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GLOBALLY CONVERGENT 
BLOCK-COORDINATE TECHNIQUES FOR 

UNCONSTRAINED OPTIMIZATION * 
LUIGI GRIPPO~ and MARC0 SCIANDRONE 

Dipartimento di Informatica e Sistemistica, Universita di Roma 
"La Sapienza", Via Buonarroti 12, 00185 Roma, Italy 

(Received 15 April 1996; Revised 22 June 1997; In finalform 27 February 1998) 

In this paper we define new classes of globally convergent block-coordinate techniques for 
the unconstrained minimization of a continuously differentiable function. More specifi- 
cally, we first describe conceptual models of decomposition algorithms based on the 
interconnection of elementary operations performed on the block components of the 
variable vector. Then we characterize the elementary operations defined through a suitable 
line search or the global minimization in a component subspace. Using these models, we 
establish new results on the convergence of the nonlinear Gauss-Seidel method and we 
prove that this method with a two-block decomposition is globally convergent towards 
stationary points, even in the absence of convexity or uniqueness assumptions. In the 
general case of nonconvex objective function and arbitrary decomposition we define new 
globally convergent line-search-based schemes that may also include partial global 
minimizations with respect to some component. Computational aspects are discussed and, 
in particular, an application to a learning problem in a Radial Basis Function neural 
network is illustrated. 

Keywords: Unconstrained optimization; decomposition; block-coordinate methods; 
nonlinear Gauss-Seidel method 

1 INTRODUCTION 

We consider the problem of minimizing a continuously differentiable 
function j': Rn -+ R by means of block decomposition techniques, 

*This research was supported by Agenzia Spaziale Italians, Rome, Italy 
Corresponding author. 
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588 L. GRIPPO AND M .  SCIANDRONE 

The main motivation for the use of a block decomposition method 
can be that, when some variables are fixed, we often obtain one or more 
subproblems of a special structure in the remaining variables. This can 
be useful in the solution of many optimization problems, especially 
when the structure of the subproblems can be conveniently exploited, by 
using, for instance, parallel optimization techniques. 

One of the best known approaches to variable decomposition is the 
minimization version of the block-nonlinenr Gauss-Seidclmerhod[4,17], 
based on successive global minimizations with respect to each compo- 
nent vector. The convergence of this technique has been studied under 
suitable convexity assumptions onf  (see, for instance, [4]). In the convex 
case, decomposition techniques have also been considered for con- 
strained problems, with reference to the alternating direction method of 
nzulripliers (see, e.g. [4-6,9-1 I ] )  and to projection techniques [14,22]. In 
the special case of the coordinate method with exact line ,vearches, 
convergence has been proved either under pseudoconvexity assump- 
tions on f [25] or under a uniqueness assumption on the global one- 
dimensional minimizer along a line (see, e.g., [2,17,26]), which may 
require strict (generalized) convexity assumptions on j; as a function of 
each component. Moreover, it has been shown in [20], through a set of 
counterexamples, that, when these assumptions are not satisfied, the 
coordinate method with exact searches (and hence the Gauss-Seidel 
method) may not converge towards stationary points, in the sense that 
there are cases in which convergent subsequences are generated with 
gradients bounded away from zero. 

An alternative (but related) approach to variable decomposition is 
that of performing successive searches along descent directions in the 
component subspaces. In this case we can regard the resulting algorithm 
(which is often called hlock coorci'irulte rlescer~f rnefhod) as an ordinary 
descent method with search directions having zeros in certain positions. 
Now the difficulty is that these directions may not b e g r a d i m  rrlcrted[3], 
unless suitable rules are adopted for choosing the current direction. For 
instance, the so-called Gaws-Soutkcl~4 rule [14] consists in choosing a 
direction which is related to the partial gradient of largest norm and 
actually yields a globally convergent (but expensive) technique. In the 
special case of the cyclic coordinate method with inexact line seurclze.~, 
the convergence results are based on the uniform linear independence 
of the search directions and on suitable assumptions on the line 
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BLOCK-COORDINATE TECHNIQUES 589 

searches [17]. Inexact line searches that may avoid the need of evaluating 
the derivatives of the objective function and do not rely on convexity 
assumptions, have been considered in [l ,12,19,21]. In the general case of 
nonconvex objective function and search directions that are related to 
the (block) partial gradients, convergence has been established for 
techniques employing constant stepsizes, under Lipschitz continuity 
conditions on the gradient [4,23]. Under similar assumptions, con- 
vergent algorithms have been also proposed in the context of parallel 
optimization (see, e.g., [4,24]). 

In the present paper, with reference to the general nonconvex case, 
we present additional results for unconstrained decomposition algo- 
rithms and we propose new globally convergent schemes. 

More specifically, we first state sufficient convergence criteria, 
expressed in terms of conditions on the elementary operations per- 
formed on each block component, and of suitable (sequential or paral- 
lel) connection rules. This allows us to simplify the analysis of various 
decomposition schemes, which can be viewed as the interconnection of 
different elementary mappings. 

Then we characterize an elementary operation consisting of an 
inexact line search along a direction in the component subspace, which 
is based on the techniques proposed in [7,12]. The line search mapping 
yields both a constructive device for deriving convergence proofs and 
an effective computational tool. A similar analysis, based on known 
results [4,17] is also performed on the minimization mapping used in the 
Gauss-Seidel method, and the dependency of the stepsize on strict 
convexity assumptions is evidenced. 

On the basis of these results we reconsider the convergence analy- 
sis of the nonlinear Gauss-Seidel method. Under pseudoconvexity 
assumptions on f we extend the results of [25] to the case of a block 
decomposition; moreover, we prove that in case of a two-block decom- 
position, the Gauss-Seidel method is globally convergent towards 
stationary points, even in the absence of any convexity or uniqueness 
assumption. 

In the general case of nonconvex problems and arbitrary decom- 
position, we define a globally convergent scheme, where each step 
consists of a two-phase procedure. The first phase is an inexact line 
search along a search direction in the component subspace, which yields 
reference values for the objective function and the stepsize. In the 
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590 L. GRIPPO AND M.  SCIANDRONE 

second phase we can compute a further updating of the current com- 
ponent by means of any minimization method in the same subspace, 
provided that suitable acceptability conditions are satisfied. Under 
usual assumptions, we show that the proposed algorithm (which can 
be viewed as a line-search-based block-coordinate descent technique) 
is globally convergent, without any convexity assumption. 

We also show that, when the objective function is a strictly quasi- 
convex function of some component, for fixed values of the other 
components, then convergence can be achieved by means of a hybrid 
scheme in which a partial Gauss-Seidel method is employed for a 
subset of components. 

More particular schemes are defined in the case of a two-block 
decomposition, since, in this case, the convergence conditions are less 
demanding. 

Finally, we discuss the computational aspects and the potential 
advantages of the techniques considered here and we describe the 
application of a decomposition approach to a learning problem in a 
Radial Basis Function neural network [13,18]. 

2 NOTATION 

We consider the problem 

minimize j'(x) 

.u E RN 

where, unless otherwise stated, the objective function j': R"+ R is 
assimed to be continuously differentiable on R". 

We suppose that the vector . Y E  R" is partitioned into n7 < tz com- 
ponent vectors s, E R1" with 

that is we get: u = (x,, . . . , s,, . . . , x , , , ) .  

The algorithn~s we will consider generate a sequence ( Y " )  of points 
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BLOCK-COORDINATE TECHNIQUES 59 1 

in a way that the transition from xk  to x k f  ' is performed through 
suitable inner steps that update the individual components of xk. 

A subsequence of {xk) corresponding to an infinite index set K will 
be denoted by {xk},. 

We indicate by / I  . [ I  the Euclidean norm (on the appropriate space) and 
therefore, if y E R" is partitioned in the form y = (yl, . . . , y,, . . . , y,) with 
y, E Rn', we can write: 

In correspondence to the given partition of x, the function value f(x) is 
also indicated by f(xl , .  . . ,x,, . . . ,x,). 

The gradient off with respect to xis denoted by V f  E Rn and V, f E R"' 
is the partial gradient off with respect to x,. 

When j is assumed to be twice continuously differentiable, the 
Hessian matrix off  with respect to x is denoted by V ~ E  Rnxn and 
~ : f  E R " ~ X " ~  is the partial Hessian matrix of f with respect to the 
component x,. 

