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Abstract. A new iterative method to find the root of a nonlinear scalar
function f is proposed. The method is based on a suitable Taylor polynomial
model of order n around the current point xk and involves at each iteration
the solution of a linear system of dimension n. It is shown that the coefficient
matrix of the linear system is nonsingular if and only if the first derivative of
f at xk is not null. Moreover, it is proved that the method is locally convergent
with order of convergence at least n + 1. Finally, an easily implementable
scheme is provided and some numerical results are reported.

Key Words. Root-finding algorithms, Newton method, higher-order meth-
ods, order of convergence.

1. Introduction

We consider the problem of solving a nonlinear equation in one variable:

find x∗ ∈ R such that f (x∗) = 0,

where f is Cn, n ≥ 1, on R; that is, f can be differentiated n times with a
continuous nth derivative. As well known, the Newton method is based on the
approximation of f by its linearization

p1(f ; xk)(x) = f (xk) + f (1)(xk)(x − xk),

where f (1)(xk) is the first-order derivative of f at the current point xk (round
brackets superscript are used to distinguish the order of derivatives from powers).
Solving p1(f ; xk)(x) = 0 yields the Newton iteration

xk+1 = xk − f (xk)/f (1)(xk). (1)
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It is well-known that this method has local quadratic convergence, provided that
f (1)(x∗) �= 0 and f (1)(x) is Lipschitz continuous in a neighborhood of x∗.

Several methods with higher order of convergence have been proposed (see
e.g. Ref. 1). A very simple higher-order method is the Traub method, derived by
combining a Newton step with a modified Newton step; that is,

y = xk − f (xk)/f (1)(xk), (2a)

xk+1 = y − f (y)/f (1)(xk). (2b)

The method is locally convergent with order of convergence at least 3. The gener-
alization of the Traub method to operator equations can be found in Ref. 2.

Other higher-order methods have been derived by considering the nth order
Taylor approximation of f around xk

pn(f ; xk)(x) = f (xk) + f (1)(xk)(x − xk) + (1/2!)f (2)(xk)(x − xk)2

+ · · · + (1/n!)f (n)(xk)(x − xk)n, (3)

where f (i)(xk) is the ith derivative of f (x) computed at xk . Following the idea
underlying the Newton method, a higher-order algorithm may be defined in prin-
ciple by requiring the next iteration to be a solution of pn(f ; xk)(x) = 0. However,
a polynomial function of degree n ≥ 2 may not have a real root. Moreover, the
roots can be computed analytically only for n ≤ 4.

For these reasons, existing higher-order methods are not based on the com-
putation of the exact solution of the polynomial equation pn(f ; xk)(x) = 0, but
employ suitable recursive schemes. The most popular algorithms are the classical
Halley method (Ref. 3) and Chebyshev method (Ref. 4), that are locally convergent
with order of convergence at least n + 1. For n = 2, the Halley iteration takes the
form

xk+1 = xk − [2f (xk)f (1)(xk)]/[2(f (1)(xk))2 − f (2)(xk)f (xk)], (4)

and sufficient global convergence conditions for this method can be found in Refs.
5, 6; the Chebyshev iteration consists in setting

xk+1 = xk − f (xk)/f (1)(xk) − f (2)(xk)f 2(xk)/2(f (1)(xk))3. (5)

We note that different methods can generate different basins of attraction, so that
a wider availability of methods is important from both a theoretical and a practical
point of view, and this motivates the current interest in defining new higher-order
methods (see e.g. Refs. 7, 8).

In this work, we propose a higher-order method based on the following
approach. The problem of computing a root of f is replaced by that of determining
a solution of the system

f i(x) = 0, i = 1, . . . , n, (6)
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which of course has the same solutions of the original problem. Then, the
functions f, f 2, . . . , f n are approximated by n-degree Taylor polynomials
pn(f i ; xk)(x), i = 1, . . . , n, so that (6) leads to the following system

⎡
⎢⎢⎣

f (xk)
...

f n(xk)

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

f (1)(xk) . . . f (n)(xk)/n!
...

. . .
...

(f n)(1)(xk) . . . (f n)(n)(xk)/n!

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x − xk

...

