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Use of the Minimum-Norm Search Direction

in a Nonmonotone Version of

the Gauss-Newton Method1

F. LAMPARIELLO
2

AND M. SCIANDRONE
2

Communicated by P. Tseng

Abstract. In this work, a new stabilization scheme for the Gauss-

Newton method is defined, where the minimum norm solution of the

linear least-squares problem is normally taken as search direction and

the standard Gauss-Newton equation is suitably modified only at a

subsequence of the iterates. Moreover, the stepsize is computed by means

of a nonmonotone line search technique. The global convergence of the

proposed algorithm model is proved under standard assumptions and

the superlinear rate of convergence is ensured for the zero-residual case.

A specific implementation algorithm is described, where the use of the

pure Gauss-Newton iteration is conditioned to the progress made in the

minimization process by controlling the stepsize. The results of a com-

putational experimentation performed on a set of standard test problems

are reported.

Key Words. Gauss-Newton method, nonlinear least-squares problems,

minimum norm solution, nonmonotone line search techniques.

1. Introduction

We consider the following nonlinear least-squares problem:

min
x˛Rn

f (x) = (1=2)kr(x)k2
= (1=2) �

m

i=1
r2
i (x), m$n,

where each component ri: R
nfiR of the residual vector r (x) is a continuously

differentiable function. Problems of this kind arise in many practical

1The authors are indebted to the anonymous referees for useful suggestions.
2Researcher, Istituto di Analisi dei Sistemi ed Informatica, National Research Council, Rome,

Italy.

JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS: Vol. 119, No. 1, pp. 65–82, October 2003 (g2003)

65

0022-3239=03=1000-0065=0 g 2003 Plenum Publishing Corporation



applications involving, for instance, the solution of nonlinear equations or

data fitting.

Let J(x) be the Jacobian matrix of r (x). Then, the gradient rf (x) and

the Hessian matrix r2f (x) are given by

rf (x) =J(x)Tr(x), r2f (x)=J(x)TJ(x)+ �
m

i=1
ri(x)r2ri(x):

Most algorithms for nonlinear least-squares exploit the particular

structure of r2f (x). Since the first term J(x)TJ(x) is often more important

than the second-order term, the latter can be discarded. The Gauss-Newton

method is a modification of the Newton method and consists of the iteration

xk+1 =xk – [J(xk)
TJ(xk)]

– 1J(xk)
Tr(xk),

provided that the matrix J(xk)
TJ(xk) is nonsingular.

As it is well-known, the method is only locally convergent to a sta-

tionary point x*, assuming that r2f (x*) is nonsingular and that the second-

order term is small relative to the first one, whereas it can diverge from

arbitrarily close points to x* if the second-order term is too large.

The Ben-Israel method (Ref. 1) is a modification of the Gauss-Newton

method designed for the case when J(x) does not have full rank and consists

of the iteration

xk+1 =xk – J(xk)
#r(xk),

where the symbol # denotes the pseudoinverse matrix. Its convergence has

been proved under the assumption that J(x)# is Lipschitz continuous.

Moreover, in Ref. 2, using the Lyapunov stability theory, it has been shown

that any limit point x* of the sequence {xk} generated by the iteration

xk+1 =xk – akJ(xk)
#r(xk)

is a stationary point of f, provided that the Jacobian matrix is of constant

rank in some bounded convex set W containing x*, that the starting point xo

belongs to W, and that the stepsize ak is bounded above by a number related

to the Lipschitz constant of J(x)TJ(x). Note that these assumptions are

stringent as observed in Ref. 3, where for removing them, the construction of

an auxiliary least-squares problem of higher dimension is proposed. It is

shown that the new problem is a well-posed one, provided that the rank

deficiency of the Jacobian is small. However, as remarked by the author, this

technique seems to be useful only for small-dimensional problems and

moreover it appears not easily implementable.

66 JOTA: VOL. 119, NO. 1, OCTOBER 2003



Alternatively to the use of the pseudoinverse, the stabilization strategies

of the Gauss-Newton method are based on the iteration

xk+1 =xk – ak[J(xk)
TJ(xk) +Dk]

– 1J(xk)
Tr(xk),

where Dk is a diagonal matrix suitably chosen to ensure that the search

directions are gradient related. The stepsize ak is computed for instance by

the Armijo rule, in such a way that the sequence { f (xk)} is monotonically

decreasing.

