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Abstract. In this work, we propose a new globally convergent derivative-free algorithm for the minimization of
a continuously differentiable function in the case that some of (or all) the variables are bounded. This algorithm
investigates the local behaviour of the objective function on the feasible set by sampling it along the coordinate
directions. Whenever a “suitable” descent feasible coordinate direction is detected a new point is produced by
performing a linesearch along this direction. The information progressively obtained during the iterates of the
algorithm can be used to build an approximation model of the objective function. The minimum of such a model
is accepted if it produces an improvement of the objective function value. We also derive a bound for the limit
accuracy of the algorithm in the minimization of noisy functions. Finally, we report the results of a preliminary
numerical experience.
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1. Introduction

Practical applications very often lead to the minimization of a smooth function whose vari-
ables are subject to bound constraints. In many of these cases the objective function value
is obtained by direct measurements or it is the result of a complex system of calculations,
such as a simulation. Therefore, even if it is known that the objective function is smooth, its
analytical expression is not available and the computation of its values may be expensive
and/or affected by the presence of noise. Hence, the first order derivatives cannot be ex-
plicitly calculated or approximated. This motivates the increasing interest in studying new
derivative-free methods for bound constrained optimization. Such methods should present
strong global convergence properties, should be able to make significant progresses with
few function evaluations, and should be sufficiently robust in the noisy case.

With this in mind, in this paper we consider the problem

minimize f (x)

subject to l ≤ x ≤ u,
(1)

where x, l, u ∈ Rn , with l < u, and f : Rn → R is a continuously differentiable function,
but its first order derivatives cannot be explicitly calculated or approximated. We allow
the possibility that some of the variables are unbounded by permitting both li = −∞ and
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ui = ∞ for some i ∈ {1, . . . , n}. We denote the feasible set by

F = {x ∈ Rn : l ≤ x ≤ u}.
We define a stationary point of problem (1) a feasible point x̄ that satisfies the following
first-order necessary optimality condition:

∇ f (x̄)T (y − x̄) ≥ 0 for all y ∈ F . (2)

We recall that at any stationary point x̄ of f (x) (x̄ ∈ F), we have that

∇red f (x̄) = 0

where the reduced gradient ∇red f (x) is defined as follows

∇red
i f (x) =




max(∇i f (x), 0) if xi = ui

min(∇i f (x), 0) if xi = li

∇i f (x) otherwise

(3)

In order to overcome the lack of gradient information, many globally convergent
derivative-free algorithms proposed in literature are based on the idea of performing finer
and finer samplings of the objective function along suitable sets of search directions (see,
for instance, [2, 11, 14–16] and the references quoted there).

In [8] it has been performed a general analysis of the requirements on the search directions
and the sampling techniques, which ensure the global convergence of a derivative-free algo-
rithm for unconstrained minimization problems. Roughly speaking, at every non-stationary
point, the set of search directions must contain a descent direction, and the sampling tech-
nique must produce a suitable point along such a direction.

As clearly described in [7], the presence of bound constraints imposes stronger restrictions
on the choice of search directions. In particular, at every non-stationary point, the set of
search directions must contain a descent direction which is also feasible, in the sense that
(sufficiently) small stepsizes along such direction must produce feasible points where the
objective function is reduced. In [7] it is shown that the set of coordinate directions satisfies
this property. Globally convergent algorithms using these directions have been proposed
in [7] and [3]. More in particular, the algorithm proposed in [7] follows a pattern search
strategy by evaluating the objective function on specified geometric patterns. While the
method introduced in [3] is based on the idea of using approximating models of the objective
function which are built by using suitable grid points.

In this paper, we propose a new algorithm model for solving problem (1). In order to try
to guarantee both global convergence properties and a “good” efficiency of the proposed
algorithm, we have drawn our inspiration from the strategy underlying the gradient based
methods. The global convergence and the good computational behaviour of these methods
follow from the fact that they are able

(i) to find a “good” feasible descent direction (namely a feasible direction along which
the objective function sufficiently decreases);

(ii) to perform a “sufficiently” large steplength along this direction;
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(iii) to exploit the information on the objective function obtained during the iterates of the
algorithm.

Here, starting from the approaches proposed in [3, 7] and [8], we have defined an algorithm
which tries to follow the points (i)–(iii) without using any information on the first order
derivatives and taking account the particular structure of the feasible set. The main features
of the algorithm are the following:

– a “good” feasible descent direction is determined by investigating the local behaviour
of the objective function on the feasible set along the coordinate directions;

– whenever a “suitable” descent feasible coordinate direction is detected, a new point is
produced by performing a derivative free linesearch along this direction;

– the information progressively obtained during the iterates of the algorithm can be used
to build an approximation model of the objective function in order to improve the local
behaviour of the algorithm.

As regards the theoretical properties of the proposed algorithm, we prove that every limit
point of the sequence produced is a stationary point for problem (1).

Similarly to [1, 3, 6, 17], we consider also the minimization of noisy functions which are
perturbations of smooth functions. For this case, by requiring the standard assumption that
the gradient of the objective function is Lipschitz continuous (which is not required in the
noiseless case), we derive a bound for the limit accuracy of the algorithm.

The paper is organized as follows. In Section 2 we describe the proposed algorithm
model. In Section 3 we prove the global convergence of the algorithm. In Section 4, we
characterize the behaviour of the algorithm in the minimization of noisy functions. Finally,
in Section 5 we report the results of a preliminary numerical experience performed on both
standard test problems and a real application.

Notation. The j-th component of a vector v ∈ Rn is indicated by v j . We denote the
Euclidean norm (on the appropriate space) by ‖ · ‖. A subsequence of {xk} corresponding
to an infinite subset K will be denoted by {xk}K . We indicate by ei , with i = 1, . . . , n, the
orthonormal set of the coordinate directions and by ∂F the boundary of the feasible set F .
Finally, given a real number a, �a� represents the largest integer that is not greater than a.