(x − xk)n

⎤
⎥⎥⎦ = 0, (7)

where we adopted the notation

(f i)(j )(xk) = (f i(x))(j )
∣∣
x=xk

, i, j = 1, . . . , n.

The idea underlying our method is to consider, instead of (7), the following linear
system:

⎡
⎢⎢⎣

f (xk)
...

f n(xk)

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

f (1)(xk) . . . f (n)(xk)/n!
...

. . .
...

(f n)(1)(xk) . . . (f n)(n)(xk)/n!

⎤
⎥⎥⎦

⎡
⎢⎢⎣

y1

...

yn

⎤
⎥⎥⎦ = 0. (8)

Note that (8) is obtained from (7) by setting yi = (x − xk)i and by neglecting
the constraints on the variables yi . In this way, the polynomials become affine
functions in the new variables. Once a solution yk of (8) has been computed, the
iteration takes the form

xk+1 = xk + y1,k,

where y1,k is the first component of yk . It can be seen easily that, for n = 2, this
method coincides with the Chebyshev method. We show that the coefficient matrix
of the linear system (8) is nonsingular if and only if f (1)(xk) �= 0, so that the range
of applicability of the new method is the same as that of the classical Newton
method. Moreover, under the usual assumption that f (1)(x∗) �= 0, we prove that
the algorithm is locally convergent with order of convergence at least n + 1.
We provide also an easily implementable scheme and we report some numerical
results.

2. Preliminary Results

In this section, some preliminary results concerning Taylor polynomials are
proved. These results will be used later for the definition and the convergence
analysis of the method proposed in the paper.

Given the polynomials

α(x) =
n∑

i=0

aix
i, β(x) =

n∑
j=0

bjx
j ,
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consider the polynomial of degree 2n

γ (x) =α(x)β(x) =
n∑

h=0

(
h∑

k=0

akbh−k

)
xh +

2n∑
h=n+1

(
n∑

k=h−n

akbh−k

)
xh

=
2n∑

h=0

chx
h.

The coefficients ch can be expressed as follows

[c0 c1 · · · c2n] = [a0 a1 · · · an]

×

⎡
⎢⎢⎢⎢⎢⎣

b0 b1 · · · bn 0 · · · 0

0 b0
. . . bn−1 bn

. . .
...

...
. . .

. . .
. . .

. . .
. . . 0

0 · · · 0 b0 · · · bn−1 bn

⎤
⎥⎥⎥⎥⎥⎦

. (9)

Lemma 2.1. Assume that the functions f, g : R → R are Cn on R. Then,

pn(fg; x̄) = pn (pn(f ; x̄)pn(g; x̄); x̄) .

Proof. Using the Taylor expansion, we can write

f (x) =
n∑

i=0

[f (i)(x̄)/i!](x − x̄)i + R1(n, x̄, x), (10a)

g(x) =
n∑

j=0

[g(j )(x̄)/j !](x − x̄)j + R2(n, x̄, x), (10b)

with

lim
|x−x̄|�→0

|Rh(n, x̄, x)|/|x − x̄|n = 0, h = 1, 2.

From (10), we obtain

f (x)g(x) =
n∑

h=0

Hh(x̄)(x − x̄)h + R3(n, x̄, x), (11)

with

Hh(x̄) =
n∑

k=0

[f (k)(x̄)/k!] · [g(h−k)(x̄)/(h − k)!]
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and

R3=
2n∑

h=n+1

H̃h(x̄)(x − x̄)h + R1

n∑
j=0

[g(j )(x̄)/j !](x − x̄)j

+R2

n∑
i=0

[f (i)(x̄)/i!](x − x̄)i + R1R2,

where

H̃h(x̄) =
n∑

k=h−n

[f (k)(x̄)/k!] · [g(h−k)(x̄)/(h − k)!].

Note that R3 is infinitesimal of the same order of R1 and R2, so that, from (11) we
get

pn(fg; x̄)(x) =
n∑

h=0

Hh(x̄)(x − x̄)h. (12)

On the other hand, we have

pn(f ; x̄)pn(g; x̄) =
n∑

h=0

Hh(x̄)(x − x̄)h +
2n∑

h=n+1

H̃h(x̄)(x − x̄)h;

hence, by definition, we obtain

pn (pn(f ; x̄)pn(g; x̄); x̄) =
n∑

h=0

Hh(x̄)(x − x̄)h.

