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I. INTRODUCTION

During the last decade, time resolved light-scattering
spectroscopy has been recognized as a very important tool
for the study of the dynamics of supercooled molecular liq-
uids. One such technique is the optical Kerr effect �OKE�, in
which a very intense laser beam with short duration
��10−4 ns� �the pump�, whose frequency is not absorbed,
travels through the liquid. Its electric field slightly orients the
molecules, creating an optical anisotropy. The anisotropy is
probed at a sequence of later times by the change it produces
on the polarization of a second beam �the probe�, which
propagates in the previously illuminated region along the
same direction as the pump. This technique gives very
precise information on the pure rotational relaxation dynam-
ics of molecules with an anisotropic polarizability tensor,
over a time scale extending typically from 10−4 ns up to
10 ns. OKE has been used to study, inter alia, salol �1�,
orthoterphenyl �o-TP� �2�, m-toluidine �3�, benzophenone
and biphenyl methanol �4�, and, more recently, supercooled
water �5�. The OKE time window is well-suited to compare
the recorded relaxation dynamics with the predictions of
mode coupling theory �MCT� above its critical temperature,
Tc, because Tc typically corresponds, in real supercooled liq-
uids, to relaxation times of the order of 10–102 ns. This
comparison has been quite fruitful and has demonstrated the
existence, in the relaxation dynamics, not only of the primary
� relaxation process, but also of its precursors, the von-
Schweidler and the so-called �-fast processes �6� and, more
recently �7�, at yet shorter times, of pseudologarithmic dy-
namics evidenced in �4� in the 10−3–10−2 ns regime, that had
escaped previous theoretical analyses.

The other important time-resolved optical spectroscopy
method for the study of supercooled liquids is the transient-
grating �TG� technique, which explores a much longer time
interval and is better adapted to the lower temperature do-
main. In this method, two pulses originating from a single
laser propagate in nearly parallel directions, crossing at a
small angle and interfering in the liquid. The duration of the
pulses is typically 103 longer than in an OKE experiment.
The technique turns out to be most powerful when the pump
frequency is such that the liquid slightly absorbs the pump

beams. In the classical description of this experiment �8�, the
interference between the electric field of the two pump
beams creates a density grating, both directly, through an
electrostrictive effect, and indirectly, through a temperature
grating created by the energy absorption. The time evolution
of the amplitude of a continuous probe beam diffracted by
the grating monitors its decay. The duration of the recorded
signal corresponds either to the lifetime, �B, �typically
10 to 103 ns�, of the longitudinal phonons with wave vector
q� launched by the pumps or, when energy absorption takes
place, to the lifetime, ��h, �104–105 ns� of the thermal grat-
ing, which is limited by the heat diffusion process. One thus
records signals in a time domain quite different from the
OKE domain and very different information can be deduced
from such experiments. This was recognized as early as 1995
by Nelson et al. �8� who proposed, on the basis of an el-
ementary analysis of the origin of the signal, that an � relax-
ation time, ��L, could be directly accessed when the condi-
tion �B���L���h is fulfilled. The other pieces of
information to be deduced would be the apparent phonon
frequency, �B, and its lifetime, �B=1/�B, as well as the value
of ��h. The latter turned out to exhibit an apparent strong
increase for ��L���h, followed by a more important decrease
below its high temperature value when ��L���h; this last
effect had, in fact, been already noticed, more than 20 years
before, by Allain et al. �9�, through an early version of a TG
experiment. Salol �10�, CKN �11�, glycerol �12�, and o-TP
�13� have been analyzed within the Nelson et al. framework,
all revealing similar features. The theory had to be revisited
�14� when the accuracy introduced by the use of the
heterodyne-detection method �HD-TG� allowed one to show
that, in some supercooled liquids composed of sufficiently
anisotropic molecules, the transient grating was also opti-
cally anisotropic; different polarizations of the probe beam
led to signals with different shapes �14,15�. An elementary
theory of the signals recorded in m-toluidine, at different
temperatures and with different polarizations of the probe,
was presented in �14�.

The complete expression of the HD-TG signals recorded
when studying a supercooled molecular liquid formed of axi-
ally symmetric molecules was given in �16�. The theory
made use of a set of equations, deduced from phenomeno-
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logical considerations. Its major improvement over the pre-
vious formulation �8� was the introduction, following a
method already used by some of us in �17�,

�1� on the one hand, of a coupling between the longitu-
dinal phonons and the mean local orientation of the
molecules and

�2� on the other hand, of the influence of these two quan-
tities on the modulation of the local dielectric tensor.