We denote by C the level set off corresponding to the given initial 
point x0 E Rn that is: 

Finally we recall from [17] the notion of forcing function, which is a 
function a : R+ + R+ , such that 

lim a ( t k )  = 0 implies lim t k  = 0. 
h i m  k-72 

3 CONVERGENCE CONDITIONS 

In this section we introduce some sufficient convergence conditions 
that will be exploited in the sequel for the analysis and the construc- 
tion of globally convergent decompostion algorithms. The models we 
will consider are essentially based on the interconnection of suitable 
elementary operations performed on each block component of the 
current vector xh. 
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592 L. GRIPPO AND M. SCIANDRONE 

Borrowing the notation of [4], we represent an elementary operation 
performed on the ith block component by introducing a mapping 
T I  : Rn -+ Rnz that associates to the vector yk E Rn in a sequence { y k )  a 
block-component ~ ~ ( y ~ ) ) .  We note that, in general, the mapping T ,  may 
be dependent on k; however, in order to simplify notation, we omit the 
explicit indication of the iteration index. As we do not use continuity 
assumption on TI,  this can be acceptable. 

The mappings we will consider for given i are descent mappings such 
that the following condition holds. 

Condition I If { y k )  is a sequence of points in Rn we have, for all k: 

We also need Lyapunov-type conditions on Ti that ensure con- 
vergence towards stationary points in the yi-space, with respect to the 
partial gradient V ,  j: One of the weakest requirements we can impose 
is the following. 

Condition 2 If { y k }  is a sequence of points in R" converging to some 
j E Rn and such that 

then we have: 

V i  j ' ( . V )  = 0. 

In some instances we must require, in addition, that the stepsize 
I I T , ( ~ ~ )  - y,"ll goes to zero. This is expressed formally in the following 
condition. 

Condition 3 If { y k )  is a sequence of points in Rn converging to some 
j E R" and such that 

then we have: 

lim l l ~ ; ( ~ ~ )  - y , k I ~  = 0.  
k-c*; 
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BLOCK-COORDINATE TECHNIQUES 593 

When the level sets off are unbounded and the existence of a limit 
point is not postulated, Conditions 2 and 3 can be replaced, respec- 
tively, with the following stronger requirements. 

Condition 4 If { y k )  is a sequence of points in Rn such that 

then we have: 

Condition 5 If { y k )  is a sequence of points in R" such that 

k lirn f ( y k )  - f ( y [ ( ,  ..., T i ( y k ) ,  . . . ,Y,) = 0, 
k i c c  

then we have: 

lim J J T ~ ( ~ ~ )  - y f ) )  = 0.  
k+m 

Concrete examples of elementary mappings will be analyzed in 
the sequel. Here we state obvious conditions under which, given a 
mapping pi satisfying some of the properties stated above, we can 
generate a new mapping Ti in a way that the same properties are pre- 
served. This possibility is specified in the next proposition. 

PROPOSITION 3.1 Let T, be a given mapping satisfying Condition 1 
and suppose we dejihe a new mapping Ti such that, if ( y k )  is a sequence 
in Rn we have, for all k:  

then T, satisfies Condition 1 and, moreover, we have: 

(i) if TI satisfies Condition 2 or 4, then the same condition holds for T,; 

(ii) ij T, satisfies Condition 3 or 5 and 

lim ( ( E ( y  - = 0 implies lim - yfll = 0, 
k-cc k-ss 

then the same condition holds for TI .  
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594 L. GRIPPO AND M. SCIANDRONE 

Proof The assertions are immediate consequences of the assump- 
tions. We must only note that the assumptions made imply 

Ir f ( y f , .  . . , ~ ! ( 4 ' ~ ) ,  . . . ,y,J 5 f ( Y : ' > .  . * 7 T , ( Y k J > .  . . >Y;J < f i Y k ) ?  

and hence the limit: 

lim f ( . y k )  - f ( y [ , .  . . , ~ , ( y ~ ) ,  . . . ,Y:) = 0 
h i m  

Now suppose that a set of mappings Ti for i=  1,. . . , m, has been 
defined for every i, so that the construction of a decomposition algo- 
rithm for the minimization of f  can be performed by choosing suitable 
connection rules. 

We consider, in particular, two basic connection schemes: 

- the sequential connection; 
- the parallel connection. 

In each of these schemes we assume that each major step (indexed by 
k) updates all components of sk, through a set ofelementary operations. 

We admit also the possibility that some component is left unchanged 
during a major step, and therefore we introduce a nonempty index set 
zk C (1 , .  . . , m) for specifying the components that are actually up- 
dated through a "serious" operation T,. 

3.1 Sequential Connection 

In this scheme, starting from a given initial point xO, a sequence { x k }  of 
points 

is constructed by updating in sequence the components of .xk. 
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BLOCK-COORDINATE TECHNIQUES 595 

This produces the vectors z(k, i) E Rn, such that z(k, 1) = xk  and 

k k k 
z(k,i) := (x:fl ,..., X ~ ? ; , X ~ , X ~ + ~  ,..., x,) for i = 2  , . . . ,  m. 

Given z(k, i) and the index set Ik, we compute the updated ith com- 
ponent by letting 

Ti(z(k, i)) if i E lk, x y  := 
if i 6 rk, 

so that, either z(k, i+ 1) is the result of a "serious" operation Ti per- 
formed on z(k,i) that updates the ith component, or we have 
z(k, i + 1) = z(k, i). For notational convenience, we set also 

This scheme is illustrated in Fig. 1, in the case m = 3 and Ik = {1,3). We 
note that in the example considered the component x2 is left unchanged 
during the major step. 

FIGURE 1 Sequential connection 
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596 L. GRIPPO AND M .  SCIANDRONE 

First of all, letting I" { I , .  . . , m ) ,  we extend to our case the con- 
vergence results given in [25]'in connection with the cyclic coordinate 
method with exact line searches. More specifically, we prove the 
following theorem. 

THEOREM 3.2 Suppose t h a t f  is a pseudoconile.\-,firnction awd that L: is 
compact. Let T,: Rn i R'" be given mappings that satisfy Conditions 1 
and 2 .for every i= 1 , .  . . , m .  Let {xk} be a sequence such that z 

k ( k ,  i )  = x and 

Then every limit point qf { x k }  is u global minimizer of,f.  

Proof Recalling Condition 1, by definition of z(k, i )  (which implies 
z(k, 1) = x k  and z(k, m + 1) = x" I ) ,  we have: 

Then, the sequences { ~ ( k ,  i)), for i = 1, . . . , m f 1, belong to the com- 
pact set L. In particular, we have that the sequence { x k )  admits at 
least one limit point. In order to prove the thesis, by contradiction, let 
us assume that there exists a subsequence js" such that 

lim x k = j ,  
k - , x ,  k E K  

lim z(k, i )  = ?, i = 2, . . . , H I  + 1 
h - x  L E K  

(4) 

and 

We observe that we can write 

where the block components rll,(k, 1 - 1) E RN" of the vector d(k, i - I), 
with h E { 1, .  . . , w), are such that dl,(k, i - I )  = 0 if h # i - 1. Therefore, 
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BLOCK-COORDINATE TECHNIQUES 

for i =  2, .  . . , m + 1, from (4) we get 

= ?i- 1 + di-', 

where 

di-' = lim d(k,  i - I ) ,  
k+m. k€K (8) 

and 

2;-' = 0 ,  h f i -  I .  . (9) 

The continuity assumption on f and the compactness of L: imply that 
f is bounded below. As { f(xk)] is nonincreasing, recalling (2), we have 

lim (f (z(k, i)) - f (z(k, i + 1))) = 0, i = 1, . . . , m. (10) k+m 

By using the continuity assumption on f it follows that 

f(2) =f(zl), i =  I ,..., m+ 1. (11) 

Recalling Condition 2 (where we identify, for each i E {I, . . . , m ) ,  the 
sequence t y k }  with the subsequence {z(k ,  i)lK), by (10) we obtain 

vif(#)  = O  for i =  1, . . . ,  m. (12) 

B y  (12), taking into account the pseudoconvexity assumption on j; 
we can write 

2;:; = arg min J'(.$?-', . . . , E,  . . . , F; ' )  for i = 2, 
[ER"I-I 

Therefore, from (1 l), recalling (7) and (9), and using (13), we obtain 

~ ~ - ~ f ( z ' ) = O  f o r i = 2  , . . . ,  m + I .  (14) 

Now we prove that, if! E { I , .  . . , m )  and we assume 
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598 L. GRIPPO AND M. SCIANDRONE 

then it follows 

By (8) and (9) we have 

+J = FJ-1 + 21-1 
> 

where a,!-' = 0 for h # j - 1. 
For any given vector 7 E Rtl' define 

where d~,(11) = 0 for h # B and dt(q) = 17 E RE'. 
Then, from assumption (15) and (14), we obtain 

I t  follows by the pseudoconvexity of j'that 

.f(+ + d(7)j >f(-.'). 

On the other hand, J'(zj)  = f ( 2 j - ' ) ,  and therefore we have: 

which, recalling the definition of d ( ~ l ) ,  implies (16). 
Finally, taking into account (12), and using the fact that (15) implies 

(16), by induction we obtain 

which contradicts (5). 