Then, recalling (12), the thesis is proved. �

In the sequel, we indicate by Fk,n(x̄) the row vector containing the coefficients
of pn(f k; x̄), i.e.,

Fk,n(x̄) = [f k(x̄), (f k)(1)(x̄), . . . , (f k)(n)(x̄)/n!].
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Lemma 2.2. Assume that the function f is Cn on a neighborhood of a
given point x̄ and define the following matrix:

An(f ; x̄) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

f (x̄) f (1)(x̄) f (2)(x̄)/2 . . . f (n)(x̄)/n!

0 f (x̄) f (1)(x̄) . . . f (n−1)((x̄))/(n − 1)!

. . .
. . .

. . .
. . .

...
...

. . .
. . . f (x̄) f (1)(x̄)

0 . . . . . . 0 f (x̄)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (13)

Then, for any k ≥ 0, we have

Fk+1,n(x̄) = Fk,n(x̄)An(f ; x̄). (14)

Proof. Taking into account the fact that F0,n(x̄) = [1 O1×n], it follows that
(14) holds for k = 0. Now, assume k > 0. By Lemma 2.1, we can write

pn(f k+1; x̄) = pn(f kf ; x̄) = pn(pn(f k; x̄)pn(f ; x̄); x̄).

By definition, pn(pn(f k; x̄)pn(f ; x̄; x̄)) is the polynomial of degree n obtained
considering the first n + 1 terms of the polynomial pn(f k; x̄)pn(f ; x̄), so that (14)
follows from (9). �

The following lemma is used in the proof of the convergence of the method
and in the definition of an efficient practical scheme.

Lemma 2.3. Assume that the function f is Cn on a neighborhood of a
given x̄ and consider the matrix

Qn(f ; x̄) =

⎡
⎢⎢⎢⎢⎣

F0,n(x̄)

F1,n(x̄)
...

Fn,n(x̄)

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

1 0 · · · 0

f (x̄) f (1)(x̄) · · · f (n)(x̄)/n!
...

...
. . .

f n(x̄) (f n)(1)(x̄) · · · (f n)(n)(x̄)/n!

⎤
⎥⎥⎥⎥⎦

.

Then,

(i) Qn(f ; x̄) =

⎡
⎢⎢⎢⎢⎣

Cn

CnAn(f ; x̄)
...

CnA
n
n(f ; x̄)

⎤
⎥⎥⎥⎥⎦

, with Cn = [1 O1×n];

(ii) the matrix Qn(f ; x̄) can be decomposed as follows:
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Qn(f ; x̄) = Ln(f ; x̄)Un(f ; x̄),

with Ln(f ; x̄) a lower triangular matrix whose elements are

[Ln(f ; x̄)]i,j =
{

0, i < j,(
i−1
j−1

)
f i−j (x̄), i ≥ j, i, j = 1, . . . , n + 1,

and Un(f ; x̄) the upper triangular matrix defined as

Un(f ; x̄) =

⎡
⎢⎢⎢⎢⎣

Cn

Cn(An(f ; x̄) − f (x̄)In+1)
...

Cn(An(f ; x̄) − f (x̄)In+1)n

⎤
⎥⎥⎥⎥⎦

; (15)

(iii) det Qn(f ; x̄) = (f (1)(x̄))n(n+1)/2.

Proof. Assertion (i) is a straightforward consequence of Lemma 2.2. From
(13), we get that f (x̄) is an eigenvalue of An(f ; x̄) with multiplicity n + 1. This
implies that there exists a similitude transformation of An(f ; x̄) in the Jordan form
(see e.g. Ref. 9); i.e., there exists a nonsingular matrix T such that

Ãn(f ; x̄) = T An(f ; x̄)T −1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f (x̄) 1 0 · · · 0

0 f (x̄) 1
. . .

...
...

. . .
. . .

. . . 0
...

