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Abstract

The reactivity of phosphine substituted ruthenium carbonyl carboxylates Ru(CO)2(MeCOO)2(PBu3)2, Ru2(CO)4(l-
MeCOO)2(PBu3)2, Ru4(CO)8(l-MeCOO)4(PBu3)2 with H2 and/or acetic acid was investigated by IR and NMR spectroscopy to clar-

ify their role in the catalytic hydrogenation of acetic acid. Evidences were collected to suggest hydride ruthenium complexes as the

catalytically active species. Equilibria among ruthenium hydrides and carboxylato complexes take place in the presence of hydrogen

and acetic acid, that is in the conditions of the catalytic reaction. Nevertheless the presence of acetic acid reduces the rate of the

formation of hydrides. Working at a very high temperature (180�C) polynuclear phosphido hydrides such as [Ru6(l-
H)6(CO)10(l-PHBu)(l-PBu2)2(PBu3)2(l6-P)] were formed. These phosphido clusters are suggested as the resting state of the catalytic

system.

Furthermore the bi- or tetranuclear Ru(I) carboxylato complexes react with acetic acid giving a mononuclear ruthenium complex

Ru(CO)2(MeCOO)(l-MeCOO)(PBu3), containing a monodentate and a chelato acetato ligands. This complex was spectroscopically

characterised. Its identity and structure were confirmed by its reactivity with stoichiometric amount of PPh3 to give Ru(CO)2(Me-

COO)2(PBu3)(PPh3), a new mononuclear ruthenium carbonyl carboxylate containing two different phosphines, that was fully

characterised.

� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The catalytic hydrogenation of carboxylic acids in

homogeneous phase has been investigated in our labo-

ratory for several years [1]. This reaction was achieved

using ruthenium complexes such as Ru4H4(CO)8(P-

Bu3)4 (1) and Ru4H4(CO)8[(�)-DIOP]2 [2] as catalytic

precursors.

Ruthenium carbonyl carboxylates Ru(CO)2(Me-
COO)2(PBu3)2 (2), Ru2(CO)4(l-MeCOO)2(PBu3)2 (3),
0022-328X/$ - see front matter � 2004 Elsevier B.V. All rights reserved.

doi:10.1016/j.jorganchem.2004.09.048
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Ru4(CO)8(l-MeCOO)4(PBu3)2 (4), were detected in the
crude of the hydrogenation of acetic acid in the presence

of (1) as catalytic precursor [2a,3]. These carboxylato

complexes (2)–(4) are catalytically active in the hydro-

genation of acetic acid [1b].

The behaviour of (1)–(4) with hydrogen has been

studied [1d,1e,1h] in order to understand their role in

the catalytic hydrogenations. The ruthenium carboxy-

lato complexes (2) and (3) react with hydrogen at low
temperature (50 and 100 �C, respectively) to give the

hydrido complexes RuH2(CO)2(PBu3)2 (5), Ru4H4-

(CO)9(PBu3)3 (6) and (1) [1h]. At higher temperature

(over 140 �C), the phosphido ruthenium clusters

mailto:piero.frediani@unifi.it 
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[Ru6(l-H)6(CO)10(l-PHBu)(l-PBu2)2(PBu3)2(l6-P)] (7),

[Ru6(l-H)6(l-CO)(CO)12(l-PBu2)(PBu3)2(l6-P)] (8), [Ru7-

(l-H)8(CO)12(l3-PBu)(l-PBu2)(PBu3)2(l6-P)] (9), [Ru3-

(l-H)2(CO)7(l3-PBu)(PBu3)2] (10) are formed [1d,1e]

(Scheme 1).

To get more information on the role played by the
complexes (2–4) in the catalytic hydrogenation of acetic

acid we have now investigated the behaviour of these

complexes in the presence of acetic acid or acetic acid

and H2. The reactions were monitored by ‘‘in situ’’

HP-IR spectroscopy, using a cell directly connected to

the reaction vessel. Samples of the solutions were also

analysed by glc and glc-ms to identify the organic prod-

ucts formed. The new ruthenium complexes were char-
acterised by IR and NMR spectroscopy.

Some reactions were also monitored by 31P NMR

spectroscopy.

At the end of this investigation, the hydrogenating

activity of [Ru6(l-H)6(CO)10(l-PHBu)(l-PBu2)2(PBu3)2-
(l6-P)] (7) has been tested in order to evaluate the role

played by the phosphido clusters in the catalytic hydro-

genation of acetic acid.
2. Results and discussion

2.1. Reactivity of ruthenium carbonyl carboxylates with

acetic acid

2.1.1. Ru2(CO)4(l-MeCOO)2(PBu3)2 (3)
2.1.1.1. IR study. Ru2(CO)4(l-MeCOO)2(PBu3)2 (3), in

n-heptane as solvent, reacted with acetic acid (Ru/

CH3COOH = 1:30) at 40 �C giving a new complex Ru-

(CO)2(MeCOO)(l-MeCOO)(PBu3) (11) as evidenced
by new bands at 2060(ff), 1990(ff) and 1575(m) cm�1.

After 48 h traces of (3) were still present. A quantitative

conversion of (3) into (11) was reached after 70 h.

No other transformations were observed increasing

the temperature up to 120 �C. At this temperature part

of the acetic acid was present in vapour phase decreasing
its concentration in solution. As a consequence the reac-

tion was reversed and (3) returned to be themain complex

present in the solution (Scheme 2). A further increase

of temperature (150 �C) reduced further the concentra-

tion of acetic acid in solution and the amount of (11).

The process is reversible because when the vessel was

cooled to room temperature and the concentration of

acetic acid restored to its initial value, the amount of
(11) increases: after 48 h (11) was the sole ruthenium

complex present in solution.

In the residue obtained removing the solvent and the

acetic acid at reduced pressure and low temperature

(10 �C), the complexes (11) and (2) were evidenced by

IR spectroscopy using n-pentane as solvent. However,

the IR spectrum of the same residue in a n-heptane/ace-

tic acid solution showed the presence of (11) as the sole
complex in solution because the absorptions of (2) in

acetic acid are shifted and overwhelmed by those of (11).

Complex (11) showed a low stability in a hydrocar-

bon solution in the absence of acetic acid.

