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Abstract
We investigate the possibility of using atom interferometers to detect
gravitational waves. We discuss the interaction of gravitational waves with
an atom interferometer and analyse possible schemes.

PACS numbers: 03.75.Dg, 04.30.−w, 04.80.Nn, 95.55.Ym, 39.20.+q

1. Introduction

The direct detection of gravitational waves (GWs) is one of the most exciting scientific goals
because it would improve our understanding of laws governing the universe and provide
new means to observe it. The most sensitive detectors which are already operating, under
construction or being planned, are based on optical interferometers [1–3]. In most cases,
however, the sensitivities are only marginally sufficient to detect the expected signals; detectors
have large sizes ranging from a few km on the Earth (Virgo, LIGO) to millions of km in space
(LISA), and the operating frequency ranges are limited. Therefore, it is of great interest to
investigate alternative schemes that can lead to a higher sensitivity, smaller sizes and extend
the frequency range of the detectors.

In recent years, matter-wave interferometry with neutral atoms has undergone an
impressive development due to the increasing ability to control the internal and external atomic
degrees of freedom using laser manipulation methods [4–7]. Atom interferometers (AIs) are
already competing with state-of-art optical interferometers in terms of sensitivity. This was
demonstrated experimentally for gravity acceleration [8], gravity gradients [9], inertial and
rotation effects [10, 11]. Other experiments, planned or presently in progress, to investigate
properties of a gravitational field by AI concern accurate measurements of G [12, 13], test
of the equivalence principle [14], detection of the Lense–Thirring effect [15] and deviations
from the 1/r2 Newtonian law for small distances [16].
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In analogy to optical interferometers, in atom interferometers atomic wave packets are
split and recombined giving rise to an interference signal. Different schemes can be used for
splitting, reflecting and recombining the atoms. In a particular class of interferometers, which
is the one relevant in this paper, the separation of the atoms is achieved by inducing a transition
between internal states of the atoms by an electromagnetic field. The spatial separation in
this case is induced by the momentum recoil, and the internal and external states of the atoms
become entangled. Another approach is to use material gratings. This raises however different
problems, both conceptual and technical, such as the realization and handling of the required
nano-structures and it will not be considered here.

In this paper, we discuss the possibility of using AI to detect gravitational waves.
The interaction between matter waves and gravitational waves was already investigated in
[17–20]. Recently, due to the experimental advances, interest was revived [21–25]. The aim
of the present paper is to analyse possible schemes for interferometers using light fields as
atom optics components. Compared to [25], where only the Linet–Tourrenc contribution is
considered in the eikonal approximation, we take into account all the contributions in phase
difference inside the interferometer.

The paper is organized as follows. In section 2 we recall the ABCD formalism for matter
waves and apply it to the calculation of phase shift in atom interferometers in the specific case
of a weak gravitational field when the Hamiltonian is at most quadratic in coordinates and
conjugate momenta. A detailed discussion about Einstein and Fermi coordinates is presented
in appendix A. We apply the results in section 3 to derive the phase shift signal for two specific
atom interferometer configurations. Finally, in section 4 we discuss possible experimental
schemes and evaluate the sensitivity for the detection of gravitational waves.

2. The ABCD matrices for matter waves and phase shift formula for atom
interferometers

In this section, we recall the ABCD formalism for matter waves and apply it to the calculation
of the phase shift formula. The discussion is based on the relativistic Schrödinger-type
equation for atom waves and its analysis in [26] and references therein.

2.1. The ABCD matrices for matter waves

In the following, we assume that the Hamiltonian relative to the motion of the centre of mass
is a quadratic polynominal of momentum and position operators, as in most cases of relevance
in AI:

H = 1

2M∗ �p·
⇒
β (t) · �p +

1

2
�p· ⇒

α (t) · �q

− 1

2
�q· ⇒

δ (t) · �p − M∗

2
�q· ⇒

γ (t) · �q + �f (t) · �p − M∗�g(t) · �q, (1)

where α, β, γ, δ are suitable square matrix coefficients for the quadratic terms (with δ = −α̃,
where the tilde indicates the transposed matrix); g is the gravity vector field and f is an
external vector field. M∗ is the relativistic mass (M∗ = M0/