Relaxation mechanisms were also introduced in all the cou-
plings, and the whole set of equations was later derived �18�
with the help of a Zwanzig Mori technique. The theoretical
expressions showed that different relaxation mechanisms, re-
lated, in particular, to the propagation of the longitudinal
phonons and to their coupling with the mean orientation
could, in principle, be deduced from the signals measured
with different polarizations.

In the current paper, we present the results of the first
analysis of a HD-TG experiment, performed at LENS on
m-toluidine and conducted along the lines proposed in �16�
in two successive papers. This first paper, Paper I, describes
the way the theory has to be approximated and adapted to the
experimental situation in order to extract some specific infor-
mation. Section II recalls the basic ingredients of the theory
and the physical meaning of the results obtained in �16�.
Section III gives the formulas which will be compared with
the experimental signals and the principal approximations
necessary for fitting the data in a meaningful way. In the
second paper, paper II �19�, the results of paper I are tested
on m-toluidine, and are found to provide many different
results.

II. THE THEORETICAL FORMULATION

A. The HD-TG response function

In this section, we briefly present the theoretical formula-
tion leading to the expressions needed to interpret HD-TG
data. The details of the method have been previously pre-
sented in �16� and we mostly emphasize here the physical
aspects necessary for the understanding of the fitting proce-
dure. References �16,17� assumed that the local fluctuations
of the dielectric tensor, 	
� �r� , t�, are linearly related to both
the local mass density fluctuations, 	��r� , t�, and to the local

orientational fluctuations, Q� �r� , t�, of the liquid where Q� �r� , t�
is a traceless, symmetrical, tensor which characterizes the
mean orientation of molecules with axial symmetry at point r�
and time t

	
� �r�,t� = a	��r�,t�I� + bQ� �r�,t� . �2.1�

In a HD-TG experiment, one directly monitors the time evo-
lution of 	
� �r� , t� after an initial perturbation at time t=0, so
that a and b characterize the two detection channels of the

signal. Let E� 1 and E� 2 be the electric fields associated with the
two coherent pump beams with wave vectors, respectively,
k�1=q�0+ q�

2 and k�2=q�0− q�
2 , with q�0=q0ẑ, q� =qx̂, and q�q0. The

two vectors k�1 and k�2 define the scattering plane. In the TG

experiment we discuss here, E� 1 and E� 2 are both either per-

pendicular to that plane �VV polarization�, or in that plane
�HH polarization� thus always �nearly� parallel to each other.
Interference between the two coherent electric fields of the
pumps creates in the liquid a spatially modulated electric

field, E� int�r� , t�, which is the origin of a spatially modulated
energy density, U�r� , t�. This density reads, in the impulsive
limit we consider in this section,

U�r�,t� = 
mE� 1 · E� 2 cos�qx�	�t� , �2.2�

where 	�t� is a Dirac function and 
m the mean dielectric
constant of the liquid. A small fraction, H, of U�r� , t� is ab-
sorbed by the liquid and produces a thermal grating which
instantaneously �on the time scale of the experiment� gener-
ates a density grating.

The dielectric grating has two other origins, both linked to
Eq. �2.1�. Because the dielectric tensor changes with the den-
sity �the first term of the right-hand side �rhs� of this equa-
tion�, the liquid tends to further minimize its modulated en-
ergy density by creating a mass density modulation with the
same wave vector q� . The amplitude of this modulation is
proportional to a=�
m /��. Similarly, another minimization
of the energy density can be obtained by orienting the mol-

ecules with respect to E� int�r� , t�. The latter creates a torque on
the molecules that eventually generates a nonzero, modu-

lated, Q� �r� , t� with the same wave vector as above1 and with
an amplitude proportional to b. This spatially modulated mo-
lecular orientation is the third source of the dielectric grating,
the corresponding contribution to the dielectric tensor being
locally anisotropic, see Eq. �2.1� This anisotropy depends on

the common direction of E� 1 and E� 2: an index 
ex=1 �
ex

=−1� indicates a VV �HH� polarization of the pumps, thus
the two possible independent torques. Similarly, the continu-
ous, polarized, probe beam diffracted by this transient dielec-
tric grating has amplitude and a change in polarization that
decay as these density and orientational gratings decay.

When E� 1 and E� 2 are parallel, with H or V polarization, there
are �16�, for each polarization, two, and only two, indepen-
dent signals that can be obtained by varying the polarization
of the probe and of the diffracted beams: the first corre-
sponds to the two beams having the same V polarization, the
second to their having H polarization; the index 
d takes the
value 1 for VV polarization, and −1 for HH polarization.