2. A new algorithm model

In this section we propose a new class of derivative-free algorithms for the minimization
of a continuously differentiable function in the case that some of (or all) the variables
are bounded. As said before, the approach is based on the idea of performing suitable
samplings of the objective function along the coordinate directions. As pointed out in [7],
the coordinate directions allow us to cope with the presence of box constraints. This can
be easily derived from the optimality conditions (2). In fact, if a feasible point x̄ is not a
stationary point of f , then there must exist a feasible point y and an integer h ∈ {1, . . . , n}
such that ∇h f (x̄)T (y − x̄)h < 0. If ᾱ = (y − x̄)h > 0, then, taking into account that F is
defined by box constraints, we have

ᾱ∇ f (x̄)T eh < 0, x̄ + ᾱeh ∈ F
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The continuity of ∇ f and the convexity of the feasible set F imply that there exists a
positive value α̃ such that:

f (x̄ + αeh) < f (x̄), x̄ + αeh ∈ F,

for all α ∈ (0, α̃). The case ᾱ = (y − x̄)h < 0 leads to the same conclusions with eh replaced
by −eh . Hence, in correspondence to any feasible point x̄ which is not a stationary point,
there is a coordinate direction along which (or along its opposite) there must exist feasible
points where the function is strictly decreased (this property is not necessary true for different
sets of n linearly independent directions). Therefore, performing finder and finer samplings
of the objective function along the coordinate directions and their opposite, it is possible
either to understand that a point is a good approximation of a stationary point of f , or to
determine a specific direction along which the objective function decreases.

On this basis, we propose an algorithm model which samples the objective function along
the coordinate directions, with the aim of detecting a feasible direction where the objective
function is sufficiently decreased. Once such a direction has been individuated, a derivative-
free linesearch technique is adopted for performing a sufficiently large step along it, so as
to exploit the descent property of the search direction as much as possible. Periodically, it
is admitted the possibility of generating a point by a movement of arbitrary length along an
arbitrary direction.

The use of the coordinate directions as search directions and the particular sampling
technique adopted allow us to overcome the lack of gradient information and to ensure that
every limit point of the sequence produced is a stationary point for problem (1). Formally,
the algorithm model is described as follows.

Algorithm Model

Data. x0 ∈ F, θ ∈ (0, 1), γ > 0, 0 < α̃i
0 < ∞, di = ei for i = 1, . . . , n.

Step 0. Set k = 0, i = 1, hk = 1.
Step 1. Compute αmax s.t. xk + αmaxdi ∈ ∂ F and set α = min{α̃i

k, αmax}.
If α > 0 and f (xk + αdi ) ≤ f (xk) − γ (α)2 go to Step 3.

Step 2. Compute αmax s.t. xk − αmaxdi ∈ ∂F and set α = min{α̃i
k, αmax}.

If α > 0 and f (xk − αdi ) ≤ f (xk) − γ (α)2 then
set di = −di and go to Step 3.

else set αk = 0, α̃i
k+1 = θα, and go to Step 4.

Step 3. Compute αk by the Expansion Step(di , α, αmax, γ ) and set
α̃i

k+1 = αk .

Step 4. Set x̃k+1 = xk + αkdi , α̃
j
k+1 = α̃

j
k , for j ∈ {1, . . . , n} and j �= i .

Step 5. If hk ≥ n then find xk+1 such that

f (xk+1) ≤ f (x̃k+1) and xk+1 ∈ F, (4)

else set xk+1 = x̃k+1.
If xk+1 �= x̃k+1 then set hk+1 = 1 else set hk+1 = hk + 1.
Set i = mod(i, n) + 1, k = k + 1 and go to Step 1.
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Expansion Step (di , α, αmax, γ ).

Data. δ ∈ (0, 1).
Step 1. Let α̃ = min{αmax,

α
δ
}.

If α = αmax or f (xk + α̃di ) > f (xk) − γ α̃2 set αk = α and stop.
Step 2. Set α = α̃ and go to Step 1.

More in particular, the steps of the algorithm can be summarized as follows.

• At Step 1 the direction di is examined with the aim of determining (if possible) a feasible
point where the objective function is sufficiently decreased. First, it is computed the
maximum feasible steplength αmax which can be performed along the direction di starting
from the point xk . Then, the trial stepsize α is determined by choosing the minimum
between αmax and α̃i

k . The scalar α̃i
k has been computed on the basis of the behaviour

of the objective function along the same direction showed at the previous iterations.
Therefore, the scalar α̃i

k should take into account the sensitivity of the objective function
with respect to the i-th variable, and hence it should provide a promising initial stepsize
for the direction di . Finally, it is verified if the moving of length α along di produces a
feasible point where the function is sufficiently reduced. If such a point is produced then
a linesearch technique is performed along di to provide a suitable stepsize αk (Step 3).
Otherwise, the direction −di is considered (Step 2).

• Step 2 is similar to Step 1, with di replaced by −di . In this case, if the trial point xk −αdi

does not produce a sufficient decrease of f then the stepsize αk is set equal to zero and the
scalar α̃i

k is reduced. In this way, when the directions di and −di will be considered again
by the algorithm, the initial stepsize will be chosen in an interval containing smaller values.

• At Step 3 a suitable large stepsize αk is computed by a derivative-free linesearch technique.
Such technique derives from the ones proposed in [4]. It computes a sufficiently good es-
timate of the minimum of f along di without requiring any information on the slope of the
objective function. The aim of this step is to exploit the good descent direction di identified
at Step 1 or Step 2. Then, the scalar α̃i

k+1 is set equal to αk . The motivation of this choice de-
rives from the fact that the stepsize αk produced by a linesearch technique should identify
promising values for the initial stepsize when the direction di (or −di ) will be investigated.

• At Step 4 the candidate point x̃k+1 is generated.
• At Step 5 the new point xk+1 is produced and, for the next iteration, a coordinate direction

is selected by following the cyclic order. At each iteration xk+1 can be always set equal to
the candidate point x̃k+1 produced at Step 5. The index hk counts the number of succes-
sive iterations characterized by the fact that xk+1 = x̃k+1. The condition hk ≥ n indicates
that the last n points generated have been produced by investigating the behaviour of f
along all the coordinate directions and that, roughly speaking, the algorithm has obtained
“enough” information about the local behaviour of the objective function. In this case,
the algorithm admits the possibility of accepting as xk+1 any feasible point which pro-
duces a reduction of the objective function. Therefore, in these iterations the point xk+1

can be generated, for instance, by minimizing any approximation model of the objective
function built by using the information progressively obtained by the algorithm. This
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possibility does not affect the convergence properties of the algorithm, but it can increase
its efficiency.

