
24 April 2024

Global convergence technique for the Newton method with periodic Hessian evaluation / F. LAMPARIELLO;
M. SCIANDRONE. - In: JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS. - ISSN 0022-3239. -
STAMPA. - 111:(2001), pp. 341-358.

Original Citation:

Global convergence technique for the Newton method with periodic
Hessian evaluation.

Publisher:

Terms of use:

Publisher copyright claim:

(Article begins on next page)

La pubblicazione è resa disponibile sotto le norme e i termini della licenza di deposito, secondo quanto
stabilito dalla Policy per l'accesso aperto dell'Università degli Studi di Firenze
(https://www.sba.unifi.it/upload/policy-oa-2016-1.pdf)

Availability:
This version is available at: 2158/256060 since:

Plenum Press:Book Customer Service, 233 Spring Street:New York, NY 10013:(212)620-8471, (212)620-

Questa è la Versione finale referata (Post print/Accepted manuscript) della seguente pubblicazione:

FLORE
Repository istituzionale dell'Università degli Studi

di Firenze

Open Access



JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS: Vol. 111, No. 2, pp. 341–358, November 2001 ( 2001)

Global Convergence Technique for the Newton
Method with Periodic Hessian Evaluation1

F. LAMPARIELLO
2

AND M. SCIANDRONE
2

Communicated by O. L. Mangasarian

Abstract. The problem of globalizing the Newton method when the
actual Hessian matrix is not used at every iteration is considered. A
stabilization technique is studied that employs a new line search strategy
for ensuring the global convergence under mild assumptions. Moreover,
an implementable algorithmic scheme is proposed, where the evaluation
of the second derivatives is conditioned to the behavior of the algorithm
during the minimization process and the local convexity properties of
the objective function. This is done in order to obtain a significant com-
putational saving, while keeping acceptable the unavoidable degra-
dation in convergence speed. The numerical results reported indicate
that the method described may be employed advantageously in all appli-
cations where the computation of the Hessian matrix is highly time
consuming.

Key Words. Unconstrained optimization, Newton-type methods, per-
iodic Hessian evaluation, global and superlinear convergence, compu-
tational savings.

1. Introduction

We consider the unconstrained minimization problem

min
x ∈ R n

f (x), (1)

where f: R n→R. We assume that both the gradient g(x) and the Hessian
matrix H(x) of f exist and are continuous on Rn.

1The authors are indebted to Prof. Luigi Grippo, Dipartimento di Informatica e Sistemistica,
University of Rome—La Sapienza, for helpful advice and suggestions.

2Researcher, Istituto di Analisi dei Sistemi ed Informatica, National Research Council, Rome,
Italy.

341
0022-3239�01�1100-0341$19.50�0  2001 Plenum Publishing Corporation



JOTA: VOL. 111, NO. 2, NOVEMBER 2001342

As is well known, the Newton method for determining a local solution
of problem (1) is defined by the iteration

xkC1GxkAH(xk)
−1g(xk), kG0, 1, . . . ,

provided that H(xk) is nonsingular.
Because of its fast rate of local convergence, typically quadratic, several

strategies have been devised for globalizing the Newton method, i.e. , for
forcing convergence from poor starting points into a neighborhood of a
local minimizer. Among them, well-known approaches are the line search
and trust region methods, which lead to modifications of the pure Newton
iteration that represent some of the most reliable and powerful methods for
solving unconstrained optimization problems.

In the design of practical implementations of the Newton method, the
need for the Hessian matrix represents the main drawback, since the explicit
evaluation of the second-order derivatives is sometimes an expensive process
requiring excessive computation time. For this reason, the possibility has
been considered in the literature of defining a Newton-type method that
avoids the Hessian evaluation at every iteration.

In particular, let us consider the following iterative scheme:

xkC1GxkAH(xk)
−1g(xk)

AH(xk)
−1g(xkAH(xk)

−1g(xk)), k G 0, 1, . . . , (2)

where a Newton step is followed by another Newton step calculated using
the ‘‘old’’ Hessian matrix.

It has been shown (Ref. 1) that, if f is twice Lipschitz continuously
differentiable, the combined iteration (2) converges locally with at least
cubic convergence rate.

The extension of (2) to the case where a finite number m¤1 of approxi-
mated Newton steps (i.e. , calculated using the same Hessian matrix) are
composed with the initial Newton step is known as the Shamanskii modifi-
cation (Refs. 2–4) of the Newton method,

xkC1GxkAH(xk)
−1g(xk)

AH(xk)
−1 ∑

m

jG1

g(xkCdj (xk)), kG0, 1, . . . , (3)

where

d1(xk)G−H(xk)
−1g(xk),

dj (xk)GdjA1(xk)AH(xk)
−1g(xkCdjA1(xk)), jG2, . . . , m.

It has been shown (Ref. 1) that even the iterate (3) converges locally and
has convergence of order mC2.



