftyper(�,�) � Σ

SUB-RT
Γ �� 	 : � � Σ � <: �′

Γ �� 	 : �′ � Σ
NEWC-RT
fields(�) = �� Γ �� 	i : �i � /0

Γ �� �	��() : � � /0

CONT-RT
Γ (���� : �) �� ���� : � � {� : �}

SEQ-RT
Γ �� 	 : � � Σ Γ �� 	′ : �′ � Σ ′

Γ �� 	�	′ : �′ � Σ .Σ ′

FLDASS-RT
Γ �� 	 : � � Σ Γ �� 	′ : ftypew(�,�) � Σ ′

Γ �� 	.� := 	′ : ftypew(�,�) � Σ .Σ ′

SESSREQ-RT
Γ �� 	 : � � Σ Γ � 	′ : �′ � �′ �′ � �′′ ∀�′′ ∈ stype(�,�)

Γ �� 	.�{	′} : �′ � Σ
SESSDEL-RT
Γ �� 	 : � � Σ stype(�,�) = {�} � � ε rtype(�,�) = �′

Γ �� 	•�{�} : �′ � Σ .{� : �}
SENDC-RT

Γ �� 	 : �1 ∨�2 � Σ Γ �� 	i : � � {� : �i}
Γ �� �.�	���(){�1 ⇒ 	1 ��2 ⇒ 	2} : � � Σ .{� :!{�1 ⇒ �1 ��2 ⇒ �2}}

RECEIVEC-RT
Γ (� : �i) �� 	i : � � {� : �i}

Γ �� �.
	��(�){�1 ⇒ 	1 ��2 ⇒ 	2} : � � {� :?{�1 ⇒ �1 ��2 ⇒ �2}}
SENDW-RT

Γ �� 	 : �1 ∨�2 � /0 Γ (���� : �) �� 	i : � � {� : �i} α fresh in �1,�2

Γ �� �.�	���(){�1 ⇒ 	1 ��2 ⇒ 	2} : � � {� : μα.!{�1 ⇒ [α/�]�1 ��2 ⇒ [α/�]�2}}
RECEIVEW

Γ (���� : �)(� : �i) �� 	i : � � {� : �i} α fresh in �1,�2

Γ �� �.
	��(�){�1 ⇒ 	1 ��2 ⇒ 	2} : � � {� : μα.?{�1 ⇒ [α/�]�1 ��2 ⇒ [α/�]�2}}

Fig. 13. Typing Rules for Runtime Expressions

A session environment maps only a finite set of channels to session types different
from ε , and all the remaining to ε . We can then represent one session environment with
an infinite number of finite sets which give all the meaningful associations and some of
the others. For example {� : �} and {� : �,�′ : ε} represent the same environment. This
choice avoids an explicit weakening rule for session environments. Figure 13 gives the
typing rules for runtime expressions, which differ from those for channel free expres-
sions for having session environments instead of a unique session type. For this reason
we extend the concatenation of session types to session environments as follows:

Σ .Σ ′(�) = Σ(�).Σ ′(�)

Notice that in rule SESSREQ-RT we are making use of the judgement Γ � �′ : � � �′,
where the expression �′ does not contain channels, but it can contain object identi-
fiers. This justifies our choice of considering channel free expressions instead of user
expressions in the typing rules of previous subsection. Notice also that the session en-
vironments of the branches in the communication expressions only contain the current
channel as subject, since these expressions will never be reduced before the selection

678 L. Bettini et al.

has been done. In rule SENDW-RT we assume Γ ��� : �1 ∨�2 � /0, since the evaluation
of � cannot start before the ����� expression has been unfolded to a �����.

The typing rules for runtime expressions differ from the ones for user expressions
only in assigning the session type to explicit channels, not in the union type.

6.3 Type Soundness

Our type system enjoys subject reduction and assures progress (−→∗ is the reflexive
and transitive closure or −→):
If /0 � �0 : �0 � ε and �0, [] −→∗ P,h, where P ≡ �1 || . . . || �n, then:

– for each �i we get Γ ���i : �i � Σi for some Γ ,�i,Σi (1 ≤ i ≤ n), and there is j
(1 ≤ j ≤ n) such that � j = �0, and;

– either P,h −→ P′,h′ for some P′,h′, or for all i (1 ≤ i ≤ n) �i is an object identifier.
The runtime errors which our type system prevents are:

1. the selection of a field and the request of a session which do not belong to the class
of the current object;

2. the creation of a pair of dual channels whose communication sequences do not
perfectly match.

Proofs, more examples and discussions can be found in the extended version of this
paper, available at http://www.di.unito.it/∼dezani/papers /bcdgvfull.pdf.

7 Conclusion

In the present paper we showed, through the language SAM∨, how the addition of union
types to an object oriented language with session types enhances flexibility.

