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Nonmonotone Globalization Techniques
for the Barzilai-Borwein Gradient Method
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00185 Roma, Italy

M. SCIANDRONE sciandro@iasi.rm.cnr.it
Istituto di Analisi dei Sistemi ed Informatica del CNR, Viale Manzoni 30, 00185 Roma, Italy

Abstract. In this paper we propose new globalization strategies for the Barzilai and Borwein gradient method,
based on suitable relaxations of the monotonicity requirements. In particular, we define a class of algorithms
that combine nonmonotone watchdog techniques with nonmonotone linesearch rules and we prove the global
convergence of these schemes. Then we perform an extensive computational study, which shows the effectiveness
of the proposed approach in the solution of large dimensional unconstrained optimization problems.

Keywords: Barzilai-Borwein method, gradient method, steepest descent, nonmonotone techniques, uncon-
strained optimization

1. Introduction

Consider the problem

minimize f (x)
x ∈ Rn (1)

where f : Rn → R is a continuously differentiable function. The Barzilai-Borwein (BB)
[1] gradient method for the solution of (1) consists essentially in a steepest descent method,
where the choice of the stepsize along the negative gradient direction is derived from a
two-point approximation to the secant equation underlying Quasi-Newton methods. More
specifically, denoting by ∇ f the gradient of f , the BB method can be described by the
iterative scheme:

xk+1 = xk − 1

αk
∇ f (xk). (2)

where the scalar αk is given either by

α1 = sT y

sT s
(3)
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or by

α2 = yT y

sT y
(4)

with

s = xk − xk−1, y = ∇ f (xk) − ∇ f (xk−1).

These alternative choices for αk are related to the Quasi-Newton equation

Bks = y, (5)

where Bk is a n × n symmetric positive definite matrix approximating the Hessian matrix
∇2 f (xk). Indeed, α1 can be obtained by minimizing ‖αs − y‖, which measures the dis-
crepancy between the two members of (5), when Bk = α I . Similarly, letting (Bk)−1 = 1

α
I ,

the number α2 minimizes the quantity ‖s − 1
α

y‖. We note also that the scalars α1, α2 have
been already used as scaling factors for the starting matrix in the context of limited memory
Quasi-Newton algorithms (see, e.g. [12, 18, 25]) and several interpretations of them are
reviewed in [12].

In [1] it has been proved that the BB method is R-superlinearly convergent in the two-
dimensional quadratic case, and it has been shown, on one example, that it can be much
more effective than the classical gradient method. In the strictly convex quadratic case with
any number of variables, it has been demonstrated in [23] that the BB method is globally
convergent and in [5] that the convergence rate is R-linear. Further results and applications
concerning the quadratic case and extensions to box constrained quadratic problems have
been given in several recent works (see, e.g. [8–11, 14, 15, 20]).

In the general non quadratic case, the numbers α1, α2 can be unacceptably large or
small (and even negative for a non convex function) and therefore we must assume that
the stepsize αk computed through (3) or (4) is modified so as to satisfy a condition of the
form

0 < α� ≤ αk ≤ αu, for all k, (6)

where α�, αu are prefixed numbers.
This does not ensure, in general, the convergence of algorithm (2), and hence some

steplength procedure is required. As the BB stepsize does not guarantee a monotonic de-
crease of the objective function, a globalization strategy which accepts this stepsize as
frequently as possible and retains the local properties of the method should be based on
nonmonotone linesearch rules. We note also that a nonmonotone globalization technique
can be useful in difficult nonlinear problems, independently of the specific local proper-
ties of the default stepsize, because of the fact that it may help escaping from steep sided
valleys.

A globalization strategy based on the nonmonotone linesearch technique of [16] has
been proposed and experimented in [23], and it is based on an Armijo-type linesearch on
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0 < λ ≤ 1 employing an acceptance condition of the form:

f (xk + λdk) ≤ max
0≤ j≤min(k,M)

{ f (xk− j )} + γ λ∇ f (xk)T dk, (7)

where γ ∈ (0, 1),

dk = − 1

αk
∇ f (xk),

and αk is the BB stepsize, possibly modified in a way that (6) is satisfied. The computa-
tional results show that this ‘global Barzilai-Borwein’ (GBB) algorithm is competitive and
sometime preferable to recent and well-known implementations of the conjugate gradient
method, at least in terms of number of gradient evaluations and CPU time. However, as
observed in [23], the GBB method can be inefficient in the solution of very ill-conditioned
problems. In particular, we note that the acceptance condition (7) requires that at each k the
point xk must lie in the level set

Lk =
{

x : f (x) ≤ max
0≤ j≤min(k,M)

{ f (xk− j )}
}
,

which can be too restrictive when the points xk− j , for j = 1, . . . , min(k, M)) are located
near the bottom of a steep valley, so that a nonmonotone line search may be not much effec-
tive in relaxing the monotonicity requirements. A consequence of this is that the behavior
of the method in the solution of ill-conditioned convex problems and difficult nonlinear
problems may depend critically on the choice of the starting point and on the value of M .

The need for increasing the amount of nonmonotonicity by introducing more tolerant
acceptability criteria has been also pointed out in [9], through the analysis of a convex
problem where the objective function contains small non quadratic terms. In the same
work, with reference to the convex case, a nonmonotone line search based on the gradient
norm, which does not require function evaluations, has been defined and experimented
successfully. Some modifications of the GBB method, aimed at improving its efficiency
and reducing the sensitivity to the linesearch parameters have been also proposed in recent
works (see, e.g [6] and [19]) with promising results.

In this paper, with reference to the general nonconvex case, we define globalization
schemes for descent methods where we introduce a further relaxation of the monotonicity
requirements, in a way that some points can be generated out of the current level set Lk , but
ultimately convergence towards stationary points of f in L0 is achieved and convergence
towards local maxima is prevented. Nonmonotone strategies with similar objectives have
been considered in [17] in the context of Newton-type methods. Here, by extending and
adapting this approach, we propose new stabilization schemes that combine watchdog
techniques and nonmonotone linesearch procedures. The basic idea is that of evaluating
the actual reduction of the objective function by means of a ‘nonmonotone watchdog’ test
that also bounds the growth of the steplength; in case of failure, we backtrack to the last
accepted point and we perform a nonmonotone linesearch along a gradient related search
direction. This strategy allows us to use the unmodified BB method during a finite set of
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consecutive iterations and also permits the use of different formulae for the computation
of the stepsize. As remarked in [10] the ideal strategy in the strictly convex quadratic case
would be that of performing a sequence of iterations where n consecutive values of αk are
identified with the eigenvalues of the Hessian matrix, since this would ensure termination
in n steps. Although this cannot be easily realized in practice through the BB method (see,
e.g., the discussion in [9]), it would seem that even in the nonconvex case the behavior of
globalization techniques for the BB method is improved when a sequence of steps of the
unmodified method are permitted. Thus, this feature is retained, as much as possible, in the
globalization algorithms considered here.

As regards the linesearch technique, we note that, in the application to the BB method, the
value of 1/αk can be very small at some iterations, but an Armijo-type line search with λ ≤ 1
does not permit any increase of the stepsize. In order to overcome this limitation, we propose
new nonmonotone acceptance rules that admit also occasional increases in the stepsizes,
and we show that the usual convergence properties are satisfied under standard assumption.