In the preceding theorem a crucial role is played by the pseudo- 
convexity assumption on j: If we remove this assumption, we must 
impose stronger requirements on the mappings T,, which may enforce 
the stepsizes to go to zero in case of convergence. This allows us also to 
consider more general updating rules that take into account a finite 
number of previous iterations. 
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BLOCK-COORDINATE TECHNIQUES 599 

THEOREM 3.3 Let Ti:  Rn -+ Rnz be given mappings that satisfy Condi- 
tions 1-3 for every i= 1, .  . . , m. Let { x k }  be a sequence such that 
z (k ,  i )  = x k  and 

where 

Ti(z(k ,  i)) if i E lk, xyl := {.* 
ifi$ lk, 

and zk C (1,. . . , m )  is a nonempty index set. Let v > 0 be given 
integer; let 

and suppose that for every sufficiently large k > v we have: 

where a is a forcing function and the integers h,k, for I:, and sr ,  for 
i E (1,. . . , m } ,  are indices satisfying: 

Then, every limit point of { x k )  is a stati0nar.y point 0f.C Moreover, if L 
is compact we have: 

lim v f  ( x k )  = 0 
k+C€ 

and there exists at least one limit point that is a stationary point o f f .  

Proof First we note that, whenever i $ I" we have f ( z (k ,  i+ I ) )  = 

f ( z (k ,  i)) .  Taking this into account and recalling Condition 1, by defi- 
nition of z(k,  i ) ,  we have: 
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600 L. GRlPPO AND M. SCIANDRONE 

Now, let us consider an infinite subset K {0,1,. . .) such that 

lim x k = T .  
k - x ,  k € K  

(19) 

Then, the continuity of f  and the convergence of { x k j K  imply that the 
sequence { f ( xk ) }  has a convergent subsequence. As { f ( x k ) )  is non- 
increasing, this, in turn, implies that { f ( x k ) )  is bounded from below 
and has a limit. Therefore, recalling (18) we have also 

1 ( f  ( ( k  ) )  - f ( ( k  i  + I))) = 0 i = 1, . . . , m. (20) 
k-CC 

Now, using Condition 3 and the fact that 

we prove, by induction on i, that the subsequences {z(k,  i ) jK  converge 
to ,7 for all i. 

For i =  1, recalling that ~ ( k ,  I )  = .xk, this follows from (19). Then, we 
suppose that for i >  1 we have 

lim z(k,  i )  = Z 
k i n .  k e K  

and we show that {z(k ,  i + 1 ) I K  converges to .?. 

If i $1' for a Ic E K, we have ~ ( k ,  i + 1) = z(k, i ) ,  and hence, if i $ for 
all k g  K sufficiently large, the assertion is obvious. Therefore, let us 
assume that there exists a subsequence { z (k ,  i)),, , with K1 C K such 
that i E  or k G K,. Then, by identifying the sequence l y k )  appearing 
in Condition 3 with the subsequence { ~ ( k ,  i ) } K i ,  by (20) and (22) we get 
from Condition 3: 

lim I lz(k, i $- 1 )  - ~ ( k ,  i ) ) )  = lirn 1 1  T,(z(k, i)) - -x: 1 1  = 0, 
h+m,  h € K ,  k+x ~ E K I  

so that, again by (22)  we have: 

lim z ( k ,  i + 1 )  = 3. 
k - X ,  k € K i  
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BLOCK-COORDINATE TECHNIQUES 

Thus we can assert that: 

lim z(k, i) = 3, i = 1, .  . . , m. 
k+w. k€K 

(23) 

Suppose now that k > u. As z(k- 1, m + 1) = xk, we can repeat the same 
reasoning by backward induction on i to get the limits 

lim z ( k - l , i ) = % ,  i = 1 ,  . . . ,  m. 
k-m, ~ E K  

Then, continuing in this way for increasing values of j 5 u we have: 

lim z ( k - j , i ) = % ,  i 1 .  m = O l  . . (24) 
k+m, k € K  

As the number of different index sets I," is finite, we can find an index 
set 1 and subsequences {z(h/,i)}Kz, for i E j, and {z(s,k, i)IK2, for 
i E (1, .  . . , m}, with K2 5 K such that, for k E K2, we can write, by 
assumption (1 7), the inequality: 

Then, taking into account the assumptions on the indices h,k and s,k 
and recalling (24), it is easily seen that each sequence {z(h,k, i)jK2 and 
{z(s:, i)}K2 will converge to % for every i, so that from (25), taking 
limits for k E K2, we obtain: 

On the other hand, for k E K2, if i E 1 = I:, this implies that there 
exists an integer in [0, v] (depending on i and k), which we denote by 
j(i, k), such that i~ lk-'("'), SO that, by definition of lk ,  we have: 

h-l(k.c)+l z(k - j(i, k), i + 1) = (x, , . . . , Ti(z(k - j(i, k), i)), . . . , X:-J(~,')). 

By (24), it is easily seen that each subsequence {z(k - j(i,k), i)IK2 
converges to Z. Therefore, recalling Condition 2 (where we identify, for 
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602 L. GRIPPO AND M. SCIANDRONE 

each i E f, the sequence ( y k )  with the subsequence {z (k  - j ( i ,  k), i ) I K z ) ,  
by (20) we obtain 

so that by (26), we get V'f(3) = 0. 
The last assertion of the theorem follows immediately from the 

compactness of C and the continuity assumptions on VJ 
When L is unbounded, in order to show that the gradient goes to zero 

in the limit, we replace Conditions 2 and 3 with Conditions 4 and 5 and 
we impose stronger continuity requirements on V j :  

THEOREM 3.4 Suppose that the assuur~ptions o f  Theorem 3.3 are satis- 
fied und that the mappings T, satisfy Conditions 4 and 5 jor every 
i = 1 ,  . . . , r n .  Assume also that f is bounded below and that 

lim l 1 v f ( u k )  - ~ f ( w ~ ) l l  = 0, 
k+m 

(27) 

lim lluk - wkll = 0, 
k-m 

Then we Izuve: 

lirn Vf(.wk j = 0. 
k+& 

Proqf Reasoning as in the proof of Theorem 3.3, we can write 

f ( xh" )  < f ( z ( k ,  i + I ) )  < f ( z ( k ,  i)) 5 j ( x k )  for i = 1,. . . , m. ( 2 8 )  

This shows that the points xk and ~ ( k ,  i )  remain in L and that thc 
objective function is nonincreasing. As f is bounded below, we get the 
limits 

1 ( f ( ( k  i )  j - ( ( k  i + 1 ) )  = 0 i = I ,  . . . , m. (29) 
k - x  

Now, for each r E { I , .  . . , m )  if i $  lh,  we have = u:; on the other 
hand, if iE l q o r  a \ubsequence { ~ ( k ,  i ) j k ,  by ( 2 9 )  and Condition 5 
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BLOCK-COORDINATE TECHNIQUES 

(where we identify i y k )  with {z(k, i)IK), we obtain 

lim 1 1  Ti(~(k,  i)) - x ~ J I  = 0. 
k-m, ~ E K  

It can be concluded that: 

k lim /(x:+'-xiII=0, i = l ,  . . . ,  m, 
k-m 

which also yields 

lim 
k-x 

As 

Ilz(k, i) - xkl 

from (31) we obtain 

lim IIxk -z(k,i)II = 0, i =  1 ,..., m. 
k-+m 

(33) 

For k > u we can repeat the same reasoning by backward induction, 
starting from the point z(k - 1, m + 1) = xk and hence we get the limits 

lim I ~ x ~ - z ( k - j , i ) [ ( = O ,  i l , . , ,  j = O , l , . .  (34) 
k-oo 

Now for every i E (1, . . . , m),  and every j E {0,1, . . . , v) we can write: 

and hence, by (34) and (27), we obtain 

lim ~ l ~ ~ f ( x ~ ) - V ~ f ( z ( k - j , i ) ) I I  = 0 ,  i =  1 , . . . ,  m, j = O , l ,  . . . ,  u. 
k-m 

(36) 
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604 L. GRIPPO AND M. SCIANDRONE 

If the assertion is false there must exist at least one index i* and a sub- 
sequence { x k l K  such that, for k E K, we have: 

for some q > 0. This, in turn implies, by (36) that there must exist sub- 
sequences { z ( k  - j, i*)),, , with Kl c K, for j= 0,1,. . . , u such that 

for some rl/,  with 0 < 17,s 7. 
As the number of different index sets I: is finite, we can find an index 

set f and subsequences {z(h,",i)),, for i E 1, and { z ( ~ , k , i ) } ~ ~ ,  for 
i~ ( 1 , .  . . ,m) ,  with K2 C K1 such that, for k~ K2, we can write, by 
assumption (17), the inequality: 

Now, for k E K2, if i E 1, there exists an integer j(i, k )  E [0, v], such that 
i ~ k - ; ( k ,  i) and: 

k-j(k,r)+l 
z ( k  - j(i, k ) ,  i + 1 )  = (x, , . . . , Ti ( z (k  - j(i, k ) ,  i ) ) ,  . . . , x k - ~ ( ~ . ~ ) )  

Then, recalling Condition 4 (where we identify, for each i E j, the 
subsequence { y k )  with the subsequence { z ( k  -,j(i, k ) ,  i)),,), by (29) we 
obtain: 

lim V ,  f ( z ( k  - j(i, k ) ,  i ) )  = 0 ,  i E I. 
k-tw, k ~ &  

(39) 

Moreover, by (34) and the assumptions on hi" we have 

lim 1 Iz(k - j(i, k ) ,  i )  - z(h,k, i)I I = 0 ,  i E I, 
L - s j .  k ~ K 2  

and hence, using (27), i t  is easily seen that (39) implies the limits: 

lim ~ , f ( z ( l z : ,  i ) )  = 0, i E I. 
h - x ,  k € P 2  

(40) 
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BLOCK-COORDINATE TECHNIQUES 

Then (38) yields 

lim Vif(z(sf,i))=0, i = l ,  . . . ,  m, 
k+m, k ~ K 2  

and hence we have, in particular: 

lim vie f (z(s:, i*)) = 0, 
k-m, k ~ K 2  

so that, recalling the assumptions on SF, we get a contradiction to (37). 