3. Convergence analysis

In this section we study the theoretical properties of Algorithm Model. In particular, we
show that any accumulation point of the sequence generated by the proposed algorithm is
a stationary point of problem (1).

First, we state the following proposition.

Proposition 1. Suppose that f is bounded below on the feasible set F and let {xk} be the
sequence produced by Algorithm Model. Then:

(i) Algorithm Model is well defined;
(ii) every limit point of {xk} belongs to F ;

(iii) we have

lim
k→∞

αk = 0 (5)

lim
k→∞

α̃i
k = 0 for i = 1, . . . , n. (6)

Proof: In order to prove that Algorithm Model is well defined, we have to ensure that the
Expansion Step, when performed along a direction di , with i ∈ {1, . . . , n}, terminates in a
finite number j of steps. At this aim, by contradiction we assume that for a given di

xk + δ− jαdi ∈ F for all j,

and

f (xk + δ− jαdi ) < f (xk) − γ (δ− jα)2‖di‖2 for all j,

which violates the assumption that f is bounded below on F .
As regards assertion (ii), we have that the instructions of Algorithm Model imply that

xk ∈ F for all k. Since F is a closed set, the assertion is proved.
In order to prove (5), we split the iteration sequence {k} into two parts, K ′ and K ′′. We

identify with K ′ those iterations where

αk = 0 (7)

and with K ′′ those iterations where αk �= 0 is produced by Expansion Step. Then, Steps 3
and 5 imply

f (xk+1) ≤ f (xk + αkdi ) ≤ f (xk) − γ (αk)
2‖di‖2. (8)

Taking into account the boundedness assumption on f , it follows from (8) that { f (xk)}
tends to a limit f̄ . If K ′′ is an infinite subset, recalling that ‖di‖ = 1 we obtain

lim
k→∞,k∈K ′′

αk = 0. (9)

Therefore, (7) and (9) imply (5).
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In order to prove (6), for each i ∈ {1, . . . , n} we split the iteration sequence {k} into three
parts, K1, K2 and K3. We identify with K1 those iterations where Expansion Step has been
performed using the direction di , namely

f (xk + αkdi ) ≤ f (xk) − γ (αk)
2‖di‖2 (10)

α̃i
k+1 = αk . (11)

We denote by K2 those iterations where we have failed in decreasing the objective function
along the directions di and −di . By the instructions of the algorithm it follows that for all
k ∈ K2

α̃i
k+1 ≤ θα̃i

k, (12)

where θ ∈ (0, 1). Finally, K3 denotes the iterations where the directions di and −di are not
used as search directions. Then, for k ∈ K3 we have

α̃i
k+1 = α̃i

k . (13)

If K1 is an infinite subset, from (11) and (5) we get that

lim
k→∞,k∈K1

α̃i
k+1 = 0. (14)

Now, let us assume that K2 is an infinite subset. For each k ∈ K2, let mk (we omit the
dependence from i) be the biggest index such that mk < k and mk ∈ K1. Then we have:

α̃i
k+1 ≤ θ � (k+1−mk )

n �α̃i
mk

≤ α̃i
mk

(15)

(we can assume mk = 0 if the index mk does not exist, that is, K1 is empty).
As k → ∞ and k ∈ K2, either K1 is an infinite subset implying mk → ∞, or K1 is finite

implying (k + 1 − mk) → ∞. Hence, if K2 is an infinite subset, (15) together with (14), or
the fact that θ ∈ (0, 1), yields

lim
k→∞,k∈K2

α̃i
k+1 = 0. (16)

Finally, let us consider the infinite subset K3 (note that the instructions of the algorithm
imply that K3 is always an infinite set). The instructions of the algorithm imply that, for all
k ∈ K3 and k sufficiently large, there exists a nonnegative index νk ≤ n such that

k − νk ∈ K1 ∪ K2

α̃i
k+1 = α̃i

k−νk+1.

Therefore, from (14) and (16), we get that

lim
k→∞,k∈K3

α̃i
k+1 = 0, (17)

so that (6) is proved, and this concludes the proof. ✷
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Now we are ready to prove the main convergence result.

Proposition 2. Suppose that f is bounded below on the feasible set F and let {xk} be the
sequence produced by Algorithm Model. Then every limit point of {xk} is a stationary point
for problem (1).

Proof: Let x̄ be any limit point of {xk}, that is

lim
k→∞,k∈K

xk = x̄, (18)

where K ⊆ {0, 1, . . .}. By (ii) of Proposition 1 we have that x̄ ∈ F .
In order to prove the thesis, let us suppose by contradiction that x̄ is not a stationary point.

Therefore, there exists a point ȳ ∈ F such that

∇ f (x̄)T (ȳ − x̄) < 0. (19)

This implies that

∇h f (x̄)(ȳ − x̄)h < 0, (20)

for some h ∈ {1, . . . , n}. Let us define the sequence of scalars

βk = (ȳ − xk)
h .

Now, by (20) we have

lim
k→∞,k∈K

βk∇ f (xk)
T eh = β̄∇ f (x̄)T eh < 0, (21)

where

|β̄| = |(ȳ − x̄)h | > 0. (22)

For each k ∈ K , let us consider the smallest index m+
k ≥ k and the biggest index m−

k ≤ k
such that in the iterations m+

k and m−
k the direction eh or/and the direction −eh are investi-

gated. The instructions imply

m+
k − k ≤ n k − m−

k ≤ n. (23)

Moreover we have that at least one of the following occurrence must happen

(i) all the points xk+ j , with 0 ≤ j ≤ (m+
k − k), are produced by Step 4, that is

xk+ j+1 = xk+ j + αk+ j el( j) (or xk+ j+1 = xk+ j − αk+ j el( j));

(ii) all the points xk− j , with 0 ≤ j ≤ k − m−
k , are produced by Step 4, that is

xk− j+1 = xk− j + αk− j el( j) (or xk− j+1 = xk− j − αk− j el( j)),
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where the index l( j) ∈ {1, . . . , n} identifies the search direction investigated. Now let K ′ ⊆
K and K ′′ ⊆ K be the subsets such that condition (i) is verified for all k ∈ K ′ and condition
(ii) is verified for all k ∈ K ′′. Suppose first that K ′ is infinite. For semplicity we rename K ′

as K . Hence, (iii) of Proposition 1 implies that, for 1 ≤ j ≤ m+
k − k, it follows

lim
k→∞,k∈K

‖xk+ j − xk+ j−1‖ = 0, (24)

from which, recalling (23), we get

lim
k→∞,k∈K

xm+
x

= x̄ . (25)

