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Abstract. In this paper, a Gauss-Newton method is proposed for the solution of large-scale nonlinear
least-squares problems, by introducing a truncation strategy in the method presented in [9]. First, sufficient
conditions are established for ensuring the convergence of an iterative method employing a truncation scheme
for computing the search direction, as approximate solution of a Gauss-Newton type equation. Then, a specific
truncated Gauss-Newton algorithm is described, whose global convergence is ensured under standard assump-
tions, together with the superlinear convergence rate in the zero-residual case. The results of a computational
experimentation on a set of standard test problems are reported.

Keywords: large-scale problems, nonlinear least-squares, truncated Gauss-Newton method, nonmonotone
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1. Introduction

We consider the nonlinear least-squares problem

min
x∈Rn

f (x) = 1

2
‖r (x)‖2 = 1

2

m∑
i=1

r2
i (x), m ≥ n,

where each component ri : Rn → R of the residual vector r (x) is a twice continuously
differentiable function, and n is large.

Let J (x) be the Jacobian matrix of r (x). Then, the gradient ∇ f (x) and the Hessian
matrix ∇2 f (x) are given by

∇ f (x) = J (x)T r (x), ∇2 f (x) = J (x)T J (x) +
m∑

i=1

ri (x)∇2ri (x).
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Given a point xk , the Gauss-Newton method determines a new point xk+1 = xk + dk ,
where dk is a solution of the linear system

J (xk)T J (xk) d = −∇ f (xk). (1)

The Gauss-Newton method exploits the particular structure of ∇2 f (x), by discarding
the second-order term. It is well-known that the method is only locally convergent to a
stationary point x�, provided that ∇2 f (x�) is nonsingular and the second-order term is
small relative to J (x�)T J (x�). Moreover, in the zero-residual case the convergence rate
is superlinear. The global convergence of the method can be ensured by applying a line
search or a trust region strategy (see, e.g., [5, 13]).

When dealing with large-scale problems, the solution of the linear system (1) may
be prohibitively costly, so that it may be convenient to use inexact methods like those
underlying truncated-Newton methods. The convergence theory developed for the latter
(see, e.g., [3, 4, 12]) can be used as reference to establish that of a truncated version of the
Gauss-Newton method. In such a version, Eq. (1) can be solved approximately by apply-
ing, for instance, the conjugate gradient method (CG) and by interrupting the iterations
according to a suitable rule. In this connection, we observe that the coefficient matrix
J (xk)T J (xk) is always positive semidefinite, Eq. (1) admits at least a solution, and all
the conjugate vectors generated by CG are of descent for f . Moreover, in order to ensure
the convergence of the overall method, the matrix J (xk)T J (xk) may be easily modified,
e.g., by simply adding a multiple of the identity matrix. Note that the requirements for
the application of the standard CG are satisfied, while in a truncated-Newton method
this may not hold, so that it is necessary to take into account that the Hessian may be
indefinite.

In this paper we define a truncated Gauss-Newton method for large-scale problems by
adopting a truncation strategy in the method described in [9]. The latter was designed with
the aim of obtaining a behavior as close as possible to that of the “pure Gauss-Newton”
method, i.e., by taking the unit stepsize along the search direction obtained by solving
(1). In particular, a modification of the coefficient matrix in the Gauss-Newton equation
was introduced only at a subsequence of iterates, and the use of a nonmonotone line
search technique allowed us to accept the pure Gauss-Newton iteration more frequently
than a standard monotone one.

In Section 2 we establish sufficient conditions for ensuring the convergence of an
iterative method employing a truncation scheme for computing the search direction,
as approximate solution of a Gauss-Newton type equation. In Section 3 we describe a
truncated nonmonotone Gauss-Newton method and we prove its convergence properties.
Finally, the numerical results obtained by solving a set of test problems from the literature
are compared with those derived by applying a truncated-Newton method, and a standard
routine (NAG library) suggested for large-scale problems.