The combination of nonmonotone watchdog techniques with nonmonotone linesearches
can be realized through different algorithms; the main motivation of the present paper is
that of establishing the global convergence of a few basic schemes and, at the same time,
that of illustrating and evaluating some practical implementation.

The paper is organized as follows. In Section 2 we define some stabilization schemes
for descent methods based on the nonmonotone acceptance criteria introduced here and we
prove the global convergence under suitable assumptions on the search direction and the
linesearch technique employed. In Section 3 we consider nonmonotone linesearch proce-
dures and we show that the required conditions can be satisfied through practical algorithms.
In Section 4 we describe the implementation of a gradient technique incorporating the BB
method and the proposed globalization strategy. In Section 5 we report the results of an
extensive computational experimentation on large scale unconstrained problems and com-
parisons with a reduced memory Quasi-Newton method. Finally Section 6 contains some
concluding remarks.

2. A nonmonotone stabilization strategy

In this section we define a general nonmonotone stabilization strategy, which combines a
watchdog technique with a line search approach and can be viewed as a modified version
of the algorithm defined in [16] in connection with Newton-type methods. The stabilization
schemes proposed here are described in terms of a sequence of maior iterations where we
compute some gradient related search direction and then generate a finite set of tentative
points using some ‘local algorithm’, which will be identified in the sequel with the BB
method.

We indicate by xk the points considered at the maior iterations. At each xk we compute a
descent direction dk satisfying suitable conditions; then, starting from xk , we use the local
algorithm for determining the tentative points zk

i , for i = 1, . . . , N , being N a given integer.
Letting

zk
0 = xk, pk

0 = dk, (8)
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we suppose that the points zk
i are generated using the iteration

zk
i+1 = zk

i + pk
i , i = 0, . . . , N − 1, (9)

where pk
i are suitable search directions. In the study of global convergence no specific

assumption is made on these directions for i ≥ 1 and the only condition on the local
algorithm is that a unit (tentative) step is performed along dk = pk

0. In the application to
the BB method the vectors pk

i , for i = 0, 1, . . . , N − 1, can be defined as scaled steepest
descent directions, using the BB formulae or other formulae based on past iterations for
computing the scaling factors [10].

The tentative points are accepted or rejected according to a nonmonotone watchdog
rule which measures the actual reduction of the objective function with respect to some
reference value. When the tentative points are rejected, we backtrack to xk and compute a
stepsize λk along dk through a (nonmonotone) linesearch technique. The convergence of
this scheme depends essentially on the conditions imposed on the search direction dk and
on the properties of the linesearch algorithm that computes λk , in case of backtracking.

We suppose that dk satisfies the following condition.

Condition 1. There exist positive numbers c1, c2 such that, for all k we have:

(i) ‖dk‖ ≤ c1‖∇ f (xk)‖;
(ii) ∇ f (xk)T dk ≤ −c2‖∇ f (xk)‖2.

Condition 1 implies that dk is a descent direction, which is uniformly gradient related to
xk . It can be easily verified that the direction dk = −(1/αk)∇ f (xk) satisfies Condition 1
provided that (6) is satisfied.

We recall from [21] the following definition.

Definition 1. A function σ : R+ → R+ is a forcing function if for any sequence of numbers
t k ⊂ R+

lim
k→∞

σ (t k) = 0 implies lim
k→∞

t k = 0.

As regards the linesearch procedure, we suppose that the following condition holds.

Condition 2. Let {xk} be a sequence of points and let {dk} be a sequence of search direc-
tions. Assume that K ⊆ {0, 1 . . .} is a subset such that xk+1 = xk + λkdk for all k ∈ K ,

where λk ∈ R is computed through the linesearch procedure. Then:

(i) for every k ∈ K we have

f (xk + λkdk) ≤ max
0≤ j≤min(k,M)

{ f (xk− j )} − σl(λ
k‖dk‖),

where M ≥ 0 is a prefixed integer, and σl : R+ → R+ is a forcing function;
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(ii) if K is an infinite subset, if the sequence { f (xk)} converges and the subsequence {xk}K

is bounded, it follows that

lim
k→∞,k∈K

∇ f (xk)T dk

‖dk‖ = 0.

We note that Condition 2(i) represents a nonmonotone sufficient reduction criterion on f ,
which also bounds the stepsize in a way that, in case of convergence, we have λk‖dk‖ → 0.
Condition 2(ii) expresses the convergence properties of the linesearch procedure and im-
plicitly requires that the linesearch algorithm can provide ‘sufficiently large’ stepsizes.
Linesearch algorithms that satisfy Condition 2 will be described and analyzed in the
sequel.

In relation to the general strategy described above, different stabilization models can be
defined according to the watchdog rules used for accepting or rejecting the tentative points.
The simplest criterion can be that of performing a nonmonotone watchdog test at the end
of the local phase, by evaluating the objective function at zk

N . This criterion is embedded
in the following algorithm model, where the integer M is the same number employed in
Condition 2.

NonMonotone Stabilization (NMS) Algorithm 1

Data. x0 ∈ Rn , integers N ≥ 1, M ≥ 0, k = 0 and a forcing function σ : R+ → R+.
While ∇ f (xk) �= 0 do

Step 1. Compute a search direction dk satisfying Condition 1.
Step 2. Compute the points zk

1, . . . , zk
N using the local algorithm (8), (9).

Step 3. If f (zk
N ) ≤ max

0≤ j≤min(k,M)
{ f (xk− j )} − max

1≤i≤N
{σ (‖zk

i − xk‖)} then

set xk+1 = zk
N

else
compute the stepsize λk along dk by means of a linesearch algorithm
ensuring Condition 2, and set xk+1 = xk + λkdk .

end if
Step 4. Set k = k + 1.

end while

We note that the acceptance rule at Step 3 and Condition 2(i) on the linesearch ensure
the existence of a strictly decreasing subsequence of function values and, at the same time,
enforce satisfaction of the limit ‖xk+1 − xk‖ → 0. This is at the basis of the convergence
proofs for nonmonotone methods. In the nonconvex case, the existence of a strictly decreas-
ing subsequence of { f (xk)} is also a necessary requirement for ensuring that limit points
are not worse than the starting point and that asymptotic convergence towards local maxima
is prevented.
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When N > 1, Step 2 allows us to perform some steps without imposing conditions on
the local algorithm and hence permits to exploit the local properties of the method adopted
for generating the tentative points zk

i .
The convergence analysis of Algorithm NMS1 will be carried out by analyzing first the

properties of the sequence {xk} generated at the maior iterations and then considering the
sequences {zk

i } produced by the local algorithm. We suppose that the following standard
assumption holds.

Assumption 1. The level set L0 = {x : f (x) ≤ f (x0)} is compact.

We state first the following Lemma.

Lemma 1. Let {xk} be the sequence generated by Algorithm NMS1 and denote by xl(k) a
point such that k − min(k, M) ≤ l(k) ≤ k and that

f
(
xl(k)

) = max
0≤ j≤min(k,M)

[ f (xk− j )].