JOTA: VOL. 111, NO. 2, NOVEMBER 2001 343

This modification of the Newton method may be considerably more
efficient computationally than other Newton-type iterative schemes, since
the Hessian matrix is recomputed only every mC1 steps of the total iter-
ations. This reduction in the computational burden is achieved obviously at
the expense of a degradation in speed of convergence, which however may
be small or acceptable at any rate. Therefore, the use of this strategy may
be advantageous in all applications where the computation of the second-
order derivatives is very expensive.

As far as we are aware, techniques for ensuring the global convergence
of the Shamanskii modification of the Newton method have not yet been
studied.

In this paper, by adopting the line search approach, we present a stabil-
ization technique for the Shamanskii method, that uses a new line search
algorithm for ensuring the convergence under mild assumptions. We prove
that this line search strategy allows one to obtain superlinear convergence
rate. Then, with the aim of keeping the overall computational cost as small
as possible, we propose an implementable algorithmic scheme, where the
reevaluation of the Hessian matrix is decided in an adaptive manner, i.e.,
on the basis of the behavior of the algorithm during the minimization pro-
cess and of the local convexity properties of the objective function. Finally,
we report the numerical results obtained by solving a set of standard test
problems and those relative to a specific application, which is the solution
of neural network training problems.

2. Stabilization Algorithm for the Shamanskii Method

We consider the sequence of points generated by performing a line
search along every direction defined by the Shamanskii method (3). In order
to consider these points explicitly, we adopt the notation used in Ref. 3, i.e.,
the iterative scheme

xkC1GxkAα kDkg(xk), kG0, 1, . . . , (4)

where

DkGDipCjGĤ(xip)
−1, jG0, 1, . . . , pA1 and iG0, 1, . . . .

The matrix Ĥ(xip) denotes the Hessian or a suitable modification of it, which
is recomputed every p iterations, and the stepsize α k along the search direc-
tion dkG−Dkg(xk) is computed by means of the line search algorithm
described later.



JOTA: VOL. 111, NO. 2, NOVEMBER 2001344

As regards dk , we assume obviously that

g(xk)
TdkF0, for all k.

Moreover, denoting by KN the subset of iterates where the Hessian matrix
is computed, we assume that:

(a) for all k ∈ KNG{ip}, iG0, 1, . . . ,

��dk ��¤σ(�g(xk)
Tdk ����dk ��),

where σ : R+→R+ is a forcing function, i.e. , such that
limk→S σ(tk)G0 implies limk→StkG0;

(b) for every infinite subset K ⊆ KN ,

lim
k→S, k ∈ K

[�g(xk)
Tdk ����dk ��]G0 implies lim

k→S, k ∈ K
��g(xk) ��G0.

Essentially, these conditions impose that the subsequence {dk}k ∈ KN be gradi-
ent-related to {xk}k ∈ KN . In particular, condition (a) holds by assuming some
reasonable boundedness condition on the matrix Ĥ(xip)GD−1

k . In this case,
since D−1

k is not changed outside KN , condition (a) imposed on KN will also
be satisfied for all k. In order to ensure that condition (b) be satisfied, it is
possible to employ a modification of the Cholesky factorization of the Hess-
ian matrix. However, to obtain that the global convergence conditions be
consistent with those of the superlinear convergence rate, the Hessian matrix
should not be modified in a neighborhood of a strong local minimum. This
can be achieved, for instance, by means of the modified Cholesky factoriz-
ation described in Ref. 3. By this factorization process, the factors are
related to the gradient at the current point xip in such a way that either
Ĥ(xip) is uniformly nonsingular or, whenever it tends to become singular,
��g(xip) ��→0. Therefore, condition (b) is satisfied. Note that this does not
imply that it holds outside KN , i.e., that the whole sequence {dk} is gradient-
related to {xk}. Indeed, if the subsequence {xk}k ∈ KN converges toward a
limit point where the Hessian is singular, the modification performed for
k ∈ KN does not ensure that the modified Hessian will tend to a positive-
definite matrix.

Then, under conditions (a) and (b), if the stepsize α k is computed by
means of a standard line search for ensuring

�g(xk)
Tdk ����dk ��→0,

we have that

��g(xk) ��→0

only for subsequences in KN.



JOTA: VOL. 111, NO. 2, NOVEMBER 2001 345

We remark that a possible way for obtaining a stronger global conver-
gence result together with the superlinear convergence rate is to modify
D−1

k outside KN in such a way that condition (b) holds for all k. However,
this would reduce the advantage of computing the Hessian and its factoriz-
ation only periodically. Therefore, we prefer to adopt a different approach,
which takes into account the following result.

Proposition 2.1. Let {xk} be a sequence generated by the scheme (4).
Assume that

lim
k→S, k ∈ KN

[�g(xk)
Tdk ����dk ��]G0 (5)

and that

lim
k→S

��xkC1Axk ��G0. (6)

Then, every limit point of {xk} is a stationary point of f.