2. A truncation scheme for computing the search direction

For solving the problem minx∈Rn f (x), we consider an iterative method of the form

xk+1 = xk + αkdk, k = 0, 1, . . . (2)



FASANO, LAMPARIELLO AND SCIANDRONE

where dk is the search direction, and the stepsize αk along it is determined by means of
a suitable line search. We assume that dk is computed by solving inexactly the equation

Bkd = −∇ f (xk), (3)

where Bk is a symmetric matrix approximating the Hessian ∇2 f (xk), and that Eq. (3)
admits a solution, i.e., ∇ f (xk) belongs toR(Bk), the range or column space of Bk . More-
over, likewise in [9], we state the following conditions on the minimum and maximum
eigenvalues λmin(Bk) and λmax(Bk):

(a) there exists a constant c > 0 such that for all k

0 ≤ λmin(Bk) ≤ λmax(Bk) ≤ c;

(b) let K p = {ko, k1, . . . , ki , ki+1, . . .} ⊆ {0, 1, . . .} be a subset of iterates such that
ki+1 − ki ≤ p, ∀i , where p is a prefixed integer; we assume that for every infinite
subset K ⊆ K p

lim
k→∞,k∈K

λmin(Bk) = 0 implies lim
k→∞,k∈K

‖∇ f (xk)‖ = 0.

These conditions essentially ensure that the subsequence {dk}k∈K p is gradient-related to
{xk}k∈K p . Note that the particular choice (periodic) of K p such that ki+1 − ki = p, ∀i ,
will be adopted later. Then, we consider the following algorithm for computing dk , i.e.,
for obtaining an approximate solution of (3).

Truncated Conjugate Gradient Algorithm (TCG)

Data. xk , ∇ f (xk) 
= 0, Bk , ηk ∈ (0, 1).
Step 0. Set po = 0, qo = so = −∇ f (xk), i = 0.
Step 1. Compute

δi = sT
i qi

sT
i Bksi

qi+1 = qi − δi Bksi

pi+1 = pi + δi si .

Step 2. If ‖qi+1‖/‖∇ f (xk)‖ ≤ ηk , set dk = pi+1, ρk = −qi+1 and exit, else compute

βi = ‖qi+1‖2/‖qi‖2

si+1 = qi+1 + βi si ,

set i = i + 1 and go to Step 1.

Note that the vector ρk represents the error in Eq. (3), i.e., we have

Bkdk = −∇ f (xk) + ρk . (4)
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We show that Algorithm TCG is well-defined, and that any vector pi is of descent for
f .

Proposition 1. In Algorithm TCG, let Bk be symmetric positive semidefinite and as-
sume that ∇ f (xk) ∈ R(Bk). Then,
(i) for all i ≥ 1, sT

i Bksi = 0 if and only if qi = 0;

(ii) there exists an integer h ∈ [0, n − 1] such that

‖qh+1‖/‖∇ f (xk)‖ ≤ ηk ;

(iii) ∇ f (xk)T pi < 0 for all i ≥ 1.

Proof: We note first that sT
o Bkso > 0, since so = −∇ f (xk) 
= 0, and by assumption

so ∈ R(Bk), and thus so /∈ N (Bk), the null space of Bk (which is positive semidefinite).

(i) By simple substitutions, we have qT
i si−1 = 0 for all i ≥ 1, so that,

sT
i qi = ‖qi‖2. (5)

Then, if qi = 0, we have βi−1 = 0, and hence si = 0.
On the other hand, since qo = so = −∇ f (xk) ∈ R(Bk), we have si , qi ∈ R(Bk)
for all i . Moreover, sT

i Bksi = 0 implies that si belongs to N (Bk), so that si ∈
R(Bk) ∩ N (Bk) = {0}. Then, from (5), it follows qi = 0.

(ii) Assume by contradiction that ‖qh+1‖ > 0 for all h ∈ [0, . . . , n − 1], so that, by (i)

sT
i Bksi > 0, for all i ≥ 0. (6)

Following the same reasoning employed in [8] for the case that Bk is positive
definite, we have

qT
n si = 0, for all i = 0, . . . , n − 1 (7)

and

sT
i Bks j = 0, for all i, j = 0, . . . , n − 1, i 
= j.