We note that condition (17) appearing in the preceding theorems is 
satisfied, in particular, if we choose a(t) = t ,  v = 0 and lk = {l, . . . , m )  
for all k. In this case, every component X: is updated at each step by 
means of the mapping Ti. However, many different schemes can be 
devised, in which we can take into account the results of the previous 
iterations in order to choose a subset of components to be updated 
at step k. In particular, we could define algorithms based on 
an approximate and less expensive implementation of the Gauss- 
Southwell rule, by evaluating the norm of the gradient components 
during a finite set of past iterations, and also various almost cyclic rules 
of the kind discussed in [14]. 

Note also that the continuity assumption on Vf used in Theorem 3.4 
is satisfied, in particular, if there exist numbersp > 0 and c > 0 such that 

3.2 Parallel Connection 

A parallel connection scheme, with initial point xO, can be defined by 
computing at each k, for i E zk c (1,. . . , m), the components T ~ ( x ~ )  
and the points 

k k k w(k ,  i) := (x, , . . . ,xi-,, ~ i ( x ~ ) , x i k _ , ,  . . . , xm), 

and then constructing the updated point xk + ' by means of some rule. 
In this case, we will assume that information on past iterations is not 

taken into account and this allows us to introduce less demanding 
conditions on the stepsizes. 
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L. GRIPPO AND M. SCIANDRONE 

FIGURE 2 Parallel connection. 

The connection scheme is illustrated in Fig. 2, in the case m = 3 and 
zk= {1,3}. 

Here we will confine ourselves to consider the case in which the 
connection rule ensures that the function value does not increase. 

Convergence results for parallel decon~position algorithms that use 
this criterion as a synchronization step were given in [16,8] both for 
unconstrained and constrained optimization problems. 

When = (1, . . . , m),  the following convergence conditions can be 
viewed as an abstraction of some of the results in [8,16]. 

THEOREM 3.5 Let T, : R" + R"' he given nzappings thul sutisJy Con&- 
tions 1 and 2 for every i = 1, . . . , m. For euch k, rlrfine the poir1t.s: 

where zk C (1,.  . . , m )  is a nonempty index set such rhut 

.for .some forcing f imfion (J. 
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BLOCK-COORDINATE TECHNIQUES 

Let { x k )  be a sequence such that: 

f ( x k + ' )  < f (w (k ,  i ) )  for all i = 1,.  . . ,m.  (42) 

Then, every limt point of { x k )  is a stationary point of$ Moreover, if L is 
compact we have: 

lim V f ( x k )  = 0 
k-oo 

and there exists at least one limit point that is a stationary point of$ 

Proof By Condition 1 and (42) we have 

Now, let 2 be the limit point of some subsequence {xk lK.  Then, rea- 
soning as in the proof of Theorem 3.3 we get the limits 

Therefore, we can find an infinite subset Kl K such that lk = j for 
all k~ K I .  By Condition 2 (where we identify, for each i E j, the 
sequence { y k )  with { x k I K , )  we obtain 

which implies, together with (41), that Df (3)  = 0. 
The last assertion follows from the compactness of L and the con- 

tinuity assumptions on V f .  

In the next theorem we consider the case of unbounded level sets. 

THEOREM 3.6 Suppose that the assumprions of Theorem 3.5 are satis- 
tied and that the mappings T, satisfy Condition 4 for every i = 1,.  . . , m: 
Assume also that f is bounded below. Then we have: 

lim v f ( x k )  = 0. 
k i o c  

Proof The proof is similar to that of the preceding theorem. We 
must only note that (44) now follows from the assumptions made and 
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608 L. GRIPPO AND M. SCIANDRONE 

the boundedness off. Then the conclusion is established using Con- 
dition 4 in place of Condition 2. 

As in the case of sequential connection, setting rk = ( 1 ,  . . . , m) for all 
k, we have that condition (41) holds. 

Condition (41) can also be satisfied, for instance, by choosing 
zk = {i*), where: 

In fact, we have: 

so that (41) holds with ~ ( t )  = tlm. This rule can be viewed as an exten- 
sion of the Gauss-Southwell algorithm. 

We observe also that in case of parallel decomposition we no more 
need Conditions 3 or 5 and that the continuity requirements on Vf can 
be weakened. 

4 LINE SEARCH MAPPING 

In this section we define a mapping TI : Rn -+ Rn', by means of a line 
search technique, under the assumption that a gradient related search 
direction is employed, and we show that Ti satisfies the conditions of 
the preceding section. 

Given a sequence { y k }  in R" we suppose that we can compute search 
directions dik E Rng that satisfy the following assumption. 

A ~ ~ U M P T I O N  1 Let { y k }  be a given sequence in Rn. Then: 

(i) d/ = 0 if and only if V i  f ( jk )  = 0; 
(ii) there exists a forcing function oi : R 

for all k satisfying v i . f (y"  # 0. 
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BLOCK-COORDINATE TECHNIQUES 609 

We note that Assumption 1 is satisfied, in particular, if we set ui(t) = t 
and: 

Given a sequence {yk) in Rn, we define, for each k, a line search 
mapping by letting 

where a/ is a number computed by means of some line search technique. 
Line search algorithms with constant stepsizes have been used, in the 

context of decomposition methods, under Lipschitz continuity assump- 
tion on the gradient Vi f (see, for instance, [4,23]). 

Here we define an Armijo-type algorithm, in which a sufficient 
decrease off is enforced through line search rules of the kind studied in 
[7,12], in connection with no-derivative methods. 

The algorithm does not depend on the knowledge of Lipschitz con- 
stants and allows us to establish that the convergence of the function 
values implies the limit 

lim ayklld,kll = 0, 
k+m 

even in the absence of boundedness assumptions on { y k )  and on Id/). 

Line search algorithm (LS) 

Data. pi > 0, yi > 0, 6; E (0,l). 

Step 1. Choose A/ > p i / d i k T ~ i  f (vk)l / l ld/~~2,  

Step 2. Compute a/ = m a x , { ~ / ~ / :  j = 0,1,. . .) such that 

We note that conditions at Steps 1 and 2 can also be replaced with 
more practical line search rules. However, since we are not concerned 
here with computational implementations, we will refer to the simpler 
description given above. 

In the next proposition we state some useful properties of Algorithm 
LS. Note that in what follows we assume that {yk) is a given sequence 
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610 L. GRIPPO AND M. SCIANDRONE 

that may not depend on Algorithm LS, in the sense that yk+' is not 
necessarily the result of a line search along d(S. 

PROPOSITION 4.1 Suppose that V i  f ( y k, # 0 and that d: satisfies 
Assumption 1 .  Then: 

(i) there exists a finite integer j such that the number a: = 6{A: 
satisfies the acceptability condition at Step 2; 

(ii) there exist numbers Xk  E [O, 1) and Oi > 0 such that 

where: 

Proof In order to prove assertion (i), let us assume, by contra- 
diction, that vi f(yk) # 0 and that condition (46) is violated for every 
j 2 0, so that 

Then, taking limits for j + co we obtain: 

which contradicts the assumption  if ( . ~ ~ ) ~ d /  < 0. 
Now, to prove assertion (ii), let us distinguish the two cases a," = A: 

and a(S < A;, where A: is the number defined at Step 1. In the first case, 
we have obviously: 

where we set j" y k  and A" 0. Therefore, (ii) holds with 
oi = pi. 

(47) 
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BLOCK-COORDINATE TECHNIQUES 61 1 

Next suppose that a: < A:, so that a:/& violates the condition at 
Step 2 of Algorithm LS. In this case we can write, using the Mean 
Value Theorem: 

where A" (0, l )  and 

so that we obtain: 

and hence assertion (ii) holds with 0; = Si/yi. This concludes the proof. 