Proof. By contradiction, let us assume that there exists an infinite
subset K ⊆ {0, 1, . . .} such that {xk}k ∈ K→ x̂ and

��g(x̂) ��¤ηH0. (7)

For each k ∈ K, let l (k) ∈ [0, pA1] be the integer such that kCl (k) ∈ KN .
Then, since

��xkCl(k)Axk ��⁄ ��xkCl(k)AxkCl(k)A1��C· · ·C��xkC1Axk ��,

by (6) we have

lim
k→S, k ∈ K

��xkCl(k)Axk ��G0,

which implies

lim
k→S, k ∈ K

xkCl(k)Gx̂. (8)

From assumption (5), we have

lim
k→S, k ∈ K

[�g(xkCl(k))
TdkCl(k)����dkCl(k)��]G0,

so that, taking into account condition (b), by (8) and the continuity of g,
we obtain ��g(x̂) ��G0, which contradicts (7). �



JOTA: VOL. 111, NO. 2, NOVEMBER 2001346

On the basis of this result, the global convergence of the scheme (4)
together with a superlinear convergence rate can be obtained by computing
the stepsize α k in such a way that the following properties are ensured:

(i) f (xkC1)⁄ f (xk);
(ii) �g(xk)

Tdk ����dk ��→0;
(iii) ��xkC1Axk ��→0;
(iv) the stepsize α kG1 is accepted for k sufficiently large.

We observe that property (iii) would not be guaranteed by means of
an Armijo-type line search technique. Property (iii) could be ensured by
using line search techniques studied in the context of derivative-free
methods (Refs. 5–6). These are based on replacing the Armijo acceptance
rule with a condition of the form

f (xkCα kdk)⁄ f (xk)Aγ α2
k ��dk ��2, γH0,

that does not require gradient information. However, the use of a rule of
this kind would not guarantee property (iv), and hence the superlinear con-
vergence rate. In order to ensure all the properties (i)–(iv), we propose the
following line search technique.

Line Search Algorithm (Algorithm LS)

Data. γ ∈ (0, 1�2), δ∈ (0, 1).
Step 0. Set iG0.
Step 1. Set αGδi. If

f (xkCα dk)⁄ f (xk)Aγ α3��dk ��3, (9)

set α kGα and stop.
Step 2. Set iGiC1, and go to Step 1.

It can be shown easily that Algorithm LS terminates in a finite number
of steps.

Proposition 2.2. There exists a finite integer i such that α kGδi satisfies
the condition (9).

Proof. By contradiction, let us assume that, for every i¤0, we have

f (xkCδidk)Hf (xk)Aγ δ3i��dk ��3.

By the mean-value theorem,

f (xkCδi dk)Gf (xk)Cδig(ξ )Tdk ,



JOTA: VOL. 111, NO. 2, NOVEMBER 2001 347

where

ξGxkCθδidk , with θ∈ (0, 1).

Then, we have

g(ξ )TdkH−γ δ2i��dk ��3,

and taking limits for i→S, so that δi→0 and ξ→xk , we obtain

g(xk)
Tdk¤0,

which contradicts the descent property of dk , i.e., g(xk)
TdkF0. �

Now, we prove the following convergence results.

Proposition 2.3. Let {xk} be the sequence generated by the scheme
(4), where the stepsize is computed by means of Algorithm LS, and assume
that {xk} is bounded. Then:

(i) the sequence { f (xk)} converges;
(ii) limk→S��xkC1Axk ��G0;
(iii) limk→S[�g(xk)

Tdk ����dk ��]G0;
(iv) every limit point of {xk} is a stationary point of f.

Proof. Let x̄ be any limit point of the sequence {xk}. Since { f (xk)} is
monotonically decreasing, { f (xk)} either converges to a finite value or
diverges to AS. Since f is continuous, f (x̄) is a limit point of { f (xk)} and
(i) is proved.

By (i) and condition (9), we have

lim
k→S

α k ��dk ��G0, (10)

which implies (ii).
To prove (iii), let us assume by contradiction that there exists an infinite

subset K ⊆ {0, 1, . . .} such that, since g(xk)
TdkF0 for all k,

lim
k→S, k ∈ K

[g(xk)
Tdk���dk ��]G−ηF0. (11)

Taking into account that {xk} is bounded, by relabeling the subset K if
necessary, there exist vectors x̂, d̂ ∈ R n such that

{xk}k ∈ K→ x̂, {dk���dk ��}k ∈ K→ d̂,

and by (11) and the continuity of g, we have

g(x̂)Td̂G−ηF0. (12)



JOTA: VOL. 111, NO. 2, NOVEMBER 2001348

From (10), we have that

either lim
k→S

��dk ��G0 or lim
k→S

α kG0.

In the first case, condition (a) implies

{�g(xk)
Tdk ����dk ��}k ∈ KN→0,

which together with (ii), by Proposition 2.1, gives g(x̂)G0, and this contra-
dicts (12).