Then:
(i) there exists a forcing function σ̃ : R+ → R+ such that

f (xk+1) ≤ f
(
xl(k)

) − σ̃ (‖xk+1 − xk‖); (10)

(ii) the sequence { f (xl(k)} is nonincreasing

Proof: For each k ≥ 0, let l(k) be the integer considered in the assertion. By the instruc-
tions of the algorithm we have either that

xk+1 = xk + λkdk, (11)

when λk is computed by the linesearch algorithm, or that

xk+1 = zk
N (12)

when zk
N satisfies the test at Step 3. In the first case, by Condition 2(i) we have:

f (xk+1) ≤ f
(
xl(k)

) − σl(λ
k‖dk‖),

while in the latter we obtain

f (xk+1) ≤ f
(
xl(k)

) − max
1≤i≤N

{
σ
(∥∥zk

i − xk
∥∥)} ≤ f

(
xl(k)

) − σ
(∥∥zk

N − xk
∥∥)

.

It follows that assertion (i) holds for every k, provided that we define the function

σ̃ (t) = min{σl(t), σ (t)},
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which is a forcing function in the sense of Definition 1.
Now, noting that min(k + 1, M) ≤ min(k, M) + 1, we can write

f
(
xl(k+1)

) = max
0≤ j≤min(k+1,M)

[ f (xk+1− j )] ≤ max
0≤ j≤min(k,M)+1

[ f (xk+1− j )]

= max
{

f
(
xl(k)

)
, f (xk+1)

} = f
(
xl(k)

)
,

where the last equality follows from (10). This establishes (ii).

The next result is essentially based on the proof given in [16] and it is reported in the
Appendix for completeness.

Lemma 2. Let {xk} be the sequence generated by Algorithm NMS1. Then
(i) the sequence {xk} belongs to the compact set L0;

(ii) the sequence { f (xk)} is convergent;
(iii) limk→∞‖xk+1 − xk‖ = 0.

Using the preceding result we can now establish the convergence properties of the sequence
{xk}.

Proposition 1. Let {xk} be the sequence generated by Algorithm NMS1 and suppose that
the algorithm does not terminate. Then, every limit point of {xk} is a stationary point of f,
which is not a maximum point.

Proof: Let us consider any infinite subset K ⊆ {0, 1, . . .} such that

lim
k→∞,k∈K

xk = x̄ . (13)

Suppose first that there exists an infinite subset K1 ⊆ K such that

xk+1 = xk + λkdk for all k ∈ K1, (14)

where dk satisfies Condition 1 and λk is computed by a linesearch algorithm satisfying
Condition 2. Using Condition 1, for all k ∈ K1 we can write

|∇ f (xk)T dk |
‖dk‖ ≥ c2

c1
‖∇ f (xk)‖. (15)

Moreover, recalling Lemma 2, we have that Condition 2(ii) implies

lim
k→∞,k∈K1

∇ f (xk)T dk

‖dk‖ = 0,



NONMONOTONE GLOBALIZATION TECHNIQUES 151

from which, taking into account (13), (15) and the continuity assumption on ∇ f , we obtain

∇ f (x̄) = 0. (16)

Now assume that for all sufficiently large k ∈ K the test at Step 3 of Algorithm NMS1 is
satisfied. This implies that:

f (xk+1) ≤ f
(
xl(k)

) − max
1≤i≤N

{
σ
(∥∥zk

i − xk
∥∥)} ≤ f (xl(k)) − σ

(∥∥zk
1 − xk

∥∥)
= f

(
xl(k)

) − σ (‖dk‖),

where l(k) is the index defined in Lemma 1. Taking limits for k → ∞ and k ∈ K and
recalling assertion (ii) of Lemma 2, it follows that dk → 0 for k → ∞, k ∈ K1. As dk

satisfies Condition 1(ii), we obtain again (16), and we can conclude that x̄ is a stationary
point of f .

Finally, we show that x̄ is not a maximum point, along the same lines followed in [16]. Let
us consider the subsequence {xl(k)}K . As k − l(k) ≤ M and ‖xk+1 − xk‖ → 0 for k → ∞,
we have that {xl(k)}K converges to the same limit x̄ . On the other hand we have

f
(
xl(k ′′)) < f

(
xl(k ′))

for all k ′, k ′′ ∈ K and such that k ′′ ≥ k ′ + M + 1. Thus we can construct a subsequence
{xl(k)}K1 with K1 ⊆ K converging to x̄ and such that { f (xl(k))}K1 is strictly decreasing. As
{ f (xl(k))} is nonincreasing and converges to f (x̄), we must have f (xl(k)) > f (x̄) for all
sufficiently large k ∈ K1, so that x̄ cannot be a local maximum point of f .

The next proposition characterizes the convergence properties of the sequences of tenta-
tive points produced by the local algorithm.

Proposition 2. Let {xk} be the sequence generated by Algorithm NMS1 and suppose that
the algorithm does not terminate. Let zk

i , for i = 1, . . . , N be the points generated at
Step 2 when the test at Step 3 is satisfied so that xk+1 = zk

N . Then, every limit point of each
sequence {zk

i } is a limit point of {xk} and hence a stationary point of f, which is not a local
maximizer.

Proof: The assertion follows from the preceding results and the test at Step 3. Indeed, by
(ii) of Lemma 2 and the test at Step 3, it follows that ‖zk

i − xk‖ → 0. Therefore, every limit
point of {zk

i } is a limit point of {xk} and thus Proposition 2 implies that it is a stationary
point of f , which is not a local maximizer.

We have already observed that Algorithm NMS1 does not impose any restriction on the
search directions produced through the local algorithm. However, especially when N is
relatively large, it could be convenient to check whether the tentative points are leaving the
region of interest or violate some resonable condition. A simple technique for introducing
this kind of modification, while retaining the convergence properties established above, can
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be that of defining an adaptive rule for terminating prematurely the inner iterations at Step 2
on the basis of some criterion.

Formally, if we denote by i k , with 1 ≤ i k ≤ N , the index of the first tentative point that
violates a given condition, we can set

pk
i = 0 for i = i k − 1, . . . , N − 1.

This implies that Step 2 will terminate at the point zk
N = zk

ik−1, which will be accepted or
rejected on the basis of the watchdog test of Step 3. Using this convention, the convergence
results remain unchanged. A criterion for terminating the inner steps could be based, for
instance, on the evaluation of ‖pk

i ‖; more specifically, we can terminate Step 2 whenever{
‖dk‖ ≥ µ‖pk−1

N−1‖ (or ‖dk‖ ≥ µ‖dk−1‖ if zk−1
N has been rejected) for i = 0

‖pk
i ‖ ≥ µ‖pk

i−1‖ for i > 0.

(17)

where µ is a suitably large constant. Weaker conditions could be based on the comparison
of ‖pk

i ‖ with the maximum value of the norm of the directions used in a finite set of previous
steps. Similar conditions could be also given in terms of the gradient norm ‖∇ f (zk

i )‖, when
available. It is also evident that the convergence properties are preserved if a linesearch
along dk is performed even when this would not be required by Algorithm NMS1; in fact
this corresponds to a fictitious iteration where all tentative points are rejected. Possible
motivations for the use of a linesearch could be the fact that ‖xk − xk−1‖ is ‘small’ and we
estimate that a good reduction of f could be obtained by searching along dk with stepsizes
greater than one. Note, however, that a linesearch that admits an increase in the stepsize can
be useful also in case of backtracking, when ‖dk‖ is small and the failure of the watchdog
test is due to the last steps of the local algorithm.