The next proposition allows us to show that the line search mapping 
Ti obtained by using Algorithm LS satisfies Conditions 1-3 and 5 of 
the preceding section. 

PROPOSITION 4.2 Let {vk} be a given sequence in Rn, let {d:}  be a 
sequence of vectors, such that Assumption 1 is satisfied. Let a: be 
computed by means of Algorithm LS when vif(yk) # O  and set aik = 0 
whenever V; f(yk) = 0. Then: 

(i) the limit 

implies 

(ii) the line search mapping Ti satisjies Conditions 1-3 and 5 of 
Section 3 .  
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612 L. GRIPPO AND M. SCIANDRONE 

Proof Let us define the point: 

Then the acceptance rule of Algorithm LS ensures that: 

so that the limit 

implies assertion (i) and also proves that Conditions 1, 3 and 5 of 
Section 3 holds. 

Now, suppose that y k  converges to 7. We can assume that 
V, j(.vk) # 0, for all suffic~ently large k since, otherwise, the continuity of 
V, f and the convergence of the sequence would imply V, f (7) = 0. 

By Assumption 1 it follows that d,k # 0 for all large k and hence, 
recalling assertion (ii) of Proposition 4.1, from (i) we have: 

lim 
~ , j ' ( j ~ ) ~ d '  

= 0, 
k - w  ~~Lz;~\  

where 

for some hi > 0 and E [O, 1) 
Again by (i) we have: 

lim 7 = J ,  
k - x  

and therefore, as {rl,"/lJd,"lI} is bounded, we can find an infinite index 
set K such that 

(1; - 
lim -- = ( I , ,  

A -  =. X E F : ( I ~ : / /  
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BLOCK-COORDINATE TECHNIQUES 613 

for some d; E Rnl. Thus, by (51), taking limits for k + co, k E K we 
obtain 

On the other hand, we have also 

so that by (53)  and (54) we obtain 

k  T d k  
lim V i f ( ~  i 

= 0. 
~ + c * ~ , ~ c E K  lldikll 

Then Assumption 1 and the definition of forcing function implies 

lim V i f ( v k )  = V i f ( y )  = 0,  
k+m 

which establishes Condition 2  of Section 3 and concludes the proof. 

Remark 1 We note that, in general, a global one-dimensional mini- 
mizer a;k along {dik) may be not acceptable for Algorithm LS. 

However, if the objective function f  is twice continuously differenti- 
able and is a strongly convex function of xi, when the other component 
vectors are held constant, we have that the assertions of Proposition 4.2 
hold if we compute {a:} through an exact line search. 

More precisely, suppose that the following assumption is satisfied. 

ASSUMPTION 2 The function f  is twice continuously differentiable on 
an open bounded convex set C > C and for every x  E C the Hessian 
matrix V? f  ( x )  satisfies the condition 

vTv? f ( x ) y  > ~ l l y 1 1 ~  for all y  E Rnz (55) 

for some X i  > 0. 

Let a;k be the unique one-dimensional minimizer of the function 

k f  ( y f " ,  . . . , y f +  o;d;, . . . , y,) 

with respect to a;. 
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614 L. GRIPPO AND M. SCIANDRONE 

Then, can write: 

Therefore, using Taylor's theorem we obtain: 

where v/ = y;+' + c F a ~ ~ d , k  and C/ E (0, l ) .  
Thus, from (57) we get, by the strong convexity assumption on f 

for some X i  > 0. 
Therefore, by (50) it follows that assertion (i) holds, which also 

allows us to prove, taking y i= X i  and reasoning as in the proof of 
Proposition 4.2, that assertion (ii) holds. 

In order to prove that Condition 4 of Section 3 is valid, we must 
introduce stronger requirements on V, f. 

This is the object of the next proposition. 

PROPOSITION 4.3 Let { y k }  be a sequence in RiZ, let d,k, alk be defined 
as in Proposition 4.2 and define the points: 

Suppose thut 

lim l ~ ~ f ( u ~ )  - Vf(wk))l1 = 0, 
k i x  

tvlzenever { u k ) ,  {M"} are SequenceS in Rn such that 

L k lim llu - w 1 1  = 0. 
k - x  

Then the limit 
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BLOCK-COORDINATE TECHNIQUES 

implies: 

lim vi f ( y  k ,  = 0, 
k+m 

so that the line search mapping Ti satisfies Condition 4 of Section 3.  

Proof Suppose that the assertion is false. This implies that there 
exists a subsequence such that 

for all k E K and some E > 0. 
By (i) of Proposition 4.2 we have: 

and therefore, by assertion (ii) of Proposition 4.1, we get: 

where j k  is defined in (52). By (52) and (60) we get 

lim IJjk - y k l l  = 0. 
k+m 

On the other hand, we can write 

so that by (61) and (62), recalling ( 58 ) ,  we obtain 

Then, from Assumption 1 we get a contradiction to the assumption (59) 
and this proves our thesis. 
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616 L. GRIPPO AND M. SCIANDRONE 

5 MINIMIZATION MAPPING 

In this section we analyze the properties of the minimization mapping 
Ti : Rn + Rnl, defined as 

First of all we prove that the minimization mapping satisfies Condi- 
tions 1 and 2 of Section 3, provided that the problem (63) has a solution 
and that a well defined solution is chosen. 

PROPOSITION 5.1 Suppose that the minimization mapping TI  is well 
dt$ned. Then, ir satisfies Conditions 1 and 2 of' Section 3.  Moreover, 
under the assumption qf' Proposition 4.3, the mapping T,  satisfies 
Conditiorl 4. 

Proof' Let { y k )  be any sequence in Rn and define a line search map- 
ping ~ i ( ~ "  by computing (tik = -v, f ( y k )  and letting: 

where a: is obtained by means of Algorithm LS. Then we have: 

By Proposition 4.2, the mapping T('." satisfies Conditions 1 and 2. 
Therefore, from Proposition 3.1 we get that TI satisfies Conditions 
I and 2. 

Under the assumption of Proposition 4.3, we have that Condition 4 
holds for T ( ~ ' ) ,  and then, invoking again Proposition 3.1, we have that 
TI satisfies Condition 4. 

Now, in order to prove that the minimization mapping satisfies 
also Condition 3, we must introduce strict (generalized) convexity 
hypotheses on$ More formally, we suppose that the following assump- 
tion holds. 

ASSUMPTION 3 For every x E R" and y , ~  R"' such that j3,#.r, we 
have for all t E (0, l )  
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BLOCK-COORDINATE TECHNIQUES 617 

Then, we state the following proposition, whose proof requires 
only minor adaptations of the arguments used, for instance, in [4,17]; 
however the proof is reported in detail for completeness. 

PROPOSITION 5.2 Suppose that the minimization mapping Ti is well 
defined and that Assumption 3 holds. Then, it satisfies Conditions 1-3 
of Section 3. 

Proof By Proposition 5.1,  the minimization mapping satisfies Con- 
ditions 1 and 2. Now, in order to prove that it also satisfies Condition 
3, let us consider a sequence { y k )  converging to 3, and let us define 
the point: 

Reasoning by contradiction, let us assume that Condition 3 does 
not hold, and hence that there exist an infinite subset K and a number 
P > 0 such that 

For k E K, let sk= ( ~ ~ - ~ ~ ) / l l ~ ~ - ~ ~ l l  and choose a point in the seg- 
ment joining yk  and vk ,  by assuming: 

with X E (0,l). 
As 1(skll = 1, we can find an infinite subset Kl Ksuch that: 

k  k k  k  
lim .Y = lim ( Y ]  , y 2 , .  . . , y m )  = ( j  I , . . . ,  j ,,..., j,) = J  

k - m ,  k € K ,  h i m ,  k € K ,  

and 

k lim i.k = lim ( y f , .  . . , y/ + Xpsk, . . . . ym)  
k + x ,  k € K ,  k-%, k E K ,  

= ( j , ,  . . . , y;, . . . , y,) = y* 

with 

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
F
l
o
r
e
n
c
e
]
 
A
t
:
 
1
5
:
5
3
 
2
8
 
O
c
t
o
b
e
r
 
2
0
0
8



618 L. GRIPPO AND M. SCIANDRONE 

On the other hand, by Assumption 3, we have for all t E [0,1] 

f ( y k )  > f ( y [ ,  . . . , (1 - t)y,k + t(yk + A@$), . . . , y k )  >f(pk). (65) 

Suppose now, as stated in the assertion, that 

lim f ( y k )  - f(vk) = 0. 
k+m 

(66) 

Then, taking limits in (65), for k?- co, k E K 1 ,  by (66) and the conti- 
nuity off we get 

f ( .F )= f ( y l ,  ..., (1 - t ) y i+ ty ;  ,..., y,) f o r a l l t ~ [ O , l ] ,  

which contradicts Assumption 3. This concludes the proof. 