In the second case, by the instructions of Algorithm LS we have, for
sufficiently large k ∈ K,

f (xkC(α k�δ)dk)Hf (xk)Aγ (α k�δ)3��dk ��3,

and by the mean-value theorem,

g(xkCθk (α k�δ)dk)
Tdk���dk ��H−γ (α k�δ)2��dk ��2,

with θk ∈ (0, 1). Taking limits for k→S, k ∈ K, since α k ��dk ��→0, we have
g(x̂)Td̂¤0, which contradicts (12).

Finally, (iv) follows from (ii), (iii), and Proposition 2.1. �

Proposition 2.4. Let {xk} be the sequence generated by the scheme
(4), where the stepsize is computed by means of Algorithm LS. Assume that
{xk} converges to x*, where g(x*)G0 and H(x*) is positive definite, and
that

lim
k→S

[�� (DkAH(x*)−1)g(xk) �����g(xk) ��]G0. (13)

Then, there exists an integer kr ¤0 such that, for kHkr , α kG1 and the
sequence {xk} converges superlinearly.

Proof. It is sufficient to show that, for k large enough, a stepsize α
satisfying the Armijo rule with initial unit stepsize and γF1�2, i.e.,
α ∈ [0, 1] such that

f (xkCα dk)⁄ f (xk)Aγ α�g(xk)
Tdk �, (14)

also satisfies Inequality (9), so that the result follows directly from Prop-
osition 1.15 of Ref. 3.

Let us consider the positive value of α for which the right-hand sides
of (9) and (14) are equal, i.e., the value

α̂ kG(�g(xk)
Tdk ����dk ��3)1�2,



JOTA: VOL. 111, NO. 2, NOVEMBER 2001 349

so that, for any α ∈ [0, α̂ k ], we have

f (xk)Aγ α�g(xk)
Tdk �⁄ f (xk)Aγ α3��dk ��3;

hence, a stepsize α k⁄ α̂ k satisfying the Armijo rule (14) will satisfy even
Inequality (9). Therefore, we have to show only that, for k sufficiently large,
[0, 1] ⊂ [0, α̂ k ]. Since

g(xk)G−Dk
−1dk ,

we have

α̂ kG(�dT
kD

−1
k dk ����dk ��3)1�2¤ (λ m (D−1

k )���dk ��)1�2,

where λ m (D−1
k ) is the smallest eigenvalue of D−1

k , and then, as ��dk ��→0, there
exists an index kr such that, for k¤kr , we have α̂ kH1. �

We observe that, by assuming the compactness of the level set

ΩoG{x ∈ R n: f (x)⁄ f (xo)}

for a given xo ∈ R n, and using a modified Cholesky factorization for
obtaining a positive-definite approximation Ĥ(xk) of H(xk), the assumptions
(a) and (b) on the search direction dk are satisfied. Moreover, for each point
x* for which g(x*)G0 and H(x*) is positive definite, there exists a scalar (

such that, if ��xkAx*��F(, then DkGH(xk)
−1; i.e., the Hessian matrix will

not be modified by the Cholesky factorization of Ref. 3 and (13) is satisfied.

3. Adaptive Implementation Algorithm

In order to implement the iterative scheme (4), we have to choose the
integer p, i.e., to decide how many iterations will be performed without
recomputing the second-order derivatives. It is evident that, in general,
when p is taken small, the computational savings could be negligible with
respect to the case where pG1 that corresponds to an implementation of
the Newton method. On the other hand, with a large p, it is to be expected
that the computational advantage could be impaired or canceled by the
greater slowness of the minimization process. Obviously, these effects will
be more or less significant depending on the problem dimensionality and
the specific structure of the objective function.

Therefore, it appears reasonable to consider p as an upper bound by
taking a large value for it, say pG10, and to introduce some rule for estab-
lishing, at each iteration, whether or not it can be advantageous to keep the
old Hessian matrix, on the basis of the behavior of the algorithm in the



JOTA: VOL. 111, NO. 2, NOVEMBER 2001350

preceding iteration and the local convexity properties of the objective func-
tion. Thus, the scheme proposed here is adaptive in the sense that the Hess-
ian is recomputed at least (instead of only) every p iterations and whenever
the use of the old matrix does not appear advisable. In particular, a reason-
able strategy could be that of recomputing the Hessian matrix at a given
point, if the stepsize produced by the line search algorithm is relatively small
and, at the same time, the objective function has not been reduced
significantly.

We note that, in Ref. 7, an algorithm is described that implements,
with the line search approach, the iterative scheme (2), where the approxi-
mated Newton step is taken or ignored depending on whether or not it
produces a reasonable reduction in the function value.

Another element that can be usefully exploited as a further Hessian
updating criterion is the amount of perturbation on the true Hessian H(xk)
needed to obtain a positive-definite approximation ensuring the descent
property of the search direction.