By (21), (22) and (25) we obtain

lim
k→∞,k∈K

βm+
k

= β̄. (26)

Conditions (21), (25) and (26) imply that for k ∈ K and k sufficiently large the direction
−sign(βm+

k
)eh is an ascent direction in xm+

k
because it makes an acute angle with the gradient,

and moreover, recalling (6) we can prove that for k ∈ K and k sufficiently large

f

(
xm+

k
− sign

(
βm+

k

) α̃h
m+

k +1

θ
eh

)
> f

(
xm+

k

)
. (27)

In fact, by applying the Mean Value Theorem we have

f

(
xm+

k
− sign

(
βm+

k

) α̃h
m+

k +1

θ
eh

)
− f

(
xm+

k

)

= −sign
(
βm+

k

) α̃h
m+

k +1

θ
[∇ f (x̄)T eh + (∇ f (ξk)

T eh − ∇ f (x̄)T eh)],

where ξk = xm+
k

− λksign(βm+
k
)

α̃h
m+

k +1

θ
eh , with λk ∈ (0, 1). Then, since ‖ξk − xm+

k
‖ → 0,

recalling (21), (26) and the continuity of ∇ f , it follows that (27) holds. Hence, for k
sufficiently large, at the m+

k -th iteration, the instructions of the algorithm (in particular,
Step 2) imply that the direction sign(βm+

k
)eh is investigated. Since xk ∈ F and lh ≤ ȳh ≤ uh

it follows

xm+
k

+ tsign
(
βm+

k

)
eh = xm+

k
+ t∣∣βm+

k

∣∣ (ȳ − xm+
k

)h
eh ∈ F ∀t ∈ [

0,
∣∣βm+

k

∣∣]. (28)

Now, by (iii) of Proposition 1 we have that αk → 0 and α̃h
m+

k
→ 0 for k → ∞, and hence,

for k ∈ K and k sufficiently large, (22), (26) and (28) yield

xm+
k

+ sign
(
βm+

k

) α̃h
m+

k +1

θ
eh ∈ F (29)
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and

xm+
k

+ sign
(
βm+

k

)αh
m+

k

δ
eh ∈ F (30)

Therefore we have that either

αm+
k

= 0, (29) holds and

f

(
xm+

k
+ sign

(
βm+

k

) α̃h
m+

k +1

θ
eh

)
> f

(
xm+

k

) − γ

(
α̃h

m+
k

θ

)2

. (31)

or

αm+
k

�= 0, (30) holds and

f

(
xm+

k
+ sign

(
βm+

k

)αm+
k

δ
eh

)
> f

(
xm+

k

) − γ

(
αm+

k

δ

)2

. (32)

By applying the Mean Value Theorem in (31) and (32) we can write either

sign
(
βm+

k

)∇ f
(
um+

k

)T
eh ≥ −

α̃h
m+

k +1

θ

or

sign
(
βm+

k

)∇ f
(
vm+

k

)T
eh > −αm+

k

δ

where

um+
k

= xm+
k

+ sign
(
βm+

k

)
λ1

k

α̃h
m+

k +1

θ
eh,

vm+
k

= xm+
k

+ sign
(
βm+

k

)
λ2

k

αm+
k

δ
eh,

with λ1
k, λ

2
k ∈ (0, 1).

Therefore, taking the limits for k → ∞ and k ∈ K , by using (5), (6) and the continuity
assumption on ∇ f , it follows

sign(β̄)∇ f (x̄)T eh ≥ 0,

which contradicts (21).
Now, if K ′′ is an infinite set then we can repeat the same reasonings by minor modifications

and obtain a contradiction with (21). ✷

Remark 1. If we replace at Step 5 of Algorithm Model condition (4) with the following
stronger condition

f (xk+1) ≤ f (x̃k+1) and xk+1 ∈ F (33)

‖xk+1 − xk‖ ≤ max{� fk, ραk} (34)
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where � fk = f (xk+1) − f (xk) and ρ ∈ (0, 1), we obtain that the results of Proposition 1
and Proposition 2 still hold with the additional property of the sequence {xk}:

lim
k→∞

‖xk+1 − xk‖ = 0. (35)

In fact, since f is bounded below on F and the sequence { f (xk)} is decreasing, we have
that � fk → 0. On the other hand, by (5) of Proposition 1 we have that αk → 0. Therefore,
(35) follows immediately.

4. Convergence analysis in presence of noise

In this section, we consider the case where the values of the objective function of problem (1)
are corrupted by the presence of noise. In other words, we can only observe the perturbation
f̃ (x) given by

f̃ (x) = f (x) + �(x),

where �(x) represents the amount of noise. Furthermore, we assume that there exists a
constant � > 0 such that

|�(x)| ≤ � for every x ∈ F . (36)

In Algorithm Model the value f (x) has to be replaced by f̃ (x).
First of all, we remark that it is possible to show that Proposition 1 still hold also in pres-

ence of noise satisfying (36). Further results about the properties of the proposed algorithm
can be stated under the assumption that the gradient of the objective function is Lipschitz
continuous. In particular, it is possible to derive a bound on the norm of the reduced gradient.
At this aim, for each iteration k we consider a ball Bk of radius

rk = 2

min{θ, δ}
n∑

l=1

α̃l
k (37)

about xk (where θ and δ are user chosen parameters of the algorithm). For each iteration
k such that hk ≥ n we have that every point where the function has been evaluated in one
of the preceding n iterations is contained in the ball Bk about xk . In fact, as regards the
generated points we have

‖xk − xk−n‖ ≤
n∑

l=1

αk−1 ≤
n∑

l=1

α̃l
k .

Then, in correspondence to each iteration k − j , the algorithm can sample the objective
function along a given coordinate direction eh in the interval[

xk− j − α̃h
k− j+1

min{θ, δ}eh, xk− j + α̃h
k− j+1

min{θ, δ}eh

]
.