√
1 − v2/c2, where M0 is the rest

mass). The evolution of the wave packets by this Hamiltonian, via the Ehrenfest theorem, can
be obtained through Hamilton’s equations [26, 27]:

dχ(t)

dt
=

( dH
dp

− 1
M∗

dH
dq

)
= �(t)χ(t) + �(t), (2)



Is it possible to detect gravitational waves with atom interferometers? 2169

where

χ(t) =
(

q

p/M∗

)
, �(t) =

(
f (t)

g(t)

)
(3)

and

�(t) =
(

α(t) β(t)

γ (t) δ(t)

)
. (4)

The integral of Hamilton’s equations can be written through the ABCD matrices as

χ(t) =
(

A(t, t0) B(t, t0)

C(t, t0) D(t, t0)

) [
χ(t0) +

(
ξ(t, t0)

ψ(t, t0)

)]
, (5)

where (
ξ(t, t0)

ψ(t, t0)

)
=

∫ t

t0

M(t0, t
′)�(t ′) dt ′ (6)

and

M(t, t0) =
(

A(t, t0) B(t, t0)

C(t, t0) D(t, t0)

)
= T exp

∫ t

t0

�(t ′) dt ′ (7)

with T the time ordering operator. A perturbative expansion leads to [27]

M(t, t0) = 1 +
∫ t

t0

�(t ′) dt ′ +
∫ t

t0

dt ′
∫ t ′

t0

�(t ′)�(t ′′) dt ′′ + · · · . (8)

Equation (7) can be used to find the ABCD matrices which determine the evolution of
the wave packets in the presence of the GW, h. If we consider the simple case in which the
GW is the only (weak) field, in the two coordinate systems discussed in appendix A, for a
single Fourier component 
 we have up to the first order in h(
):

Fermi coordinates

⇒
α = ⇒

δ = 0
⇒
β = ⇒

1
⇒
γ = 
2

2

⇒
h (9)

A(t2, t1) = 1 − γ (
) ei
t1

[
ei
(t2−t1) − 1


2
+

t2 − t1

i


]

B(t2, t1) = (t2 − t1) +
γ (
)


2
ei
t1

[
−(t2 − t1)(e

i
(t2−t1) + 1) +
2(ei
(t2−t1) − 1)

i


]

C(t2, t1) = γ (
) ei
t1

[
ei
(t2−t1) − 1

i


]

D(t2, t1) = 1 + γ (
) ei
t1

[
(t2 − t1) ei
(t2−t1)

i

+

ei
(t2−t1) − 1


2

]
,

(10)

where γ (
) = h(
)
2/2, h(
) = ∫
h(t) exp(−i
t) dt, i = √−1.

Einstein coordinates

⇒
α = ⇒

δ = ⇒
γ = 0

⇒
β = ⇒

h (t)− ⇒
η (11)

A(t2, t1) = 1 B(t2, t1) = (t2 − t1) +
h(
)

i

ei
t1 [ei
(t2−t1) − 1]

C(t2, t1) = 0 D(t2, t1) = 1,

(12)

where
⇒
η is the Minkowskian matrix.
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2.2. The phase shift formula for atom interferometers

The total phase difference between the two arms, s and i, of an atom interferometer can be
expressed as the sum of three terms: the difference in the action integral along each path, the
difference in the phases imprinted by the beam splitters on the atom waves and the contribution
from the splitting of the wave packets at the exit of the interferometer [26]:

�ϕ = 1

h̄

N∑
j=1

[Ss(tj+1, tj ) − Si(tj+1, tj )] +
N∑

j=1

[(ksj qsj − kij qij ) − (ωsj − ωij )tj

+ (ϑsj − ϑij )] +
1

h̄
[psD(q − qsD) − piD(q − qiD)], (13)

where Ssj = Ss(tj+1, tj ) and Sij = Si(tj+1, tj ) are the action integrals along the s (i) path,
ksj (kij ) is the momentum transferred to the atoms by the j th beam splitter along the s (i) arm,
qsj and qij are the coordinates of the beam splitter/atom interaction, ωsj (ωij ) is the angular
frequency of the laser beam, ϑsj (ϑij ) is the phase of the laser beam at the j th interaction with
the atom and D is the exit port.