For large values of N , a possible disadvantage of the stabilization schemes based on
Algorithm NMS1 can be that, in case of backtracking, we reject all the tentative points
z1, . . . zN , while the acceptance criterion of Step 3 could have been satisfied at some of these
points. As a consequence of this, we may have the need of repeating the same computations
performed during several of the previous inner steps. To avoid this drawback, we can define a
modified scheme by controlling the objective function values at each step of the local phase.

More specifically, we can define the following algorithm model, where the objective
function is evaluated at every tentative points zi , with i = 1, . . . , N , and the nonmonotone
acceptance test is performed in correspondence to each of these points.

NonMonotone Stabilization (NMS) Algorithm 2

Data. x0 ∈ Rn , integers N ≥ 1, M ≥ 0, k = 0 and a forcing function σ : R+ → R+.
While ∇ f (xk) �= 0 do

Step 1. Compute a direction dk satisfying Condition 1, set linesearch=true.
Step 2. For i = 1, N

Compute zk
i , using algorithm (8), (9)
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If f (zi ) ≤ max
0≤ j≤min(k,M)

{ f (xk− j )} − max
1≤h≤i

{
σ

(∥∥zk
h − xk

∥∥)}
then

set xk+1 = zi , linesearch=false and exit from Step 2.
endif

End For
Step 3. If linesearch=true then

compute the stepsize λk along dk by means of a linesearch algorithm
ensuring Condition 2, and set xk+1 = xk + λkdk

endif
Step 4. Set k = k + 1.

End While

In comparison with Algorithm NMS1, we may note that we backtrack to xk only when
N consecutive tentative points zi have been rejected.

It can be easily verified that the convergence properties of Algorithm NMS2 are exactly
the same established in Propositions 1 and 2; in fact when Algorithm NMS2 is restarted
from zk

ik (rather than from xk) in correspondence to some index i k of the inner cycle, we can
recast Algorithm NMS2 into the scheme of Algorithm NMS1 by assuming that the local
algorithm generates directions pk

i = 0, for i ≥ i k , so that zk
N = zk

ik will be accepted by the
watchdog test. As in Algorithm NMS1, we can introduce suitable criteria for terminating
prematurely the inner cycle. In particular, as now the objective function values f (zk

i ) are
available, we can terminate the inner cycle whenever the increase in the objective function
with respect to the reference value, that is the quantity

f
(
zk

i

) − max
0≤ j≤min(k,M)

{ f (xk− j )},

is unacceptably large.
Moreover, also in the case of Algorithm NMS2 we could specify suitable criteria for

employing linesearches that admit the possibility of increasing the stepsize when‖xk−xk−1‖
is small and a good reduction of f along dk can be expected.

3. A nonmonotone line search

In this section we define new nonmonotone linesearch rules that admit also occasional
increases in the stepsize and satisfy the conditions stated in the preceding section. When dk

is a descent direction satisfying Condition 1, it can be verified that an Armijo-type linesearch
based on (7) and starting with λ = 1 allow us to satisfy Condition 2, but does not permit
stepsizes greater than the starting one. To overcome this limitation, a first possibility could
be that of defining a nonmonotone version of the known Armijo-Goldstein techniques for
increasing, when needed, the stepsize λ, with the additional requirement that a constant
upper bound on the stepsize is imposed. An alternative approach could be that of defining
a nonmonotone version of the derivative-free linesearch technique proposed in [7], by
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imposing a condition of the form:

f (xk + λdk) ≤ max
0≤ j≤min(k,M)

[ f (xk− j )] − γ λ2‖dk‖2,

which ensures satisfaction of Condition 2(i), without requiring a prefixed bound on λ.
Both approaches can be combined into a single scheme, which may have some interest in

its own and allow us to avoid repetitions of similar arguments in the convergence analysis.
We suppose that xk is an element of a sequence of points in Rn , and that dk ∈ Rn is a

descent direction for f at xk . In order to simplify notation, at each k we set f k = f (xk)
and we define

Fk = max
0≤ j≤min(k,M)

[ f (xk− j )] k = ψ

( |∇ f (xk)T dk |
‖dk‖

)
, (18)

where M > 0 is a prefixed integer, and ψ : R+ → R+ is a forcing function.
A sufficient reduction of f with respect to the reference value is imposed through a

condition of the form

f (xk + λdk) ≤ Fk + γ1λ∇ f (xk)T dk − γ2λ
2‖dk‖2, (19)

where γ1, γ2 are nonnegative constants that satisfy

0 ≤ γ1 < 1, 0 ≤ γ2, 0 < γ1 + γ2. (20)

In the line search described below the unit stepsize is accepted, unless one of the following
two situations is detected:

(i) condition (19) is not satisfied;
(ii) condition (19) is satisfied, but the tentative step ‖dk‖ is relatively small, and, at the

same time, the value of f (xk + dk) is smaller than f k .

In case (i) the stepsize is reduced using any safeguarded interpolation technique until the
acceptance condition is verified. In case (ii) we may attempt to obtain a further reduc-
tion of the objective function with a larger step; therefore the stepsize is increased, using
some safeguarded extrapolation formula, provided that a significant reduction of f is ob-
tained and condition (19) is not violated. These rules are defined formally in the following
model.

Nonmonotone Line Search (NLS) Algorithm

Data. Fk and k defined as in (18), and parameters:

γ1, γ2 satisfying (20), 0 < θl < θu < 1, 1 < σl < σu .

Step 0. If γ2 = 0 then choose a number λ̄ ≥ 1, otherwise set λ̄ = +∞.
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Step 1. Set λ = 1.
Step 2. While f (xk + λdk) > Fk + γ1λ∇ f (xk)T dk − γ2λ

2‖dk‖2 choose θ ∈ [θl , θu] and
set λ = θλ.

Step 3. If λ < 1 set λk = λ and exit.
Step 4. If ‖dk‖ ≥ k or f (xk + dk) ≥ f k then set λk = 1 and exit; otherwise choose

σ ∈ [σl , σu].
Step 5. While σλ ≤ λ̄ and

f (xk + σλdk) < min { f (xk + λdk), f k + γ1σλ∇ f (xk)T dk − γ2 (σλ)2 ‖dk‖2}

set λ = σλ and choose σ ∈ [σl , σu].
Step 6. Set λk = λ and exit.

It can be shown that Algorithm NLS is well defined and computes a ‘sufficiently large’
steplength that guarantees a ‘sufficient decrease’ of f , in a way that Condition 2 of the
preceding section is satisfied. More specifically, under somewhat weaker assumptions
on f and dk , we can state the following propositions whose proofs are reported in the
Appendix.

Proposition 3. Assume that f is bounded below on Rn and that ∇ f (xk)T dk < 0.
Then, Algorithm NLS determines, in a finite number of iterations, a stepsize λk such that

f (xk + λkdk) ≤ Fk + γ1λ
k∇ f (xk)T dk − γ2(λk)2‖dk‖2,

and at least one of the following conditions holds:

λk < 1 and f

(
xk + λk

θ k
dk

)
> Fk + γ1

λk

θ k
∇ f (xk)T dk − γ2

(
λk

θ k

)2

‖dk‖2 (21)

λk = 1 and ‖dk‖ ≥ k (22)

λk = 1 and f (xk + dk) ≥ f k (23)

γ2 = 0 and σ kλk > λ̄ (24)

f (xk + σ kλkdk) ≥ min{ f (xk + λkdk), f k + γ1σ
kλk∇ f (xk)T dk

− γ2(σ kλk)2‖dk‖2} (25)

where θ k ∈ (θl , θu) and σ k ∈ (σl , σu).