2.1.1.2. NMR study. The reactivity of (3) with acetic

acid was also carried out in an NMR sample tube using

C6D6 as solvent. After an hour at room temperature a
singlet at 43.5 ppm (11.7%) attributable to (11) and a

singlet at 17.2 ppm (1.2%) due to (2) were present in

the 31P NMR spectrum. Complex (2) was not easily

identified in the IR spectrum performed in a C6D6/acetic

acid solution when (11) was the main ruthenium com-

plex because the absorptions of (2) in the presence of

acetic acid are overwhelmed by those of (11). However,

if the acetic acid was removed and the residue dissolved
in n-pentane, the presence of (11) and (2) might be easily

evidenced (see above).

A total conversion of (3) was reached after 56 h at

40 �C [70.4% of (11) and 29.6% of (2)]. No other signals

were present in the 31P NMR spectrum.

The 31P-, 1H-, and 13C NMR spectra (C6D6 as sol-

vent) of the residue after elimination of the acetic acid

confirmed the presence of (11) and (2). The NMR reso-
nances were shifted with respect to those collected from

the solution containing acetic acid. The presence of (2)

was confirmed by its characteristic resonances. The com-

plex (11) showed resonances due to PBu3 (a broad sin-

glet at 44.4 ppm in the 31P NMR spectrum) and CO

ligands (195.9 (m) ppm in the 13C NMR spectrum),

two inequivalent MeCOO groups (174.5 and 183.0

ppm in the 13C NMR spectrum attributable to a mono-
and a bidentate acetato ligand, respectively). These

attributions are in agreement with the resonance of the
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monodentate acetato group in (2) (175.9 ppm) and the

bidentate acetato ligand in Ru(l-MeCOO)2[(S)-BINAP]

(188.1 ppm) [4], respectively. The broad signal in the 31P

NMR spectrum may be due to a rapid intramolecular
rearrangement between the acetato ligands. Several

complexes containing both mono- and bidentate carb-

oxylato ligands are reported, such as Ru(CO)-

(RCOO)(l-O,O 0-RCOO)(PPh3)2 (R = Me, p-C6H4Cl,

p-C6H4NO2, CF3, C2F5, C6F5) [5]. A rapid intramolecu-

lar exchange between mono- and bidentate carboxylato

ligands was observed by NMR studies on these com-

plexes (R = Me, CF3, C2F5, C6F5) [6] at variable
temperature.

The fluxional structure of the complex (11) was con-

firmed by the 1H NMR spectrum. The broad resonance

at 2.02 ppm, attributed to the methyl group of the ace-

tato ligands, suggests a fast intramolecular rearrange-

ment of the two acetato ligands. An analogous broad

signal in the 1H NMR spectrum is reported by Spencer

and Wilkinson [5a] for the non-rigid Ru(MeCOO)(l-
MeCOO)(CO)(PPh3)2 complex.

The low stability of (11) in the absence of acetic acid

was confirmed by several signals present in the 31P

NMR spectrum recorded after 24 h.

The formation of (11) is rationalised in Scheme 2.

Acetic acid is added to (3) breaking the acetato bridge
and giving an intermediate complex [Ru2(CO)4(Me-

COO)2(MeCOOH)2] containing two monodentate carb-

oxylato ligands. An analogous process involving the

formation of a Ru2(MeCOO)2(CO)6(PBu3)2 containing
monodentate acetato ligands has been suggested in the

reaction of (3) with CO [1f] as a preliminary step of

the formation of Ru(CO)4(PBu3).

The complexes that we are now proposing are clo-

sely related to those previously isolated by Rotem

et al. [7], containing acetic acid units directly bound

to the metal.

This intermediate Ru(I) complex gives the mononu-
clear Ru(II) complex (11) and H2 (Scheme 2). A similar

reactivity of the coordinated acetic acid was reported to

explain the synthesis of (2) from [Ru2(CO)4(l-Me-

COO)2]n (12) [8]. Ruthenium (I) was oxidised by the

coordinated acetic acid and molecular hydrogen was

formed. Fachinetti et al. [9] also suggest an analogous

oxidation of Ru(0) to Ru(I) in the presence of

CF3COOH.
The partial transformation of (11) into (2) was ob-

served by IR and NMR spectroscopy of the solution

while the contemporary formation of (12), the ruthe-

nium species without phosphinic ligands, was identified

through IR spectroscopy (KBr pellets) on the yellow res-

idue present in the NMR sample tube.
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When the reaction was prolonged for a long time at

120 �C the Ru(II) complexes, (11) and (2), were reduced
to the Ru(I) complex (3) (Scheme 2). An acetato radical

may be involved. It reacted with n-heptane giving acetic

acid and heptenes as showed by glc. No Ru(0) species

were detected. The rearrangement of (2) into (3) at

120 �C was previously reported [1d] and attributed to

a thermal transformation. On the contrary a dispropor-

tionation of a polymetallic Ru(I) complex into Ru(0)

and Ru(II) species was reported by Fachinetti et al.
[9,10].

2.1.1.3. Synthesis and structure of Ru(CO)2(Me-

COO)2(PBu3)(PPh3) (13). Complex (11) reacted at

room temperature with a stoichiometric amount of

PPh3 giving Ru(CO)2(MeCOO)2(PBu3)(PPh3) (13)

(Scheme 3), a ruthenium carbonyl carboxylate contain-

ing two different phosphines. This new complex was iso-
lated and spectroscopically characterised.

The data collected are in agreement with an octahe-

dral structure containing a tributylphosphine trans to a

triphenylphosphine, two cis carbonyl groups and two cis

acetato ligands (Fig. 1(a)).

The other possible structures (b)–(f) (Fig. 1) have

been ruled out according to the following considera-

tions: the 31P NMR spectrum shows an AB spin system
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with resonances at 23.9 (d, 1P, PBu3, JPP = 311.6 Hz)

and 30.5 (d, 1P, PPh3, JPP = 311.6 Hz) ppm. The JPP va-

lue is in agreement with a trans coupling between the

two phosphine [11]. The pattern of this NMR spectrum

has been well simulated using the data above reported.

The 1H- and 13C NMR spectra are in agreement with
two equivalent acetato ligands ruling out the structures

(13c), (13d) and (13e). The pseudo triplet at 198.8 ppm

in the 13C NMR spectrum may be ascribed to the car-

bon atoms of two equivalent carbonyl groups coupled

with two cis phosphines. As a consequence the struc-

tures (13c), (13d) and (13f) showing two non-equivalent

carbonyl groups must be excluded. The structures (13b)

and (13e) containing the carbonyl groups in a trans posi-
tion must be also discarded because two bands of equal

intensity are present in the carbonyl stretching region of

the IR spectrum.

