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Complex systems can be characterized by classes of equivalency of their elements defined according to
system specific rules. We propose a generalized preferential attachment model to describe the class size
distribution. The model postulates preferential growth of the existing classes and the steady influx of new
classes. According to the model, the distribution changes from a pure exponential form for zero influx of new
classes to a power law with an exponential cut-off form when the influx of new classes is substantial. Predic-
tions of the model are tested through the analysis of a unique industrial database, which covers both elementary
units (products) and classes (markets, firms) in a given industry (pharmaceuticals), covering the entire size
distribution. The model’s predictions are in good agreement with the data. The paper sheds light on the
emergence of the exponent 7=~2 observed as a universal feature of many biological, social and economic

problems.
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Many complex systems of interest to physicists, biolo-
gists, and social scientists [1-6] share two basic similarities
in their growth dynamics. (i) The system does not have a
steady state but is growing. (ii) Basic units are born, they
agglomerate to form classes, and classes grow in size accord-
ing to a rule of proportional growth [7]. In biological sys-
tems, units could be bacteria, and classes would be bacterial
colonies. In the context of economic systems, units could be
products, and classes would be firms. In social systems, units
could be human beings, and classes would be cities.

The probability distribution function p(k) of the class size
k of the systems mentioned above has been shown to follow
a universal scale-free behavior p(k) ~ k™" with 7=2 [1-3,8].
Other possible values of 7 are discussed and reported in [9].
Also, for most of the systems p(k) has an exponential cutoff,
which is often assumed to be a finite-size effect of the data-
bases analyzed. Several models [4,10-13] explain 7=2 but
none explains the exponential cutoff of p(k). Moreover, the
models describing p(k) ~k" are not suitable to describe
simultaneously systems for which p(k) ~exp(—vk).

In this paper, we present a model with a simple set of
rules to describe p(k) for the entire range of k, i.e., a power
law with an exponential cutoff. We show that the exponential
cutoff of the power law is not due to finite size, but is
an effect of the finite-time interval of the evolution. We
show how the functional form of p(k) is determined by
different scenarios of the model, changing from a pure
exponential to a pure power law (with 7=2), via a power
law with an exponential cutoff. The predictions of the model
are then tested through the analysis of a unique industrial
database [14,15], which covers both elementary units (prod-
ucts) and classes (markets, firms) in a given industry
(pharmaceuticals).

The model consists of the following rules:

1. At time =0 there exist N classes, each with a single
unit [16].
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2. At each step (a) with probability b (0=b=1), a new
class with a single unit is born; (b) with probability A
(0<A=1), a randomly selected class grows one unit in size.
The selection of the class that grows is made with probability
proportional to the number of units it already has (“preferen-
tial attachment”); (c) with probability u (0<u<M\), a
randomly selected class shrinks one unit in size. The selec-
tion of the class that shrinks is done with probability propor-
tional to the number of units it already has (“preferential
detachment”).

In the continuum limit, the above rules give rise to a
master equation for the class size PDF p(k,t;,t), which is the
probability at time 7, for a class i introduced at time ¢, to
have k units,

&p(k’tnt) _ (k_ 1) (k+ 1)
(?t _)\ n(t) p(k—l,tl,t)+/.L f’l(l) p(k+19ttvt)
k
—(7\+M)%p(k,t,-,t), (1)

where n(t)=N+(\—pu+b)t is the total number of units at
simulation step 7. Equation (1) is transformed to the master
equation of birth and death processes [17] by a new variable
s, where dt/ds=n(t) and p(k,s;,s)=p(k,t;(s;),t1(s)). The
master equation for p(k,s;,s) has the same form as Eq. (1)
after replacing ¢ by s, p(k,t;,t) by p(k,s;,s), and n(r) by 1,
respectively. From the well-known solution of birth and
death processes under the initial condition p(1,s;,s;)=1[18],
we obtain the solution after transforming back from s to f,

o
= (k=0)

=y A 2)
(1- nri,z)(l - Ifﬂri,t) 7]2_11 (k>0)

with
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TABLE I. The ATC hierarchical classification. The ATC catego-
rizes drugs at four levels of aggregation according to the organ or
system on which they act and their chemical, pharmacological, and
therapeutic properties. There are 13 main groups (level A) and 84
pharmacological, subgroups (level B). The levels C and D are
pharmacological/therapeutic subgroups. Medicinal products, such
as bisphosphonates in the example, are classified according to the
main therapeutic use of the main active ingredient. The basic prin-
ciple is one ATC code for each pharmaceutical formulation. The
WHO is responsible to manage the ATC. Over the period of our
empirical analysis, the number of classes of levels A and B has
remained constant, while the number of classes in levels C and D
increased by 3% and 5%, respectively.