Proposition 4. Assume that f is bounded below in Rn; let {xk} be a sequence of points
in Rn and let K be an infinite index set, such that xk+1 = xk + λkdk, for all k ∈ K where
dk ∈ Rn and λk is the stepsize computed by means of Algorithm NLS. Suppose that:
– either γ2 > 0 and the direction dk satisfies ∇ f (xk)T dk < 0,
– or that γ2 = 0 and the direction dk satisfies Condition 1(ii).
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Then:
(i) for every k ∈ K we have

f (xk+1) ≤ max
0≤ j≤min(k,M)

[ f (xk− j )] − η(λk‖dk‖)2

where η is a positive number;
(ii) if the sequence { f k} converges and the subsequence {xk}K is bounded, we have

lim
k→∞,k∈K

∇ f (xk)T dk

‖dk‖ = 0.

The preceding proposition ensures that Algorithm NLS satisfies Condition 2, in correspon-
dence to a forcing function of the form σl(t) = ηt2, for some η > 0, and hence it can be
used within the stabilization schemes considered there.

Algorithm NLS can be modified in different ways without affecting the convergence
properties. In particular, when the steplength must be increased a more accurate search can
be performed by replacing Step 5 with a standard linesearch technique based on Armijo-
Goldstein or Wolfe conditions [13]. It is only required that the condition (19) is still valid.
However, the computational experimentation performed on a large set of test problems
seems to indicate that no significant improvement can be obtained, in the context of the
stabilization strategy considered here, by employing more sophisticated line search rules.

4. Implementation of a globalization strategy for the BB method

With reference to the stabilization scheme defined in Algorithm NMS1, we describe here
the implementation of a nonmonotone gradient algorithm incorporating the BB method.
In particular, we will specify the search directions used at Steps 1, 2 for producing the
tentative points zk

1, . . . , zk
N , the nonmonotone watchdog test at Step 3, the nonmonotone

line search procedure, and the stopping criterion. In order to simplify the notation, we omit
the superscript k.

4.1. Search directions

The search directions are generated according to the BB method by alternating, whenever
possible, formulas (3), (4) for the computation of α. More specifically, at each major iteration
k > 0, and for each i ∈ {0, . . . , N − 1} first we compute

α1 = sT y

sT s
α2 = yT y

sT y
,

where s = zk
i − zk

i−1, y = ∇ f (zk
i ) − ∇ f (zk

i−1), being zk
0 = xk , and zk

−1 = zk−1
N−1 when zk−1

N
is accepted, or zk

−1 = xk−1 in case of backtracking. Then we choose α ∈ {α1, α2} in such a
way that

α� ≤ α ≤ αu, (26)



NONMONOTONE GLOBALIZATION TECHNIQUES 157

where α� and αu are positive numbers defined by

α� = 10−5 max

{
10−5,

‖∇ f (zi )‖
1 + ‖x0‖

}
αu = 1010 ‖∇ f (x0)‖

1 + ‖x0‖ .

When in successive iterates both α1 and α2 satisfy (26), we alternate between α1 and α2 in
the choice of α. We set α = ‖∇ f (zi )‖ whenever neither α1 nor α2 satisfy (26). Once α has
been computed, we set

zi+1 = zi − 1

α
∇ f (zi ).

If both α1 and α2 have been rejected, then Step 2 is terminated prematurely at zi+1 and we
set zN = zi+1, so that the watchdog test is performed at this point.

4.2. Watchdog test

The watchdog test has been implemented according to the following rule

f (zN ) ≤ max
0≤ j≤min(k,M)

{ f (xk− j )} − β max{‖p0‖, . . . , ‖pN−1‖}, (27)

where β = 10−4 and pi , with i = 0, . . . , N −1 are the search directions computed at Steps
1–2. It is easily seen that a point zN satisfying (27) will satisfy the watchdog test of Step 3,
for a suitable choice of the forcing function σ . Indeed, as

max
i=1,...,N

{‖zi − xk‖} ≤
N−1∑
i=0

‖pi‖ ≤ N max{‖p0‖, . . . , ‖pN−1‖},

it follows that

f (zN ) ≤ max
0≤ j≤min(k,M)

{ f (xk− j )} − β max{‖p0‖, . . . , ‖pN−1‖}

implies

f (zN ) ≤ max
0≤ j≤min(k,M)

{ f (xk− j )} − max
1≤i≤N

{σ (‖zi − xk‖)}

with σ (t) = β

N t .

4.3. Nonmonotone line search procedure

We have implemented Algorithm NLS with γ1 = 0 and

k = 10−2(1 + ‖x0‖),
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which corresponds to choosing the forcing function ψ in (18) as a constant. The parameters
in the line search algorithm have been set as follows

M = 20 γ2 = 10−4 θl = 0.1 θu = 0.5 σl = 1.5 σu = 5

At Steps 2 and 5 the scalars θ and σ are computed by setting θ = min{θu, max{θl , θ
�}}, σ =

min{σu, max{σl , σ
�}}, where θ� and σ � are computed by means of a quadratic interpolation

formula using f (xk), ∇ f (xk)T dk , and the function value f (xk +λdk) at the tentative point.

4.4. Stopping criterion

In correspondence to the maior iterations, we used the stopping criterion

‖∇ f (xk)‖ ≤ η(1 + | f (xk)|). (28)

However, at the tentative points zk
i when ‖∇ f (zk

i )‖ ≤ η(1+| f (xk)|) we compute also f (zk
i )

and we terminate the iterations when we have both f (zk
i ) ≤ max0≤ j≤min(k,M)[ f (xk− j )] and

‖∇ f (zk
i )‖ ≤ η(1 + | f (zk

i )|). This guarantees that the termination does not occur at a point
out of the current level set Lk .

5. Numerical results

In this section we present the numerical results obtained with Algorithm NMS1 and we
compare the performance of the algorithm with that of a reduced-memory quasi-Newton
method (routine E04DGF of NAG library, with the default values of the parameters and with
the addition of an external termination criterion based on (28)). All the runs were carried
out on an IBM RISC System/6000 375 in double precision FORTRAN.

The first set of test problems is the same used in [23]. The results obtained are shown
in Table 1, where we report the number of function evaluations (n f ) and the number of
gradient evaluations (ng) required by Algorithm NMS1 (for N = 2 and N = 20) and
by the E04DGF routine to satisfy the stopping criterion (28) with η = 10−6. We note
that in Algorithm NMS1 the number ng includes also the number of gradient evaluations
performed in the inner iterations of the watchdog process. In some problems algorithm
E04DGF terminates because of the internal stopping criteria without satisfying (28), and
this is indicated in the table by ∗.

We may note that the behavior of Algorithm NMS1 is not greatly influenced by the
choice of N , and the main difference between the cases N = 2 and N = 20 is the fact that
the number of function evaluations is much smaller for N = 20. However, this is not very
relevant since in both cases we have a number of function evaluations lower than the number
of gradient evaluations, so that the computational cost depends essentially on ng . On the
other hand, in some problems the choice N = 2 has the effect of reducing the number of
gradient evaluations. For N ranging from 10 to 100 we obtained in most of problems the same
number of gradient evaluations corresponding to the choice N = 20; small differences were
detected only in three problems. The only significant difference was observed for N = 100
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Table 1. Complete results for the first set of test problems.