Assuming the same input point for the two arms and using the ‘mid point’ property [7] in
integrating over the space at the output, the phase shift difference �ϕ between the two arms
(s, i) for an interferometer with N beam splitters can be written as

�ϕ =
N∑

j=1

(ksj − kij )
qsj + qij

2
+

N∑
j=1

(ωsj − ωij )tj +
N∑

j=1

(ϑsj − ϑij ) +
N∑

j=1

(Msj − Mij )c
2

h̄
τj ,

(14)

where Msj (Mij ) is the mass of the atom in the s (i) arm and τj is a proper time at the j th
interaction.

3. Phase calculation for different AI geometries

In this section, we use the ABCD formalism to find the resulting phase shift �ϕ for typical
atom interferometer schemes [4]. The approach is in the frequency space of complex Fourier
transform in order to describe both the amplitude and the phase of the resulting �ϕ. We
consider here the trapezoidal interferometer, first suggested in [28], and the parallelogram-
shaped interferometer, both in Fermi and Einstein coordinates, retaining only terms up to the
first order in h.

3.1. Trapezoidal AI

The scheme of a trapezoidal interferometer is shown in figure 1. The interaction of the
atom with two counter-propagating pairs of copropagating beams (BS1–BS4) gives rise to a
trapezoidal-shaped closed circuit. By using equation (14), we obtain the expression of the
phase shift for the two arms (s, i) of the interferometer:

�ϕ = k1q1 + 1
2ks2(qs2,b + qi2,a) + 1

2ks3(qi3,a + qs3,a) + 1
2k4(qs4,b + qi4,a)

+ 2(
LT − 
baτ) + ϑ1 − ϑ2 + ϑ3 − ϑ4, (15)

where 
L is the laser frequency and 
ba is the frequency of the atomic transition involving
ground (a) and excited (b) states; ϑi are the proper laser phases. Expressing all the qj

coordinates through the ABCD matrices, the phase difference �ϕ at the output of the
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Figure 1. Scheme of the trapezoidal interferometer. The dotted arrows represent laser beams
acting as beam splitters (BS1–BS4); the bold continuous arrows show the relevant momentum
transferred to the atom. (a) Ground internal atomic state, (b) excited internal atomic state; k:
transferred momentum (in h̄ units). In the text, T1 = T2 = T and T ′ → 0 .

interferometer is then given by

�ϕ = k1q1[1 − 2A(T , 0) + A(2T , 0)] +
k1

2
[B(2T , 0) − 2B(T , 0)]

(
p1

Mb

+
p1

Ma

+
h̄k1

Mb

)

− k1B(2T , T )
h̄k1

Mb

+ 2
LT − 2
baτ + ϑ1 − ϑ2 + ϑ3 − ϑ4, (16)

where Ma and Mb are the masses of the atom in the ground and excited states, respectively;
the expression for the A,B,C,D matrices depends on the coordinate system.

Let us first consider Fermi coordinates. From equations (16) and (10), we obtain for the
phase difference for this configuration

�ϕ(
) = −
h(
)

2

(
1

Ma

+
1

Mb

)
T 2k1p1

{[
sin 
T

(
sin(
T/2)


T/2

)2

+
cos 2
T − cos 
T


T

]

+ i

[
sin 2
T − sin 
T


T
− cos 
T

(
sin(
T/2)


T/2

)2
]}

+ h(
)
h̄k2

1T

Mb

[(
1 − sin 
T


T

)
cos 
T + i

(
1 − sin 
T


T

)
sin 
T

]

+

2h(
)

2
T 2k1q1

[
sin(
T/2)


T/2

]2

(cos 
T + i sin 
T )

+ 2

(

L − h̄k2

1

2Mb

)
T − 2
baτ + ϑ1F − ϑ2F + ϑ3F − ϑ4F . (17)

Considering Einstein coordinates, from equations (16) and (12), we obtain

�ϕ(
) = −
h(
)

2

(
1

Ma

+
1

Mb

)
T 2k1p1

×
[

sin 
T

(
sin(
T/2)


T/2

)2

− i cos 
T

(
sin(
T/2)