. . .
. . . f (x̄) 1

0 · · · · · · 0 f (x̄)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (16)

Note that, by simple manipulations, the matrix T satisfies also the equation

T (An(f ; x̄) − f (x̄)In+1) = (Ãn(f ; x̄) − f (x̄)In+1)T . (17)

We show below that the choice T = Un(f ; x̄), as defined in (15), satisfies equation
(17) and therefore achieves the transformation (16). Indeed, by noting that

(An(f ; x̄) − f (x̄)In+1)n+1 = 0,

exploiting the definition (15), the identity

Un(f ; x̄)(An(f ; x̄) − f (x̄)In+1) = (Ãn(f ; x̄) − f (x̄)In+1)Un(f ; x̄) (18)
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is easily verified. Now, setting

C̃n(f ; x̄) = CnU
−1
n (f ; x̄), Ln(f ; x̄) =

⎡
⎢⎢⎢⎢⎣

C̃n(f ; x̄)

C̃n(f ; x̄)Ãn(f ; x̄)
...

C̃n(f ; x̄)Ãn
n(f ; x̄)

⎤
⎥⎥⎥⎥⎦

, (19)

we obtain

Qn(f ; x̄) = Ln(f ; x̄)Un(f ; x̄),

with

Un(f ; x̄)An(f ; x̄) = Ãn(f ; x̄)Un(f ; x̄).

The first row of Un(f ; x̄) is equal to Cn and the diagonal elements of Un(f ; x̄) are

[Un(f ; x̄)]i,i = (f (1))i−1(x), i = 1, . . . , n + 1.

Since the first row of U−1
n (f ; x̄) is equal to Cn, using (19) we obtain that

C̃n(f ; x̄) = Cn.

Then, it follows that

Ln(f ; x̄) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0

f (x̄) 1 0 · · · 0

f 2(x̄) 2f (x̄) 1 · · · 0
...

...
. . .

. . .
...

f n(x̄)
(
n

1

)
f n−1(x̄)

(
n

2

)
f n−2(x̄) · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (20)

which completes the proof of (ii).
Finally, using the Binet theorem, we have

detQn(f ; x̄) = det Ln(f ; x̄) · det Un(f ; x̄),

with det Ln(f ; x̄) = 1 [see (20)] and

det Un(f ; x̄) =
n∏

i=1

(f (1)(x̄))i = (f (1)(x̄))�
n
i=1i = (f (1)(x̄))n(n+1)/2; (21)

hence, (iii) is proved. �

Remark 2.1. The results of Lemma 2.3 are related to the theory of linear
dynamic systems; see e.g. Ref. 9. The matrix Qn(f ; x) is the observability matrix of
the pair (An(f ; x), Cn); the lower triangular matrix Ln(f ; x) is the representation
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of Qn(f ; x) in Jordan coordinates; Un(f ; x) is the matrix that operates the change
of coordinates.

3. Higher-Order Algorithm

As previously mentioned in the introduction, the proposed higher-order
method is based at each step k on considering the n-degree Taylor polynomi-
als at xk associated to the first n powers of f . In order to determine the new iterate
xk+1, a first attempt could be that of setting to zero the considered polynomials,
that is,

⎡
⎢⎢⎣

f (xk)
...

f n(xk)

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

f (1)(xk) · · · f (n)(xk)/n!
...

. . .
...

(f n)(1)(xk) · · · (f n)(n)(xk)/n!

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x − xk

...

(x − xk)n

⎤
⎥⎥⎦ = 0. (22)

Except for trivial cases, (22) does not admit solution with respect to x − xk .
Equation (22) is equivalent to the following constrained linear system:

f̄n(xk) + Fn(xk)

⎛
⎜⎜⎝

y1

...

yn

⎞
⎟⎟⎠ = 0, yi = (x − xk)i , i = 1, . . . , n,

where

f̄n(xk)=

⎡
⎢⎢⎣

f (xk)
...

f n(xk)

⎤
⎥⎥⎦ ,

Fn(xk)=

⎡
⎢⎢⎣

f (1)(xk) . . . f (n)(xk)/n!
...

. . .
...

(f n)(1)(xk) · · · (f n)(n)(xk)/n!