The MS spectrum shows a pattern of peaks centred at

m/z 740 in agreement with the Ru(CO)2(MeCOO)2-

(PBu3)(PPh3) formulation of (13).

The elemental analysis confirm the reported

formulation.
The synthesis of (13) from (11) and PPh3 confirms

also the structure attributed to (11).

2.1.2. Ru4(CO)8(l-MeCOO)4(PBu3)2 (4)
2.1.2.1. IR study. The complex (4), in n-heptane as

solvent, reacted at room temperature with an excess

of acetic acid (Ru/CH3COOH = 1:23) giving (conver-

sion 60% after 24 h) a mixture of ruthenium com-
plexes. The new bands at 2060 and 1990 cm�1 were

attributed to (11) while a band at 1999(w) cm�1 sug-

gests the presence of a trace of another unidentified

product. A broadband was also present in the carboxy-

lato region at 1580 cm�1 suggesting the presence of an

acetato complex. A reasonable mechanistic pathway

for the conversion of (4) into (11) is proposed in

Scheme 4 taking into account the reactivity of (4) with
CO [1f]. A preliminary coordination of acetic acid is

followed by a cleavage of the oxygen bridges between

two Ru atoms giving the complex [Ru2(CO)4(l-Me-

COO)2(MeCOOH)(PBu3)] (Scheme 4). In a subsequent

step this complex reacts with acetic acid giving the

complexes (11) and (12). This last complex was identi-

fied as a yellow residue after cooling the vessel.

At higher temperature (120 �C after 24 h) (11) was the
sole complex present in the solution as shown by the IR

spectrum.

2.1.2.2. NMR study. The reaction of (4) with acetic

acid was also carried out in a NMR sample tube

(C6D6 as solvent) and monitored by 31P NMR

spectroscopy.

At room temperature (11) was formed (conversion
24.5% after 1 h) together with trace of two phosphinic

compounds (singlet at 13.4 and 38.8 ppm in the 31P
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NMR). After 8 days (11) was the main complex (75.6%)

present in the solution and (4) was still present (12.3%).

A yellow insoluble product was also formed and identi-

fied by IR spectroscopy as (12).

The conversion of (4) was complete after 15 days at

room temperature and (11) was the main product in
the solution (87.2%) together with an unidentified prod-

uct having a singlet at 38.8 ppm (12.8%) in the 31P

NMR.

The IR and NMR spectra of the residue obtained

after distillation of the solvent and acetic acid at low

temperature and reduced pressure showed (11) as the

main ruthenium species. This solution was employed

to perform the spectroscopic characterisation of (11)
(see Section 4).

2.1.3. Ru(CO)2(MeCOO)2(PBu3)2 (2)
Complex (2) did not react with acetic acid at room

temperature in a n-heptane solution (Ru/

CH3COOH = 1:30). Only a shift of the carbonyl

stretchings of (2) to higher frequencies was due to the

presence of acetic acid. This behaviour is reversible: if
the liquids were removed and the residue dissolved in

n-heptane the starting spectrum of (2) was restored. In

the same way the resonances of (2) were shifted when

the 1H-, 31P- and 13C NMR spectra were recorded in a

MeCOOH/C6D6 solution (Table 1). The multiplicity

and the coupling constants remain unchanged in all

cases.

A temperature of 140 �C was required to observe the
conversion of (2) into traces of (3); the amount of (3) in-

creased after heating at 150 �C, as expected, according

to the thermal stability of (2) [1d].
2.2. Reactivity of ruthenium carbonyl carboxylates with

hydrogen and acetic acid

The reaction of ruthenium complexes (2–4) with

hydrogen and acetic acid, that is in the conditions em-

ployed for the hydrogenation of acetic acid, was tested
by IR spectroscopy. The organic products were identi-

fied and quantified by glc and glc-ms analyses.

2.2.1. Ru2(CO)4(l-MeCOO)2(PBu3)2 (3)
The complex (3), in a n-heptane solution, did not re-

act with acetic acid (Ru/CH3COOH = 1:30) and hydro-

gen (100 atm) at room temperature after a long time (15

days).
The IR spectrum of (3) was unchanged even if the

solution was heated up to 140 �C; however in these con-

ditions ethyl acetate was formed through the hydrogen-

ation of acetic acid.

Only at 180 �C after 24 h (3) was transformed into the

hydrido clusters (7), (9) and (10). The same ruthenium

complexes were formed at lower temperature from (3)

and hydrogen (50 atm) [1e]. The presence of acetic acid
reduces the rate of the transformation of (3) into phos-

phido ruthenium clusters.

This behaviour supports the hypothesis that interme-

diate hydrido ruthenium complexes must be involved in

these transformations [1h]. The presence of acetic acid

decreases the rate of the hydrogenolysis of the acetato

group in (3) because this reaction involves the formation

of ruthenium hydrides and acetic acid. Furthermore, the
presence of hydrogen hinders the formation of (11) by

reaction of (3) and acetic acid, in agreement with the

mechanism reported in Scheme 2.



Table 1

Spectroscopic data of Ru(CO)2(MeCOO)2(PBu3)2
a: influence of acetic acid

Solvent IR m (cm�1) Solvent 31P NMR (ppm) 1H NMR (ppm) 13C NMR (ppm)

n-Heptane 2041(vs) C6D6 17.4 0.86 (t, 18H, CH3CH2,

JHH = 7.3 Hz), 1.28

(q, 12H, CH3CH2,

JHH = 7.3 Hz), 1.50

(m, 12H, CH2CH2P),

1.86 (m, 12H, CH2 P),

2.25 (s, 6H, CH3COO)

13.8 (s, CH3CH2), 23.7

(s, CH3COO), 23.9

(t, CH2P, JCP = 12.7 Hz),

24.8 (t, CH3CH2,

JCP = 6.3 Hz), 25.4

(s, CH2CH2 P), 175.9

(s, CH3COO), 199.0

(t, CO, JCP = 10.9 Hz)

1971(vs)