The amalgamation of communication centred and object oriented programming, as
it has been developed in [18, 6] and in the present paper, can be extended in various di-
rections. In particular we plan to integrate this approach with multi-party session com-
munication [9] and with safe failure recovery [4].

Moreover, we want to study the extension of union and intersection to session types,
following the intuition given by union/intersection of contracts in [12].

Lastly it would be interesting to integrate session primitives with name constraints
as introduced in [5] in order to allow specification of Quality of Service requirements.

Acknowledgements. We thank the referees for their helpful comments. The final version
of the paper improved due to their suggestions.

References

1. Barbanera, F., Dezani-Ciancaglini, M., de’Liguoro, U.: Intersection and Union Types: Syntax
and Semantics. Information and Computation 119, 202–230 (1995)

2. Bonelli, E., Compagnoni, A.: Multipoint Session Types for a Distributed Calculus. In: Barthe,
G., Fournet, C. (eds.) TGC 2007. LNCS, vol. 4912, pp. 240–256. Springer, Heidelberg (to
appear, 2008)

3. Bonelli, E., Compagnoni, A., Gunter, E.: Correspondence Assertions for Process Synchro-
nization in Concurrent Communications. Journal of Functional Programming 15(2), 219–248
(2005)

Session and Union Types for Object Oriented Programming 679

4. Boreale, M., Bruni, R., Caires, L., Nicola, R.D., Lanese, I., Loreti, M., Martins, F., Monta-
nari, U., Ravara, A., Sangiorgi, D., Vasconcelos, V., Zavattaro, G.: SCC: a Service Centered
Calculus. In: Bravetti, M., Núñez, M., Zavattaro, G. (eds.) WS-FM 2006. LNCS, vol. 4184,
pp. 38–57. Springer, Heidelberg (2006)

5. Buscemi, M., Montanari, U.: CC-Pi: A Constraint-Based Language for Specifying Ser-
vice Level Agreements. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 18–32.
Springer, Heidelberg (2007)

6. Capecchi, S., Coppo, M., Dezani-Ciancaglini, M., Drossopoulou, S., Giachino, E.: Amal-
gamating Sessions and Methods in Object Oriented Languages with Generics (submitted,
2007)

7. Carbone, M., Honda, K., Yoshida, N.: A Calculus of Global Interaction Based on Session
Types. In: Fernández, M., Kirchner, C. (eds.) SecReT 2006. ENTCS, vol. 171(3), pp. 127–
151. Elsevier, Amsterdam (2007)

8. Carbone, M., Honda, K., Yoshida, N.: Structured Communication-Centred Programming for
Web Services. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 2–17. Springer,
Heidelberg (2007)

9. Carbone, M., Honda, K., Yoshida, N.: Multiparty Asynchronous Session Types. In: Necula,
G.C., Wadler, P. (eds.) POPL 2008, pp. 273–284. ACM Press, New York (2008)

10. Castagna, G., De Nicola, R., Varacca, D.: Semantic Subtyping for the π-calculus. In: Panan-
gaden, P. (ed.) LICS 2005, pp. 92–101. IEEE Computer Society Press, Los Alamitos (2005)

11. Castagna, G., Frisch, A.: A Gentle Introduction to Semantic Subtyping. In: Barahona, P.,
Felty, A.P. (eds.) PPDP 2005, pp. 198–199. ACM Press, New York (2005)

12. Castagna, G., Gesbert, N., Padovani, L.: A Theory of Contracts for Web Services. In: Necula,
G.C., Wadler, P. (eds.) POPL 2008, pp. 261–272. ACM Press, New York (2008)

13. Coppo, M., Dezani-Ciancaglini, M., Yoshida, N.: Asynchronous Session Types and Progress
for Object-Oriented Languages. In: Bonsangue, M.M., Johnsen, E.B. (eds.) FMOODS 2007.
LNCS, vol. 4468, pp. 1–31. Springer, Heidelberg (2007)

14. Dezani-Ciancaglini, M., de’ Liguoro, U., Yoshida, N.: On Progress for Structured Com-
munications. In: Barthe, G., Fournet, C. (eds.) TGC 2007. LNCS, vol. 4912, pp. 257–275.
Springer, Heidelberg (2008)

15. Dezani-Ciancaglini, M., Drossopoulou, S., Giachino, E., Yoshida, N.: Bounded Session
Types for Object-Oriented Languages. In: de Boer, F., Bonsangue, M. (eds.) FMCO 2006.
LNCS, vol. 4709, pp. 207–245. Springer, Heidelberg (2007)

16. Dezani-Ciancaglini, M., Mostrous, D., Yoshida, N., Drossopoulou, S.: Session Types for
Object-Oriented Languages. In: Thomas, D. (ed.) ECOOP 2006. LNCS, vol. 4067, pp. 328–
352. Springer, Heidelberg (2006)