⎤
⎥⎥⎦ . (23)

The idea of the proposed algorithm is to relax the nonlinear constraints on the
variables yi and to solve the linear system

f̄n(xk) + Fn(xk)

⎛
⎜⎜⎝

y1

...

yn

⎞
⎟⎟⎠ = 0, (24)
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provided that it admits a solution yk . Let y1,k be the first component of yk . The
next iterate of the method is given by

xk+1 = xk + y1,k. (25)

Note that the method reduces to the Newton algorithm if n = 1 and to the Cheby-
shev method if n = 2. By using the definitions of f̄n(xk) and Fn(xk) given in (23),
the matrix Qn(xk) of Lemma 2.3 can be decomposed as follows:

Qn(f ; xk) =
[

1 0

f̄n(xk) Fn(xk)

]
, (26)

so that, according to (iii) of Lemma 2.3, we have

det Fn(xk) = det Qn(f ; xk) = (f (1)(xk))n(n+1)/2. (27)

Therefore, the proposed algorithm has the same applicability as the Newton
method. Indeed, a sufficient condition to guarantee that (24) admits a solution
is that the matrix Fn(xk) be nonsingular, which is equivalent to requiring, accord-
ing to (27), that the first derivative computed at xk be nonzero.

In the following section, we analyze the local convergence properties and the
order of convergence of the algorithm.

4. Convergence Results

In this section, we prove that the proposed method is locally convergent with
order at least n + 1. This is shown by using the iterative function defined by (25),
that is,

�n(x) = x − [1 O1×(n−1)]F
−1
n (x)f̄n(x). (28)

Theorem 4.1. Assume that f : R → R is Cn on R and that f (1)(x) �= 0 in
an open neighborhood containing x∗, with x∗ such that f (x∗) = 0. Consider the
algorithm defined by the iterative function (28). Then, x∗ is a point of attraction
of the algorithm and the order of convergence is at least n + 1. Moreover, the
asymptotic error constant is

∣∣�(n+1)
n (x∗)/(n + 1)!

∣∣ = |φn(x∗)|/n + 1, (29a)

φn(x) = [1 O1×(n−1)]F
−1
n (x)f̄ (n+1)

n (x)/n!. (29b)

Proof. The proof is based on the well-known result (see e.g. Ref. 1), for
which the algorithm locally converges to x∗, with order of convergence at least
n + 1, if and only if the iterative function �n(x) defined in (28) is at least of order
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n + 1, that is,

�n(x∗) = x∗, (30a)

�(i)
n (x∗) = 0, 1 ≤ i ≤ n. (30b)

Since f (x∗) = 0, we have f̄n(x∗) = 0 and

�n(x∗) = x∗ − [1 O1×(n−1)]F
−1
n (x∗)f̄n(x∗) = x∗.

The theorem is proved by showing that

�(i)
n (x) = [O1×(n−i) ψi,n−i+1(x) · · · ψi,n(x)]F−1

n (x)f̄n(x), (31a)

i = 1, . . . , n − 1,

�(n)
n (x) = [ψn,1(x) ψn,2(x) · · · ψn,n(x)]F−1

n (x)f̄n(x), (31b)

ψi,n−i+1(x) = (−1)i−1[n!/(n − i + 1)!]�n(x), i = 1, 2, . . . , n, (32)

where φn(x) is defined in (29). Consider the definition of the functions ψi,j (x),
with j = n − i + 1, . . . , n: the index i identifies the derivative order of the iterative
function, while the index j is the position in the row vector.

Equations (31) and (32) are proved by induction. First, we observe that, from
(23), we can write

Fn(x) = [
f̄ (1)

n (x), f̄ (2)
n (x)/2!, . . . , f̄ (n)

n (x)/n!
]
. (33)

Let i = 1. Then, we have

�(1)
n (x) = 1 − [1 O1×(n−1)]

{
(F−1

n (x))(1)f̄n(x) + F−1
n (x)f̄ (1)

n (x)
}
.

From (33), we get

F−1
n (x)f̄ (1)

n (x) =

⎡
⎢⎢⎢⎢⎣

1

0
...

0

⎤
⎥⎥⎥⎥⎦

, (34)

since f̄ (1)
n (x) is the first column of Fn(x). Thus, we can write

�(1)
n (x) = −[1 O1×(n−1)]

(
F−1

n (x)
)(1)

f̄n(x). (35)

Concerning the matrix (F−1
n (x))(1), we have

d/dx[FnF
−1
n ] = F (1)

n F−1
n + Fn(F−1

n )(1) = 0;

hence,
(
F−1

n

)(1) = −F−1
n F (1)

n F−1
n . (36)
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Using (36) in (35), we obtain

�(1)
n (x) = [1 O1×(n−1)]

(
F−1

n (x)F (1)
n (x)

)
F−1

n (x)f̄n(x). (37)

On the other hand, from (33) we have

F (1)
n (x) = [

f̄ (2)
n (x) f̄ (3)

n (x)/2! . . . f̄ (n+1)
n (x)/n!