The latter implies, together with (6), the linear independence of s0, . . . , sn−1. Then,
by (7), we have qn = 0, which contradicts the assumption.
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(iii) Following again the same reasoning employed in [8] for the case that Bk is positive
definite, we have sT

i qi = sT
i qo, for all i ≥ 0, which yields

∇ f (xk)T pi = −
i−1∑
j=0

(
sT

j q j
/

sT
j Bks j

)
qT

o s j

= −
i−1∑
j=0

(
sT

j qo
)2/

sT
j Bks j ≤ −‖qo‖4

/
sT

o Bkso < 0.

�

We can prove the following convergence result.

Proposition 2. Let {xk} be the sequence generated by the iterative scheme (2). Assume
that Bk is symmetric positive semidefinite , ∇ f (xk) ∈ R(Bk), conditions (a) and (b) are
satisfied, and dk is computed by means of Algorithm TCG, where ηk → 0 for k → ∞.
Moreover, assume that the stepsize αk is determined by a line search in such a way that

lim
k→∞,k∈K p

∇ f (xk)T dk

‖dk‖ = 0, (8)

and that

lim
k→∞

‖xk+1 − xk‖ = 0. (9)

Then, every limit point of {xk} is a stationary point of f (x).

Proof: Let K ⊆ {0, 1, . . .} be any infinite subset for which the subsequence {xk}K

converges, i.e.,

lim
k→∞,k∈K

xk = x̄ .

For each k ∈ K , let �(k) ∈ [0, p − 1] be the smallest integer such that k + �(k) ∈ K p.
Then, since

∥∥xk+�(k) − xk

∥∥ ≤ ∥∥xk+�(k) − xk+�(k)−1

∥∥ + · · · + ‖xk+1 − xk

∥∥,

by (9) we have

lim
k→∞,k∈K

∥∥xk+�(k) − xk

∥∥ = 0,

which implies

lim
k→∞,k∈K

xk+�(k) = x̄ .
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By the instructions of Algorithm TCG, we have for all k ∈ K

Bk+�(k)dk+�(k) = −∇ f
(
xk+�(k)

) + ρk+�(k), (10)

where ‖ρk+�(k)‖ ≤ ηk+�(k)‖∇ f (xk+�(k))‖, so that, as ∇ f (xk+�(k)) → ∇ f (x̄) and
ηk+�(k) → 0,

lim
k→∞,k∈K

∥∥ρk+�(k)

∥∥ = 0. (11)

In the case where

lim
k→∞,k∈K

λmin
(
Bk+�(k)

) = 0,

as ∇ f (xk+�(k)) → ∇ f (x̄), by assumption (b) we have ∇ f (x̄) = 0.
Let us assume now that the sequence of minimum eigenvalues {λmin(Bk+�(k))} does

not converge to zero, so that there exists an infinite subset K ′ ⊆ K for which

λmin
(
Bk+�(k)

) ≥ λ̄ > 0,

for all k ∈ K ′. Then, from (10) we can write, for all k ∈ K ′

∣∣∇ f
(
xk+�(k)

)T
dk+�(k)

∣∣∥∥dk+�(k)

∥∥ =
∣∣dT

k+�(k) Bk+�(k)dk+�(k) − ρT
k+�(k)dk+�(k)

∣∣∥∥dk+�(k)

∥∥
≥dT

k+�(k) Bk+�(k)dk+�(k) − ∣∣ρT
k+�(k)dk+�(k)

∣∣∥∥dk+�(k)

∥∥
≥λmin

(
Bk+�(k)

)∥∥dk+�(k)

∥∥ − ∥∥ρk+�(k)

∥∥
≥λ̄

∥∥dk+�(k)

∥∥ − ∥∥ρk+�(k)

∥∥,

and hence, by (8) and (11) limk→∞,k∈K ′ ‖dk+�(k)‖ = 0. Therefore, from (10) and assump-
tion (a) we have, for all k ∈ K ′

∥∥∇ f (xk+�(k))
∥∥ ≤ ∥∥Bk+�(k)

∥∥∥∥dk+�(k)

∥∥ + ∥∥ρk+�(k)

∥∥ ≤ c
∥∥dk+�(k)

∥∥ + ∥∥ρk+�(k)

∥∥,

so that, taking limits for k → ∞, k ∈ K ′, by (11) we have again ‖∇ f (x̄)‖ = 0. �

Moreover, it is possible to show that, under suitable assumptions and using the Armijo’s
line search, the convergence rate is superlinear. This result extends that stated in Propo-
sition 1.15 of [1] to the truncation scheme.