Then, we have the following proposition.
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Proposition 3. Suppose that f is bounded below on the feasible setF and that its gradient
is Lipschitz continuous (with constant L) on F . Let {xk} be the sequence produced by
Algorithm Model and let �k = supx∈Bk

|�(x)|. Then, there exist two constants c1, c2 > 0
such that, for each iteration k for which hk ≥ n, we have

‖∇red f (xk)‖ ≤ c1 max
l=1,...,n

{
α̃l

k

} + c2
�k

minl=1,...,n
{
α̃l

k

} .

Proof: Let us consider the i-th component of ∇red f (xk). Now let i(k) ≤ k be the biggest
index such that at the i(k)–iteration the direction ei (and/or −ei ) has been investigated.

First of all, we note that by the instructions of the algorithm, and recalling the assumption
hk ≥ n, it follows that

k − i(k) ≤ n,

and by the definitions of Bk and �k we have that the objective function values computed in
the iterations i(k), i(k) + 1, . . . , k are corrupted by an amount of noise bounded by �k .

Now we distinguish the following cases:

(i) xi
k = ui

(ii) xi
k = li

(iii) li < xi
k < ui

Case (i). In this case we have either

(ia) xi
i(k) = ui

or

(ib) xi
i(k) < ui .

In case (ia), as xi
k = xi

i(k), from the instructions of the algorithm we have αi(k) = 0, α̃i
i(k)+1 =

α̃i
k , and

f

(
xi(k) − α̃i

k

θ
ei

)
> f

(
xi(k)

) − γ

(
α̃i

k

θ

)2

− 2�k .

By applying the Mean Value Theorem we obtain

− α̃i
k

θ
∇ f

(
ui(k)

)T
ei > −γ

(
α̃i

k

θ

)2

− 2�k,

where ui(k) = xi(k) − λi(k)
α̃i

k
θ

ei with λi(k) ∈ (0, 1). Then, we can write

[∇ f
(
ui(k)

) − ∇ f (xk) + ∇ f (xk)
]T

ei < γ
α̃i

k

θ
+ 2�kθ

α̃i
k

,



BOUND CONSTRAINED OPTIMIZATION 131

from which, taking into account the Lipschitz assumption on ∇ f , it follows

∇ f (xk)
T ei < γ

α̃i
k

θ
+ 2�kθ

α̃i
k

+ L
∥∥xk − ui(k)

∥∥
≤ γ

α̃i
k

θ
+ 2�kθ

α̃i
k

+ L
∥∥xk − xi(k)

∥∥ + L
α̃i

k

θ
. (38)

We have

xk = xi(k) +
k−i(k)−1∑

j=0

αi(k)+ j di(k)+ j ,

where di(k)+ j ∈ {e1, −e1, . . . , en, −en}. For each j such that αi(k)+ j �= 0, recalling the
instructions of the algorithm, we have that there exists an index l ∈ {1, . . . , n} such that
α̃l

i(k)+ j+1 = αi(k)+ j , and α̃l
k = α̃l

i(k)+ j+1. Therefore, it follows

αi(k)+ j ≤ max
l=1,...,n

{
α̃l

k

}
,

and we can write∥∥xk − xi(k)

∥∥ ≤ n max
l=1,...,n

{
α̃l

k

}
.

From (38) we get

∇red
i f (xk) <

(γ + L(n + 1))

θ
max

l=1,...,n

{
α̃l

k

} + 2�kθ

minl=1,...,n
{
α̃l

k

} . (39)

In case (ib), we have αi(k) �= 0, α̃i
i(k)+1 = αi(k) = α̃i

k , and

f
(
xi(k) + α̃i

kei
) ≤ f

(
xi(k)

) − γ
(
α̃i

k

)2 + 2�k ≤ f
(
xi(k)

) + γ
(
α̃i

k

)2 + 2�k .

Then, by applying the Mean Value Theorem, we obtain

∇ f
(
vi(k)

)T
ei < γ α̃i

k + 2�k

α̃i
k

.

where vi(k) = xi(k) +λi(k)α̃
i
kei with λi(k) ∈ (0, 1). Then, by repeating the preceding reason-

ings we obtain

∇red
i f (xk) < (γ + L(n + 1)) max

l=1,...,n

{
α̃l

k

} + 2�k

minl=1,...,n
{
α̃l

k

} (40)

Case (ii). It is analogous to Case (i), so that conditions (39) and (40) hold.
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Case (iii). In this case we have either

(iiia) xi
i(k) = xi

k

or

(iiib) xi
i(k) �= xi

k .

In case (iiia), from the instructions of the algorithm, recalling that α̃i
i(k)+1 = α̃i

k = θα,
where α is the initial stepsize, we have

f

(
xi(k) + α̃i

k

θ
ei

)
≥ f

(
xi(k)

) − γ

(
α̃i

k

θ

)2

− 2�k (41)

f

(
xi(k) − α̃i

k

θ
ei

)
≥ f

(
xi(k)

) − γ

(
α̃i

k

θ

)2

− 2�k . (42)

By applying the Mean Value Theorem we obtain

∇i f
(
ui(k)

)T
ei ≥ −γ

(
α̃i

k

θ

)2

− 2�kθ

α̃i
k

(43)

∇i f
(
vi(k)

)T
ei ≤ γ

(
α̃i

k

θ

)2

+ 2�kθ

α̃i
k

, (44)

where ui(k) = xi(k) + λ1
i(k)

α̃i
k

θ
ei , vi(k) = xi(k) − λ2

i(k)

α̃i
k

θ
ei , with λ1

i(k), λ
2
i(k) ∈ (0, 1).

From (43), taking into account the Lipschitz assumption on ∇ f we get

∇ f (xk)
T ei ≥ −γ

α̃i
k

θ
− 2�kθ

α̃i
k

− L
∥∥xk − ui(k)

∥∥
≥ −γ

α̃i
k

θ
− 2�kθ

α̃i
k

− L
∥∥xk − xi(k)

∥∥ − L
α̃i

k

θ

≥ −γ
α̃i

k

θ
− 2�kθ

α̃i
k

− nL max
l=1,...,n

{
α̃l

k

} − L
α̃i

k

θ

= −(γ + L)
α̃i

k

θ
− 2�kθ

α̃i
k

− nL max
l=1,...,n

{
α̃l

k

}
.