We observe first that, to obtain a behavior as close as possible to that of

the pure Gauss-Newton method, the matrix J(xk)
TJ(xk) could be modified by

means of Dk only at intervals, instead of at every iteration. In this case, to get

global convergence, in addition to ensuring the convergence of the sequence

{f (xk)}, we would have to guarantee also that kxk+1 – xkkfi0. Obviously,

the line search must be performed along descent directions. However, as

shown in many papers (see e.g. Refs. 4–6), the enforcement of the monotonic

descent may cause inefficiency, especially when the objective function (i.e.,

the residual in our case) is highly nonlinear. Nonmonotone algorithms for

nonlinear least-squares problems have been described in Refs. 7–8 that

extend the approach of Refs. 4–5 proposed in the context of Newton-type

methods.

In this work, we present a nonmonotone modified version of the Gauss-

Newton method. In particular, we consider the direction

d
(m)
k = – J(xk)

#r(xk)

of the Ben-Israel iteration, which is the minimum norm solution of the

standard Gauss-Newton equation

J(xk)
TJ(xk)d = – J(xk)

Tr(xk),

and we exploit the property that it is a descent direction for f at xk, even

when the matrix J(xk)
TJ(xk) is singular; thus, it is normally taken as search

direction. Moreover, the matrix J(xk)
TJ(xk) is possibly modified to ensure,

together with the descent property, even an angle condition, only at a sub-

sequence of points. Finally, in order to obtain the global convergence of the

whole sequence {xk}, a suitable line search technique for computing the

stepsize is defined, which guarantees that kxk+1 – xkkfi0, and also the super-

linear rate of convergence for the zero-residual case.

As regards the computation of the minimum norm solution dk
(m)

of the

Gauss-Newton equation, it is possible to use the Moore-Penrose generalized

inverse (Ref. 9). However, this choice is not suitable when the problem

dimension becomes large, so that it appears more convenient the use of an

iterative method, instead of a direct computation. In particular, we observe
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that, among the infinitely many solutions of the Gauss-Newton equation,

only dk
(m)

belongs to R(J(xk)
T), i.e., to the range or column space of J(xk)

T.

Therefore, the conjugate gradient method (CG, Ref. 10) starting from a

point in R(J(xk)
T), e.g. from the null vector, can be used for computing dk

(m)
.

Indeed, such a method converges towards solutions of the Gauss-Newton

equation, and since all the iterates remain in R(J(xk)
T ), the convergence to

dk
(m) is ensured. Note that also the Barzilai and Borwein gradient method

(BB, Ref. 11) can be used, although it converges only asymptotically. How-

ever, in some cases, it may be competitive with the CG method, as observed

in Ref. 12.

In Section 2, we present a nonmonotone stabilization algorithm model

for the Gauss-Newton method and in Section 3 we prove the convergence

results under standard assumptions without any condition on the rank of the

Jacobian matrix. In Section 4, we discuss some implementative aspects and

we describe a specific algorithm, where the reliability of the pure Gauss-

Newton iteration is evaluated according to the acceptance of the unit step-

size. The numerical results obtained by solving a set of test problems are

compared with those derived by applying an efficient standard routine

(NAG library) devoted to nonlinear least-squares problems.

2. Modified Gauss-Newton Method

In the Gauss-Newton method, the search direction is determined by

solving the linear least-squares problem

min
d

kJ(xk)d +r(xk)k2
: (1)

If J(xk) is of full column rank, the unique solution dk of (1) is a descent

direction for f and therefore it represents a suitable direction for a line

search. If J(xk) is rank deficient, Eq. (1) admits infinitely many solutions.

Let

S ={d˛Rn: J(xk)
TJ(xk)d = – J(xk)

Tr(xk)}

be the set of the solutions of (1). We consider the problem

min
d˛S

kdk,

which admits a unique solution, referred to as the minimum norm solution of

(1), i.e., the one given by

d
(m)
k = – J(xk)

#r(xk)

= – [J(xk)
TJ(xk)]

#J(xk)
Tr(xk):
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It is known that dk
(m)

has the following property (Ref. 13, p. 343).

Proposition 2.1. Let xk be a nonstationary point of f. Then dk
(m)

, the

minimum norm solution of (1), is such that, for sufficiently small a >0,

kr(xk + adk
(m)

)k<kr(xk)k.

Therefore, dk
(m) is a descent direction for f and hence it represents a

suitable choice for the search direction.

Our goal is to design an algorithm based on the Ben-Israel iteration

xk+1 =xk+d
(m)
k ,

which can be interpreted as the pure form of the Gauss-Newton method.