Level Type N Code Content
A Anatomical 13 M Musculo-skeletal
main group system
B Therapeutic 84 MO5  Drugs for treatment of
subgroup bone diseases
C Pharmacological 259 MO5B Drugs affecting
subgroup bone structure
and mineralization
D Chemical 432 MOSBA Bisphosphonates
subgroup
3
Mt = i s (3)
1 - ERe
A

where R=[t;+ N(\—u+b)"']/[t+N(\—u+b)"'] and a=(\
—w)N=u+b)". plk,t;,1) = nf_f,l is obviously an exponential
function of k. Finally, one can obtain p(k,t) by averaging
p(k,t;,1) over units introduced at different #; as follows:

N
plk,t) = —p(k,0,1) +

t
dtip(k,t;,t). 4
N+ bt N+btf Pk t) @

0

The first term, [y, is

TABLE II. The evolution of the number of classes N for differ-
ent levels of the PHID over 10 years. There are three different cases
of N in 6 levels: (i) For levels A and B there is no birth or death of
classes (i.e., the number of newly born classes N, is 0 and the
number of dead classes N is also 0. (ii) For levels C and D system
grows not only with birth and death of units inside classes but also
with the birth of classes. The system grows with the birth of new
classes to the final Ny classes (259 for level C and 432 for level D).
(iii) From the table, the values of b/(A—u) estimated to be
Ny 1/ (N}, ,—N,,) are 0.0009 (Ievel C), 0.002 (level D), and 0.049
(firms).

Level A B C D firms products
Ny 13 84 259 432 3913 48819
N, 0 0 8 20 458 12645
Ny, 0 0 0 0 252 3361
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TABLE III. Correlation coefficient C(k;,k,) between the num-
ber of born units k;, and existing number of units %, in classes and
C(ky,k,) between the number of dead units k; and k, in classes for
each level in the PHID. The observed correlations justify the as-
sumptions in our model: the preferential birth and death of units
(rules 2b and 2c).

Level A B C D firms
C(ky,k,) 0.93 0.87 0.84 0.82 0.70
Clky,k,) 0.88 0.86 0.80 0.78 0.75

I} < exp(— yk) with y=—log 7y, ~ % (5)

To obtain the second term I, we first substitute p(k,z;,7) from
Eq. (2) in Eq. (4), then change the variable of integration
from ¢; to 7. Hence

g aerey|\erers

2=

(N + bt)
L= 5 \ #0600
X J Midp| ——1 7. (6)
1- Lad n
A

In the limit of r— o0, we have 7,,— 1. Since (1-un/\)™"!
~l+un/\, Eq. (6) can be integrated giving the Yule
distribution [13]

o\ ey ) ()
(1 )( ),nzzo m! (L),
N—u/)
Xf(l)dﬂ(l _ 77)1+[b/()\—;4)]1/n+k—1. (7)

In the limit of z— o0, we obtain from Eq. (7) [19]
1, o kO] (8)

in which an exponential function has been transformed into a
power-law function by integration. This situation is analo-
gous to the one described by the standard preferential attach-
ment model [3], where the power-law distribution also fol-
lows from the Yule distribution. In the limit of fixed time ¢
and k— oo, I, cexp(—yk)/k, which decays faster than Eq. (5),
implying that the distribution of class size k for new classes
has an exponential cutoff faster than for the old classes.
Thus, the full solution of Eq. (1) is a power law [Eq. (8)]
with an exponential cutoff [Eq. (5)]. We observe that these
two terms are of the same order in the range k=r* for large
finite .

We next present a mean-field interpretation of the result
7~2. At any time f,, the number of units in the already-
existing classes is n(¢;). Suppose a new class consisting of
one unit is born at time f,. According to rules 2b and 2c, its
growth rate is proportional to 1/n(z,). Neglecting the effect
of the influx of new classes on n(fy), the average size k of
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FIG. 1. (Color online) Empirical results for the cumulative prob-
ability distribution, p(k), of class size k at different levels. (a)—(d)
correspond to levels A-D, respectively. Symbols represent data
points in each level (a)—(d), while dashed lines are predictions of
the model. The cumulative probability distributions for all levels are
reasonably well fit by pure exponentials, as predicted by the model.

this class born at ¢, is proportional to 1/n(zy). So the classes
that were born at times 7>, tend to have an average size
measured in terms of k that is smaller than the one of older
classes. If we sort the classes according to size, the rank R(k)
of a class is proportional to its age R(k)oct,. Thus,
k~1/n(ty) ~1/tg~1/R(t,), coherently with the standard
formulation of the Zipf law [1] according to which the size
of a class k is inversely proportional to its rank. If we take
into account the decrease of the growth rate with the influx
of new classes, one can show after some algebra that
k~ R~ O-m/0=p+b) “\which includes k~R™" as a limiting case
for b—0. Since R(k) is the number of classes whose sizes
are larger than k, we can write in the continuum limit
R(k)~ [ p(k)dk, and hence p(k) ~ k=272/O0=1),

The full solution of Eq. (1), a power law with an expo-
nential cutoff, can be interpreted as follows. We start with N
classes that are colored red, and let the newly born classes be
colored blue. Due to the preferential attachment rule, the red
classes have on average a number of units that is larger than
the blue classes. Thus for large k, p(k) is governed by the
exponential distribution of the red classes (case i), while for
small k, p(k) is governed by the power-law distribution of
the blue classes (case ii).