Hence, it follows

∇red
i f (xk) ≥ − (γ + L(n + 1))

θ
max

l=1,...,n

{
α̃l

k

} − 2�kθ

minl=1,...,n
{
α̃l

k

} . (45)

From (44), by repeating the same reasonings, we obtain

∇red
i f (xk) ≤ (γ + L(n + 1))

θ
max

l=1,...,n

{
α̃l

k

} + 2�kθ

minl=1,...,n
{
α̃l

k

} . (46)
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From (45) and (46) it follows

∣∣∇red
i f (xk)

∣∣ ≤ (γ + L(n + 1))

θ
max

l=1,...,n

{
α̃l

k

} + 2�kθ

minl=1,...,n
{
α̃l

k

} . (47)

Let us consider the case (iiib). Without loss of generality, we can assume that in this case
we have αi(k) �= 0, α̃i

i(k)+1 = α̃i
k = αi(k),

f
(
xi(k) + α̃i

kei
) ≤ f

(
xi(k)

) − γ
(
α̃i

k

)2 + 2�k

and

f
(
xi(k) + ᾱi

kei
)

> f
(
xi(k)

) − γ
(
ᾱi

k

)2 − 2�k,

with

ᾱi
k = α̃i

k

δi(k)

where δi(k) = δ if xi(k) + α̃i
k
δ

ei ∈F , and δi(k) ∈ (δ, 1) otherwise (in this case δi(k) is such that

xi(k) + α̃i
k

δi(k)
ei ∈ ∂F ). By applying the Mean Value Theorem, we can write

∇ f
(
ui(k)

)T
ei ≤ −γ α̃i

k + 2
�k

α̃i
k

≤ γ α̃i
k + 2

�k

αi
k

,

and

∇ f
(
vi(k)

)T
ei > −γ

α̃i
k

δi(k)

− 2
�kδi(k)

α̃i
k

,

where ui(k) = xi(k) + λ1
i(k)αi(k)ei , vi(k) = xi(k) + λ2

i(k)

α̃i
k

δi(k)
ei with λ1

i(k), λ
2
i(k) ∈ (0, 1).

Taking into account the Lipschitz assumption on ∇ f we can write

∇ f (xk)
T ei ≤ γ α̃i

k + 2�k

α̃i
k

+ L
∥∥xk − ui(k)

∥∥
≤ γ α̃i

k + 2�k

α̃i
k

+ L
∥∥xk − xi(k)

∥∥ + Lα̃i
i(k)+1

≤ (γ + L)α̃i
k + 2�k

α̃i
k

+ nL max
l=1,...,n

{
α̃l

k

}
,

∇ f (xk)
T ei > −γ

α̃i
k

δi(k)

− 2�kδi(k)

α̃i
k

− L
∥∥xk − vi(k)

∥∥
≥ −γ

α̃i
k

δ
− 2�k

α̃i
k

− L
∥∥xk − xi(k)

∥∥ − Lα̃i
k

≥ −(γ + L)
α̃i

k

δ
− 2�k

α̃i
k

− nL max
l=1,...,n

{
α̃l

k

}
.
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Then we have

∣∣∇red
i f (xk)

∣∣ ≤ (γ + L(n + 1))

δ
max

l=1,...,n

{
α̃l

k

} + 2�k

minl=1,...,n
{
α̃l

k

} (48)

Finally, from (39), (40) and (48) we obtain

‖∇red f (xk)‖ ≤ n1/2

(
(γ + L(n + 1))

max{θ, δ} max
l=1,...,n

{
α̃l

k

} + 2�k

minl=1,...,n
{
α̃l

k

}
)

,

and this concludes the proof. ✷

Remark 2. We note that if at each iteration k we set xk+1 = x̃k+1 (namely xk+1 = xk + αkdk ,
where dk ∈ {e1, . . . , en, −e1, . . . ,−en} and where αk is equal to zero or is produced by the
Expansion Step) then the assertion of Proposition 3 holds for all k. In fact, in this case we
have hk ≥ n for all k > n.

Finally, by requiring a stronger assumption on the noise, we have the following conver-
gence result.

Proposition 4. Suppose that f is bounded below on the feasible setF and that its gradient
is Lipschitz continuous (with constant L) on F . Let {xk} be the sequence produced by
Algorithm Model. Then if

lim
k→∞

�k

minl=1,...,n
{
α̃l

k

} = 0, (49)

then every limit point of {xk} is a stationary point for problem (1).

Proof: Let x̄ be any limit point of {xk}, that is

lim
k→∞,k∈K

xk = x̄,

where K ⊆ {0, 1, . . .}. In order to prove the thesis, by contradiction, let us suppose that x̄
is not a stationary point for problem (1), that is

‖∇red f (x̄)‖ ≥ ε, (50)

for some ε > 0.
From the instructions of the algorithm we have that, for each k ∈ K , there exists an index

νk , with 0 ≤ νk < n such that hk+νk ≥ n and

xk+ j = xk+ j−1 + αk+ j−1el( j) for j = 1, . . . , νk . (51)
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By Proposition 3 we have

‖∇red f (xk+νk )‖ ≤ c1 max
l=1,...,n

{
α̃l

k+νk

} + c2
�k+νk

minl=1,...,n
{
α̃l

k+νk

} ,

hence, recalling (49) and that point (iii) of Proposition 1 still holds also in presence of
bounded noise, it follows

lim
k→∞,k∈K

‖∇red f (xk+νk )‖ = 0. (52)

Then, by using the Lipschitz assumption on ∇ f , we can write

‖∇red f (xk) − ∇red f (xk+νk )‖ ≤ L‖xk − xk+νk ‖ ≤ L
νk∑

j=1

αk+ j−1,

from which, recalling again (iii) of Proposition 1, the continuity assumption of ∇ f and (52)
we obtain

‖∇red f (x̄)‖ = 0,

which contradicts (50). ✷

5. Preliminary computational results

In order to evaluate a possible practical interest of the proposed algorithm model, we have
used 41 standard test problems of dimension n ranking form 2 to 10. These problems are
selected from two test sets: the first one is made of 23 problems defined in [3], which are
obtained from the set of functions suggested in [10]. The second set consists of the all box
constrained problems of the Hock-Schittkowski collections [5, 12]. Furthermore, we have
considered a real test problem which derives from an application [13] regarding the design
of instruments for magnetic resonance.