NMS1 (N = 2) NMS1 (N = 20) E04DGF

Problem n n f ng n f ng n f –ng

Stricly Convex 1 100 5 7 3 7 7

1000 5 7 3 7 7

10000 5 7 3 7 7

Stricly Convex 2 100 27 50 5 50 43

500 40 76 6 76 96

1000 40 77 6 77 116

Brown 100 9 13 13 13 17∗

1000 5 4 4 4 16∗

Trigonometric 100 49 71 18 115 75

1000 42 76 8 76 66

10000 48 86 10 86 78

Broyden tridiagonal 100 18 33 4 33 96

1000 21 39 4 39 132

3000 20 36 4 36 136

Oren’s Power 100 56 109 8 109 416∗

1000 118 216 20 300 292∗

10000 417 677 61 1046 476∗

Extended Rosenbrock 100 45 45 11 90 63

1000 57 88 5 52 92

10000 93 120 12 42 101

Penalty I 100 24 45 5 45 67

1000 26 46 12 46 34

10000 25 34 10 34 83

Tridiagonal 1 100 79 155 10 155 83∗

1000 315 523 24 438 145∗

Variably dimensioned 100 25 46 12 46 51

1000 42 65 24 65 73

Extended Powell 100 109 174 11 180 116

1000 73 142 10 142 189

Generalized Rosenbrock 100 725 989 62 996 341∗

500 2242 3299 208 3338 1436∗

Extended ENGLV1 100 13 22 7 22 70

1000 13 22 8 22 73

10000 15 15 10 15 95

Extended Freudenstein and Roth 100 50 86 7 95 107

1000 92 123 7 91 204

10000 37 62 10 62 533

Wrong extended wood 100 34 65 6 65 104∗

1000 28 52 6 52 171
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in Trigonometric problem with dimension n = 100, where convergence is obtained after
235 gradient evaluations.

Algorithm NMS1 appears to be comparable with algorithm E04DGF in terms of gra-
dient evaluations, but in some difficult problems (Oren’s Power, Tridiagonal, Generalized
Rosenbrock) algorithm E04DGF is more efficient, although the results are not precisely
comparable because of the fact that, in these cases, the termination of the algorithms is due
to different criteria. In comparison with the results of the GBB method reported in [23],
we observe that the number of function evaluations is greatly reduced and it never exceeds
the number of gradient evaluations; moreover, also the number of gradient evaluations is
significantly reduced in correspondence to the problems where the line search procedure of
the GBB method is active.

A few experiments have been performed for evaluating the effect of adopting different
criteria for the choice of α, and it would seem that the choice of alternating between α1 and α2

gives consistent improvements with respect to the case where a single formula is employed.
We have considered a second set of 95 test problems taken from the CUTE collection [3],

with dimension n ranking from 1000 to 10000. We used the value η = 10−5 in the stopping
criterion (28), and we imposed a maximum number of gradient evaluations equal to 5000.
The failures due to this bound were

– 5 for Algorithm NMS1 with N = 2:
– 12 for Algorithm NMS1 with N = 20;
– 4 for the E04DGF routine.

On 18 problems, the E04DGF routine terminated because of the internal stopping rules
without satisfying the stopping criterion (28). The cumulative results obtained for the re-
maining 66 problems (where all the algorithms terminate satisfying the criterion (28) with
ng < 5000) are shown in Table 2. In this table, the number of function evaluations represents
the total number of function evaluations needed to solve all these problems, and the same
is for the number of gradient evaluations. The complete results are reported in Table 3.

From Tables 2 and 3 it would appear that the implementation of the BB method proposed
here is competitive with a reduced memory quasi-Newton method suitable for large scale
problems. However, it can not be claimed that the algorithm is superior to the quasi-Newton
method, expecially when a high level of accuracy is required.

On the same set of test problems we have also evaluated the effect of the expansion step
in the line search algorithm. In particular, we have tested Algorithm NMS1 (with N = 2),
where we have set λ̄ = 1 in the line search procedure, so that, Step 5 (the expansion step)
of Algorithm NLS is never performed.

In this case we obtained 6 failures due to the maximum number of gradient evaluations,
and the cumulative results are reported in Table 4. By comparing the results of Table 2 with

Table 2. Cumulative results for a selection of CUTE problems.

NMS1 (N = 2) NMS1 (N = 20) E04DGF

Function evaluations 10050 1511 19478

Gradient evaluations 14706 15824 19478
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Table 3. Complete results for a selection of CUTE problems.

NMS1 (N = 2) NMS1 (N = 20) E04DGF

Problem n n f ng n f ng n f –ng

ARWHEAD 1000 6 9 3 9 16

ARWHEAD 5000 6 9 3 9 23

BDQRTIC 1000 42 80 6 80 231

BROYDN7D 1000 260 458 28 461 425

CRAGGLVY 1000 60 110 8 121 724

CRAGGLVY 5000 145 241 20 204 1543

DIXMAANA 1500 7 11 6 11 25

DIXMAANA 3000 12 9 12 9 23

DIXMAANB 1500 8 12 6 12 28

DIXMAANB 3000 12 7 11 7 33

DIXMAANC 1500 8 13 6 13 25

DIXMAANC 3000 13 8 12 8 23

DIXMAAND 1500 9 15 7 15 47

DIXMAAND 3000 13 9 12 9 45

DIXMAANE 1500 134 234 14 236 159

DIXMAANE 3000 132 246 22 246 188

DIXMAANF 1500 118 199 15 196 159

DIXMAANF 3000 161 236 21 227 273

DIXMAANG 1500 107 181 20 226 129

DIXMAANG 3000 88 159 17 159 159

DIXMAANH 1500 101 184 20 198 408

DIXMAANH 3000 190 327 21 226 204

DIXMAANI 1500 734 1131 64 1226 904

DIXMAANI 3000 493 820 64 1099 1522

DIXMAANJ 1500 129 235 17 234 274

DIXMAANJ 3000 187 265 21 232 247

DIXMAANK 1500 144 229 18 199 246

DIXMAANK 3000 155 258 22 251 408

DIXMAANL 1500 104 190 18 200 741

DIXMAANL 3000 119 189 19 182 289

EDENSCH 2000 17 17 11 17 563

ENGVAL1 1000 12 20 10 20 61

ENGVAL1 5000 15 14 10 14 63

FLETCBV3 1000 20 24 16 40 11

FMINSURF 1024 373 508 27 487 279

FMINSURF 5625 1476 1184 77 1284 572

FREUROTH 1000 31 49 12 67 144

(Continued on next page.)
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Table 3. (Continued ).