Obviously, to ensure the global convergence, it is necessary to introduce a

suitable acceptance rule for the unit stepsize, i.e., to define a line search

technique for the stepsize ak along dk
(m)

, such that the unit stepsize is taken as

frequently as possible. Moreover, we have to take into account that the

descent property of the search direction is not sufficient to ensure the global

convergence of an iterative scheme of the form

xk+1 =xk +akdk, (2)

so that it is necessary to impose, at least at a subsequence of points, a suitable

condition on dk. More specifically, if the columns of the Jacobian matrix

were uniformly linearly independent, the unique solution dk of (1) would be

gradient related, so that the global convergence of the sequence {xk} would

be ensured by using, for instance, an Armijo-type line search for computing

ak. Therefore, when the uniform full-rank condition is not fulfilled, it is

necessary to modify the matrix J(xk)
TJ(xk) by adding to it a diagonal matrix

Dk such that J(xk)
TJ(xk) +Dk is uniformly positive definite. For example, Dk

may be chosen in accordance with the Cholesky factorization scheme or as

a positive multiple of the identity matrix (Levenberg-Marquardt method).

With these choices of Dk, also the direction computed by solving

[J(xk)
TJ(xk) +Dk] d = – J(xk)

Tr(xk) (3)

turns out to be gradient related, thus allowing us to obtain the global con-

vergence of {xk} by means of a suitable line search technique or, in the case

of the Levenberg-Marquardt method, by adopting a trust-region strategy.

However, we observe that the solution of (3) could be significantly dif-

ferent from the minimum norm solution of (1), which we want to take as

search direction. In the sequel, we show that the global convergence can be

ensured by modifying the matrix J(xk)
TJ(xk) by means of Dk only at a sub-

sequence of the iterates, provided that the difference between the iteration
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numbers of two consecutive iterates where the modification is performed, be

bounded by a prefixed integer p.

It is evident that, when p is taken small, the possible advantage of using

the pure Gauss-Newton iteration would be insufficiently exploited, particu-

larly in a region around a small-residual solution, with respect to the case

where p = 1, that corresponds to a classical implementation of the Gauss-

Newton method. Hence, according to our intention, a relatively large value

for p should be taken. However, we observe that the Gauss-Newton local

quadratic model may not approximate adequately the objective function,

mainly in regions far from a solution. This occurrence can be monitored on

the basis of the progress obtained in the minimization process, measured for

instance in terms of the objective function reduction, or the stepsize, or both

(see e.g. the strategy of the adaptive algorithm described in Ref. 14). There-

fore, it appears advisable to introduce a control criterion (CR) for deciding

whether the matrix J(xk)
TJ(xk) will be modified or not. Thus, if CR is sat-

isfied, the minimum norm solution of (1) is taken as search direction;

otherwise, the latter is determined by solving (3). Therefore, the solution of

(3) is used whenever CR is not fulfilled, and in any case after p – 1 consecutive

iterations performed using dk
(m)

.

We remark, however, that the introduction of a criterion CR is not

necessary for getting global convergence, which can be ensured simply by

using the solution of (3) every p iterations.

Moreover, we define a nonmonotone line search technique which allows

us to accept the unit stepsize more frequently than a standard monotone one.

In particular, the strategy consists in the enforcement of a descent for f with

respect to the maximum value attained in a prefixed number M of preceding

iterations (see e.g. Ref. 4). The acceptance rule of the stepsize is defined by a

quadratic function in order to obtain, together with the global convergence,

even the superlinear rate, at least for the case of zero-residual problems, as

shown later.

Nonmonotone Line Search Algorithm (Algorithm NLS)

Data. g˛(0, 1), 0<s1<s2<1, integer M >1.

Step 0. Set a = 1.

Step 1. If

f (xk+adk)# max
0# j#min(k,M)

[ f (xk – j)] – g a2kdkk3
, (4)

set ak = a and stop.

Step 2. Choose s [̨s1,s2], set a = sa and go to Step 1.
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Assuming that dk is a descent direction for f at xk, it can be shown easily

that Algorithm NLS is well defined.

The following algorithmic scheme resumes the globalization strategy

discussed above.

Nonmonotone Gauss-Newton Stabilization Algorithm (Algorithm

NMGN)

Data. xo˛Rn, integer p >1.

Step 0. Set k = 0, i = 1.

Step 1. Compute J(xk) and rf (xk) = J(xk)
Tr(xk); verify the stopping

criterion.

Step 2. If i = 1 or if i<p and CR is satisfied, compute the minimum

norm solution dk
(m)

of (1); set dk = dk
(m)

, i = i+1, and go to

Step 4.