T/2

)2
]

− h̄k2
1T

Mb

h(
)

(
cos 
T

sin 
T


T
+ i sin 
T

sin 
T


T

)

+ 2

(

L − h̄k2

1

2Mb

)
T − 2
baτ + ϑ1E − ϑ2E + ϑ3E − ϑ4E, (18)

where ϑiE are the laser phases in the Einstein coordinate system. They are different because
in Einstein coordinates the index of refraction for the vacuum varies with h(t) or, which is
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Figure 2. Scheme of a parallelogram interferometer. The dotted arrows represent laser beams
acting as beam splitters (BS1–BS4); the bold continuous arrows show the relevant momentum
transferred to the atom. (a) Ground internal atomic state, (b) excited internal atomic state; k:
transferred momentum (in h̄ units). In the text, T1 = T2 = T and T ′ → 0 .

the same, we have an extra (Fourier transformed) contribution δk ∼= k[h(t,
)/2] exp(i
t)

to the momentum transferred at the beam-splitter positions as a consequence of the apparent
photon velocity v ∼= c[1 + (h/2)]. This can be accounted for in the phase terms leading to an
extra term −δk(t,
) in equation (15), as in spatial beam splitters [26]. By inserting these
laser phases and using the coordinate transformation rules in GR between the two systems
considered here (see appendix B), the resulting phase shift difference is coincident with the
one obtained in Fermi coordinates, as expected for a scalar quantity which is a physical result
in spite of different descriptions.

3.2. Parallelogram-shaped AI

The scheme of a parallelogram-shaped AI is shown in figure 2. In this case, the interaction
of the atom with four copropagating laser beams gives rise to a parallelogram-shaped closed
circuit.

The phase difference at the output of this interferometer is given by

�ϕ = k1q1[1 − 2A(T , 0) + A(2T , 0)] +
k1

2
[B(2T , 0) − 2B(T , 0)]

(
p1

Ma

+
p1

Mb

+
h̄k1

Mb

)

+
h̄k2

1

2Mb

B(2T , T ) [D(T , 0) − 1] ε + ϑ1 − ϑ2 − ϑ3 + ϑ4 (19)

up to the first order in ε, where ε = (Mb − Ma)/Ma . The only difference from the case of
a trapezoidal interferometer (equation (16)) is in the recoil term, which is proportional to the
relative energy difference between ground and excited states. Using Fermi coordinates, from
equation (10) we obtain

�ϕ(
) = −
h(
)

2
T 2k1

(
p1

Ma

+
p1

Mb

+
h̄k1

Mb

)

×
{[

sin 
T

(
sin(
T/2)


T/2

)2

+
cos 2
T − cos 
T


T

]

+ i

[
sin 2
T − sin 
T


T
− cos 
T

(
sin(
T/2)


T/2

)2
]}

+

2h(
)

2
T 2k1q1

(
sin(
T/2)


T/2

)2

(cos 
T + i sin 
T )
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+
ε

2

h̄k2
1

2Mb

h(
)T 2

[(
sin 
T − 1 − cos 
T


T

)
+ i

(
sin 
T


T
− cos 
T

)]
+ ϑ1F − ϑ2F − ϑ3F + ϑ4F . (20)

Considering Einstein coordinates, we obtain

�ϕ(
) = −
h(
)

2
T 2k1

(
p1

Ma

+
p1

Mb

+
h̄k1

Mb

)

×
[

sin 
T

(
sin(
T/2)


T/2

)2

− i cos 
T

(
sin(
T/2)


T/2

)2
]

+ ϑ1E − ϑ2E − ϑ3E + ϑ4E. (21)

The same considerations of section 3.1 apply in this case about the identity of the results
in the two descriptions.