Proposition 3. Let {xk} be the sequence generated by the iterative scheme (2). Assume
that Bk is symmetric positive semidefinite, ∇ f (xk) ∈ R(Bk), and dk is computed by
means of Algorithm TCG where ηk → 0 for k → ∞. Moreover, assume that {xk}
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converges to x�, where ∇ f (x�) = 0 and ∇2 f (x�) is positive definite, ∇ f (xk) 
= 0 for
all k, and that

lim
k→∞

‖[B†
k − ∇2 f (x�)−1]∇ f (xk) − B†

kρk‖
‖∇ f (xk)‖ = 0, (12)

where B†
k is the pseudoinverse matrix of Bk, and ρk is defined in (4). Then, if αk is chosen

by means of the Armijo’s rule with initial stepsize α = 1, we have

lim
k→∞

‖xk+1 − x�‖
‖xk − x�‖ = 0.

Furthermore, there exists an integer k̄ ≥ 0 such that αk = 1, for all k ≥ k̄.

Proof: We first prove that there exists a k̄ ≥ 0 such that, for all k ≥ k̄, we have αk = 1.
Since dk = −B†

k [∇ f (xk) − ρk], by the mean value theorem we have

f (xk) − f (xk + dk) = −∇ f (xk)T dk − 1

2
dT

k ∇2 f (x̂k) dk

= ∇ f (xk)T B†
k [∇ f (xk) − ρk]

−1

2
[∇ f (xk) − ρk]T B†

k∇2 f (x̂k)B†
k [∇ f (xk) − ρk] , (13)

where x̂k = xk + θkdk , with θk ∈ (0, 1). From (12) we have

B†
k [∇ f (xk) − ρk] → 0,

so that dk → 0, and x̂k converges to x�.
Now, since αk is determined by the Armijo’s rule (see e.g. [1], p. 20), i.e., such that

f (xk + αkdk) ≤ f (xk) + γαk∇ f (xk)T dk,

where γ ∈ (0, 1/2), we have to show that, for k sufficiently large

f (xk) − f (xk + dk) ≥ −γ∇ f (xk)T dk,

i.e., taking into account (13), that

∇ f (xk)T B†
k [∇ f (xk) − ρk] − 1

2
[∇ f (xk) − ρk]T B†

k∇2 f (x̂k)B†
k [∇ f (xk) − ρk]

≥ γ∇ f (xk)T B†
k [∇ f (xk) − ρk],

or equivalently,

(1 − γ )∇ f (xk)T B†
k∇ f (xk)

≥ (1 − γ )∇ f (xk)T B†
kρk + 1

2
[∇ f (xk) − ρk]T B†

k∇2 f (x̂k)B†
k [∇ f (xk) − ρk].
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Then, denoting by gk = ∇ f (xk)/‖∇ f (xk)‖ and ωk = ρk/‖∇ f (xk)‖, we have to show
that

(1 − γ )gT
k B†

k gk ≥ (1 − γ )gT
k B†

kωk + 1

2
[B†

k (gk − ωk)]T ∇2 f (x̂k)[B†
k (gk − ωk)].

(14)

We observe that condition (12) can be written as

B†
k gk = ∇2 f (x�)−1gk + B†

kωk + ζk, (15)

where {ζk} denotes a vector sequence with ζk → 0, so that (14) becomes

(1 − γ )gT
k [∇2 f (x�)−1gk + B†

kωk + ζk]

≥ (1 − γ )ωT
k [∇2 f (x�)−1gk + B†

kωk + ζk]