Step 3. Compute the solution of (3) (where possibly Dk = 0), take it

as dk, and set i= 1.

Step 4. Compute the stepsize ak by means of Algorithm NLS. Set

xk+1 = xk + akdk, k = k + 1, and go to Step 1.

Different algorithms can be defined depending on the criterion CR adop-

ted, on the way of computing at Step 2 the minimum norm solution of (1),

and on the way of modifying at Step 3 the matrix J(xk)
TJ(xk) by means of Dk.

3. Convergence Analysis

Let Kp�{0, 1, . . .} be the subset of iterates where the solution of (3) is

taken as search direction. In order to ensure the global convergence of an

algorithm in the class defined above, we have to establish suitable conditions

on the search directions dk, computed for k˛Kp. Let us assume that the

matrix Dk is such that rf (xk)
Tdk<0 and that the following conditions on its

minimum and maximum eigenvalues [lm(Dk) and lM(Dk)] are fulfilled:

(a) there exists a constant c >0 such that, for all k˛Kp,

0#lm(Dk)#lM(Dk)#ckrf (xk)k;
(b) for every infinite subset K˝Kp,

lim
kfiO, k˛K

lm(Dk) =0 implies lim
kfiO, k˛K

krf (xk)k =0:

These conditions ensure essentially that the subsequence {dk}k˛Kp
is

gradient related to {xk}k˛Kp
. To ensure this property, we could even consider

the following simpler condition: there exist positive numbers c1, c2 such that,
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for all k˛Kp,

c1krf (xk)k#lm(Dk)#lM(Dk)#c2krf (xk)k,

which implies (a) and (b). However, we note that, in this case, it would be

Dk„0 for all k˛Kp, while it is not necessary to modify the matrix J(xk)
TJ(xk)

when nonsingular. Therefore, conditions (a) and (b) are less restrictive.

Then, we can prove the following convergence result.

Proposition 3.1. Let {xk} be the sequence generated by the algorithm.

Assume that the level set Wo = {x˛Rn: f (x)# f (xo)} is compact and that

conditions (a) and (b) are satisfied. Then:

(i) the sequence { f (xk)} converges;

(ii) limkfiO kxk+1 – xkk =0;

(iii) every limit point of {xk} is a stationary point of f.

Proof. For simplicity of notation, we disregard the first M iterates,

i.e., we assume k$M. Let l(k) be an integer, k –M# l(k)#k, such that

f (xl(k)) = max
0# j#M

[ f (xk – j)]:

We note first that the sequence { f (xl(k))} is nonincreasing. Indeed, we have

f (xl(k+1))= max
0# j#M

[ f (xk+1 – j)]

# max
0# j#M+1

[ f (xk+1 – j)]

= max{ f (xl(k)), f (xk+1)}

= f (xl(k)),

where the last equality follows from the fact that, by (4),

f (xk+1)< f (xl(k)):

Again by (4), we can write

f (xl(k))# max
0# j#M

[ f (xl(k) – 1 – j)] – g a2
l(k) – 1kdl(k) – 1k3

= f (xl(l(k)– 1)) – g a2
l(k)– 1kdl(k)– 1k3

: (5)

Since

f (xk)# f (xo), for all k,
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we have {xk}�Wo, so that, by the compactness of Wo, the sequence { f (xl(k))}

admits a limit for kfiO. Hence, from (5), it follows that

lim
kfiO

a2
l(k) – 1kdl(k) – 1k3

=0,

which implies that, for every infinite subset K˝{0, 1, . . .},

either lim
kfiO, k˛K

a l(k)– 1kdl(k)– 1k =0,

or lim
kfiO, k˛K

kdl(k)– 1k =0:

The second case implies the first one, since ak#1 for all k (see Algorithm

NLS), so that

lim
kfiO

a l(k) – 1kdl(k) – 1k =0,

which is Eq. (8) in Ref. 4. Then, we use the same arguments employed for

proving the theorem of Section 3 in Ref. 4. In particular, let

l̂ (k) = l(k +M +2);

taking into account that f is uniformly continuous on Wo, it is shown (Ref. 4)

by induction that, for any given j$1,

lim
kfiO

a l̂ (k)– jkdl̂ (k) – jk =0

and that, as l̂(k) – k – 1#M + 1, it follows that

lim
kfiO

kxk+1 – xl̂ (k)k =0:

Then, since { f (xl(k))} admits a limit, from the uniform continuity of f on Wo,

(i) follows. Moreover, from (4), taking limits for kfiO, we have

lim
kfiO

a2
kkdkk3

=0,

which implies that (ak#1, for all k)

lim
kfiO

akkdkk =0,

i.e., (ii).