On the basis of the proposed algorithm model, we have implemented in Fortran code two
different algorithms.

Algorithm 1. The point xk+1 produced at Step 5 is set equal to x̃k+1, therefore, either
xk+1 = xk or xk+1 = xk + αkei (xk − αkei ), where i ∈ {1, . . . , n}.

Algorithm 2. It tries to produce the point xk+1 at Step 5 by using an approximation scheme.

Now we describe more in detail the choices made in these implementations.

5.1. Choice of parameters

The parameters which appear in the algorithm model have been set as follows.

γ = 10−6 δ = 0.25 θ = 0.5 α̃i
0 = 0.5 i = 1, . . . , n.
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We note that we have not performed an extensive empirical tuning of the parameters of the
algorithm. We have adapted choices usually adopted in linesearch techniques of gradient-
based algorithms.

5.2. Approximation scheme used in Algorithm 2

In Algorithm 2 we have made an initial attempt to exploit the information on the objective
function obtained at the previous iterations in order to produce a “better” point xk+1 with
respect to x̃k+1. In particular, every n iterations, we construct (when the algorithm has
produced a sufficient number of points “close” to xk) a simple quadratic model

q(x) = 1

2
xT Qx + cT x + b

of the objective function. The N = n(n + 1)/2 + n + 1 free parameters of the model are
determined by minimizing the error

M∑
j=1

(q(x j ) − f (x j ))
2 (53)

being M > 0 and x1, . . . , xM the last M points where f has been evaluated and such that

l̃k ≤ x j ≤ ũk,

with

l̃ i
k = max

{
li , xi

k − 100α̃i
k

}
i = 1, . . . , n

ũi
k = max

{
ui , xi

k + 100α̃i
k

}
i = 1, . . . , n.

Then, we apply a minimization method for computing a stationary point of the defined
quadratic problem

min
l̃≤x≤ũ

q(x) (54)

and the obtained point is accepted if it produces a reduction of f . We note that the box [l̃, ũ]
has the role of selecting points which are not too far from the current point xk .

In our tests we have chosen M = N + 5 and we have used the routines F04JAF and
E04NAF of NAG library to solve, respectively, the linear least squares problem (53) and
the box constrained quadratic problem (54).

5.3. Stopping criterion

Since the definition of an efficient stopping criterion is out of the scope of the work, we
have adapted the same approach proposed in [3]. Let f0 be the value of f at the starting
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point x0 and f ∗ be the best known function value. Then we introduce the quotient

qk = f (xk) − f ∗

f0 − f ∗ ,

which can be considered a measure of the speed of convergence and we have stopped an
algorithm whenever

qk ≤ ε, (55)

where ε > 0 is a prefixed value. By using different values of ε we can have an idea on
the efficiency of an algorithm. However, in some test problems the global minimum is not
the unique stationary point. Therefore, an algorithm could generate a sequence converging
towards a stationary point x̄ , with f (x̄) > f ∗, and could never satisfy the criterion (55). To
tackle this possible occurrence, we have introduced also the following stopping criterion

max
i=1,...,n

{
α̃i

k

} ≤ 10−5. (56)

Finally, we say that an algorithm has failed when it has performed a number Nmax = 1000
of function evaluations without satisfying any of the two the stopping criteria.

5.4. Numerical experience

We have tested Algorithms 1 and 2 on the set of standard problems with three different
values of ε in criterion (55), namely ε = 10−1, ε = 10−3, ε = 10−6. The complete results
are reported in [9]. Here we describe some summaries of these results. In the following table
we report the total number of function evaluations needed to solve the problems where both
the algorithms have been able to satisfy criterion (55), the total number of failures and the
total number of stops due to criterion (56).

From the results of Table 1 we can note that for ε = 10−1 both the algorithms have been
able to solve all the test problems. For ε = 10−3 most of the test problems are still solved
by the two algorithms. Whereas the case ε = 10−6 points out the utility of approximation
techniques in a derivative-free algorithm. In fact, when the degree of required precision
is high, it seems to be necessary to exploit as much as possible the information on the

Table 1. Cumulative results.

Total n f No. of failures No. of stops

ε = 10−1 Alg. 1 2045 0 1

Alg. 2 1099 0 1

ε = 10−3 Alg. 1 3556 5 1

Alg. 2 1974 3 2

ε = 10−6 Alg. 1 3375 10 5

Alg. 2 1590 6 5
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Table 2. Number of WINS.

No. of wins in terms of n f No. of balances

ε = 10−1 Alg. 1 0 34

Alg. 2 6 34

ε = 10−3 Alg. 1 3 22

Alg. 2 10 22

ε = 10−6 Alg. 1 4 14

Alg. 2 7 14

objective function obtained during the iterations of the algorithm. From Table 1 we can also
note that the simple approximation scheme used in Algorithm 2 has allowed us a significant
computational saving in terms of number of function evaluations.

Then we have analysed more in detail the behaviour of Algorithms 1 and 2. In particular,
we say that an algorithm wins if the number of function evaluations required to solve a test
problem is smaller or equal to the 95% of the number required by the other algorithm. In
Table 2 we report the total number of wins.

Table 2 shows that in many solved problems the performances of the two algorithms are
comparable and hence, that Algorithm 2 outperforms Algorithm 1 only in few problems.
However, taking into account also the results of Table 1, we can conclude that in such
problems the improvement due to the use of an approximation is considerable.

In order to have a first idea on the practical interest of the proposed approach, we have
compared Algorithm 2 with a method using finite-differences gradients. As it is well known,
methods of this class are very efficient in absence of noise. Therefore, the comparison is an
hard test for Algorithm 2 which is a direct search method, namely a method which does not
try to approximate explicitly the first order derivatives. In particular, we have used E04UCF
routine of NAG library, which is a sequential quadratic programming method. Similarly to
Algorithm 2 we have stopped the NAG routine whenever (55) has been satisfied (also in
this case we have used three different values of ε: 10−1, 10−3, 10−6). In some runs E04UCF
routine was terminated by its stopping criterion and the vector returned x̄ was a stationary
point such that f (x̄) > f ∗. In two test problems, E04UCF was unable to produce a point
different from the starting point. We have considered these cases as failures of E04UCF.
The complete results regarding E04UCF are reported in [9].