1628(m)

n-Heptane/MeCOOH 2049(vs) C6D6/MeCOOH 17.2 0.85 (t, 18H, CH3CH2,

JHH = 7.3 Hz), 1.28

(q, 12H, CH3CH2,

JHH = 7.3 Hz), 1.42

(m, 12H, CH2CH2P),

1.81 (m, 12H, CH2P),

2.27 (s, 6H, CH3COO)

14.1 (s, CH3CH2), 23.6

(s s, CH3COO), 24.1

(t, CH2 P, JCP = 12.7 Hz),

25.0 (t, CH3CH2,

JCP = 6.3 Hz), 25.6

(s, CH2CH2 P), 179.3

(s, CH3COO), 198.7

(t, CO, JCP = 10.9 Hz t)

1988(vs)

1575(m)

a NMR data are partially reported [1a].
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2.3. Ru4(CO)8(l-MeCOO)4(PBu3)2 (4)

The complex (4), in n-heptane as solvent, reacted in

the presence of acetic acid (Ru/CH3COOH = 1:23) and

hydrogen (100 atm at room temperature) at 60 �C giv-

ing (3) (traces after 72 h) as reported in Scheme 5. The

complex (12), formed as a concomitant product, was

recovered as a yellow solid and identified by IR
spectroscopy.

The same reaction takes place in a large extent at

60 �C in the presence of only hydrogen [1f] or through

a thermal rearrangement of (4) at 150 �C [8,12].

These data support the hypothesis that the phosphine

redistribution also takes place through hydride interme-

diates, formed in an undetectable amount. The forma-

tion of ruthenium hydrides is reduced by the presence
of acetic acid and consequently the phosphine redistri-

bution is very low. It was necessary to heat (4) at 140

�C for 20 h to obtain a (4)/(3) molar ratio of 3:2.

The complex (4), heated at 160 �C for 25 h, was al-

most completely transformed into (3) and (12). Ethyl

acetate was also present in the solution collected at this

temperature and analysed by glc.

2.4. Ru(CO)2(MeCOO)2(PBu3)2 (2)

The complex (2), in a n-heptane solution, did not re-

act with acetic acid (Ru/CH3COOH = 1:30) and hydro-
Ru4(CO)8(    MeCOO)4(PBu3)2         Ru2(CO)4(    MeCµ− µ−

(4) (3)

Scheme 5
gen (100 atm) at room temperature. Only a shift of the

bands in the IR spectrum was shown as observed under

nitrogen.

Heating this solution for 24 h at 80 �C the complexes

(5) [1d] and RuH(CO)2(MeCOO)(PBu3)2 (14) [13] [con-

version of (2) 56%; (5)/(14) = 1/1 molar ratio] were

formed. Traces of (3) were also formed after 48 h at this

temperature.
The conversion of (2) increased when the solution

was heated at higher temperature; the dihydride (5)

was the main ruthenium complex (49%) after 24 h at

100 �C [conversion 79%; (5)/(14) = 1.6 molar ratio] and

(5) became 65% at 140 �C after 24 h [conversion 94%;

(5)/(14) = 2.2 molar ratio].

At 180 �C, (5) (78%) and (14) (22%) were present to-

gether with traces of (2) and (3): at this temperature
ethyl acetate was also formed by reduction of acetic

acid.

The rate of the transformation of (2) into (5) was re-

duced by the presence of acetic acid according to the

equilibria reported in Scheme 6.

The formation of (14) as intermediate of the reaction

of (2) with hydrogen has been previously reported work-

ing at low temperature (50 �C) in the presence of
Na2CO3 [1h].

The presence of an excess of acetic acid reduce the

rate of the formation of (5) and, as a consequence, in-

creases the amount of (14).
OO)2(PBu3)2 [Ru2(CO)4(    MeCOO)2]µ−+ 1/n

(12)

n

.



Table 2

Hydrogenation of unsaturated organic substrates in the presence of ruthenium complexes

Catalyst Code Hydrogenation of (yield %)

Cyclohexenea Tiglic acidb Acetophenonec Acetic acidd

Ru4H4(CO)8(PBu3)4 (1) 47.1 21.7 9.6 40.7

Ru(CO)2(MeCOO)2(PBu3)2 (2) 2.0 15.4 45.8 16.5

Ru2(CO)4(l-MeCOO)2(PBu3)2 (3) 22.2 98.2 65.7 34.4

Ru4(CO)8(l-MeCOO)4(PBu3)2 (4) 88.3 79.1 14.3 29.9

[Ru6(l-H)6(CO)10(l-PHBu)(l-PBu2)2(PBu3)2(l6-P)] (7) 0.4 0.3 1.0 2.9

Catalyst: 0.018 mmol Ru, substrate: 42.5 mmol, p(H2) = 130 atm, reaction time 22 h.
a T = 60 �C, hydrogenated product: cyclohexane.
b Solvent: 20 ml, toluene/ethanol (1:1), T = 100 �C, hydrogenated product: 2-methylbutanoic acid.
c T = 120 �C, hydrogenated product: 1-phenylethanol.
d Catalyst: 0.139 mmol Ru, substrate 433 mmol, T = 180 �C, reaction time 48 h, hydrogenated product: ethyl acetate.

Ru(CO)2(MeCOO)2(PBu3)2 H 2                 RuH(CO)2(MeCOO)(PBu3)2 MeCOOH

RuH(CO)2(MeCOO) (PBu3)2 H 2                 RuH2(CO)2(PBu3)2 MeCOOH

+ +

+ +

(2) (14)

(14) (5)

Scheme 6.
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2.5. Catalytic activity of [Ru6(l-H)6(CO)10(l-PHBu)-

(l-PBu2)2(PBu3)2(l6-P)] (7)

The phosphido clusters (7)–(10) were formed from

the catalytic precursors (1–4) when heated at high tem-

perature under hydrogen. The catalytic activity of (7),

the main cluster formed, was correlated with those of

its precursors (1–4) to evaluate the role of phosphido
clusters in the hydrogenations performed in the presence

of the ruthenium complexes (1–4) as catalytic

precursors.

Different substrates were hydrogenated in the

presence of (7) and the ruthenium precursors (1)–(4)

(Table 2).

Complex (7) was catalytically active in the hydrogen-

ation of the substrates tested even if its activity was
lower than that of the other catalysts. Furthermore the

cluster (7) was recovered unaltered at the end of these

hydrogenations.