We refer to the modified Cholesky factorization of a matrix described
in Ref. 8. As known, any nBn symmetric positive-definite matrix H may
be expressed as the Cholesky factorization LΩLT, where L is unit lower-
triangular and Ω is positive diagonal with elements ωj. We recall that,
following the approach of Ref. 8, the Cholesky factors L and Ω can be
computed in such a way that, for jG1, . . . , n,

ω j¤(, �lij1ω j �⁄β, iHj,

where ( and β are positive numbers suitably chosen. In particular, the
elements of Ω are given by

ω jGmax{(, �ν j �, (θ j�β)2},

where

ν1Gh11 , ν jGhjjA ∑
jA1

sG1

l2jsωs , for jG2, . . . , n,

θ jG max
jC1⁄ i⁄n

�hijA ∑
jA1

sG1

l js lisωs �, for jG1, . . . , nA1 and θnG0.

Then, we assume that the matrix H has been perturbed significantly using
the modified Cholesky factorization if, for at least an index j ∈ {1, . . . , n}, it
results that

(θ j�β)2¤ην j , (15)

with ηH1, since in this case the element ωj will be considerably different
from νj .



JOTA: VOL. 111, NO. 2, NOVEMBER 2001 351

This test, that allows us to quantify the alteration of the true Hessian,
combined with that on the behavior of the algorithm in the previous iterate,
is used in the following algorithmic scheme.

Adaptive Stabilization Algorithm (Algorithm AS)

Data. xo ∈ R n, ηH1, cα ∈ (0, 1], cf ∈ (0, 1), pH1.

Step 0. Set kG0, iG0, and uG0.

Step 1. Compute g(xk). If ��g(xk) ��⁄10−6, stop.

Step 2. If k≠ ip and uG0, go to Step 3. Otherwise, compute H(xk) and
construct its positive-definite approximation Ĥ(xk) by apply-
ing the modified Cholesky factorization of Ref. 8. Then, set
uG1 or uG0, depending on whether or not, according to (15),
Ĥ(xk) is too different from H(xk). Moreover, if kGip, set
iGiC1. Go to Step 4.

Step 3. Set Ĥ(xk)GĤ(xkA1).

Step 4. Compute the search direction dk by solving the system
Ĥ(xk)dkG−g(xk), and compute the stepsize α k by means of
Algorithm LS. Set xkC1GxkCα kdk .

Step 5. If

α k¤cα or [ f (xk)Af (xkC1)]�� f (xk) �¤cf ,

set uG0. Set kGkC1 and go to Step 1.

Note that by the instruction at Step 5, if the reduction of the function
value or the stepsize is judged to be sufficiently large, the same Hessian
approximation matrix is used in the subsequent iteration, provided that
k≠ ip, even if it represents a poor representation of the true Hessian.

We report here the numerical results obtained by applying Algorithm
AS to a set of standard test problems (Ref. 9), in order to assess the extent
to which we can expect a computational advantage from the proposed
approach. The algorithm has been coded in double precision Fortran 77;
all the runs were carried out on an IBM RISC System�6000 375. For the
parameters in Algorithm AS, we have taken the values

η G1.5, cα G0.1, cfG0.25, pG10.

As regards the parameters in Algorithm LS, we have chosen the values

δG0.5, γ G10−9;

the low value of γ is justified by the cubic exponent in condition (9).
For each problem of dimension n, we report the numbers nf , ng , nh of

function, gradient, and Hessian evaluations, the CPU time in seconds, and



JOTA: VOL. 111, NO. 2, NOVEMBER 2001352

Table 1. Comparison of the results obtained by the Newton method (Algorithm
AS with pG1) and Algorithm AS with pG10 (first and second columns).

Function n nf ng nh Time f *

Rosenbrock 100 170 2412 149 871 148 105 2.5 2.6 3.98 1.E−15
200 315 4735 285 1681 284 204 37.3 33.1 3.98 1.E−16
400 610 9978 561 3361 560 408 3190.2 2451.3 3.98 3.98

Variably 100 37 117 32 112 31 12 0.4 0.2 0.E−00 5.E−23
dimensioned 200 53 151 46 144 45 15 5.0 2.1 0.E−00 1.E−21

400 1042 1182 1032 1172 1031 118 5735.7 720.0 1.E−27 0.E−00

Oren 100 31 97 26 92 25 10 0.3 0.2 6.E−11 3.E−11
200 33 103 28 98 27 10 2.8 1.3 4.E−11 6.E−11
400 35 109 30 104 29 11 155.5 65.2 2.E−11 3.E−11

Trigonometric 100 228 311 30 48 29 20 4.0 4.6 4.E−17 2.E−07
200 486 548 55 67 54 28 59.2 51.8 1.E−17 8.E−11
400 747 836 73 95 72 52 3444.1 3476.5 2.E−19 2.E−14

Penalty I 100 44 338 35 163 34 17 0.6 0.4 9.E−04 9.E−04
200 45 297 36 164 35 19 4.7 3.0 2.E−03 2.E−03
400 46 244 38 157 37 16 205.1 97.1 4.E−03 4.E−03

the objective function value f * at the final point reached. In Table 1, these
results are compared with those obtained by means of the corresponding
implementation of the Newton method, i.e. , by applying the same Algo-
rithm AS with pG1. In particular, for each item, the first column refers to
the results obtained by the Newton method, while the second column refers
to those obtained by Algorithm AS with pG10.