Let us now turn to the expression of the equations of
motion of all the variables of the problem. Reference �16�
showed that, in the absence of sources, the Navier-Stokes
equations which govern the dynamics of a molecular super-
cooled liquid formed of axially symmetric molecules should
be written as:2

� = �− ci
2	� + �b � div v� − �m� � 	T�I� + �s � �� − � � Q�̇ ,

�2.3a�

1This can be described as a spatially modulated OKE.
2A somewhat more complex expression of Eq. �2.3c� was derived

in �18� but that paper also showed that the extra term does not play
any role in a TG experiment.
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Q�̈ = –�R
2Q� –� � Q�̇ + ��� � �� , �2.3b�

CV � Ṫ − Tm� � �̇ − ��2T = 0, �2.3c�

where � �r� , t� is the stress tensor, related to the mass density

current, or momentum density, J��r� , t�, by the momentum
conservation equation:

J�̇ = div � , �2.4�

while J��r� , t� is related to the mass density by the mass con-
servation equation

�̇ + div J� = 0. �2.5�

Here, 	T�r� , t� is a local temperature fluctuation, ���r� , t� is the
strain rate tensor, defined through the mean velocity field
v��r� , t�, and � indicates a time convolution product while
�b�t�, �s�t�, ��t�, and ��t� are, respectively, the bulk viscos-
ity, the shear viscosity, the rotation-translation coupling, and
the pure orientational relaxation functions. ci is the isother-
mal sound velocity, �R a �very high� libration frequency, � is
the heat diffusion coefficient, �� a rotation-translation cou-
pling constant, �m the mean mass density, and Tm the mean
temperature of the liquid. Finally, CV�t� and ��t� are the
time-dependent specific heat at constant volume and tension
�or thermal pressure� functions. References �16,18� showed
that those two functions contain not only a time dependent
part but also an instantaneous part and should be written as

Cv�t� = CV
�	�t� − 	ĊV�t� , �2.6a�

��t� = ��	�t� − 	�̇�t� , �2.6b�

where CV
� and �� are these instantaneous parts, while 	CV�t�,

and 	��t� are normal relaxation functions. Consequently, the
specific heat at constant volume, CV

th, and the pressure coef-
ficient, �th, which are measured in a usual thermodynamic
measurement, are given by

CV
th = �

0

�

CV�t�dt = CV
� + 	CV�t = 0� � CV

� + 	Cv
0,

�2.7a�

�th = �
0

�

��t�dt = �� + 	��t = 0� � �� + 	�0. �2.7b�

A long calculation �16,18� based on the Navier-Stokes equa-
tions and involving the three sources described above gives
the Laplace transform3 �LT� of the response of the liquid to
the pumps. In the impulsive limit of Eq. �2.2�, and for the
detection mechanism described by Eq. �2.1�, this LT reads,

up to a factor proportional to E1E2, as the sum of three
terms.4

R
d
ex
�q� ,�� = R
d
ex

1 ��� + R
d
ex

2 �q� ,�� + R
d
ex

3 �q� ,�� ,

�2.8�

where

R
d
ex

1 ��� = i
1 + 3
d
ex

3
�b�D−1���	��

�m
b
 , �2.9a�

R
d
ex

2 �q� ,�� = 	a +
��

�m
b

3
d − 1

3
r���
PL�q� ,��

�	�m����
�

H

1 + i��h�q� ,��
 , �2.9b�

R
d
ex

3 �q� ,�� = − iq2	a +
��

�m
b

3
d − 1

3
r���
PL�q� ,��

�	a +
��

�m
b

3
ex − 1

3
r���
 , �2.9c�

where �h�q� ,�� is the heat diffusion time for wave vector q
and frequency �

�h�q� ,�� � �h
0�q�

CV���
CV�� = 0�

= − i
CV���

�q2 , �2.10�

this equation defining the heat diffusion time �h
0�q�.

Equations �2.9� are written in such a way that, in each of
them, the rhs is the product of a detection channel�s� �first
square bracket�, the source�s� �second square bracket�, and,
between the two brackets, a dynamical response function.
The first term of Eq. �2.8�, R
d
ex

1 ���, is the LT of an OKE
signal; it describes the pure relaxation dynamics of the mo-

lecular orientation after their initial orientation by E� int�r� , t�.
This dynamics is fast enough not to be studied in the HD-TG
experiments, so that D��� may be approximated by

D��� = �R
2 . �2.11�

The second term, R
d
ex

2 �q� ,��, and the third term,
R
d
ex

3 �q� ,��, of Eq. �2.8�, have been called, respectively, in
�16� the generalized ISTS �impulsive stimulated thermal
scattering� signal5 and the generalized ISBS �impulsive
stimulated brillouin scattering� signal. Both contain three
frequency-dependent factors. As the left-hand side factor

3We define the Laplace transform of a response function f�t� �f�t�
real, equal to zero for t�0 and tending to zero for t→� by
�f�����LT�f�t�����= i�0

�f�t�exp�−i�t�dt, which implies that its in-
verse can be written as f�t�= 2

��0
� lm�f����cos��t�dt.