The low catalytic activity of (7) suggests the forma-

tion of phosphido clusters as the cause of the gradual

loss of activity of (1)–(4) in the course of the reduction

of acetic acid at 180 �C.
3. Conclusions

The phosphine substituted ruthenium carbonyl carb-

oxylates (3) and (4) react, at low temperature (25–40 �C)
with a large excess of acetic acid to form new complexes

containing monodentate acetato ligands. Further reac-

tion of these intermediates leads to the formation of
hydrogen and a mononuclear ruthenium (II) complex
(11) containing a chelato and a monodentate acetato lig-

and. The same reactivity may be involved in the synthe-

sis of (2) from (12) in the presence of acetic acid and a

stoichiometric amount of PBu3 [8].

The complex (11) is stable in the presence of acetic

acid but easily reacts at room temperature with PPh3
giving a new complex containing two different phosphi-

nic ligands (13).
The reactivity of ruthenium complexes (3) and (4)

changes when hydrogen and acetic acid are both pre-

sent: (3) does not react up to 180 �C while (4) gives (3)

and (12) at 60 �C. The high hydrogen pressure (100

atm) hinders the formation of (11) from (3) or (4) in

agreement with a process involving the formation of

molecular hydrogen (Schemes 2 and 4).

Hydride ruthenium complexes (1), (5)–(10) and (14)
are formed in the reactions of (2)–(4) with hydrogen

and acetic acid but the presence of acetic acid reduces

the rates of these reactions. These results confirm the

hypothesis that hydride ruthenium complexes are the ac-

tive species in the catalytic hydrogenation of acetic acid

[1h] and suggest equilibria among H–Ru and CH3COO–

Ru species. In the presence of a large amount of acetic

acid these equilibria are shifted towards the ruthenium
carboxylates (2), (3) and (4).

The hydrogenation of acetic acid to ethyl acetate

takes place at 140 �C in the presence of (3), at 160 �C
with (4) and at 180 �C with (2). In these conditions (3)

is always formed even if in different amounts from (4)

or (2) depending on the ruthenium precursor and reac-

tion temperature employed. These results support the

hypothesis that the same catalytically active intermedi-
ate is formed from (2)–(4) in the course of acetic acid
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hydrogenation. Furthermore the hydride species are

transformed into phosphido ruthenium cluster com-

plexes such as (7) in the course of the reaction.

The polynuclear ruthenium complex (7) shows a cat-

alytic activity lower than the precursors (1)–(4). As a

consequence the loss of catalytic activity shown by the
ruthenium complexes (1)–(4) in the reduction of acetic

acid may be ascribed to this transformation [1b]. Other

authors attribute the deactivation of catalytic systems to

the partial loss of the alkyl groups of the phosphine lig-

ands with formation of phosphido clusters [14].
4. Experimental

4.1. Instruments

Gas chromatographyc analyses (glc) were performed

with a Perkin–Elmer Sigma 1 system coupled with a Per-

kin–Elmer Sigma 10 computer or using a Shimadzu GC-

14A chromatographic system coupled with a Shimadzu

C-R4A computer. Both systems were equipped with a
FID detector.

The following packed columns (2 m) were used: PPG

(‘‘Polypropylenglicol’’ LB-550-X on Chromosorb W at

15%), FFAP (‘‘free fatty acids phase’’ on Chromosorb

G AW-DMCS at 5%), CW (‘‘Carbowax 20M’’ on Chro-

mosorb W at 15%).

The conversion of acetic acid to ethyl acetate was

evaluated using a calibration curve.
Glc-ms spectra were collected using a Shimadzu GC-

MS QP2000 instrument or a Carlo Erba QMD 1000

GC-MS system equipped with capillary columns: a

SPB-1TM (Supelco column, 30 m, internal diameter

0.25 mm) or a ATTM-1 (Alltech column, 30 m, internal

diameter 0.25 mm).

A Perkin–Elmer SCIEX API 365, a turbo ion spray

system, was employed to obtain the MS spectra of the
ruthenium complex.

Infrared spectra were recorded, at room temperature

and pressure, with a Perkin–Elmer model 1760-X FTIR

spectrophotometer. Liquid products and solutions were

analysed using KBr or CaF2 cells having 0.1 mm path.

Solid samples were mulled with KBr. The IR spectra

collected at high pressure and temperature were re-

corded with a Perkin–Elmer spectrophotometer mod.
580B Data System using the cell previously described

[1d].

Multinuclear NMR spectra were registered using a

Varian VXR300 spectrometer operating at 299.944

MHz for 1H, at 75.429 MHz for 13C and at 121.421

MHz for 31P NMR; tetramethylsilane was used as exter-

nal standard for 1H- and 13C NMR spectra. In the 31P

NMR spectra, downfield values from external H3PO4

(85%) were taken as positive. 13C- and 31P NMR spectra

were recorded as proton decoupled spectra.
Elemental analyses were performed with a Perkin–El-

mer model 240 C system.

Tlc separations were performed on silica gel (thick-

ness 2 mm) or alumina (thickness 1.5 mm) chromato-

graphic plate (Merck) with fluorescent indicator F254.

4.2. Test procedure

4.2.1. Reactivity of ruthenium complexes by IR spectro-

scopy

All tests were performed in a stainless steel autoclave

(125 ml) equipped with two stopcocks and a high-

pressure gauge. Air was evacuated from the vessel, the

solution of reactants was introduced by suction then
the gas (nitrogen or hydrogen) was transferred from a

cylinder up to the pressure required.

The vessel was connected through a stainless-steel

low volume (2 ml) coil to the IR cell, equipped with

NaCl windows, capable of withstanding high pressure

(200 atm), which could be heated up to 200 �C. The coil
was kept at the same temperature of the system. The

solution present in the autoclave was transferred into
the IR cell under reaction conditions and examined by

IR spectroscopy. All spectra were recorded after abun-

dant flushing of both coil and IR cell with the solution

present in the vessel. The solvent (n-heptane) bands were

compensated using a variable-path IR cell.

4.2.2. Catalytic hydrogenation experiments

A solution containing the catalytic precursor, solvent,
substrate and hydrogen was introduced into an evacu-

ated stainless steel autoclave (150 ml) containing a steel

cylinder (72 ml) to reduce the free volume. The tests of

acetic acid hydrogenation were carried out in a ‘‘Hastel-

loy C’’ stainless steel rocking autoclave (125 ml). The

vessel was placed in a thermostatic oil bath set at the de-

sired temperature (±1 �C) and rocked for the prefixed

time. The amounts of catalytic precursor, solvent, sub-
strate and hydrogen are reported in Table 2.