+1

2
[∇2 f (x�)−1gk + ζk]T ∇2 f (x̂k)[∇2 f (x�)−1gk + ζk],

i.e., since x̂k → x� and ∇2 f (x̂k) → ∇2 f (x�),(
1

2
− γ

)
gT

k ∇2 f (x�)−1gk ≥ (1 − γ )ωT
k ∇2 f (x�)−1gk

−(1 − γ ) ωT
k [B†

k gk − B†
kωk] + τk, (16)

where {τk} is some scalar sequence with τk → 0. Now, we have

ωT
k [B†

k gk − B†
kωk] = ωT

k [(B†
k − ∇2 f (x�)−1)gk − B†

kωk] + ωT
k ∇2 f (x�)−1gk,

so that, since ωk → 0 and ‖gk‖ = 1, by (12) ωT
k [B†

k gk − B†
kωk] → 0. Then, since (1/2)−

γ > 0 and ∇2 f (x�) is positive definite, inequality (16) is satisfied for k sufficiently large.
To show superlinear convergence we write, for k ≥ k̄,

xk+1 − x� = xk − x� − B†
k∇ f (xk) + B†

kρk . (17)

From (15) we have

B†
k∇ f (xk) = ∇2 f (x�)−1∇ f (xk) + B†

kρk + ‖∇ f (xk)‖ζk . (18)

Since ∇ f (x�) = 0 and ∇2 f (x�) is positive definite, from Taylor’s theorem we obtain

∇ f (xk) = ∇2 f (x�)(xk − x�) + o(‖xk − x�‖)

and

∇2 f (x�)−1∇ f (xk) = xk − x� + o(‖xk − x�‖)

‖∇ f (xk)‖ = O(‖xk − x�‖).
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Using these two relations in (18) and considering that

ζk
O(‖xk − x�‖)

‖xk − x�‖ → 0,

we obtain

B†
k∇ f (xk) = xk − x� + o(‖xk − x�‖) + B†

kρk

and (17) becomes

xk+1 − x� = o(‖xk − x�‖),

i.e.,

lim
k→∞

‖xk+1 − x�‖
‖xk − x�‖ = 0.

�

3. A truncated nonmonotone Gauss-Newton method

We refer to the version of the Gauss-Newton method described in Section 2 of [9]. It is
based on the Ben-Israel iteration xk+1 = xk + d (m)

k , where d (m)
k is the minimum-norm

solution of the linear least-squares problem mind ‖J (xk) d + r (xk)‖2. Obviously, in a
truncated version of it the search direction dk will be an approximation of d (m)

k , computed
by means of Algorithm TCG. To ensure the global convergence it is necessary to use
a line search technique for computing the stepsize along dk . Moreover, as discussed
in [9], it is necessary to impose suitable conditions on dk , at least at a subsequence
of iterates. In particular [9], we take as search direction the solution of the equation
[J (xk)T J (xk) + Dk]d = −J (xk)T r (xk), where Dk is a diagonal matrix suitably chosen
to ensure that dk is gradient-related. Even here the use of Algorithm TCG gives an
approximate solution. As regards the line search technique, we adopt that employed
in [9], which allowed us to obtain the global convergence together with the superlinear
rate.

Nonmonotone Line Search Algorithm (NLS)

Data. γ ∈ (0, 1), 0 < σ1 < σ2 < 1, integer M > 1.
Step 0. Set α = 1.
Step 1. If

f (xk + αdk) ≤ max
0≤ j≤min(k,M)

[ f (xk− j )] − γα2‖dk‖3,

set αk = α and stop.
Step 2. Choose σ ∈ [σ1, σ2], set α = σα and go to Step 1.
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Assuming that dk is a descent direction for f at xk , it can be shown that Algorithm NLS
is well-defined [9]. In the sequel we prove the convergence properties of the following
algorithmic scheme.

Truncated Nonmonotone Gauss-Newton (TNMGN) Stabilization Algorithm

Data. x0 ∈ Rn , ε > 0, integer p > 1.
Step 0. Set k = 0, i = 1.
Step 1. Compute J (xk) and ∇ f (xk) = J (xk)T r (xk), and verify the stopping criterion.
Step 2. If i < p, compute by Algorithm TCG an approximate solution dk of

J (xk)T J (xk) d = −J (xk)T r (xk),

set i = i + 1, and go to Step 4.
Step 3. Compute Dk = min{ε, ‖∇ f (xk)‖}I , and compute by Algorithm TCG an ap-
proximate solution dk of

[J (xk)T J (xk) + Dk]d = −J (xk)T r (xk).

Set i = 1.
Step 4. Compute by Algorithm NLS the stepsize αk . Set xk+1 = xk + αkdk , k = k + 1,
and go to Step 1.