17. Dezani-Ciancaglini, M., Yoshida, N., Ahern, A., Drossopoulou, S.: A Distributed Object
Oriented Language with Session Types. In: De Nicola, R., Sangiorgi, D. (eds.) TGC 2005.
LNCS, vol. 3705, pp. 299–318. Springer, Heidelberg (2005)

18. Drossopoulou, S., Dezani-Ciancaglini, M., Coppo, M.: Amalgamating the Session Types and
the Object Oriented Programming Paradigms. In: MPOOL 2007 (2007),
���"�##��$	"%	� ��&
	%	����
% �	#$"���#$"���'(#"
�%
$$	 ��$�

19. Fähndrich, M., Aiken, M., Hawblitzel, C., Hodson, O., Hunt, G.C., Larus, J.R., Levi, S.:
Language Support for Fast and Reliable Message-based Communication in Singularity OS.
In: Zwaenepoel, W. (ed.) EuroSys 2006. ACM SIGOPS, pp. 177–190. ACM Press, New York
(2006)

20. Fournet, C., Laneve, C., Maranget, L., Rémy, D.: Inheritance in the Join Calculus. In: Kapoor,
S., Prasad, S. (eds.) FST TCS 2000. LNCS, vol. 1974, pp. 397–408. Springer, Heidelberg
(2000)

21. Gapeyev, V., Pierce, B.C.: Regular Object Types. In: Cardelli, L. (ed.) ECOOP 2003. LNCS,
vol. 2743, pp. 151–175. Springer, Heidelberg (2003)

http://homepages.fh-regensburg.de/mpool/mpool07/programme.html

680 L. Bettini et al.

22. Garralda, P., Compagnoni, A., Dezani-Ciancaglini, M.: BASS: Boxed Ambients with Safe
Sessions. In: Maher, M. (ed.) PPDP 2006, pp. 61–72. ACM Press, New York (2006)

23. Gay, S.: Bounded Polymorphism in Session Types. In: MSCS (to appear, 2008)
24. Gay, S., Hole, M.: Subtyping for Session Types in the Pi-Calculus. Acta Informatica 42(2/3),

191–225 (2005)
25. Gay, S., Vasconcelos, V.T., Ravara, A.: Session Types for Inter-Process Communication. TR

2003–133, Department of Computing, University of Glasgow (2003)
26. Honda, K.: Types for Dyadic Interaction. In: Best, E. (ed.) CONCUR 1993. LNCS, vol. 715,

pp. 509–523. Springer, Heidelberg (1993)
27. Honda, K., Vasconcelos, V.T., Kubo, M.: Language Primitives and Type Disciplines for

Structured Communication-based Programming. In: Hankin, C. (ed.) ESOP 1998. LNCS,
vol. 1381, pp. 22–138. Springer, Heidelberg (1998)

28. Honda, K., Yoshida, N., Carbone, M.: Web Services, Mobile Processes and Types. EATCS
Bulletin 91, 160–188 (2007)

29. Igarashi, A., Nagira, H.: Union Types for Object Oriented Programming. Journal of Object
Technology 6(2), 31–52 (2007)

30. Igarashi, A., Pierce, B.C., Wadler, P.: Featherweight Java: a Minimal Core Calculus for Java
and GJ. ACM TOPLAS 23(3), 396–450 (2001)

31. Sparkes, S.: Conversation with Steve Ross-Talbot. ACM Queue 4(2), 14–23 (2006)
32. Takeuchi, K., Honda, K., Kubo, M.: An Interaction-based Language and its Typing System.

In: Halatsis, C., Philokyprou, G., Maritsas, D., Theodoridis, S. (eds.) PARLE 1994. LNCS,
vol. 817, pp. 398–413. Springer, Heidelberg (1994)

33. Vallecillo, A., Vasconcelos, V.T., Ravara, A.: Typing the Behavior of Objects and Compo-
nents using Session Types. In: Brogi, A., Jacquet, J.-M. (eds.) FOCLASA 2002. ENTCS,
vol. 68(3), pp. 439–456. Elsevier, Amsterdam (2002)

34. Vasconcelos, V.T., Gay, S., Ravara, A.: Typechecking a Multithreaded Functional Language
with Session Types. Theorical Computer Science 368(1-2), 64–87 (2006)

35. Web Services Choreography Working Group. Web Services Choreography Description Lan-
guage (2002), ���"�##��� �) �
%#*''*#��#���
#

http://www.w3.org/2002/ws/chor/

	Session and Union Types for Object Oriented Programming
	Introduction
	An Example
	Syntax
	Auxiliary Functions
	Operational Semantics
	Typing
	Typing of Channel Free Expressions
	Typing of Runtime Expressions
	Type Soundness

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