]

= Fn(x)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · · · · 0 0

2
. . .

... 0

0 3
. . .

... 0
...

. . .
. . . 0 0

0 · · · 0 n 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ [
f̄ (n+1)

n (x)/n!
]
[O1×(n−1) 1], (38)

implying

F−1
n (x)F (1)

n (x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · · · · 0 0

2
. . .

... 0

0 3
. . .

... 0
...

. . .
. . . 0 0

0 · · · 0 n 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+F−1
n (x)

[
f̄ (n+1)

n (x)/n!
]
[O1×(n−1) 1]. (39)

By substituting (39) in (37) and by recalling (29), we obtain

�(1)
n (x) = [O1×(n−1) φn(x)]F−1

n (x)f̄n(x),

which is (31) for i = 1; this proves the first step of the induction.
Now, assume that (31) and (32) are true for a given 1 ≤ i < n. Then,

�(i+1)
n (x) = [

O1×(n−i) ψ
(1)
i,n−i+1(x) · · · ψ

(1)
i,n (x)

]
F−1

n (x)f̄n(x)

+ [O1×(n−i) ψi,n−i+1(x) · · · ψi,n(x)]
(
F−1

n (x)
)(1)

f̄n(x)

+ [O1×(n−i) ψi,n−i+1(x) · · · ψi,n(x)]F−1
n (x)f̄ (1)

n (x). (40)

From (34) and taking into account that i < n, it follows that the last term in (40)
is equal to zero. Concerning the second term in (40), from (36) we have

−[O1×(n−i) ψi,n−i+1(x) · · · ψi,n(x)]
(
F−1

n (x)F (1)
n (x)

)
F−1

n (x)f̄n. (41)
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By substituting (39) in (41), we obtain

−[O1×(n−i) ψi,n−i+1(x) · · · ψi,n(x)]

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · · · · 0 ∗
2

. . .
... ∗

0 3
. . .

... ∗
...

. . .
. . . 0 ∗

0 · · · 0 n ∗

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

F−1
n (x)f̄n(x)

= −[O1×(n−i−1) (n − i + 1)ψi,n−i+1(x) ∗ · · · ∗]F−1
n (x)f̄n(x), (42)

where the asterisks represent elements that are not relevant to the proof. Replacing
the second term in (40) by (42) yields

�(i+1)
n (x) = [

O1×(n−i) ψ
(1)
i,n−i+1(x) · · · ψ

(1)
i,n (x)

]
F−1

n (x)f̄n(x)

− [O1×(n−i−1) (n − i + 1)ψi,n−i+1(x) ∗ · · · ∗]

×F−1
n (x)f̄n(x). (43)

From this, it is seen easily that �(i+1)
n (x) has the structure

�(i+1)
n (x) = [O1×(n−i−1) ψi+1,n−i(x) · · · ψi+1,n(x)]F−1

n (x)f̄n(x),
(44)

with

ψi+1,n−i(x) = −(n − i + 1)ψi,n−i+1(x)

= (−1)in(n − 1) · · · (n − i + 2)(n − i + 1)φn(x). (45)

Equations (44) and (45) prove equations (31) and (32). From (31), it follows that
(30) is verified for 1 ≤ i ≤ n. Differentiating the second of (31), we have

�(n+1)
n (x) = [ψn,1(x)(1) · · · ψn,n(x)(1)]F−1

n (x)f̄n(x)

+ [ψn,1(x) · · · ψn,n(x)]
[(

F−1
n (x)

)(1)
f̄n(x)

+ (
F−1

n (x)f̄ (1)
n (x)

)]
. (46)

Using (46) and (34), we have

�(n+1)
n (x∗) = [ψn,1(x∗) · · · ψn,n(x∗)]

⎡
⎢⎣

1

0

0

⎤
⎥⎦ = ψn,1(x∗);

hence, recalling (32), we get

ψn,1(x∗) = (−1)n−1n!φn(x∗),

that is, equation (29). �
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5. Implementation Issues and Numerical Results

In this section, it is shown that the proposed algorithm can be implemented
easily by exploiting the particular structure of the matrices involved in the com-
putations.