NMS1 (N = 2) NMS1 (N = 20) E04DGF

Problem n n f ng n f ng n f –ng

FREUROTH 5000 25 33 24 51 319

LIARWHD 1000 35 61 8 61 36

MOREBV 1000 95 124 11 98 509

MOREBV 5000 42 43 8 40 327

NCB20B 1000 66 114 8 113 152

NONCVXU2 1000 737 1417 79 1249 1327

NONCVXUN 1000 575 1082 85 1270 1880

NONDIA 1000 9 15 10 15 73

NONDIA 5000 11 19 15 19 71

NONDIA 10000 8 9 5 9 66

NONDQUAR 1000 2064 2742 352 3529 1765

POWELLSG 1000 60 116 8 116 153

POWELLSG 5000 97 156 16 152 244

POWELLSG 10000 85 155 16 155 160

POWER 1000 145 287 24 287 287

SCHMVETT 1000 15 27 4 27 76

SCHMVETT 5000 13 23 4 23 75

SCHMVETT 10000 10 17 3 17 60

SROSENBR 1000 13 22 11 22 58

SROSENBR 5000 13 23 12 23 32

SROSENBR 10000 17 24 8 24 40

TOINTGSS 1000 9 14 13 14 8

TOINTGSS 5000 9 5 8 5 6

TOINTGSS 10000 9 5 8 5 6

TQUARTIC 5000 69 42 28 45 27

TQUARTIC 10000 79 66 8 46 24

VAREIGVL 1000 44 84 16 84 94

WOODS 1000 23 42 9 42 174

WOODS 10000 32 49 14 49 215

those of Table 4, it appears that occasional increases of the initial stepsize during the line
search may give some advantages in terms of computational cost.

Finally, a few experiments have been performed with an implementation of Algorithm
NMS2 with N = 20. In the first set of test problems (indicated in Table 1) the only differences
observed are those reported in Table 5.

With reference to the set of CUTE problems, we observed for Algorithm NMS2 8 failures.
In the 66 problems reported in Table 3, the only differences between algorithms NMS1 and
NMS2 were observed for problem NONDQUAR with n = 1000, where ng = 2515, and
for problem TQUARTIC with n = 5000, where ng = 149. On the whole, it would appear
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Table 4. Cumulative results without expansion step.

NMS1 (N = 2)

Function evaluations 10713

Gradient evaluations 15894

Table 5. Results of Algorithm NMS1 and Algorithm NMS2.

NMS1 (N = 20) NMS2 (N = 20)
Problem n ng ng

Trigonometric 100 104 51

Generalized Rosenbrock 100 996 943

500 3338 3221

that Algorithm NMS2 is more robust, but this is payed with a considerable increase in
the number of function evaluations, which becomes approximately equal to the number of
gradient evaluations.

6. Concluding remarks

The main result of this paper is that of demonstrating that the global convergence of the
Barzilai-Borwein method can be guaranteed through a nonmonotone globalization strategy
that introduces only very limited perturbations of the local properties of the method. A
useful feature of the proposed strategy is that of permitting a sequence of steps where
different formulae for the computation of the stepsize can be used. The resulting algorithm
can be implemented through a very simple code and appears to be comparable in many large
dimensional problems with more sophisticated reduced memory quasi-Newton methods.
Possible improvements of the results reported here could be obtained by adopting some
of the rules suggested in [10] and [24] for the choice of the stepsize, and by performing a
suitable tuning of the parameters. In particular, the definition of the bounds for accepting
the BB stepsize and the choice of the stepsize when these bounds are violated may deserve
some further attention.

Appendix

Proof of Lemma 2

For each k ≥ 0, let l(k) be an integer such that k − min(k, M) ≤ l(k) ≤ k and that

f
(
xl(k)

) = max
0≤ j≤min(k,M)

[ f (xk− j )].

By Lemma 1(i) there exists a forcing function σ̃ such that

f (xk+1) ≤ f
(
xl(k)

) − σ̃ (‖xk+1 − xk‖). (29)
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As xl(0) = x0, (29) and (ii) of Lemma 1 imply that f k ≤ f (x0) for all k, so that the sequence
{xk} belongs to the compact set L0 and this proves assertion (i).

Thus the non increasing sequence { f (xl(k))} admits a limit for k → ∞. Using (29), where
k is replaced by l(k) − 1, we can write

f
(
xl(k)

) ≤ f
(
xl(l(k)−1)

) − σ̃
(∥∥xl(k) − xl(k)−1

∥∥)
, (30)

and hence, taking limits and recalling the definition of forcing function, it follows that

lim
k→∞

∥∥xl(k) − xl(k)−1
∥∥ = 0. (31)

Now let l̂(k) = l(k + M + 2). First we show, by induction, that for every j ≥ 1 we have

lim
k→∞

∥∥xl̂(k)− j+1 − xl̂(k)− j
∥∥ = 0 (32)

and

lim
k→∞

f
(
xl̂(k)− j

) = lim
k→∞

f
(
xl(k)

)
. (33)

If j = 1, using (31) and the fact that {l̂(k)} ⊂ {l(k)}, we get (32). Recalling that

lim
k→∞

f
(
xl̂(k)

) = lim
k→∞

f
(
xl(k)

)
,

we have that also (33) is satisfied, as f is uniformly continuous on L0.
Then, assume that (32) and (33) hold for a given j . By (29) we can write

f
(
xl̂(k)− j

) ≤ f
(
xl(l̂(k)− j−1)

) − σ̃
(∥∥xl̂(k)− j − xl̂(k)− j−1

∥∥)
.

Taking limits for k → ∞ and recalling (33) we obtain

lim
k→∞

∥∥xl̂(k)− j − xl̂(k)− j−1
∥∥ = 0.

The uniform continuity of f on L0 and the assumptions made imply

lim
k→∞

f
(
xl̂(k)− j−1

) = lim
k→∞

f
(
xl̂(k)− j

) = lim
k→∞

f
(
xl(k)

)
.

Then, (32) and (33) holds for any given j ≥ 1. On the other hand, for every k we have

(34)

xl̂(k) = xk+1 + (xk+2 − xk+1) + · · · + (
xl̂(k) − xl̂(k)−1

)
= xk+1 +

l̂(k)−k−1∑
j=1

xl̂(k)− j+1 − xl̂(k)− j .
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As l̂(k) − k − 1 = l(k + M + 2) − k − 1 and l(k + M + 2) ≤ k + M + 2, it follows that
l̂(k) − k − 1 ≤ M + 1, so that (34) and (32) imply

lim
k→∞

∥∥xk+1 − xl̂(k)
∥∥ = 0. (35)

As { f (xl(k))} admits a limit, it follows from the uniform continuity of f on L0 that

lim
k→∞

f k = lim
k→∞

f
(
xl(k)

)
,

which proves assertion (ii). Assertion (iii) follows from (29) and assertion (ii).

Proof of Proposition 3

In order to prove that the algorithm terminates we must show that it does not cycle at Step 2
or at Step 5. Consider first the cycle at Step 2, and let h be a counter of the inner iterations
of the cycle; we can write

λh =
h∏

j=1

θ j ≤ (θu)h,

so that λh → 0 for h → ∞. Let us assume, by contradiction, that the cycle does not terminate.
Then, for all h we have

f (xk + λhdk) > max
0≤ j≤min(k,M)

[ f (xk− j )] + γ1λh∇ f (xk)T dk − γ2 (λh)2 ‖dk‖2,

whence it follows

f (xk + λhdk) − f (xk)

λh
− γ1∇ f (xk)T dk > −γ2λh‖dk‖2. (36)

Taking limits in (36) for h → ∞, as γ1 < 1 and λh → 0, we obtain ∇ f (xk)T dk ≥ 0, which
contradicts the hypothesis on dk .