4. Possible schemes and expected sensitivities

The results in the previous section provide the phase shift at the output of the atom
interferometer induced by a gravitational wave with amplitude h and frequency 
 for the
typical schemes considered. In order to determine the sensitivity of the interferometer, that
is the minimum detectable amplitude h(
), we assume shot-noise-limited detection of the
atoms, corresponding to a phase noise given by �ϕ(
)) = η/

√
Ṅ , where η is a detection

efficiency and Ṅ is the atom flow at the detector. The resulting sensitivity h(
) (at S/N ratio
equal 1) can be written as

h(
) = η√
Ṅ

1

f (
)�
, (22)

where � is a scale factor and f (
) is the resonance function of the interferometer. Neglecting
the clock and recoil terms, from equation (17) we obtain

h(
) = ηh̄

pT L
√

Ṅ

1

f (
)
, (23)

where L is the characteristic linear dimension of the interferometer, pT = mvT with vT the
transversal velocity acquired by the atoms in the splitting process and 2/m = 1/Ma + 1/Mb,
and where

f (
) = 
T

{[
sin(
T )

(
sin(
T )/2


T/2

)2

+
cos(2
T ) − cos(
T )


T

]

+ i

[
sin(2
T ) − sin(
T )


T
− cos(
T )

(
sin(
T )/2


T/2

)2
]}

. (24)

From equation (23), it is evident that in order to achieve the required sensitivity while keeping
a sufficiently large detection bandwidth it is necessary to realize large values of L and pT .

In order to evaluate the performance of these new detectors for GWs, we analysed a few
specific cases. It is important to note that in this analysis we did not treat other noise sources
that, as in optical GW detectors, can affect the performance of the AI detector. Examples are
the suspension of optics required for the manipulation of the laser beams or the phase noise of
the laser itself. Based on the work for optical GW detectors and progress in ultrastable lasers
for future optical clocks, suitable laser sources and suspension systems can be envisaged. A
detailed analysis of the overall noise budget, including technological aspects, is beyond the
scope of the present paper.
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Figure 3. Sensitivity curves of GW detectors based on atom interferometry for the three parameter
sets discussed in the text: L = 103 m, vL = 106 m s−1 (continuous line); L = 2 × 105 m,
vL = 5 × 107 m s−1 (dotted line); L = 50 m, vL = 1 m s−1 (dashed-dotted line).

(This figure is in colour only in the electronic version)

Let us consider first an atom interferometer based on a fast beam of hydrogen atoms. If
we take T = 10−3 s and a length L = 103 m, similar to the present optical interferometer
detectors, we have vL = 106 m s−1. As shown in figure 3, in this case a sensitivity h(
)

of about 10−21Hz−1/2 is achieved for vT ≈ 10 m s−1 with a flux of 1018 atoms s−1 in the
atomic beam [29]. The recoil velocity for a hydrogen atom absorbing a Ly-α photon is
vrec = 3.3 m s−1. Although the absorption of a photon followed by spontaneous emission
destroys coherence and cannot be used to deflect atomic trajectories in an interferometer, it
is conceivable to use two-photon Raman transitions between the two hyperfine levels of the
H ground state. A single Raman pulse transfers a velocity vT = 2vrec. Raman transitions
have already been used in AI based on alkali atoms [4], and the possibility of using multiple
Raman pulse sequences to increase the enclosed area and the resulting sensitivity was also
demonstrated [30]. A practical limitation at present would be the required power (≈10 W)

of laser radiation at the Ly-α wavelength. This is orders of magnitude larger than what can
be presently achieved as cw radiation [31], but closer to what is produced in a pulsed mode
[32]. An alternative scheme is the excitation of a two-photon transition from the ground state
to long-lived excited states [33, 34]. A large recoil can be transferred by combining 1s–2s
excitation with optical transitions from the 2s state to high lying p states [35]. Such a scheme is
also compatible with a ground-based apparatus because of the negligible vertical displacement
of the atomic beam during the short total time of flight. Other cases we considered for fast
beams of heavier atoms do not meet the requirements for the scheme we considered because
of the difficulty transferring a large enough transverse momentum to the atoms while keeping
T small enough in order to keep a large bandwidth. An improvement in sensitivity, at the
expense of a reduced bandwidth, could be achieved by increasing T and correspondingly the
linear dimensions of the interferometer. In this case, however, a gravity-free apparatus in
space should be considered (figure 3).