Observe that the application of the algorithm requires at each step k to
compute the solution of the linear system (24), which we recall below,

Fn(xk)

⎛
⎜⎜⎝

y1

...

yn

⎞
⎟⎟⎠ = −f̄n(xk).

Let

yk = (y1,k · · · yn,k)T

be the solution of this system. The updating rule of the algorithm is

xk+1 = xk + y1,k.

Below, we derive a recursive scheme for computing y1,k . Note that

[
1 01×n

f̄n(xk) Fn(xk)

]
⎡
⎢⎢⎢⎣

1
y1,k

...
yn,k

⎤
⎥⎥⎥⎦ =

[
1

0n×1

]
; (47)

hence, recalling (26), at each step k of the algorithm, it is required to compute the
vector Yk = (1 y1,k · · · yn,k)T such that

Qn(f ; xk)Yk =
[

1

0n×1

]
.

This is made to exploit the result of Lemma 2.3, which states that Qn(f ; xk)
can be decomposed as the product of the lower and upper triangular matrices
Ln(f ; xk) and Un(f ; xk). It follows that the problem (47) can be decomposed into
two simpler problems and that the solution can be found as follows:

Step 1. Compute W as the solution of the linear system

Ln(f ; xk)W =
[

1

0n×1

]
. (48)

Step 2. Compute Y as the solution of the linear system

Un(f ; xk)Y = Wk, with Wk solution of (48). (49)
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Taking into account the structure of Ln(f ; xk), the explicit solution of (48) is
given by

Wk = [1 − f (xk) · · · (−f (xk))n]T ;

i.e., denoting by Wk(j ) the j th element of the vector Wk , we have

Wk(j ) = (−f (xk))j−1, j = 1, . . . , n + 1.

Letting [Ln(f ; xk)] be the j th row of the matrix Ln, j = 1, . . . , n + 1, the structure
of the solution Wk can be verified easily by checking that [Ln(f ; xk)]1Wk = 1 and
that, for j > 1,

[Ln(f ; xk)]jWk =
n+1∑
i=1

[Ln(f ; xk)]j,iWk(i)

=
j∑

i=1

(
j − 1

i − 1

)
f j−i(xk)(−f (xk))i−1

= (f (xk) − f (xk))j−1 = 0.

The solution of (49) can be computed recursively by exploiting the triangular
structure of the matrix Un(f ; xk). To this aim, let us explicit the computation of
the terms [Un(f ; xk)]i,j . First, note that

(An(f ; xk) − f (xk)In+1)i,j

=
{

0, i ≥ j,

f (j−i)/(j − i)! i < j, i, j = 1, . . . , n + 1.

From this and (15), the computation of the elements of Un is derived recursively
for i ≤ j ,

[Un(f ; xk)]1,1 = 1

[Un(f ; xk)]i,j =
j−1∑

h=i−1

[Un(f ; xk)]i−1,h · f (j−h)(xk)/(j − h)!.

Exploiting the triangular structure of Un(f ; xk), the problem (49) is solved recur-
sively as follows:

yn,k = (−f (xk))n/[Un(f ; xk)]n+1,n+1,

yi,k =
⎛
⎝(−f (xk))i −

n+1∑
j=i+2

[Un(f ; xk)]i+1,j yj−1,k

⎞
⎠ /[Un(f ; xk)]i+1,i+1,
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where i goes from n − 1 to 1. Note that y0,k = 1 and that y1,k updates the step of
the algorithm. Summarizing, the steps of the algorithm can be put in the following
form:

Step 0. Choose a starting point x0 and set k = 0;
Step 1. Set U = O(n+1)×(n+1) and [U ]1,1 = 1;
Step 2. For i = 1 to n + 1, set ai = f (i−1)(xk)/(i − 1)!

and bi = (−f (xk))i−1;
Step 3. For i = 2 to n + 1, for j = i to n + 1, set

[U ]i,j =
j−1∑

h=i−1
[U ]i−1,haj−h+1;

Step 4. Set yn,k = bn+1/[U ]n+1,n+1;
Step 5. For h = 1 to n − 1, set i = n − h and

yi,k =
(

bi+1 −
n+1∑

j=i+2
[U ]i+1,j yj−1,k

)
/[U ]i+1,i+1;

Step 6. Set xk+1 = xk + y1,k;
Step 7. Set k = k + 1 and go to Step 1.