6 CONVERGENCE OF THE GAUSS-SEIDEL METHOD 

In this section we make use of the conditions established in the pre- 
ceding sections for studying the convergence properties of the mini- 
mization version of the block nonlinear Gauss-Seidel (GS) method for 
the unconstrained minimization off. 

In particular, we reobtain some of the well known convergence 
results based on convexity assumptions and we show that the two-block 
version of this method is globally convergent towards stationary points 
off, without any convexity hypothesis. 

First we state the m-block GS method in the following form. 

GS Method 

Data. .xO E R". 

Step 0. Set k = 0. 

Step 1. Set z(k,l) = xk .  For i=  2, . . . , m: 

set 

$+' = arg min f (xlk+' , . . . , <, . . . , x,), 
(E R"1 

(67) 

and 

k t 1  X h + l  k h ~ ( k ,  i + 1 j = ( x ,  , . . . , , ,xi+,,  . . . , x,,,). 
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BLOCK-COORDINATE TECHNIQUES 

Step 2. Set 

Under the hypotheses that the objective function is pseudoconvex 
and that the level set C is compact, convergence of the preceding algo- 
rithm is known in the particular case of ni = 1, for i= 1, . . . , m (see [25]). 

The extension of this result can be obtained by using Proposition 5.1 
and Theorem 3.2, which allow us to state the following theorem. 

THEOREM 6.1 Suppose that f is pseudoconvex and that C is compact. 
Then every limit point of the sequence generated by algorithm GS is a 
global minimizer o f f .  

In [4,22], where the more general case of problems with convex 
constraints is considered, it has been proved that iff is convex and if, for 
each i, f is a strictly convex function of xi, when the other components 
of x are held constant, then algorithm GS generates an infinite 
sequence such that every limit point of { x k }  minimizes f on Rn. (Note 
that the compactness assumption on L is not required.) 

From the proof of this result (see, for instance, [4], pp. 220-221), it is 
easy to see that, in order to prove convergence towards stationary 
points, the convexity assumption on f is not required and we only need 
to assume the strict convexity off with respect to each component. 

We can reobtain a slightly improved version of this result, noting that 
algorithm GS can be viewed as the sequential interconnection of the 
minimization mappings Ti defined by: 

Using Theorem 3.3, where we set lk= { I , .  . . , m )  and v=0, and 
recalling Proposition 5.2 we get immediately the following theorem. 

THEOREM 6.2 Suppose that, for each i E (1,. . . , m )  the minimization 
mapping T, is well defined and that the function f is strictly quasiconvex 
with respect to x,, when the other components of x are held constant, 
that is, suppose that Assumption 3 holdsfor all i. Then, algorithm GS 
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620 L. GRIPPO AND M. SCIANDRONE 

generates an infinite sequence {xk] such that: 

(i) every limit point c?f { x k )  is a stationary point o f f ;  

(ii) i fC is compact we have lirnk,, ~f ( x k )  = 0 and there exists at least 
one limit point that is a stationary point o f f .  

The rate of convergence of the Gauss-Seidel method, under the 
assumption thatfis componentwise strongly convex (but not convex), 
has been studied in 1151. 

Now, let us consider the special case when m = 2, that is let us des- 
cribe our problem in the following form: 

minimize fx) = f (XI ,  x2) 
(.xl ,,v2)€RnI xR"? 

Although this situation is quite particular in our setting, it includes 
many intersting applications of the block GS method. In fact, in many 
cases, a two-block decomposition yields subproblems of special struc- 
ture, and often allows us to adopt parallel techniques for solving one 
subproblem. 

We can prove the global convergence of the GS method, which we 
call 2Block GS algorithm, without imposing any convexity assumption 
on J: To see how this is possible, we may observe that the convexity 
assumption in Theorem 6.2 is needed for ensuring that the stepsizes go 
to zero, that is for ensuring satisfaction of Condition 3, through the 
result stated in Proposition 5.2. However, when m = 2 we can equiva- 
lently represent the GS method in a way that Theorem 3.5 can be 
invoked, and this avoids the need of imposing conditions on the step- 
sizes. In fact, we reobtain the 2Block GS algorithm from the parallel 
connection scheme by assuming 

and by computing xk+  +' through the minimization off with respect to 
x2, that is by letting 

where T2 is the minimization mapping with respect to s2. This allows us 
to state the following result. 
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BLOCK-COORDINATE TECHNIQUES 62 1 

THEOREM 6.3 Suppose that the global minimization with respect to 
each component is well defined. Then, the 2Block GS method generates 
an infinite sequence { x k )  such that 

(i) every limit point of { x k )  is a stationary point o f f ;  
(ii) i fC  is compact we have limk,, V f  ( x k )  = 0 and there exist at least 

one limit point that is a stationary point o f f ;  
(iii) i f f  is pseudoconvex on Rn, every limitpoint is a global minimizer of f .  

Proof First we observe that, for all k 2 1 we have: 

so that 

Now, let us assume = 11) for all k 2 1, so that we can consider the 
points 

where T I  is the minimization mapping, which was assumed to be well 
defined. By Proposition 5.1, Conditions 1 and 2 of Section 3 are satis- 
fied for i = I. 

On the other hand, we have 

and hence, as xk+' is obtained by minimizing f with respect to x2, 
starting from w(k, I), we can write: 

As v2 f ( x k )  = 0,  we have that condition (41) holds with ~ ( t )  = t so that 
the assumptions of Theorem 3.5 are satisfied and (i) follows from this 
theorem. 

Then, assertions (ii) and (iii) are obvious consequences of (i). 

By comparing Theorem 6.3 with Theorems 6.1 and 6.2 the important 
point to observe is that form = 2 we require neither the pseudoconvexity 
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622 L. GRIPPO AND M. SCIANDRONE 

hypothesis on f nor the strict convexity assumption on f as a function of 
each subvector. 

When the level set a is unbounded we can state the following result. 

THEOREM 6.4 Suppose that the global minimization with respect to 
each component is well defined and suppose that f is hounded below and 
that 

lim 1lv f (uk )  - v f ( w k ) ( l  = 0 ,  
k e + x  

whenever ( u k } ,  { w k }  are sequences in Rn such that 

Then 

lim v f ( x k )  = 0. 
k i c c  

Proof Reasoning as in the proof of Theorem 6.3 it can be easily 
verified that Proposition 5.1 implies that the mapping T I  satisfies 
Conditions 1 and 4. Thus the assertion follows from Theorem 3.6. 

From the proof of Theorem 6.3, we can observe that the global 
minimization off with respect to x2 has the only motivation of pro- 
viding a stationary point in the component subspace x2,  without 
increasing the objective function value. Therefore, we can obtain the 
same convergence results by replacing the global minimization with 
respect to x2 with the computation of a point x?' such that 

Then, we can define the following scheme, which is a modified version 
of the 2Block GS method. 

Modified 2Block GS Method 

Data. X'E Rn. 
Step 0. Set k = 0. 
Step 1 .  For i =  1,2: 

if i = 1 then set 
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BLOCK-COORDINATE TECHNIQUES 

if i = 2 then determine x~~" such that 

f(xlk+l,x2k+l) <,f(x:+',x~) and ~2 f(x:+',x,kfl) = 0. 

Step 2. Set 

k = k + l  andgo to  Step 1. 

Now we may ask whether similar convergence results can be obtained 
for the GS method when m > 2. In this case a negative result was 
established by Powell for rn = 3. In fact, let us consider the following 
objective function 1201: 

where 

Powell showed that, if the starting point x0 is the point (-1-E, 
1 + 1 /25  - 1 - 1 /4t) the steps of the GS method "tend to cycle round 
six edges of the cube whose vertices are (f 1, *l, 41)" and "on the 
limiting path the gradient vector of the objective function is bounded 
away from zero". This implies that the GS method generates a sequence 
which admits accumulation points that are not stationary points off. 

7 GLOBALLY CONVERGENT LINE-SEARCH-BASED 
ALGORITHMS 

In the previous section we have seen that the Gauss-Seidel algorithm 
is guaranteed to converge either under suitable convexity assumptions 
on the objective function or in the case of a two-block decomposition. 
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624 L. GRIPPO AND M. SCIANDRONE 

Here we propose a new block-coordinate descent algorithm, whose 
convergence can be proved without convexity assumptions or restrictions 
on the number m of blocks. It is based on the line search technique 
described in Section 4, which does not require the knowledge of 
the Lipschitz constant to compute the stepsize aloug suitable search 
directions. 

More specifically, we consider a sequential algorithm with zk= 
{I ,  . . . , m) and v = 0, where each elementary operation xl"+' = 

T,(z(k, i)) is implicitly defined by means of a two-phases procedure. In 
the first phase we perform an inexact line search along a search 
direction d,", which yields reference values for the objective function 
and the stepsize. In the second phase we compute a further updating 
of the current component by means of any minimization method in 
the component subspace, provided that suitable acceptability condi- 
tions are satisfied. 