To prove (iii), let us consider any infinite subset K ¢˝{0, 1, . . .} such that

{xk}k˛K ¢fi x̂. For each k˛K ¢, let m(k) [̨0, p – 1] be the integer such that

k+m(k)˛Kp. Then, since

kxk+m(k) – xkk#kxk+m(k) – xk+m(k) – 1k + � � � +kxk+1 – xkk,

by (ii) we have

lim
kfiO, k˛K ¢

kxk+m(k) – xkk =0,
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which implies

lim
kfiO, k˛K ¢

xk+m(k) = x̂:

Therefore, as k +m(k)˛Kp, there exists an infinite subset K˛Kp such that

lim
kfiO, k˛K

xk = x̂: (6)

From (ii), it follows that

either lim
kfiO, k˛K

kdkk =0,

or lim
kfiO, k˛K

ak =0:

In the first case, since from (3) we have

krf (xk)k# [kJ(xk)
TJ(xk)k +kDkk]kdkk,

taking into account that {xk} belongs to the compact set Wo, by the con-

tinuity assumption on rf and condition (a), there exists a constant m >0 such

that, for all k˛K,

krf (xk)k#mkdkk, (7)

and then,

rf (x̂) =0:

In the second case, if limkfiO, k˛K lm(Dk) =0, condition (b) implies again

rf (x̂) = 0. Otherwise, there exists a constant l̂ such that 0< l̂#lm(Dk), for

sufficiently large k˛K. Since dk is solution of (3) and taking into account

inequality (7), we have

jrf (xk)
Tdkj=kdkk = jdT

k (J(xk)
TJ(xk)+Dk)dkj=kdkk

$lm(Dk)kdkk$ l̂krf (xk)k=m: (8)

By the instructions of Algorithm NLS, since akfi0 for kfiO, k˛K, we have

that, for sufficiently large k˛K,

f (xk+(ak=s k)dk)> f (xk) – g (a2
k=s

2
k)kdkk3

,

where sk [̨s1,s2]� (0, 1), and by the mean-value theorem it follows that

rf (xk +qk(ak=s k)dk)
Tdk=kdkk> – g (ak=s k)kdkk2

,

where qk˛(0, 1). Taking limits for kfiO, k˛K, since akkdkkfi0, sk$s1,

and {kdkk}k˛K is bounded [since lm(Dk) is bounded away from zero], we

have that rf (x̂)Td̂$0. On the other hand, by the continuity assumption on
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rf and the descent property of dk, we can write

lim
kfiO, k˛K

rf (xk)
Tdk=kdkk =rf (x̂)T d̂#0,

so that rf (x̂)Td̂$0 and from (8) we get

rf (x̂) =0: u

Note that property (ii) could be ensured also by means of an Armijo-

type acceptance rule (even nonmonotone), provided that the search direction

dk satisfies, for instance, conditions of the following kind [see (2)–(3) in

Ref. 4]: there exist positive numbers c1, c2 such that

rf (xk)
Tdk# – c1krf (xk)k2

,

kdkk#c2krf (xk)k2
:

However, it may be that the columns of the Jacobian matrix are not uni-

formly linearly independent, so that these conditions could not be satisfied

when the minimum norm search direction is used.

We remark that the same convergence result could be obtained even by

using, instead of (4), the parabolic stepsize selection rule defined by

f (xk +adk)# max
0# j#min(k, M)

[ f (xk – j)] – g a2kdkk2
,

i.e., a nonmonotone version of that proposed in Ref. 15. However, the

quadratic power of kdkk is not sufficient to ensure the superlinear con-

vergence rate, which is obtained if the stepsize ak = 1 is accepted for k suffi-

ciently large. Indeed, it is possible to show that this property holds by using

inequality (4), for the case of zero-residual problems, as follows.

Let us consider the iteration of the algorithm model rewritten in the form

xk+1 =xk – akBkrf (xk),

where

Bk =
(J(xk)

TJ(xk))
#, for kˇKp,

Ĥ –1
k , for k˛Kp,

(

and where Ĥk is the matrix J(xk)
TJ(xk) or a suitable modification of it, ob-

tained by means of Dk. Under the assumption that f is twice continuously

differentiable, we can prove the following result.

Proposition 3.2. Let {xk} be the sequence generated by the algorithm.