At the end of the reaction, the reactor was cooled, the

gases vented and the solution analysed by glc. The iden-

tity of the products was confirmed by glc-ms analysis.

4.3. Materials

All preparations and manipulations were routinely
performed under dry nitrogen using Schlenk tube

techniques.

Reagents and solvents were purified and dried as re-

ported. Acetic acid was distilled under nitrogen (bp

118 �C). Cyclohexene was eluted through activated

Al2O3 (70–230 mesh) and rectified under nitrogen (bp

83 �C). Acetophenone was distilled prior to use (bp 82

�C/15 mmHg). Toluene was refluxed on sodium metal,
then refluxed and distilled on LiAlH4. n-Heptane was

purified by treatment with conc. H2SO4, washed with



A. Salvini et al. / Journal of Organometallic Chemistry 690 (2005) 371–382 379
a solution of KMnO4 in H2SO4 (10%), dried on anhy-

drous CaCl2, refluxed on sodium and distilled on

LiAlH4. Methanol, dried as reported by Vogel [15],

had bp 65 �C. Tri-n-butylphosphine was distilled under

nitrogen prior to use (bp 158–160 �C/60 mmHg).

All other solvents and chemicals were reagent grade
and used without further purification.

4.3.1. Synthesis of ruthenium complexes

Complexes Ru4H4(CO)8(PBu3)4 (1) [16], Ru(CO)2-

(MeCOO)2(PBu3)2 (2) [8], Ru2(CO)4(l-MeCOO)2(P-

Bu3)2 (3) [17], Ru4(CO)8(l-MeCOO)4(PBu3)2 (4) [12],

RuH2(CO)2(PBu3)2 (5) [1d], Ru4H4(CO)9(PBu3)3 (6)

[16], [Ru6(l-H)6(CO)10(l-PHBu)(l-PBu2)2(PBu3)2(l6-P)]
(7) and [Ru2(CO)4(l-MeCOO)2]n (12) [17] were prepared

as described in the literature. The 1H-, 31P- and 13C

NMR spectra of (1)–(4) and (6) were performed using

the same solvents (C6D6) employed in experimental tests

with the aim to facilitate their identification in the course

of the reactions (Table 3).

4.4. Reactivity of ruthenium complexes in the presence of

acetic acid: IR study

A solution of the system under examination was

introduced in the autoclave, then N2 (5 atm) was added.

IR spectra were recorded under reaction conditions

after heating the solution at the pre-fixed temperature

for the selected time.

4.4.1. Ru2(CO)4(l-MeCOO)2(PBu3)2 (3) with MeCOOH

A solution of (3) (120 mg, 0.144 mmol) and acetic

acid (0.5 ml, 8.734 mmol) in n-heptane (60 ml) was

heated under nitrogen (5 atm at 20 �C) in the tempera-

ture range 40–150 �C.
The reaction was followed as reported in the general

procedure.

4.4.2. Ru4(CO)8(l-MeCOO)4(PBu3)2 (4) with MeCOOH

A solution of (4) (119 mg, 93.8 lmol) and acetic acid

(0.5 ml, 8.734 mmol) in n-heptane (60 ml) was heated

under nitrogen (5 atm at 20 �C) in the temperature range

20–140 �C.
The reaction was followed as reported in the general

procedure.

The solution recovered at the end of the experiment
was evaporated to dryness, the residue dissolved in

C6D6 and analysed by IR, 1H- and 31P NMR. Several

singlets were present in the 31P NMR spectrum besides

the signals at 43.5 ppm due to (11), at 17.4 (2), 38.5,

43.1, 44.6, 45.4, 53.3 ppm.
4.4.3. Ru(CO)2(MeCOO)2(PBu3)2 (2) with MeCOOH

A solution of (2) (190 mg, 0.279 mmol) and acetic
acid (0.5 ml, 8.734 mmol) in n-heptane (60 ml) was
heated under nitrogen (5 atm at 20 �C) in the tempera-

ture range 20–150 �C.
The reaction was followed as reported in the general

procedure.

A sample of the solution was collected after heating

at 40 �C. After evaporation of the solvent and acetic
acid under reduced pressure the residue was dissolved

in n-heptane and analysed by IR spectroscopy: only

the bands at 2041(vs), 1971(vs) and 1628(m) cm�1 attrib-

utable to the starting complex were present. The 1H-,
31P- and 13C NMR spectra were recorded on the residue

dissolved in C6D6 or in C6D6 containing the same con-

centration of MeCOOH used for the reactivity tests.

The absorptions are reported in Table 1.

4.5. Reactivity of ruthenium complexes in the presence of

acetic acid: NMR study

4.5.1. Ru2(CO)4(l-MeCOO)2(PBu3)2 (3) with MeCOOH

A solution of (3) (24 mg, 0.029 mmol) and acetic acid

(0.1 ml, 1.747 mmol) in C6D6 (1 ml) was introduced, un-

der nitrogen, into a NMR sample tube.
After 56 h at 40 �C two singlet at 43.5 (70.4%) and

17.2 ppm (29.6%) were present in the 31P NMR spec-

trum while broad bands at 2060(vs), 1990(vs), 1950(vw)

and 1575(w) cm�1 were present in the IR spectrum.

The solution was evaporated to dryness and the resi-

due dissolved in C6D6: a broad singlet was present in the
31P NMR spectrum at 44.4 ppm (70.4%), attributed to

(11), together with a singlet at 17.4 ppm (29.6%), attrib-
uted to (2).

In the 1H NMR spectrum (C6D6) signals attributed

to (11) were present at d 0.77 (m, 9H, CH3, PBu3),

1.16 (m, 6H, CH3CH2, PBu3), 1.30 (m, 6H, EtCH2,

PBu3), 1.63 (m, 6H, PCH2, PBu3), 2.06 (s broad, 6H,

CH3COO) ppm and other resonances attributed to (2)

at d 0.90 (t, 18H, CH3, PBu3, JHH = 7.1 Hz), 1.30 (m,

12H, CH3CH2, PBu3), 1.53 (m, 12H, EtCH2, PBu3),
1.87 (m, 12H, PCH2, PBu3), 2.27 (s, 6H, CH3COO)

ppm.