We observe first that, as it can be expected, the number of iterations
(given by ngA1), and consequently that nf of function evaluations, is much
greater for pG10 than for pG1. However, the Newton method computes
the Hessian and its factorization at each iteration, while Algorithm AS with
pG10 performs a lower number nh of Hessian evaluations. In the problems
considered, the performance of the adaptive stabilization algorithm, meas-
ured in terms of the overall CPU time, is comparable with that of the New-
ton method for nG100; it becomes better as the problem dimensionality
increases with a considerable computational saving for nG400 in most
cases.

In order to have some indication about the advantage deriving from
the introduction of the adaptive criterion in Algorithm AS, we compare in
Table 2 the results obtained by Algorithm AS ( pG10) with those obtained
by the Shamanskii modification of the Newton method, i.e., by the scheme
(4), where we have taken pG3.

We note that, using the adaptive Algorithm AS, we have again a
significant computational time saving for nG400 in all cases with the excep-
tion of the trigonometric function minimization, where the Hessian is



JOTA: VOL. 111, NO. 2, NOVEMBER 2001 353

Table 2. Comparison of the results obtained by the Shamanskii method with
pG3 and Algorithm AS with pG10 (first and second columns).

Function n nf ng nh Time f *

Rosenbrock 100 533 2412 347 871 116 105 2.2 2.6 3.98 1.E−15
200 983 4735 662 1681 221 204 31.1 33.1 3.98 1.E−16
400 1829 9978 1274 3361 425 408 2516.5 2451.3 3.98 3.98

Variably 100 61 117 56 112 19 12 0.3 0.2 0.E−00 5.E−23
dimensioned 200 81 151 74 144 25 15 3.0 2.1 1.E−19 1.E−21

400 1080 1182 1070 1172 357 118 2090.0 720.0 0.E−00 0.E−00

Oren 100 50 97 45 92 15 10 0.2 0.2 8.E−11 3.E−11
200 54 103 49 98 16 10 1.8 1.3 5.E−11 6.E−11
400 58 109 53 104 18 11 101.3 65.2 1.E−11 3.E−11

Trigonometric 100 420 311 42 48 14 20 3.7 4.6 3.E−12 2.E−07
200 366 548 58 67 19 28 41.3 51.8 3.E−07 8.E−11
400 258 836 33 95 11 52 1019.0 3476.5 2.E−07 2.E−14

Penalty I 100 98 338 71 163 24 17 0.5 0.4 9.E−04 9.E−04
200 91 297 73 164 24 19 3.4 3.0 2.E−03 2.E−03
400 94 244 74 157 25 16 145.7 97.1 4.E−03 4.E−03

recomputed more frequently than every three iterations. It is worth noting
that, in all the problems considered, the Shamanskii method with pG3 per-
forms better than the Newton method.

Finally, it may be of interest to compare the performance of the line
search strategy proposed here (Algorithm LS) with that of a standard tech-
nique. To this purpose, we have applied Algorithm AS with pG1 and
pG10, where the stepsize is computed by means of the standard Armijo
rule with δG0.5 and γ G10−3. The results obtained for the test problems
considered before were in most cases the same as those reported in Table 1.
In two runs, we obtained slightly greater values of nf , ng , and nh , while in
one case these values were slightly lower. Therefore, it appears that the two
line search strategies are practically equivalent in performance.

The results reported in this section confirm the usefulness of the
approach described for the solution of problems where the computation of
the second-order derivatives turns out to be time-consuming. In Section 4,
we report some results relative to a specific and important application, that
is, the solution of neural network training problems, whose features appear
to be suited for obtaining significant computational advantages.

4. Computational Results in Neural Network Training Problems

The computation of the parameters of a neural network (training
problem) can be formulated as an unconstrained minimization problem. In



JOTA: VOL. 111, NO. 2, NOVEMBER 2001354

particular, a neural network implements a nonlinear input–output mapping
ψ ( · ; w): R ni→R, where w ∈ R n is the vector of network parameters.

Let us consider a given set of data (input–output pairs),

TG{(uj , dj), uj ∈ R ni, dj ∈ R, jG1, . . . , P}.

The training problem can be formulated as follows:

min
w ∈ R n

∑
P

jG1

(djAψ (uj ; w))2Cτ ��w��2, (16)

where the sum measures the degree of success in the approximation of the
output data and the second term (with τH0) is the complexity penalty,
introduced to prevent the network from overfitting the training data; e.g.,
see Ref. 10.