Assume that {xk} converges to x*, where f (x*) = 0, rf (x*)= 0, and

r2f (x*) is positive definite. Then, there exists an integer k̄$0 such that,

for k > k̄, ak = 1 and the sequence {xk} converges superlinearly.
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Proof. The proof is based on Proposition 1.15 in Ref. 16.

As f (x*)= 0 (zero-residual case), we have

r2f (x*) =J(x*)TJ(x*):

Since

lim
kfiO

rf (xk) =0,

condition (a) implies that Dkfi0 as kfiO (k˛Kp), so that

lim
kfiO

(Bk –r2f (x*)–1) =0,

and hence the Dennis-Morè condition

lim
kfiO

[k(Bk –r2f (x*)–1)rf (xk)k=krf (xk)k] =0

is satisfied.

From Proposition 1.15 in Ref. 16, it follows that, for k sufficiently

large, the stepsize a = 1 satisfies the Armijo rule and hence even more so the

following nonmonotone Armijo-type rule

f (xk +adk)# max
0# j#min(k,M)

[ f (xk – j)] – ha rf (xk)
Tdk

�� ��, (9)

where h<1=2.

Let us consider the positive value of a for which the right-hand sides of

(4) and (9) are equal, i.e., the value

âk =hjrf (xk)
Tdkj=(g kdkk3

),

so that, for any a [̨0,âk], we have

max
0# j# min(k,M)

[ f (xk – j)] – ha rf (xk)
Tdk

�� ��
# max

0# j#min(k,M)
[ f (xk – j)] – g a2kdkk3

;

hence, a stepsize a#âk satisfying (9) will satisfy also inequality (4). There-

fore, we have only to show that, for k sufficiently large, [0, 1]� [0,âk].

We have

âk =hjdT
k B –1

k dkj=(g kdkk3
)$hlm(B –1

k )=(g kdkk),

where lm(Bk
–1) is the minimum eigenvalue of Bk

–1, and then, as kdkkfi0,

since Bk
–1fir2f (x*), which is assumed to be positive definite, there exists an

index k̄ such that, for k$ k̄, âk >1. u
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4. Implementative Issues and Numerical Results

In this section, we discuss some implementative aspects of the algorithm

model described in Section 2 and we report some numerical results.

As already observed, different algorithms can be obtained depending on

the criterionCR adopted and on the method used for computing theminimum

norm solution dk
(m)

of (1) and for modifying the matrix J(xk)
TJ(xk) by means

of Dk in such a way that conditions (a) and (b) are satisfied.

In particular, for computing dk
(m)

, we use the conjugate gradient (CG)

method, as discussed in the introduction. As regards the methods for com-

puting the diagonal matrix Dk and the solution of (3), it is possible, for in-

stance, to use the modified Cholesky factorization of J(xk)
TJ(xk) described in

Ref. 16. However, it appears more suitable even for large-scale problems, to

use again the CG method for solving (3), where Dk can be taken as the

following positive multiple of the identity matrix (Ref. 7):

Dk = min{b , krf (xk)k}I , b>0: (10)

Note that this choice implies directly the fulfillment of conditions (a) and (b).

Finally, we have chosen a rule based on the stepsize for establishing

whether the matrix J(xk)
TJ(xk) will be modified or not (criterion CR). In

particular, if the unit stepsize is rejected by a relaxed (nonmonotone) ac-

ceptance rule, it is likely that the progress obtained in the minimization pro-

cess is poor, and in this case it could be convenient to use a gradient related

search direction. Therefore, the matrix J(xk)
TJ(xk) will be modified by means

of Dk, whenever the pure Gauss-Newton iteration [i.e., the unit stepsize

along dk
(m)

] was rejected by the nonmonotone line search at the previous

iteration, and in any case after p – 1 consecutive iterations performed using

dk
(m)

. Thus, p represents the maximum number of iterates within which the

search direction is computed by solving (3).

The numerical results reported below have been obtained by the algo-

rithm described in Section 2 with the following implementative choices (it is

named Algorithm NMGN):

(i) p = 20;

(ii) stopping criterion: krf (xk)k#10–6;

(iii) the standard CG method is used for computing both the minimum

norm solution dk
(m) of (1) and the solution of (3), where Dk is given

by (10) where b= 1;

(iv) line search parameters: g = 10–4, M = 10, s1 = 0.1, s2 = 0.5; at

Step 2, the scalar s is computed by means of a quadratic inter-

polation formula.
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Note that the acceptance rule (4), unlike the classical Armijo rule based

on the directional-derivative, is sensitive to scaling. Therefore, it could be

advisable to take g as the product of a standard value, say 10–6, and the

user’s estimate of a typical magnitude of f, for instance f (xo). The latter may

be possibly updated during the minimization process.