Note that the search direction dk computed at Step 2 or Step 3 is of descent for f by
(iii) of Proposition 1, whatever the stopping criterion of TCG may be.

Proposition 4. Let {xk} be the sequence generated by Algorithm TNMGN, and assume
that in Algorithm TCG ηk → 0 for k → ∞. Moreover, assume that the level set
�o = {x ∈ Rn : f (x) ≤ f (xo)} is compact. Then,

(i) the sequence { f (xk)} converges;
(ii) limk→∞‖xk+1 − xk‖ = 0;

(iii) every limit point of {xk} is a stationary point of f (x).

Proof: The same proof of Proposition 3.1 in [9] can be used for proving (i) and (ii).
In particular, note that, since f (xk) ≤ f (xo) for all k, we have {xk} ⊂ �o.

To prove (iii), let K p be the subset of iterates where Step 3 is performed, i.e., K p =
{p − 1, 2p − 1, . . . , j p − 1, . . .}, and denote by

Bk =
{

J (xk)T J (xk), for k /∈ K p

J (xk)T J (xk) + Dk, for k ∈ K p.
(19)

We note that

λmin(Bk) = λmin(J (xk)T J (xk)) + min{ε, ‖∇ f (xk)‖}, for k ∈ K p
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and

λmax(Bk) ≤ λmax(J (xk)T J (xk)) + min{ε, ‖∇ f (xk)‖}, for all k,

so that, by the continuity of ∇ f (x), and taking into account that {xk} ⊂ �o, the sequence
{Bk} satisfies assumptions (a) and (b).

We show that condition (8) holds, i.e.,

lim
k→∞,k∈K p

∇ f (xk)T dk

‖dk‖ = 0,

where dk is the solution of

Bkd = −∇ f (xk) + ρk, (20)

and ‖ρk‖ ≤ ηk‖∇ f (xk)‖. By contradiction, we assume that there exists an infinite subset
K ⊆ K p such that {xk}k∈K and {dk/‖dk‖}k∈K converge to some x̂ and d̂ respectively,
and

lim
k→∞,k∈K

∇ f (xk)T dk

‖dk‖ = ∇ f (x̂)T d̂ < 0. (21)

If there exists a subset K ′ ⊆ K such that ‖dk‖ → 0 for k → ∞, k ∈ K ′, since Bk satisfies
assumption (a) and ρk → 0, from (20) we have ‖∇ f (xk)‖ → 0, so that ∇ f (x̂) = 0,
which contradicts (21). Therefore, by (ii), it follows that αk → 0 for k → ∞, k ∈ K .
Then, by the instructions of Algorithm NLS we have, for k ∈ K sufficiently large,

f

(
xk + αk

σk
dk

)
> f (xk) − γ

α2
k

σ 2
k

‖dk‖3,

where σk ∈ [σ1, σ2] ⊂ (0, 1), and by the mean value theorem, it follows that

∇ f

(
xk + θk

αk

σk
dk

)T

dk/‖dk‖ > − γ

(
αk

σk

)
‖dk‖2, θk ∈ (0, 1). (22)

We observe that, for k ∈ K p

‖dk‖ ≤ ∥∥B−1
k

∥∥∥∥ρk − ∇ f (xk)
∥∥

≤ (1 + ηk)
∥∥B−1

k

∥∥∥∥∇ f (xk)
∥∥,

and since by limk→∞,k∈K ‖∇ f (xk)‖ = ‖∇ f (x̂)‖ 
= 0, J (xk)T J (xk) + Dk is uniformly
positive definite for k ∈ K , the subsequence {‖dk‖}k∈K is bounded. Therefore, in (22)
taking limits for k → ∞, k ∈ K , since αk → 0, we have

∇ f (x̂)T d̂ ≥ 0,

which contradicts (21). Hence, from Proposition 2, (iii) is proved. �
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Proposition 5. Let {xk} be the sequence generated by Algorithm TNMGN, and assume
that ηk → 0 for k → ∞. Moreover, assume that {xk} converges to x�, where f (x�) = 0,
∇ f (x�) = 0, and ∇2 f (x�) is positive definite. Then, there exists an integer k̄ ≥ 0 such
that, for all k ≥ k̄, αk = 1, and the sequence {xk} converges superlinearly.