In the following conceptual model we assume that, for i = 1 , .  . . , m, 
the directions 11: E R n ~  satisfy Assumption 1, the numbers y, > 0 are 
parameters used in Algorithm LS, and {[,k} are sequences of positive 
numbers converging to zero. 

Algorithm 1 

Data. xO E En, numbers .ri > I/yi. For i =  I , .  . . , m. 

Step 0. Set k = 0. 
k Step 1. S e t z ( k , I ) = x  . F o r i = l ,  . . . ,  m: 

(a) compute a,k by means of Algorithm LS (with a,! = O if 
Vi f (z(k, i)) = 0); 

(b) choose x,"+' such that the following conditions are satisfied: 

k k .  f (x/+', . . . , $ + I , .  . . , xi7) 5 f (,xlk+', , . . , x, + a,kd;, . . . , X,), 

(71) 

where 

1, + I A .  ~ f ; '  = f ( z ( k ,  i ) )  - j(x:+', . . . ,.T, , . . . ,.T~,), 
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BLOCK-COORDINATE TECHNIQUES 

(c) set 

Step 2. Set 

k = k + l  andgo to Step 1. 

In the conceptual model defined in Algorithm 1 we have not specified 
the method used for generating the point xi"+' starting from the 
knowledge of x f .  The conditions imposed at Step l(b) have essentially 
the role of guaranteeing a sufficient decrease off at each step and also 
that of ensuring that the limit IJxk+' - xjll + 0 is attained. Note that 
these conditions can be satisfied, for instance, by assuming 

In fact, it is easily verified that the acceptance rules of Algorithm LS 
eusure that the conditions of Step l(b) hold. In this case Algorithm 1 
reduces to a sequence of line searches along the directions d,". We 
observe also that in the special case where ni= 1 and m = n we obtain a 
coordinate descent method with a suitable inexact line search (see, for 
instance, [12]). 

As regards the convergence properties of Algorithm 1, we can state 
the following theorems. 

THEOREM 7.1 Let { x k }  be the sequence generated by Algorithm 1. 
Then, every limit point of { x k }  is a stationary point o f f .  Moreover, i f C  
is compact, we have 

lim v f ( x k )  = 0, 
k-m 

and there exists at least one limit point that is a stationary point o f f .  

Proof It is easily seen that Algorithm 1 can be represented as the 
sequential interconnection of elementary mappings that update the 
components of x" according to the instructions specified at Step 1. 
Therefore, the assertions follow from Theorem 3.3 for v = O  and 

k I = ( 1 , .  . . , m ) ,  provided that we can prove that the mappings T, 
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626 L. GRIPPO AND M. SCIANDRONE 

implicitly defined by the algorithm, for i = 1, . . . , m, satisfy Condi- 
tions 1-3 of Section 3. 

In order to show this, let iyk) be a given sequence in Rn and for each 
i E (1, . . . , m),  let p; be the line search mapping defined by 

where cxf is computed by means of Algorithm LS. 
By Proposition 4.2 we have that Ti satisfies Conditions 1-3 and 5 of 

Section 3. 
Now consider the mapping Ti defined at Step l(b) of Algorithm 1, 

which determines the point Ti(jk) in a way that 

and at least one of the following conditions is satisfied: 

(where t,k -+ 0 for k +  co). Then, by Proposition 3.1, it follows that 
the mapping Ti satisfies Conditions 1 and 2. 

Now, if there exists a k such that condition (73) holds for all k 2 k, 
then we have immediately that T, satisfies also Condition 3. Therefore, 
let us assume that there exists an infinite subset K1 g {0,1,. . . ,) such 
that, for all k =  K1, only condition (74) is satisfied. As 5;k + 0 for 
k 4 m, from (74) it follows that 

so that we can conclude that the mapping Ti satisfies also Condition 3. 
Therefore the assertions follow from Theorem 3.3. 

THEOREM 7.2 Let {xk) be the sequence generated by Algorithm 1 .  
Suppose that f is bounded below and that 

lim 1lvf(uk) - v f ( w k ) l \  = 0, 
k-m 
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BLOCK-COORDINATE TECHNIQUES 

whenever {uk}),  { w k )  are sequences in Rn such that 

lim lluk - vkll = 0. 
k+x 

Then we have 

lim v f ( x 9  = 0. 
k+w 

Proof We can repeat the same reasonings used in the proof of 
Theorem 7.1, and then, using Theorem 3.4, we get the thesis. 

We observe that the line search procedure prevents the occurrence of 
cycling that was evidenced by Powell [20] on problem (70), in connec- 
tion with the coordinate descent method with exact line searches. 

It can be easily verified that the level sets of the objective function in 
problem (70) are not compact; in fact, setting x2 = x3 = x l  we can see 
thatflx) -t -m as llxll-) m. Then, the convergence of Algorithm 1 is 
not guaranteed. However, if we use an inexact line search based on 
Algorithm LS it is easily seen from the preceding results that for every 
i the numbers crflJdfll would converge to zero if { f ( x k ) )  is bounded 
and cycling cannot occur. In this problem, using a simple imple- 
mentation of Algorithm LS, we obtained the results reported below 
where the unboundedness off is eventually detected: 

Similar considerations can be repeated in connection with the other 
examples of [20]. 

As an alternative to the line search version of Algorithm 1, a different 
possibility is that of starting (either from xk or from xf + a,?@) an 
unconstrained minimization o f f  with respect to xi, holding fixed the 
remaining components. 

We can adopt, in principle, any solution technique in the xi-space, 
taking into account the fact that in case of failure to satisfy the criterion 
chosen, we can always set xi"+' = xf + afd,!. 
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628 L. GRIPPO AND M. SCIANDRONE 

Remark 2 Under the assumption that the objective function f is a 
twice continuously differentiable strongly convex function of xi when 
the other component vectors are held constant, we can show that the 
acceptability conditions at Step 1 of Algorithm 1 are satisfied by the 
point 

provided that a suitable value of the parameter T,  is selected. 
More precisely, given i E (1,  . . . , m] suppose that the Assumption 2 

is satisfied. 
Then, if x:+' = arg min,, f (x,k+', . . . , x,, . . . , xi?) is the global mini- 

mizer with respect to x,, we can write: 

so that condition (71) is satisfied. On the other hand, by definition of 
x;+' we can write 

It follows that we have 

Therefore, using Taylor's theorem we obtain: 

where v: = u;+l + </(x: - x:+') E C and </' E (0, 1) 
Thus, from (78), recalling that 
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BLOCK-COORDINATE TECHNIQUES 

we get, by Assumption 2 

so that it can be concluded that also condition (72) at Step 1 is 
satisfied, provided that we take ri > 1/X,. 

Remark 3 Under the assumption that the objective function f is a 
pseudoconvex function and that C is compact, we can remove condi- 
tion (72) at Step l(b). In fact, we can repeat the same reasonings used 
in the proof of Theorem 7.1 to show that the mappings Ti, with 
i = 1, .  . . , m, defined at Step l(b) satisfy Conditions 1 and 2 of Section 3. 
Therefore, the global convergence of Algorithm 1 follows immedi- 
ately from Theorem 3.2. 

Now we extend our model to the case in which suitable (generalized) 
convexity conditions are imposed on f with reference to a subset of 
the components, in a way that the global minimization with respect to 
each of these components still yields a convergent algorithm. We will 
assume that the objective function off is a strictly quasiconvex func- 
tion of xi, for i E Ic 2 (1,. . . , m),  when the other component vectors 
are held constant. More formally, we suppose that the following 
assumption holds. 

ASSUMPTION 4 There exists an index set I, C (1, .  . . , m )  such that, 
for every i E I,, x E Rn and yi E Rn' with yi # xi we have for all t E (0,l)  

Then we set In,= (1, .  . . ,m)-I,, and we can define the following 
conceptual algorithm model, where we assume that the search direc- 
tions dji E Rnz, for i E I,,,, satisfy Assumption 1. 

Algorithm 2 

Data. x0 E Rn, numbers 8, E (0, l )  for i = 1, . . . , m. 

Step 0. Set k = 0. 

Step 1. set z(k, 1) = xk. For i= 1, . . . , m: 

If i E I, then set 
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630 L. GRIPPO AND M. SCIANDRONE 

If i E I,,, apply the instructions (a) and (b) of Step 1 in Algorithm 1; set 

Step 2. Set 

k = k + l  andgo  to Step 1. 

The convergence properties of Algorithm 2 are given in the next 
theorem. 