Here, for brevity’s sake, we report a summary of the comparisons between Algorithm 2
and E04UCF (in Tables 3 and 4). In particular, in Table 3 we report the total number of
function evaluations needed to solve the problems where both the Algorithm 2 and the
considered NAG routine have been able to satisfy criterion (55), the total number of failures
and the total number of stops due to criterion (56) for Algorithm 2, and to the default
stopping criterion for the NAG routine. In Table 4 we show the total number of wins in
terms of number of function evaluations.

From the results of Table 3, we can note that for ε = 10−1 Algorithm 2 outperforms
E04UCF. For ε = 10−3 it is still competitive in terms of number of function evaluations with
E04UCF and the two algorithms are comparable in terms of failures. When ε = 10−6, the
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Table 3. Cumulative results.

Total n f No. of failures No. of stops

ε = 10−1 Alg. 2 1069 0 1

E04UCF 1601 2 1

ε = 10−3 Alg. 2 1989 3 2

E04UCF 2052 2 4

ε = 10−6 Alg. 2 2381 6 5

E04UCF 2195 2 4

Table 4. Number of WINS.

No. of wins in terms of n f No. of balances

ε = 10−1 Alg. 2 29 1

E04UCF 8 1

ε = 10−3 Alg. 2 21 1

E04UCF 10 1

ε = 10−6 Alg. 2 15 0

E04UCF 11 0

behaviour of Algorithm 2 is comparable with the one of E04UCF in terms of number of func-
tion evaluations. However, E04UCF is able to solve a (slightly) larger number of problems.

The preceding results, although far from being exhaustive, show a satisfactory behaviour
of Algorithm 2 compared with a method using finite-differences derivatives. We recall that
methods of this kind are efficient in the case that the objective function values are not
affected by any noise, but they are not considered reliable for solving noisy problems. In
fact, the behaviour of methods using finite-differences derivatives deteriorates also with a
small noise. In particular, we have repeated the tests by considering function values given by

f̃ (x) = f (x)(1 + η), η ∈ N (0, σ 2),

where N (0, σ 2) denotes a Gaussian distributed random number with zero mean and vari-
ance σ 2 = 10−9. We note that the convergence analysis developed in Section 4 holds for
bounded noise, while the one considered is unbounded. However, due to the small value
of the variance, the noise can be considered bounded in practice. We have obtained the
following results.

• Algorithm 2: for the three values of ε, the number of failures is not changed with respect
to the noiseless case.

• E04UCF routine:

– for ε = 10−1 the number of failures changes from 2 to 27;
– for ε = 10−3 the number of failures changes from 2 to 32;
– for ε = 10−6 the number of failures changes from 2 to 32.
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5.5. A real design problem

We consider a real problem arising from an application [13] which regards the optimal
design of apparati for magnetic resonance.

The application deals with the construction of apparati with reduced sizes to be used for
clinical analysis of peripheral regions of the body. These apparati are based on resistive
magnets that can be manufactured at very low cost. However, they require a good magnetic
field uniformity in a large part of their volume, and the reduced sizes make it difficult to
obtain this field uniformity.

In particular, the magnetic field is generated by four currents: I1, I2, I3, I4. The required
field is B0 and it must be as uniform as possible in a spherical region � at the center of the
magnet. The vector of currents is denoted by I = (I1, I2, I3, I4)

T and the z component of
the magnetic field generated in a point r j by Bz(I ; r j ). More formally, the problem is

min
s.t. 0≤I≤U

f (I ) =
Np∑
j=1

[Bz(I ; r j ) − B0]2 (57)

The lower bounds (0 ≤ I ) are imposed because the currents values must have the same sign
for reasons related to the construction of the magnet. The upper bounds (I ≤ U ) depend
on the allowed power dissipation.

We note that, for each r j , with j = 1, . . . , Np, the function Bz(.; r j ) : R4 → R is not
known analytically, but for each I ∈ R4 the value Bz(I ; r J ) can be directly measured by a
Gaussmeter. However, the evaluation of the objective function is not expensive.

In [13], neural models have been defined for approximating the functions Bz(.; r j ), with
j = 1, . . . , Np, by using a massive data set generated “offline”. Then, a gradient-based
method has been applied to problem (57), where the terms Bz(I ; r j ) have been replaced by
the analytical neural model determined.

In practice some parameters characterizing the magnet will change over the time, and
hence, the field uniformity obtained by the procedure proposed in [13] can become un-
acceptable. In this case, an “online” procedure is necessary for recomputing quickly the
vector of currents starting from the currents previously determined “offline”. This proce-
dure should be able to solve problem (57) by using direct measurements for computing the
values Bz(I ; r J ). Since the objective function values will be affected by an amount of noise
(due to the direct measurements), the use of a method based on finite-differences gradients
will be impractical, while the adoption of a derivative-free method appears suitable.

In order to evaluate the potentialities of this approach, we have applied Algorithm 2 to
problem (57), where for each feasible vector I , the values Bz(I ; r j ) are determined by a
simulation program. In particular, the stopping criterion (55) is well suited for this class
of applications. In fact, the value f ∗ can correspond to an acceptable value of the field
uniformity. Starting from a vector of initial currents such that f0 = 11.986, assuming
f ∗ = 0.049, we have used three different values of ε in the stopping criterion, and we have
obtained the following results (where k and nf are, respectively, the number of iterations
and the number of function evaluations required to satisfy the stopping criterion (55), while
fk is the objective function attained).
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ε = 10−1 k = 32 n f = 102 fk = 0.067

ε = 10−3 k = 37 n f = 120 fk = 0.061

ε = 10−6 k = 377 n f = 1060 fk = 0.050

To examine more in detail the behaviour of Algorithm 2, we also report some intermediate
results. The results show the practicability of using Algorithm 2 to update the current values.

k 0 5 10 20 50 100 200 377

n f 1 31 45 73 156 293 573 1060

fk 11.9869 0.4751 0.2203 0.1237 0.05430 0.0515 0.0507 0.0500

In fact Algorithm 2 has been able to reobtain a good uniform field by performing a limited
number of function evaluations.
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