Table 1. Comparison of the results obtained with Algorithm NMGN (p = 1 and

p = 20).

Function

Algorithm NMGN (p = 1) NMGN (p = 20)

n m ni nf ni nf

Scaled Rosenbrock, C = 104 2 2 12 14 7 11

C = 105 13 16 7 12

C = 106 14 17 7 12

Extended Rosenbrok, C = 104 10 10 14 16 7 11

C = 105 15 18 7 12

C = 106 16 19 7 12

Scaled cube, C = 104 2 2 10 11 7 8

C = 105 10 11 7 8

C = 106 11 12 7 8

Scaled sine valley, C = 104 2 2 22 29 3 6

C = 105 28 40 5 11

C = 106 33 50 33 69

Scaled power valley, C = 102 2 2 15 18 7 13

C = 103 76 79 78 84

C = 104 1153 1762 822 1264

Powell badly scaled 2 2 8280 8281 11 12

Brown badly scaled 2 3 34 58 14 39

Freudenstein and Roth 2 2 13 14 9 10

Beale 2 3 9 10 10 13

Gulf Research and Development 3 3 38 40 23 34

Box three-dimensional 3 4 78 79 4 5

Gaussian 3 15 10 11 6 7

Powell singular 4 4 12 13 10 11

Miele and Cantrell 4 4 78 83 26 31

Wood 4 6 157 163 67 80

Helical valley 5 10 10 11 7 9

Penalty II 5 10 6 9 90 158

Biggs EXP6 6 7 72 73 7 8

Chebyquad 9 9 7 9 10 14

Brown almost-linear 10 10 5 6 4 5

Broyden tridiagonal 10 10 4 6 5 7

Trigonometric 10 10 7 8 6 7

Penalty I 10 11 323 324 158 213

Dixon 10 11 429 430 278 397

Variably dimensioned 10 12 8 9 8 9

Watson 12 31 23 24 4 5
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We have considered a set of standard zero-residual test problems from

the literature (Refs. 17–19); the Penalty I and II functions represent small-

residual problems. The scale factor C in the first five functions is the same as

described in Ref. 17. Moreover, for the Freudenstein and Roth function, we

have taken the initial point xo = ( – 10, 20), since starting from that suggested

in Ref. 17, it is likely that any nonglobal algorithm will converge to the

nonzero residual solution.

In order to show the usefulness of the minimum norm solution of (1) as

search direction, we compare in Table 1 the results obtained by Algorithm

NMGN with those obtained by the same algorithm where p = 1, that corre-

sponds to the classical Gauss-Newton method with a nonmonotone line

search. For each problem, we report the number ni of iterations and the num-

ber nf of function evaluations required for satisfying the stopping criterion.

Note that the gradient is evaluated only once at each iteration, so that ng = ni.

Over 36 problems, Algorithm NMGN with p = 1 performs clearly better

than with p = 20 only for the Penalty II function and is slightly better in other

5 cases. In the remaining 30 problems, the behavior of Algorithm NMGN

with p = 20 is significantly superior in 9 cases. These results give evidence of

Table 2. Comparison of the results obtained with Algorithms NMGN-P and

NMGN, both with p = 20.

Function

Algorithm NMGN-P NMGN

n m ni nf ni nf

Scaled Rosenbrock, C = 104 2 2 12 23 7 11

C = 105 13 26 7 12

C = 106 13 26 7 12

Extended Rosenbrock, C = 104 10 10 12 23 7 11

C = 105 13 26 7 12

C = 106 13 26 7 12

Scaled sine valley, C = 105 2 2 5 12 5 11

C = 106 44 111 33 69

Scaled power valley, C = 102 2 2 10 24 7 13

C = 103 76 86 78 84

C = 104 808 1243 822 1264

Brown badly scaled 2 3 10 30 14 39

Beale 2 3 11 19 10 13

Gulf Research and Development 3 3 14 28 23 34

Miele and Cantrell 4 4 28 33 26 31

Wood 4 6 85 122 67 80

Helical valley 5 10 8 10 7 9

Penalty II 5 10 325 757 90 158

Chebyquad 9 9 13 27 10 14

Penalty I 10 11 65 86 158 213

Dixon 10 11 517 1186 278 397
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the computational advantage deriving from the use of the minimum norm

search direction.