THEOREM 7.3 Let {xk} be the sequence generated by Algorithm 2. 
Then, every limit point of (xk) is a stationary point o f f .  Moreover, i f C  
is compact, we have 

lim v f ( x k )  = 0, 
k i c c  

and there exists at least one limit point that is a stationary point o n :  

Proof For each i E (1 , .  . . , m } ,  let T, be the mappings that determines 
the point x,k+'. Then, whenever i E I,, we can repeat the same reason- 
ings used in the proof of Theorem 7.1, and we obtain that TI  satisfies 
Conditions 1-3 of Section 3. On the other hand, for each i €  Ic, by 
Proposition 5.2, it follows that the mappings T I  satisfy Conditions 
1-3. Then. the assertion follows from Theorem 3.3. 

In the special case of two-block decomposition, that is 

minimize .f (x) = f (XI, x2), 
(XI ,  .Y~)ER"I x R"2 

we can define a more particular scheme by replacing in the Modified 
2Block GS method of Section 6 the global minimization with respect 
to x l  with the same operations defined in Algorithm 1. This yields the 
following algorithm model, where the direction d,k E Rnl satisfies 
Assumption 1. 

Algorithm 3 

Data. .YO E Rn. 

Step 0. Set k = 0. 
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BLOCK-COORDINATE TECHNIQUES 

Step 1. For i = 1,2: 

if i =  1 then 

(a) compute a; by means of Algorithm LS (with a,k = 0 if 
V I  f ( xk )  = 0); 

(b) choose x?' such that the following conditions are satisfied: 

where 

if i = 2 then determine x2"+' such that 

f(xlk", x t f  ' )  < f ( x P 1 ,  x:) and ~2 f ( x P 1 ,  x?') = 0. 

Step 2. Set 

X k f l  = (xlk+l, xtk+'), 

k = k +  1 and go to Step 1. 

8 COMPUTATIONAL ASPECTS AND NUMERICAL 
EXAMPLES 

The models described in this paper can be made the basis of various 
computational implementations. 

In order to define a specific algorithm several choices have to be made 
and the following points deserve a special attention: 

- the choice of the decomposition: 
- the structure of the interconnection; 
- the actual implementation of the elementary operations and, in 

particular, the realization of an effective line search procedure; 
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632 L. GRIPPO AND M. SClANDRONE 

- the method used for generating the point x,k' and the choice of a 
specific acceptability criterion. 

Of course, the preceding choices have to be related to the concrete 
application in which a decomposition approach has to be employed. 

In this connection, we note that decomposition methods typically 
exhibit a much slower convergence rate in comparison with ordinary 
techniques. In spite of this, there are many practical contexts in which 
these methods can be very effective [4]. A first case is when the objective 
function can be put into the form: 

We note, in fact, that once xl  is fixed, the objective function can be 
minimized in parallel with respect to the components x, for i = 2, . . . , m 
and this can be advantageous, in some instances, with respect to 
ordinary methods. 

A second interesting case is when the form of the objective function 
allows us to obtain subproblems of special structure in the component 
variables, so that the use of decomposition techniques may favor the 
application of specialized techniques for solving the subproblems. 

The objective function of the minimization problem connected to the 
the "learning problem" for neural networks may exhibit these features. 
Indeed, the application of a dccomposition approach to this class of 
problems has represented one of the original motivations of this work 
and it will be illustrated in the sequel on a particidar example. 

Let us consider a given set of data (input/output pairs) 

T = {(d, d l ) ,  u1 E R'", r l l  E R, j = 1, .  . . , P ) .  

If we denote by .x E R" the vector of parameters of a neural network 
and by $(.x, uJ) : R" + R the output of the network correspondmg to 
an input u' such that ( u l ,  dJ)  E T, we have that thc learning problem 
can be formulated as the following least-squares problem 

min f (s) = x ( d ~  - +(Y; u! ) )? .  
\eRn 

I= 1 
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BLOCK-COORDINATE TECHNIQUES 633 

For a radial basis function neural network (see [IS]) with M neurons, 
the output $ is given by 

where G : R -I R is a fixed suitable function, and w E R ~ ,  ci E Rm, 
i = 1, . . . , M ,  are the network parameters. Then, the vector x E R ~ ( '  +m) 

is given by 

A possible choice for G is the multiquadric function, defined by: 

u being a positive constant. 
Starting from the least-squares problem (83), we have considered the 

following unconstrained optimization problem: 

min f ( w ,  c l , .  . . , c") = z ( d ~  - W ~ G ( I / C ~  - ~ ~ 1 1 ) ) ~  
W E R M  

d ,  , ~ M E R " '  j= 1 i= 1 

where q > 0. 
We can observe that the objective function of (84) has compact level 

sets; moreover, it is a strictly convex function of w when the remaining 
variables are fixed, and for q "sufficiently small" tends to coincide 
with the objective function of (83). 

Taking into account the special structure of the objective function, 
we have decomposed the vector x into two blocks as follows: 

Then we have employed Algorithm 2 (ALG2) with I ,={l)  and 
I,, = { 2 ) ,  which is equivalent, in this case, to Algorithm 3. It can be 
observed that when x2 is fixed, from (84) we obtain a strictly convex 
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634 L. GRIPPO AND M. SCIANDRONE 

TABLE I Comparative results for problem (84) 

n n1 nr % ( p z l  7 lIVf(~*)ll 

E04DGF 
17 526 539 539 1.34 0.196 0.7 x 
34 58393 58663 58663 287.89 0.087 0.9 x 
51 F 100545 100545 807.42 0.073 0.1 x lo-' 
85 F 100562 100562 1333.07 0.066 0.8 x lo-* 

119 F 100614 100614 1865.68 0.065 0.1 x lo-' 

ALC2 
17 30 96 30 0.2 0.196 0.9 x 
34 2642 803 1 2642 36.11 0.087 0.9 x 
51 9266 38275 9266 217.27 0.069 0.9 x lo-" 
85 29355 89711 29355 1106.86 0.064 0.9 x lo-'  

119 35248 108293 35248 1875.21 0.063 0.9 x 

quadratic function in XI, which was minimized exactly by employing the 
routine F04ASF of the NAG library, for solving the linear system 

The component x2 was updated by means of a line search procedure 
based on Algorithm LS described in Section 4. 

The computational results were obtained, starting from random 
initial points, by assuming m = 16, (T = 10 and 11 = 0.001 in correspon- 
dence to an input/output data set taken from a lelter recognition 
problem.t In order to keep the computing times within reasonable 
limits, we used only 50 input/output pairs. This may be not significant 
in the real application, but already constitutes a rather severe test for 
the optimization codes. 

Some sample results are reported in Table I, by specifying the number 
rz = M(1 + m) of variables (depending on the number M of neurons), the 
number TI, of iterations required to attain convergence towards a point 
x*, the number nf  of function evaluations, the number n, of gradient 
evaluations, the cpu time in seconds, the objective function value f(x*), 
and the norm of the gradient llVf(v*)ll. The termination criterion was 

This problem was available via ftp from the UCI Rcpository of Machine Learning 
Databases and Domain Theories: ftp.ics.uci.edu: pub!machine-learning-databases. 
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BLOCK-COORDINATE TECHNIQUES 635 

In Table I we show also comparative figures obtained by employing a 
preconditioned limited memory quasi-Newton conjugate gradient 
method (E04DGF routine, NAG library). 

Table I points out the advantages of Algorithm 2 with respect to 
algorithm E04DGF, both in terms of cpu time and of final accuracy. We 
note, in particular, that for n > 5 1 algorithm E04DGF fails to reach the 
prescribed accuracy within the prefixed number of iterations. 

No significant progress can be obtained by increasing the number of 
iterations; in fact, for n = 119 and ni = 2 x lo5 we obtained in the same 
problem the results shown in Table 11. 

Various other applications of block decomposition techniques can be 
envisaged in the field of learning problems for neural networks, such as 
the decomposition with respect to different layers or individual units. 
However, potential advantages still have to be assessed and additional 
work is needed. 

The adoption of partial global minimizations with respect to some 
variables may also be advantageous in connection with global optimi- 
zation. In fact, there are problems in which the global minimization 
with respect to some component, for fixed values of the remaining 
components, can be useful for escaping from a local minimizer. As an 
example, we can consider the problem of minimizing an objective 
function of the form: 

In this case Assumption 4 is satisfied for every i and the Gauss-Seidel 
method reduces to a coordinate descent method with exact line 
searches. The results obtained for various values of n, with random 
initial points, are compared in Table I11 with those obtained with 
algorithm E04DGF. 

We can note that algorithm E04DGF is faster when both algorithms 
converge to the same local solution; however, the global minimization 

TABLE 11 E04DGF performance in problem (84) 

n f l ,  flr "L! cpu f (x') lIVf(x*)ll 

119 2x10" 201233 201233 3731.50 0.064 0.3x10-* D
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636 L. GRIPPO A N D  M. SCIANDRONE 

TABLE 111 Cornparaiivc results for problem (85) 

with respect to the components, performed in the GS method, yields, in 
many cases, an improvement in the objective function. 

Finally, we remark that the results obtained in the unconstrained case 
can also be extended to constrained problems. This extension will be the 
object of subsequent work. 
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