We implemented the new method with n = 3 in Matlab and we tested it on four
numerical examples. We compared the obtained results with those of the Newton
method, the Traub method, the Halley method (with n = 2), and the Chebyshev
method (with n = 2) defined by (1), (2), (4), (5) respectively. Furthermore, fol-
lowing the recursive schemes described in Ref. 10, we implemented the Halley
method with n = 3 and the Chebyshev method with n = 3 and we tested these
methods which use derivatives of order up to three as well as our method.

For each example, we used three different starting points and we evaluated the
number of iterations required by the methods for satisfying the stopping criterion
|f (xk)| ≤ 10−10.

The four test functions and the obtained results are reported below.

Example 5.1. f (x) = x3 − x + 3.

Example 5.2. f (x) = x3 − 3x2 + 2x + 0.4.

Example 5.3. f (x) = x7 + 2x5 + 3x3 + x2 + x + 1.

Example 5.4. f (x) = sin(x2) − x2 + 1.

The Tables show the number of iterations performed by the methods starting
from three initial points x0. The symbol F indicates that the method performed
10000 iterations without satisfying the stopping criterion.
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Example 5.1 represents one case where higher-order methods converge to a
root of a nonlinear equation, while the Newton method fails to converge. From the
results of Table 1, we may observe that the Halley method and the proposed method
have good performance, while the efficiency of the Traub method is significantly
lower than that of the other methods.

Table 1. Results for Example 5.1.
Starting point x0 = 0 x0 = 3 x0 = 10
Newton F F F
Traub 57 40 104
Halley (n = 2) 7 6 13
Halley (n = 3) 18 12 6
Chebyshev (n = 2) 30 29 29
Chebyshev (n = 3) 38 11 14
New method (n = 3) 16 5 10

Table 2. Results for Example 5.2.
Starting point x0 = −5 x0 = 1 x0 = 10
Newton 9 102 28
Traub 6 56 70
Halley (n = 2) 5 36 115
Halley (n = 3) 4 108 109
Chebyshev (n = 2) 6 92 23
Chebyshev (n = 3) 5 11 88
New method (n = 3) 5 19 20

Table 3. Results for Example 5.3.
Starting point x0 = −5 x0 = 1 x0 = 4
Newton 15 10 17
Traub 11 27 11
Halley (n = 2) 9 19 14
Halley (n = 3) 8 F F
Chebyshev (n = 2) 10 ∗ 12
Chebyshev (n = 3) 9 F F
New method (n = 3) 9 6 9

Table 4. Results for Example 5.4.
Starting point x0 = 0.8 x0 = 1 x0 = 4
Newton 7 6 6
Traub 5 16 4
Halley (n = 2) 4 4 5
Halley (n = 3) 3 3 4
Chebyshev (n = 2) 4 5 4
Chebyshev (n = 3) 5 4 4
New method (n = 3) 9 6 9
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Concerning Example 5.2, the results of Table 2 indicate that the behavior of
the proposed method is always satisfactory. In particular, we may note that, for
x0 = −5 the behavior of the methods is comparable, while for x0 = 1 the new
method and the Chebyshev method (with n = 3) outperform the other methods.
For x0 = 10, the performance of the new method is significantly better than that
of the Traub, Halley, Chebyshev (with n = 3) methods.

Example 5.3 is a test function showing that the new third-order method may
be more robust than other third-order methods (see in Table 3 the failures of the
Halley method and the Chebyshev method with n = 3).

Example 5.4 is a test function where the behavior of all the seven methods
can be considered comparable.

On the whole, the numerical experience, although limited, seems to indicate
that the proposed method may be a valuable alternative for finding the root of non-
linear scalar functions. Future research will be devoted to extending the proposed
methodology to the problem of solving systems of nonlinear equations.
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