We consider here the class of neural networks known as radial basis
function (RBF) networks, that implements an input-output mapping
ψ : R ni→R of the form

ψ (u; λ 1 , . . . , λ nr , c1 , . . . , cnr)G ∑
nr

iG1

λ iφ(��uAci ��2),

where φ: R+→R+ is a radially symmetric function [among the various poss-
ible choices, we use here the direct multiquadric function (��uAci ��2Cσ2)1�2,
with the shift parameter σG0.1], λ i ∈ R, iG1, . . . , nr , are the weights,
ci ∈ R ni are the RBF centers, and nr is the number of hidden nodes of the
network. Then, with reference to problem (16), the parameter vector
w ∈ R nr(niC1) is composed of the nr scalars λ i and the nr vectors ci.

Note that the problem dimensionality may be very large, depending on
the dimension ni of the input space and the number nr of hidden nodes.
Moreover, the computation of the first-order and second-order derivatives
may result to be time consuming, since the number P of input–output pairs
in the training set T may be very large, so that the structure of the objective
function is composed of the sum of several nonlinear terms. Therefore, by
applying Algorithm AS, we can expect a significant reduction in the overall
computational cost. We observe that, in this kind of applications, the objec-
tive function is characterized by the presence of multidimensional plateaus,
i.e., regions where the slope is simultaneously shallow in multiple dimen-
sions. For this reason, in Algorithm AS, the parameter that controls the
reduction in the function value is set at cfG0.001 and we have used the
stopping criterion ��g��⁄10−5.

We have considered the following two neural network training prob-
lems (Ref. 11).



JOTA: VOL. 111, NO. 2, NOVEMBER 2001 355

4.1. Building Problem. The aim is to predict the electrical energy con-
sumption in a building based on various elements such as the date, time of
day, outside temperature, solar radiation, and so on. The input space dimen-
sion is niG14, the training set consists of PG500 pairs, and the network is
composed of nrG5 hidden nodes, so that the problem dimension is nG75.

4.2. Heart Problem. The task is to predict the heart disease, i.e., to
decide whether at least one of four major vessels is reduced in diameter by
more than 50%. The decision is made based on personal data and results of
various medical examination. The input space dimension is niG35, the
training set consists of PG303 pairs, and the network is composed of
nrG3 hidden nodes, so that the problem dimension is nG108.

We compare in Table 3 the results obtained by Algorithm AS with
pG1 (Newton method) and with pG10, starting from five different initial
points (a, b, c, d, e), obtained by choosing randomly the weights λ i in the
interval [A0.5, 0.5] and the centers ci among the input vectors in T.

We note that the number nh of Hessian evaluations is relatively higher
than that for Hessians recomputed only every pG10 iterations
[nhH(ngA1)�p]. This is due to the presence of the plateau regions and hence
to the inherent ill-conditioning of the Hessian matrix which is perturbed
more frequently by the modified Cholesky factorization. In spite of this fact,
which derives from the specific feature of network training problems, the
computational savings, in terms of the CPU time, are significant for both
problems in all runs. In particular, for the building problem, we have a
mean time value of 4247 sec ( pG10) against 6031 sec ( pG1) with an aver-
age saving of 29.6%; for the heart problem, the mean time values are 2706
sec ( pG10) and 4382 sec ( pG1) with an average saving of 38.2%.

Table 3. Comparison of the results obtained by the Newton method (Algorithm
AS with pG1) and Algorithm AS with pG10 (first and second columns),
starting from five different initial points.

Initial
Problem point nf ng nh Time f *

Building a 8065 9930 550 705 549 333 4700 3065 0.5748 0.5748
b 12577 18278 850 1216 849 585 7272 5435 0.5748 0.5478
c 10017 15174 675 1032 674 474 5775 4404 0.5748 0.5478
d 8886 10941 616 752 615 330 5258 3084 0.5748 0.5478
e 11870 16669 838 1125 837 572 7148 5245 0.5748 0.5478

Heart a 3638 4583 265 373 264 186 3613 2622 5.6909 5.6909
b 3559 4230 245 348 244 157 3346 2227 5.6617 5.6909
c 5406 4121 382 341 381 156 5218 2212 5.6909 5.6909
d 5012 5055 337 366 336 204 4611 2875 5.6617 5.6617
e 5327 7455 375 554 374 252 5124 3595 5.6941 5.6941



JOTA: VOL. 111, NO. 2, NOVEMBER 2001356

Table 4. Comparison of the results obtained by the Shamanskii method with
pG3 and Algorithm AS with pG10 (first and second columns), starting
from five different initial points.