A different case we considered is an interferometer based on cold atoms. In this case, it
is more useful to rewrite equation (23) in the form



Is it possible to detect gravitational waves with atom interferometers? 2175

h(
) = ηh̄√
Ṅ

(
pL

pT

)
T

mL2

1

f (
)
, (25)

where m is the atomic mass. It is apparent that in this scheme, by relaxing the constraint
on T, the sensitivity is better the larger the value of m and the smaller pL. As an example,
if vL = 1 m s−1 = 2vT , L = 50 m and m ≈ 102 amu, a sensitivity of about 10−21Hz−1/2

results at frequencies around 10 mHz (figure 3). The long time of flight T ≈ 50 s, for which
a gravity-free scheme would be required, leads of course to a narrower bandwidth.

5. Conclusions

We investigated the possibility of detecting gravitational waves using atom interferometers
based on light fields as beam splitters. The phase shift at the output of the interferometers
was calculated for presently known schemes using both Einstein and Fermi coordinates.
Considering sensitivities of the same order of magnitude as those of the present optical
gravitational wave detectors, we estimated the resulting values for relevant parameters.
The results show that dedicated technological developments would be needed to achieve
the required values which are beyond those presently available. New schemes for atom
interferometers, beam splitters and high flux coherent atomic sources could lead to an
increase in sensitivity and make atom interferometers competitive with other gravitational
wave detectors.
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Appendix A. Einstein versus Fermi coordinates

In general relativity (GR), all the coordinate systems are a priori equivalent. The predicted
physical results do not depend on the specific coordinate system although different descriptions
depend on coordinate systems. Generally speaking, a change of coordinates is defined by any
set of functions

xα = xα(yβ) ←→ yα = yα(xβ) α, β = 0, 1, 2, 3, (A.1)

where the invertibility is guaranteed if and only if

det

(
∂xα

∂yβ

)

= 0. (A.2)

In the following, we refer to the case in which deviations from the Minkowski space of special
relativity are due only to GWs in the weak field approximation, that is,

gµν(x) = ηµν + hµν(x) (A.3)

with |hµν | � 1. We assume that no other field is present. In this case, the linearized Einstein
field equations admit a plane wave solution for hµν . It is always possible to choose Gaussian
synchronous coordinates [36] in which

g0µ = gµ0 = (1, 0, 0, 0). (A.4)

Let us choose the particular coordinate system in which two particles A and B, at rest in the
Minkowski system, remain at rest even in the presence of a GW. These are called Einstein
coordinates (EC), and the related metrics can be written as

ds2 = c2 dt2 − (1 − h+) dx2 − (1 + h+) dy2 − dz2 + 2h× dx dy (A.5)
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for a wave propagating along the z-axis; h+ = h+(ct − z) and h× = h×(ct − z) are the
amplitudes of the two polarization states, respectively. The worldlines of a free particle are
geodesics [37]. It is important to note that the proper distance between two particles A and B,
always at rest in this system, varies with the amplitude of the GW [38]:

d2 = d2
0 + hij (t)

(
xi

B − xi
A

)(
x

j

B − x
j

A

)
, (A.6)

where d2
0 = (

xi
B − xi

A

)(
xi

B − xi
A

)
in the hypothesis that the particles A and B are close enough

to consider hij depending only on t. From another point of view, we can say that the flight
time of a photon from A to B and back is varying, or that we have an index of refraction of the
vacuum which is varying with the perturbation hij (t).

The Einstein coordinates are formally the most convenient to describe plane GWs; they
can be considered as a ‘wave system (TT gauge)’. This is not an intuitive system, however, for
measurements in a laboratory; as an extension of the ‘classical’ approach, indeed, we search
for inertial systems in which it is possible to preserve the Newtonian idea of ‘rigid stick’ and
related measurement method. Fermi coordinates (FC) are the best approximation to such a
‘Galilean system’ [37, 39]. We choose a ‘fiducial observer’ (free falling observer) at rest in
the origin; the system is related to the geodesic line x = y = z = 0. This is a Minkowskian
system if we disregard small terms such as h+ and h× [40]. The spatial axes are built as
locally orthogonal coordinate lines whose direction can be checked by gyroscopes [38–40].
The transformations between the two systems EC and FC are [38, 40]

X = x − 1

2
h+x +

1

2
h×y Y = y +

1

2
h+y +

1

2
h×x

Z = z +
1

4c
ḣ+(x

2 − y2) +
1

2c
ḣ×xy T = t +

1

4c2
ḣ+(x

2 − y2) +
1

2c2
ḣ×xy,

(A.7)

where X, Y,Z, T are Fermi coordinates; x, y, z, t are Einstein coordinates and the dot indicates
the time derivative.