Proof: As f (x�) = 0 (the zero-residual case), we have ∇2 f (x�) = J (x�)T J (x�).
Since limk→∞∇ f (xk) = 0, then Dk → 0 for k → ∞, k ∈ K p, so that, for the matrix Bk

in (19), we have limk→∞(B†
k − ∇2 f (x�)−1) = 0, and hence (12) is satisfied. Therefore,

employing the same arguments used in the proof of Proposition 3.2 in [9] and Proposition
3 above, the superlinear convergence rate is proved. �

4. Numerical results

As regards the implementative aspects of Algorithm TNMGN, we adopt in Algorithm
TCG the simple truncation rule given by

ηk = 10−1 min {1/(k + 1), ‖∇ f (xk)‖} ,

as suggested in [12] in connection with a truncated-Newton method. Moreover, as dis-
cussed in [9], we try to modify the matrix J (xk)T J (xk) more than every p iterations.
Namely, we use here a rule based on the stepsize for establishing whether the matrix is
modified more frequently. Specifically, the matrix will be modified whenever the unit
stepsize along the Gauss-Newton search direction was rejected at the previous iteration,
and in any case after p − 1 iterations without matrix modification.

The numerical results reported below have been obtained by Algorithm TNMGN with
the following implementative choices [9]:

– p = 20;
– stopping criterion: ‖∇ f (xk)‖ ≤ 10−6 or f (xk) ≤ 10−8;
– line search parameters: γ = 10−4, M = 10, σ1 = 0.1, σ2 = 0.5, and at Step 2 the

scalar σ is computed by means of a quadratic interpolation formula.

We have considered a set of standard zero-residual large-scale test problems from
the literature (the Penalty I function represents a small-residual problem). In particular,
functions 1–7 are taken from [11], function 8 from [2], and functions 9–20 from [10].
The following list specifies the functions considered.

1) Extended Rosenbrock, No. 21 in [11]
2) Extended Powell singular, No. 22
3) Penalty I, No. 23
4) Variably dimensioned, No. 25
5) Trigonometric, No. 26
6) Broyden tridiagonal, No. 30
7) Broyden banded, No. 31
8) No. 3 in [2]
9) Generalized Broyden tridiagonal, No. 32 in [10]
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10) Tridiagonal system, No. 45
11) Structured Jacobian, No. 46
12) Trigonometric - exponential system, No. 52
13) Singular Broyden, No. 54
14) Five-diagonal system, No. 55
15) Extended Freudenstein & Roth, No. 57
16) Extended Wood, No. 61
17) Tridiagonal exponential, No. 62
18) No. 75
19) No. 76
20) No. 77

The computational advantage deriving from the use of a truncation strategy was al-
ready assessed (see, e.g., [2, 4, 7, 12]). We show here the advantage amount in the
solution of large-scale problems. In Table 1 we compare the results obtained by Al-
gorithm TNMGN with those obtained by the same algorithm without the truncation
scheme (NMGN), i.e., by taking in Algorithm TCG ηk fixed at a low value. For a correct

Table 1. Comparison of the results obtained with Algorithm TNMGN, with Algorithm NMGN (the non-
truncated version), and with Algorithm TN.

TNMGN NMGN TN

Function ni (= ng) n f ncg ni (= ng) n f ncg ni n f (= ng) ncg

1) 13 15 32 8 11 21 16 40 42

2) 13 13 69 12 12 445 12 27 40

3) 131 205 364 194 315 4142 1842 1885 3686

4) 23 23 44 23 23 58 12 28 22

5) 10 11 51 11 22 4031 65 367 780

6) 6 6 26 4 4 65 14 18 83

7) 7 7 19 6 6 53 14 22 56

8) 13 13 256 13 13 584 1579 1583 3281

9) 7 8 26 6 7 101 15 23 54

10) 23 23 327 17 18 690 (*)

11) 10 10 100 5 5 146 31 54 525

12) 12 17 55 7 9 59 23 34 83

13) 11 11 98 18 22 15066 19 66 64

14) 29 31 943 14 15 1670 77 208 1066

15) 13 13 27 12 12 35 (*)

16) 22 23 77 25 29 148 158 414 488

17) 3 3 4 3 3 5 5 6 10

18) 981 2434 365395 969 2526 569369 1878 9978 33402

19) 5 5 8 5 5 8 9 10 18

20) 5 5 9 5 5 9 4 6 8

(∗) Solution not found within 104 function evaluations.