Initial
Problem point nf ng nh Time f *

Building a 17326 9930 1043 705 348 333 3544 3065 0.5748 0.5748
b 21472 18278 1293 1216 431 585 4423 5435 0.5478 0.5478
c 22149 15174 1293 1032 431 474 4585 4404 0.5478 0.5478
d 15485 10941 960 752 320 330 3257 3084 0.5748 0.5478
e 32367 16669 2044 1125 681 572 6901 5245 0.5479 0.5478

Heart a 7436 4583 494 373 165 186 2494 2622 5.6909 5.6909
b 8418 4230 518 348 173 157 2634 2227 5.6617 5.6909
c 9086 4121 604 341 201 156 3039 2212 5.6909 5.6909
d 14593 5055 867 366 289 204 4416 2875 5.6617 5.6617
e 13857 7455 882 554 294 252 4463 3595 5.6941 5.6941

In Table 4, we compare the results obtained by the adaptive Algorithm
AS ( pG10) with those obtained by the Shamanskii method ( pG3). We
note that, in eight runs over ten we have an appreciable saving in compu-
tational time. Thus, these results indicate that the introduction of the adapt-
ive criterion in Algorithm AS is beneficial.

As regards the comparison of the performance of the two line search
strategies (Armijo rule vs Algorithm LS), by applying Algorithm AS with
pG10 we obtained the same results in six runs; the results relative to the
remaining four runs are reported in Table 5. In all these four cases, the
performance of Algorithm AS using Algorithm LS is better than using the
Armijo rule. Although this computational experience is very limited, it
appears that the line search strategy proposed in this paper allows some
computational advantage, at least in the specific application considered.

Table 5. Comparison of the results obtained by Algorithm AS ( pG10) using the
Armijo rule and using Algorithm LS (first and second columns).

Initial
Problem point nf ng nh Time f *

Building a 13354 9930 896 705 521 333 4801 3065 0.5748 0.5748
c 18304 15174 1206 1032 613 474 5755 4404 0.5478 0.5478

Heart a 5308 4583 423 373 230 186 3295 2622 5.6909 5.6909
b 4154 4230 308 348 176 157 2523 2227 5.6617 5.6909



JOTA: VOL. 111, NO. 2, NOVEMBER 2001 357

5. Conclusions

The results given in this paper show that the global convergence of the
Newton method can be enforced even when a finite number of iterations is
performed using the same Hessian matrix, thus avoiding its evaluation at
each step. Moreover, the line search technique proposed here ensures the
superlinear convergence of the stabilization method.

From the numerical results obtained for a set of standard test problems
and from those relative to the specific application of neural network train-
ing, it appears that the adaptive implementation scheme described, where
the Hessian matrix is only periodically evaluated, may allow considerable
computational savings when the calculation of the second-order derivatives
is expensive.

Finally, we observe that the proposed strategy for obtaining significant
computational advantages may be employed in connection with truncated
Newton schemes for solving large scale optimization problems.

References

1. ORTEGA, J. M., and RHEINBOLDT, W. C., Iteratiûe Solution of Nonlinear Equa-
tions in Seûeral Variables, Academic Press, New York, NY, 1970.

2. SHAMANSKII, V. E., On a Modification of Newton’s Method, Ukrainskyi Mate-
matychnyi Zhurnal, Vol. 19, pp. 133–138, 1967 (in Russian).

3. BERTSEKAS, D. P., Constrained Optimization and Lagrange Multiplier Methods,
Academic Press, New York, NY, 1980.

4. KELLEY, C. T., Iteratiûe Methods for Optimization, SIAM, Philadelphia,
Pennsylvania, 1999.

5. DE LEONE, R., GAUDIOSO, M., and GRIPPO, L., Stopping Criteria for Line-
search Methods without Deriûatiûes, Mathematical Programming, Vol. 30,
pp. 285–300, 1984.

6. GRIPPO, L., LAMPARIELLO, F., and LUCIDI, S., Global Conûergence and Stabil-
ization of Unconstrained Methods without Deriûatiûes, Journal of Optimization
Theory and Applications, Vol. 56, pp. 385–406, 1988.

7. WRIGHT, S. J., Primal–Dual Interior-Point Methods, SIAM, Philadelphia,
Pennsylvania, 1997.

8. GILL, P. E., and MURRAY, W., Newton-Type Methods for Unconstrained and
Linearly Constrained Optimization, Mathematical Programming, Vol. 7, pp.
311–350, 1974.

9. MORÉ, J. J., GARBOW, B. S., and HILLSTROM, K. E., Testing Unconstrained
Optimization Software, ACM Transactions on Mathematical Software, Vol. 7,
pp. 17–41, 1981.

10. HAYKIN, S., Neural Networks, 2nd Edition, Prentice-Hall International, Upper
Saddle River, New Jersey, 1999.



JOTA: VOL. 111, NO. 2, NOVEMBER 2001358

11. PRECHELT, L., Proben 1: A Set of Neural Network Benchmark Problems and
Benchmarking Rules, Technical Report 21�94, Fakultät für Informatik, Univer-
sität Karlsruhe, Karlsruhe, Germany, 1994.