Now we show that the cycle at Step 5 terminates. Let h be a counter of the inner iterations
of the cycle; we can write

λh =
h∏

j=1

σ j ≥ (σl)
h,

so that λh → ∞ for h → ∞. Reasoning again by contradiction, assume that the cycle does
not terminate in a finite number of inner iterations. By the instructions of Step 6 this implies
that

f (xk + λhdk) < f k + γ1λh∇ f (xk)T dk − γ2λ
2
h‖dk‖2 for all h (37)
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and hence, as at least one of nonnegative parameters γ1, γ2 is positive, for h → ∞ we
would obtain that f (xk +λhdk) → −∞, which violates the boundedness assumption on f .

Then, condition (21) follows from the stopping criterion of Step 3. The stopping criterion
of Step 4 implies that at least one of conditions (22) (23) is satisfied in case of termination.
Finally, when the algorithm terminates at Step 6, it follows that at least one of conditions
(24) (25) holds.

Proof of Proposition 4

Assume first γ2 > 0; then Proposition 3 implies assertion (i) with η = γ2. Let us consider
the case γ2 = 0; by Proposition 3, taking into account the assumptions on dk we have for
every k ∈ K

f (xk+1) ≤ max
0≤ j≤min(k,M)

[ f (xk− j )] − γ1
c2

c2
1

λk‖dk‖2

= max
0≤ j≤min(k,M)

[ f (xk− j )] − γ1
c2

c2
1

λ̄
λk

λ̄
‖dk‖2, (38)

where λ̄ is the positive number chosen at Step 0. The instructions of algorithm NLS imply
that λk ≤ λ̄, so that we have (λk/λ̄)2 ≤ λk/λ̄ ≤ 1. Then, from (38) we obtain

f (xk+1) ≤ max
0≤ j≤min(k,M)

[ f (xk− j )] − γ1

λ̄

c2

c2
1

(λk‖dk‖)2,

and this proves assertion (i).
By (i) we have, for all k ∈ K ,

f (xk+1) ≤ max
0≤ j≤min(k,M)

[ f (xk− j )] − η‖xk+1 − xk‖2,

so that, as the sequence { f k} is convergent, we get

lim
k→∞,k∈K

‖xk+1 − xk‖ = 0. (39)

In order to prove assertion (ii), let us assume, by contradiction, that there exists an infinite
subset K1 ⊆ K such that

lim
k→∞,k∈K1

xk = x̄

and

lim
k→∞,k∈K1

∇ f (xk)T dk

‖dk‖ = ∇ f (x̄)T d̄ < 0. (40)
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The boundedness of {xk}K and the continuity assumption on ∇ f ensure the existence of a
subsequence that yields the preceding limits.

From (39) and (40), recalling the definition of k given in (18), it follows that for
k ∈ K1 and k sufficiently large condition (22) does not hold, and hence at least one of the
conditions (21), (23)–(25) is satisfied. By redefining the subset K1 if necessary, assume first
that condition (21) holds for k ∈ K1. Then, we have

f

(
xk + λk

θ k
dk

)
> max

0≤ j≤min(k,M)
[ f (xk− j )] + γ1

λk

θ k
∇ f (xk)T dk − γ2

(
λk

θ k

)2

‖dk‖2

≥ f k + γ1
λk

θ k
∇ f (xk)T dk − γ2

(
λk

θ k

)2

‖dk‖2

where θ k ∈ [θl , θu]. By the Mean Value Theorem, there exists a point uk = xk + βk λk

θ k dk ,
with βk ∈ (0, 1), such that

∇ f (uk)T dk ≥ γ1∇ f (xk)T dk − γ2
λk

θ k
‖dk‖2. (41)

By (39) we have that uk → x̄ for k → ∞ and k ∈ K1, and hence, dividing both members
of (41) by ‖dk‖, taking limits and recalling that γ1 < 1 we obtain

lim
k→∞,k∈K1

∇ f (xk)T dk

‖dk‖ = ∇ f (x̄)T d̄ ≥ 0, (42)

which contradicts (40).
Assuming that condition (23) or (25) is satisfied for k ∈ K1, we can repeat similar

reasonings and we obtain again (42), and hence a contradiction to (40).
Finally, let us suppose that condition (24) is satisfied for k ∈ K1; by Proposition 3 we have

f (xk + λkdk) ≤ max
0≤ j≤min(k,M)

[ f (xk− j )] + γ1λ
k∇ f (xk)T dk,

so that, the convergence of the sequence { f k} and condition (24) imply

lim
k→∞,k∈K1

∇ f (xk)T dk = 0.

On the other hand, recalling Condition 1 on dk , we have

|∇ f (xk)T dk | ≥ c2‖∇ f (xk)‖2,

from which it follows that ‖∇ f (xk)‖ → 0, for k → ∞ and k ∈ K1. Therefore, we can write

lim
k→∞,k∈K1

∇ f (xk)T dk

‖dk‖ = ∇ f (x̄)T d̄ = 0,

which contradicts again (40).
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12. J. Gilbert and C. Lemaréchal, “Some numerical experiments with variable-storage quasi-Newton algorithms,”
Math. Programming, Series B, vol. 45, pp. 407–435, 1989.

13. P. Gill, W. Murray, and M.H. Wright, Practical Optimization, Academic Press: San Diego, 1981.
14. W. Glunt, T.L. Hayden, and M. Raydan, “Molecular conformations from distances matrices,” J. Comput.

Chem., vol. 14, pp. 114–120, 1993.
15. W. Glunt, T.L. Hayden, and M. Raydan, “Preconditioners for distance matrix algorithms,” J. Comput. Chem.,

vol. 15, pp. 227–232, 1994.
16. L. Grippo, F. Lampariello, and S. Lucidi, “A nonmonotone line search technique for Newton’s method,” SIAM

J. Numer. Anal., vol. 23, pp. 707–716, 1986.
17. L. Grippo, F. Lampariello, and S. Lucidi, “A class of nonmonotone stabilization methods in unconstrained

optimization,” Numer. Math., vol, 59, pp. 779–805, 1991.
18. D.C. Liu and J. Nocedal, “On the limited-memory BFGS method for large scale optimization,” Math. Pro-

gramming, vol. 45, pp. 503–528, 1989.
19. W. Liu and Y. H. Dai, “Minimization algorithms based on supervisor and searcher cooperation,” J. Optimization

Theory and Applications, vol. 111, pp. 359–379, 1989.
20. B. Molina and M. Raydan, “Preconditioned Barzilai-Borwein method for the numerical solution of partial

differential equations,” Numerical Algorithms, vol. 13, pp. 45–60, 1996.
21. J.M. Ortega and W.C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables, Academic

Press: San Diego, 1970.
22. M. Raydan, “On the Barzilai and Borwein choice of the steplength for the gradient method,” IMA J. Numer.

Anal., vol. 13, pp. 618–622, 1993.



NONMONOTONE GLOBALIZATION TECHNIQUES 169

23. M. Raydan, “The Barzilai and Borwein gradient method for the large scale unconstrained minimization
problem,” SIAM J. Optim., vol. 7, pp. 26–33, 1997.

24. M. Raydan and B.F. Svaiter, “Relaxed steepest descent and Chauchy-Barzilai-Borwein method,” Computa-
tional Optimization and Applications, vol. 21, pp. 155–167, 2002.

25. D.F. Shanno and K.H. Phua, “Matrix conditioning and nonlinear optimization,” Math. Programming, vol. 14,
pp. 149–160, 1978.