It may be of interest to compare the behavior of Algorithm NMGN

with that of the same algorithm without using any criterion CR, which is

a version where the modification of the matrix J(xk)
TJ(xk) is performed

Table 3. Comparison of the results obtained with the E04GBF routine and with

Algorithm NMGN ( p = 20).

Function

Algorithm E04GBF NMGN

n m ni nf ng ni nf ng

Scaled Rosenbrock, C = 104 2 2 12 31 31 7 11 7

C = 105 13 34 34 7 12 7

C = 106 13 34 34 7 12 7

Extended Rosenbrock, C = 104 10 10 12 31 31 7 11 7

C = 105 13 34 34 7 12 7

C = 106 13 34 34 7 12 7

Scaled cube, C = 104 2 2 6 8 8 7 8 7

C = 105 6 8 8 7 8 7

C = 106 6 8 8 7 8 7

Scaled sine valley, C = 104 2 2 4 12 12 3 6 3

C = 105 5 13 13 5 11 5

C = 106 58 151 151 33 69 33

Scaled power valley, C = 102 2 2 12 31 31 7 13 7

C = 103 72 92 92 78 84 78

C = 104 (*) 822 1264 822

Powell badly scaled 2 2 25 47 47 11 12 11

Brown badly scaled 2 3 23 57 57 14 39 14

Freudenstein and Roth 2 2 9 10 10 9 10 9

Beale 2 3 6 8 8 10 13 10

Gulf Research and Development 3 3 57 204 204 23 34 23

Box three-dimensional 3 4 4 5 5 4 5 4

Gaussian 3 15 6 7 7 6 7 6

Powell singular 4 4 10 11 11 10 11 10

Miele and Cantrell 4 4 33 62 62 26 31 26

Wood 4 6 47 88 88 67 80 67

Helical valley 5 10 8 11 11 7 9 7

Penalty II 5 10 200 250 250 90 158 90

Biggs EXP6 6 7 7 12 12 7 8 7

Chebyquad 9 9 11 28 28 10 14 10

Brown almost-linear 10 10 4 5 5 4 5 4

Broyden tridiagonal 10 10 4 9 9 5 7 5

Trigonometric 10 10 6 7 7 6 7 6

Penalty I 10 11 66 128 128 158 213 158

Dixon 10 11 35 60 60 278 397 278

Variably dimensioned 10 12 8 9 9 8 9 8

Watson 12 31 4 5 5 4 5 4

(*) Line search failure.
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only periodically (Algorithm NMGN-P). In Table 2, the results obtained for

the problems, among those considered, where there is a difference in the

performance of the two algorithms are reported. Over the remaining 21

problems, Algorithm NMGN-P performs clearly better only for the Penalty

I function and is slightly better in other 4 cases. This indicates the usefulness

of introducing the criterion CR. Note also that, in the 15 problems where the

results are identical, the unit stepsize is accepted in all iterations; i.e., the pure

Gauss-Newton iteration is always performed, since ni<p.

Although a finite value of the integer p is theoretically needed for getting

global convergence, one could have the impression that, in practice, better

results could be obtained by taking p =O. However, Algorithm NMGN

with p =O gives the same results obtained with p = 20 for all the problems

considered, but for the Penalty I function only (ni = 45, nf = 47). This

substantial equivalence can be explained noting that, according to criterion

CR, the matrix J(xk)
TJ(xk) is in any case modified when the unit stepsize is

not accepted, so that the behavior of the algorithm is not greatly influenced

by the value of p, provided that it is relatively large.

Finally, we compare in Table 3 the results obtained by Algorithm

NMGN with those obtained by the E04GBF routine (Nag Library), which is

a robust implementation of the Gauss-Newton method (Ref. 20). Since this

routine computes the gradient at each function evaluation, in order to facil-

itate the comparison we report also the number ng of gradient evaluations.

We observe that the two algorithms are substantially comparable in

terms of number of iterations, while in many cases the numbers nf and ng

for Algorithm NMGN are considerably smaller than those required by the

E04GBF routine. These results indicate that the nonmonotone version of the

Gauss-Newton method proposed here can deal efficiently with nonlinear

least-squares problems, mainly with the zero residual ones.

We conclude by observing that, in Algorithm NMGN, it is assumed

that, at every iteration, problem (1) or system (3) are solved exactly. For

large-scale problems it could be more effective to use inexact methods that

find an approximate solution satisfying some appropriate conditions, and

this could be the topic of further work.
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