We now test the predictions of the model using the phar-
maceutical industry database (PHID), a microlevel economic
database that allows a fine-grained decomposition of the sta-
tistical properties of growth dynamics of business firms in a
given industry. PHID records quarterly sales figures of
48 819 pharmaceutical products commercialized in the Euro-
pean Union and North America from September 1991 to
June 2001. The products are then classified into different
hierarchical levels based on the Anatomic and Therapeutic
Classification (ATC) (Table I). Each level has a specific
number of classes (Table II).

We observe that, at all different levels, there are positive
correlations between the number of units (products) that en-
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FIG. 2. (Color online) Comparison of empirical results for firms
of the PHID and the simulation results. (a) and (c) Log-log plots of
the cumulative probability distribution of the class sizes show a
power-law decay k=™ with 7=2 for k< 200. The fit (dashed line)
in (a) and (b) is obtained by numerical calculation of Eq. (4) with
b=0.1, t/N=200, A\=0.77, and ©=0.33. (b) and (d) Log-linear plots
of the cumulative probability distribution, showing exponential de-
cay for k>200. In (c) and (d), O, OJ, and A show the distribution
for =200 000, 20 000, and 2000, respectively. Note that the expo-
nential function gradually changes into a power-law function.
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TABLE 1IV. Comparison of values of the parameters in the
model using the data and from the model. y of the data is estimated
by regression in Fig. 1, and y of the model is estimated using
y=-log no, [7, in Eq. (3) is estimated by the value of b/(A—pu)
and N, which is the solution of two equations: N+(A—pu+b)t
=48819 and N+br=Ny, based on Table II]. 7 of the data is esti-
mated by regression in Fig. 2(a) and 7 of the model is estimated
using 7=2+b/(\—u) with the numbers of Table II.

(Level) y(A) y@®B) () y(D) vyl(firms) 7 (firms)
data 0.00031 0.0015 0.0039 0.0044 0.0054 2.14
model  0.00020 0.0013 0.0033 0.0050 0.0173 2.05

ter or exit and the number of units in the classes (Table III).
This empirical observation is consistent with a preferential
birth and death process (rules 2b and 2c), as described in the
model.

For levels A and B, the number of classes did not change
during the period of observation and we find an exponential
distribution [Figs. 1(a) and 1(b)] as predicted by the limiting
case i of the model. For levels C and D, a weak departure
from the exponential functional form [Figs. 1(c) and 1(d)]
can be accounted for within the model, if we consider a
slight growth in the number of classes.

The full solution predicted by the model, i.e., a power law
followed by the exponential decay of p(k), is observed em-
pirically for firms (Fig. 2), displaying a power law with ex-
ponent 7=2.14 for k<200 and an exponential cutoff for k
>200. Coherently with the predictions of the model, the
exponential part of p(k) arises from large, diversified, “old”
firms, while the power law part of p(k) is produced by young
firms.
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The estimated parameters are given based on Table II:
b/(N=p) is estimated to be N,;/(N,,—Ny,), N p
=Ny ,/Nyp» N+(N—u+b)t=48 819, and N+bt=N;, (where
the subscripts “p,” “b,” “d,” and “f’ denote ‘“product,”
“birth,” “death,” and “final,” respectively, and “L” means
either of level A to D or firms). Using y=—log 7, and 7, in
Eq. (3) by eliminating #, vy, and 7 can be estimated (Table
V).

The oldest firms within the industry entered it almost 150
years ago, while our data cover only the past decade. None-
theless, the theoretical estimations of y and 7 based on Eqgs.
(5) and (8) are surprisingly good, except for y of firms. This
departure can be accounted for if we consider that the real
data for firms are shaped not only by firm entry, but also by
firm exit, mergers and acquisitions, which are not considered
by the model [13,20] because the model does not permit
exits of classes consisting of more than one unit. Additional
computer simulations show that if we include into our model
the possible exit of large classes, the value of 7y estimated
from the parameters of the model comes to an agreement
with the actual one. We show simulation results in Figs. 2(c)
and 2(d), and they are in good agreement with the empirical
results in Figs. 2(a) and 2(b).

We conclude that our model is in good agreement with the
data, for which p(k) is either pure exponential or power law
with an exponential cutoff. Our analysis sheds light on the
emergence of the exponent 7= 2 observed as a universal fea-
ture of many biological, social, and economic systems.
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