A TRUNCATED NONMONOTONE GAUSS-NEWTON

Table 2. Comparison of the results obtained with Algorithm TNMGN and with the E04DGF routine.

TNMGN E04DGF

Function ni (= ng) n f time (sec.) ni n f (= ng) time (sec.)

1) 13 15 0.008 22 96 0.055

2) 13 13 0.008 73 187 0.141

3) 131 205 0.066 2734 6650 9.961

4) 23 23 0.012 11 48 0.031

5) 10 11 4.160 60 122 120.309

6) 6 6 0.004 57 128 0.117

7) 7 7 0.020 61 228 0.285

8) 13 13 0.027 204 443 0.379

9) 7 8 0.008 38 84 0.078

10) 23 23 0.043 230 1878 0.676

11) 10 10 0.023 5 35 0.063

12) 12 17 0.059 55 134 0.305

13) 11 11 0.016 32 238 0.137

14) 29 31 0.125 256 2085 1.344

15) 13 13 0.008 10 28 0.023

16) 22 23 0.020 89 297 0.801

17) 3 3 0.012 2 5 0.020

18) 981 2434 82.781 27009 55533 133.434

19) 5 5 0.004 3 8 0.012

20) 5 5 3.020 5 13 2.164

comparison, we take ηk = 10−7, according to the final value of the truncation rule.
Moreover, in the same table we report for comparison the results obtained with the code
TN downloaded from the URL http://iris.gmu.edu/˜snash/nash/software/, which is an
implementation of a truncated-Newton method suggested in [12]. For each problem we
report the numbers ni of iterations and n f of function evaluations required for satisfying
the stopping criterion (the gradient is evaluated only once at each iteration by Algorithms
TNMGN and NMGN, so that ng = ni ). Moreover, we report the total number ncg of
iterations performed by the conjugate gradient algorithm. In all problems, the dimension
is n = 1000 (m = n, apart from function 3, the Penalty I function, where m = n + 1,
and function 4, the Variably dimensioned function, where m = n + 2). We remark that
the behaviour of the algorithms does not change significantly for higher dimensions,
because the structure of the problems remains substantially unchanged.

We observe that the performance of the two versions of the algorithm is similar in
terms of ni and n f , which suggests the effectiveness of the search direction dk computed
by TCG. However, as expected, the number ncg is lower in the truncated version. In
particular, in four problems over twenty, ncg is smaller than 20% of that in the non-
truncated version, in five problems it is smaller than 50%, and in one problem only it is
slightly greater. As regards the results obtained with the code TN, the solution was not
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found within 104 function evaluations for functions 10 and 15. In the remaining eighteen
problems, in five of them the performance of Algorithm TNMGN is clearly superior,
in eight is better, and in five is worse. We note also that in function 5 the results of
Algorithm TN were obtained by setting the stopping criterion on the gradient norm at
10−5, due to the occurrence of line search failure at 10−6.

Finally, in Table 2 we compare the results obtained by Algorithm TNMGN with those
obtained by the E04DGF routine of the NAG library, which is the implementation of a
limited-memory quasi-Newton method, the only one suggested for large-scale problems.
Note that the routine E04GBF, specifically designed for nonlinear least-squares, is not
suitable for large-scale problems. In fact, since it uses the singular-value decomposition
of the Jacobian matrix to calculate the search direction [6], a very high computation time
is required. For comparison we report, together with ni , n f and ng (n f = ng for E04DGF
routine) , the CPU time in seconds. We observe that, in thirteen problems over twenty, the
performance of Algorithm TNMGN is clearly superior. In the remaining seven problems,
although in some of them the number of iterations performed by Algorithm TNMGN is
larger, the numbers n f and ng are always smaller, and only in the last problem the time
is slightly longer. From these results it appears that the method proposed here may be a
valuable alternative for solving large-scale least-squares problems.
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