The 13C NMR spectrum (C6D6) showed signals

attributed to (11) at d 13.4 (s, CH3, PBu3), 20.1 (s, l-
CH3COO), 23.5 (s, CH3COO), 24.1 (m, PCH2, PBu3),

24.3 (s, CH3CH2, PBu3), 24.9 (m, EtCH2, PBu3), 174.5

(s, COO), 183.0 (s, l-COO), 195.9 (m, CO) ppm and

other resonances attributed to (2) at d 13.8 (s, CH3,
PBu3), 23.7 (s, CH3COO), 23.9 (t, PCH2, PBu3,

JPC = 12.7 Hz), 24.8 (t, CH3CH2, PBu3, JPC = 6.3 Hz),

25.4 (s, EtCH2, PBu3), 175.9 (s, COO), 199.0 (t, CO,

JPC = 10.9 Hz) ppm.

The IR spectrum of the same sample dissolved in n-

pentane showed the bands of the complex (11) at

2057(vs), 1987(vs), 1603(w), 1563(vw) cm�1 and those

of the complex (2) at 2041(s), 1971(s), 1628(vw) cm�1.
The sample kept for 24 h at room temperature in a

C6D6 solution, without acetic acid, was transformed in



Table 3

NMR data of ruthenium complexes in C6D6 as solvent

Complex 31P NMR 1H NMR 13C NMR

(1)a 16.6 �16.60 (qt,4H, HRu, JHP = 6.0 Hz) 14.0 (s, CH3)

0.91 (t, 36H, CH3, JHH = 7.3 Hz) 24.9 (t, CH3CH2, JCP = 6.0 Hz)

1.34 (q, 24H, CH3 CH2, JHH = 7.3

Hz)

26.6 (s, CH2CH2P)

1.52 (m, 24H, CH2CH2P) 31.7 (t, CH2P, JCP = 10.4 Hz)

1.86 (m, 24H, CH2 P) 202.2 (m, CO)

(3)b 8.3 0.89 (t, 18H, CH3CH2, JHH = 6,8 Hz) 13.8 (s, CH3CH2)

1.35 (q, 12H, CH3CH2, JHH = 6.8

Hz)

23.4 (s, CH3COO)

1.56 (m, 12H, CH2CH2 P) 24.6 (t, CH2P, JCP = 7.9 Hz)

1.81 (m, 12H, CH2P) 24.8 (t, CH3CH2, JCP = 5.6 Hz)

1.85 (s, 6H, CH3COO) 25.6 (s, CH2CH2P)

186.3 (t, COO, JCP = 7.9 Hz)

208.3 (m, CO)

(4)c 6.1 0.85 (t, 18H, CH3CH2, JHH = 6,8 Hz) 13.8 (s, CH3CH2)

1.28 (q, 12H, CH3CH2, JHH = 6,8

Hz)

23.5 (s, CH3COO)

1.43 (m, 12H, CH2CH2P) 23.8 (d, CH2P, JCP = 12.7 Hz)

1.67 (m 12H, CH2P) 24.7 (d, CH3CH2, JCP = 6.5 Hz)

2.12 (s, 12H, CH3COO) 25.4 (s, CH2CH2P)

185.3 (d, COO, JCP = 6.5 Hz)

203.5 (d, CO, JC–P = 10.9 Hz)

205.4 (d, CO, JC–P = 10.9 Hz)

(6)a 20.7 �16.85 (m, 4H, HRu) n.d.

22.7 �16.69 (m, 4H, HRu)

0.97 (t, 27H, CH3, JHH = 7,3 Hz)

1.43 (m, 18H, CH3CH2)

1.60 (m, 18H, CH2CH2P)

1.89 (m, 18H, CH2P)

(11) 44.4d 0.77 (m, 9H, CH3, PBu3), 1.16 (m,

6H, CH3CH2, PBu3), 1.30 (m, 6H,

EtCH2, PBu3), 1.63 (m, 6H, PCH2,

PBu3), 2.06 (s broad, 6H, CH3COO)

13.4 (s, CH3, PBu3), 20.1 (s, l-
C3COO), 23.5 (s, C3COO), 24.1 (m,

PC2PBu3), 24.3 (s, CH3C2PBu3), 24.9

(m, EtC2PBu3), 174.5 (s, COO), 183.0

(s, l-COO), 195.9 (m, CO)

(13) 23.0 (AB, 1P, JPP = 317.4 Hz, PnBu3),

29.7 (AB, 1P, JPP = 317.4 Hz, PPh3)

0.82 (t, 9H, CH3CH2, JHH = 7.3 Hz),

1.24 (q, 6H, CH3CH2, JHH = 7.3 Hz),

1.49 (m, 6H, CH2CH2P), 1.88 (s, 6H,

CH3COO), 1.94 (m, 6H, CH2P), 7.02

(m, 3H, Hp, PPh3), 7.10 (m, 6H, Hm,

PPh3), 7.96 (m, 6H, Ho, PPh3)

13.5 (s, CH3CH2), 23.2 (s, CH3COO),

24.0 (d, CH2P, JCP = 22.6 Hz), 24.5

(d, CH3CH2, JCP = 11.3 Hz), 25.1 (s,

CH2CH2P), 130.3 (s, Cm, PPh3),

131.4 (s, Cp, PPh3), 132.3 (d, Ci,

PPh3, JCP = 11.3 Hz), 134.6 (d, Co,

PPh3, JCP = 9.0 Hz), 175.8 (s,

CH3COO), 198.8 (pt, CO, JCP = 11.3

Hz)

a NMR data are partially reported [16].
b NMR data are reported in CDCl3 as solvent [17,18].
c NMR data are partially reported [12].
d 43.5 in the presence of acetic acid.
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several compounds as shown by various singlets present

in the 31P NMR spectrum as above reported.

4.5.2. Ru4(CO)8(l-MeCOO)4(PBu3)2 (4) with MeCOOH

A solution of (4) (18.4 mg, 0.014 mmol) and acetic

acid (0.1 ml, 1.747 mmol) in C6D6 (1 ml) was intro-

duced, under nitrogen, into a NMR sample tube. After

1 h at room temperature new singlets were present in the
31P NMR spectrum at 43.5 (11), 38.8 and 13.4 ppm.
The conversion of (4) was 24.5% after 1 h and 100%

after 15 days at room temperature. The singlet of (11) at

43.5 ppm was the main resonance (87.2%) and a yellow

residue was present in the sample tube. The solid was

separated and the IR spectrum recorded as nujol mull

showed bands at 2055(s), 1995(vs), 1970(vs), 1910(s)

and 1555(vs) cm�1 attributable to (12).