Two particles A and B, initially at rest in FC, move approximately as

XA,B = xA,B − 1
2h+xA,B + 1

2h×yA,B

YA,B = yA,B + 1
2h+yA,B + 1

2h×xA,B

ZA,B = zA,B.

(A.8)

In this case, the proper distance does not change while the distance between the two particles
does: the index of refraction of the vacuum is 1. The time of flight of a photon between two
test masses A and B is the same in both systems: it is a physical result, indeed, in spite of the
different descriptions.

It is to be noted that the particle A moves with respect to the particle B as subjected to the

‘tidal’ force FA,i = 1
2mAxj d2hji

dt2 .
From equation (A.7), it appears that in the study of interaction of GW with experimental

devices, Einstein coordinates are not the most suitable because of the very complex motion
resulting for an observer in the laboratory frame; Fermi coordinates can indeed be considered
as the natural extension of a ‘Cartesian inertial system’ of the local observer [41–43].

Appendix B. Gauge invariance

Demonstrating the invariance of the results in section 3 under general gauge transformations is
the subject of ongoing work; here we restrict the discussion to the so-called ‘long wavelength
approximation’ [42, 43].
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It is easy to see that the transformation matrix S from EC to FC of appendix A behaves as

S = I + O(h), (B.1)

where I is the identity matrix; furthermore from equation (A.7), we get

T = t + O(hL2/cλ). (B.2)

From equation (B.1), using equation (B.2) in the approximation L/λ → 0 after the insertion
of the δk term for proper laser phases, the identity of results in both coordinate systems used
in section 3 follows.

It is worth noting that, starting from general FC, it is possible to build a simpler ‘laboratory
frame’, that is a rigid coordinate system [23, 40], which preserves the FC properties in the
hypothesis of constant z (wavefront of the gravitational plane wave) near the Z = 0 plane (the
plane of the interferometer) [25, 40, 44]. Considering for simplicity only the + polarization,
the transformation law from the EC with metric

ds2 = c2 dt2 − (1 − h+) dx2 − (1 + h+) dy2 − dz2, (B.3)

to the rigid system, is

t = T x = X + 1
2h+X

y = Y − 1
2h+Y z = Z

(B.4)

with the transformation matrix


1 0 0 0
1
2c

ḣ+X 1 + 1
2h+ 0 − 1

2c
ḣ+X

− 1
2c

ḣ+Y 0 1 − 1
2h+

1
2c

ḣ+Y

0 0 0 1


 (B.5)

and metric

ds2 = c2 dT 2 − dX2 − dY 2 − dZ2 +
ḣ+

c
(X dX dZ − Y dY dZ − cX dX dT + cY dY dT ).

(B.6)

Writing proper ABCD matrices for the rigid coordinate system by using equation (B.6), the
same results as in equation (17) or equation (20) can be obtained, thus demonstrating the
identity of the results in rigid, Fermi and Einstein coordinate systems.

References

[1] For an introduction, see, e.g., Saulson P R 1994 Fundamental of Interferometric GW Detectors (Singapore:
World Scientific)

[2] For a general update, see the following special issue: 2006 Class. Quantum Grav. 23
[3] For LISA project, see the special issue: 2005 Class. Quantum Grav. 22
[4] Berman P (ed) 1997 Atom Interferometry (New York: Academic)
[5] Chu S 2001 Coherent atomic matter waves LXXII Les Houches Session ed R Kaiser, C Westbrook and F David

(New York: Springer)
[6] Peters A, Chung K Y and Chu S 2001 Metrologia 38 25–61
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[31] Eikema K S E, Walz J and Hänsch T W 1999 Phys. Rev. Lett. 83 3828
[32] Setija I D et al 1993 Phys. Rev. Lett. 70 2257
[33] Gross B, Huber A, Niering M, Weitz M and Hänsch T W 1998 Europhys. Lett. 44 186
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