The solution was evaporated to dryness and the res-
idue dissolved in C6D6 and spectroscopically character-
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ised as complex (11). NMR data are reported in

Table 2.

In the IR spectrum (n-pentane) were present bands

at 2057(vs), 1987(vs), 1563(vw, broad) cm�1 due to

(11).

4.6. Synthesis of Ru(CO)2(MeCOO)2(PBu3)(PPh3) (13)

Triphenylphosphine (15.21 mg, 0.058 mmol) was

added to the solution containing (11) in C6D6 (PPh3/

Ru = 1/1, molar ratio) at room temperature and the

mixture monitored by 31P NMR.

After 3 h a second-order AB spin system with reso-

nances at d 23.9 (d, 1P, PBu3, JPP = 311.6 Hz) and
30.5 (d, 1P, PPh3, JPP = 311.6 Hz) ppm was present in

the 31P NMR spectrum while the intensity of the singlet

attributable to (11) was very low. The conversion was

90% after 5 h.

The solvent was evaporated and the new complex,

recrystallized from n-pentane at 0 �C as white crystals

and spectroscopically characterised.

The IR spectrum of (13) (n-pentane), in the 2200–
1500 cm�1 region, showed bands at 2044(vs), 1982(vs)

and 1626(m) cm�1.

In the 1H NMR spectrum of (13) (C6D6) signals were

present at d: 0.79 (t, 9H, CH3, PBu3, JHH = 7.3 Hz), 1.21

(q, 6H, CH3CH2, PBu3, JHH = 7.3 Hz), 1.46 (m, 6H,

EtCH2, PBu3), 1.84 (s, 6H, CH3COO), 1.91 (m, 6H,

PCH2, PBu3), 7.02 (m, 6H, PPh3), 7.70 (m, 3H, PPh3),

7.93 (m, 6H, PPh3) ppm.
In the 13C NMR spectrum of (13) (C6D6) signals were

present at d: 13.5 (s, CH3, PBu3), 23.2 (s, CH3COO),

24.0 (d, PCH2, PBu3, JCP = 22.6 Hz), 24.5 (d, CH3CH2,

PBu3, JCP = 11.3 Hz), 25.1 (s, EtCH2, PBu3), 130.3 (s,

Cm, PPh3), 131.4 (s, Cp, PPh3), 132.3 (d, Cipso, PPh3,

JCP = 11.3 Hz), 134.6 (d, Co, PPh3, JCP = 9.0 Hz),

175.8 (s, COO), 198.5 (m, CO) ppm.

MS spectrum of (13) m/z (%): 740 (10) [M]+, 712 (2)
[M–CO]+, 681 (100) [M–CH3COO]+, 653 (20) [M–

CH3COO–CO]+, 622 (5) [Ru(PPh3)(PBu3)(CO)2]
+ (cen-

tres of each ruthenium cluster peaks are reported)

Elemental analysis of (13), for C36H48O6P2Ru: % C

58.3 (58.45), % H 6.6 (6.54).

4.7. Reactivity of ruthenium complexes with acetic acid

and hydrogen

A n-heptane solution of each ruthenium complex and

acetic acid was introduced in the autoclave under dry

nitrogen, then H2 (100 atm) was added.

IR spectra were recorded in the reaction conditions

after heating the solution at the pre-fixed temperature

for the selected time.

Samples of the solution examined by IR spectros-
copy, were collected and analysed by glc using a FFAP

column kept at 50 �C for 7 min, then heated up to 130
�C at a rate of 30 �C/min and kept at this temperature

for 10 min. The peaks due to acetic acid and ethyl ace-

tate were identified and quantified.

4.7.1. Ru2(CO)4(l-MeCOO)2(PBu3)2 (3)
A solution of (3) (120 mg, 0.144 mmol) and acetic

acid (0.5 ml, 8.734 mmol) in n-heptane (60 ml) under

hydrogen (100 atm at 20 �C) was heated in the temper-

ature range 20–180 �C.
The reaction was followed as reported in the general

procedure.

At the end of the reaction the vessel was cooled to

room temperature, the solvent evaporated under re-

duced pressure and the solid recovered and separated
by preparative tlc on alumina using n-hexane as eluant.

Traces of hydride clusters (7), (9) and (10) were

obtained.

4.7.2. Ru4(CO)8(l-MeCOO)4(PBu3)2 (4)
A solution of (4) (119 mg, 93.8 lmol) and acetic acid

(0.5 ml, 8.734 mmol) in n-heptane (60 ml) under hydro-

gen (100 atm at 20 �C) was heated in the temperature
range 40–180 �C.

The reaction was followed as reported in the general

procedure.

4.7.3. Ru(CO)2(MeCOO)2(PBu3)2 (2)
A solution of (2) (190 mg, 0.279 mmol) and acetic

acid (0.5 ml, 8.734 mmol) in n-heptane (60 ml) under

hydrogen (100 atm at 20 �C) was heated in the temper-
ature range 20–180 �C.

The reaction was followed as reported in the general

procedure.

4.8. Catalytic hydrogenation experiments: analyses of the

hydrogenation products

The experimental conditions and the results are re-
ported in Table 2.

The products present at the end of the hydrogenation

were analysed by glc and their identities confirmed by

glc-ms.

The solvent, the starting substrate and the reaction

products were separated and quantified using the fol-

lowing conditions:

� Cyclohexene: a PPG column was kept at 40 �C for 25

min.

� Tiglic acid: a FFAP column was kept at 140 �C per 15

min.

� Acetophenone: a CW column was kept at 60 �C for 5

min, then heated up to 160 �C at a rate of 20 �C/min

and kept at this temperature for 10 min.

� Acetic acid: a FFAP column was kept at 50 �C for 7
min, heated up to 130 �C at a rate of 30 �C/min and

kept at this temperature for 10 min.
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In the hydrogenation of acetic acid the yields were eval-

uated using calibration curves obtained from mixtures

of ethyl acetate, ethanol and acetic acid of known com-

position. In all other tests conversions were evaluated

without response factors corrections.
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