4Equations �2.8� and �2.9� formally differ from those appearing in
�16�, Eqs. �3.16� and �3.17�, because, on the one hand, we have
already separated here, under the form of R
d
ex

2 �q� ,�� and
R
d
ex

3 �q� ,��, the two signals that will be called below the general-
ized ISTS and ISBS signals, and, on the other hand, we have made
use of the proportionality of the electrostrictive source with a, and
of the orientational source with b.

5In the language of �16�, this is rather the phonon part of the ISBS
signal, the other part being the OKE signal, but, as the two signals
do not appear in the same time domain, we shall here stick to this
more physically meaningful denomination.
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�first square bracket� involves a, b, and 
d, the shape of those
two signals depends on the polarization of the probe and of
the detection beams, and the two channels contribute to the
detection mechanism. The second factor, PL�q� ,��, is the
propagator of a longitudinal phonon with wave vector q� and
the right-hand side factor �second square bracket� depends on
the sources. R
d
ex

2 �q� ,�� is generated by the heat absorption
and thus does not depend on 
ex. Conversely, R
d
ex

3 �q� ,��
originates, as R
d
ex

1 ���, from the coupling of the pumps to
	
� �r� , t� and depends on 
ex because the pumps tend to orient
the molecules. This orientational aspect appears through the
quantity br���, present in Eqs. �2.9b� and �2.9c�, where

r��� =
�����

�R
2 �2.12�

and thus involves the rotation-translation coupling function,
����. This coupling generates, in Eq. �2.9c�, a modulated
stress that launches longitudinal phonons; vice versa, the lat-
ter orient the molecules and induce a contribution to
R
d
ex

2 �q� ,�� and R
d
ex

3 �q� ,�� that depends on the polarization
of the probe and diffracted beams. In fact, as shown in �16�,
the function br��� mostly influences the shape of the
R
d
ex

2 �q� ,��. While its a contribution is always negative and
does not change much with temperature, its b contribution
exhibits a strong thermal variation, both in amplitude and in
shape: in amplitude because br��� has a negligible value as
long as the rotation-translation lifetime, ��, of ����, is such
that �B���1 while it cannot be neglected at lower tempera-
tures where �B���1; in shape because the duration of r���
is limited by the relaxation time ��. Conversely, as also
shown in �16�, the br��� term affects much less the shape of
R
d
ex

3 �q� ,��: all its components oscillate at the phonon fre-
quency around a zero mean value and decay as the phonon
lifetime, �B.

Finally, PL�q� ,��, the second factor of Eqs. �2.9b� and
�2.9c�, is the longitudinal phonon propagator, the inverse of
which can be expressed �16� as

PL
−1�q� ,�� = �2 − q2�ca

2 + �m
−1��̃L���

+ i�mTm
�2���
CV���

1

1 + i��h�q� ,��
 . �2.13�

Here, ca is the adiabatic sound velocity while �̃L��� is called
the “longitudinal” viscosity and contains contributions from
all the relaxation functions entering Eqs. �2.3�. The last term
of Eq. �2.13�, called �see below� the isothermal contribution
to PL�q� ,��, is the counterpart of the change from the isother-
mal velocity, ci, to the adiabatic velocity in the propagator;
this aspect is recalled, as well as the exact form of �̃L���, in
the Appendix. At high temperatures, this isothermal contri-
bution can be neglected and the corresponding PL�q� ,�� is
called the adiabatic phonon propagator �16,18�. Conversely,
this contribution will be necessary to explain the final part of
the ISTS signal at low temperatures, i.e., when the relaxation
times involved in �̃L��� are of the same order of magnitude
as �h�q� ,��. This more complete phonon propagator takes

into account the heat diffusion process that accompanies a
quasistatic isothermal strain, and is thus called the isothermal
phonon propagator, which explains the name given to the last
term of Eq. �2.13�.

III. THE EXPERIMENTAL SIGNALS AND THEIR
ANALYTICAL EXPRESSION

Equations �2.9b�, �2.9c�, and �2.13� represent exact ex-
pressions for the different signals, in the ideal case of perfect
instrumentation and when the three sources contribute to the
formation of the grating. They need, on the one hand, to be
adapted to a realistic experimental situation and, on the other
hand, to be transformed into expressions that will allow one
to extract numerical information from the experimental sig-
nals.

A. Theoretical expressions for the experimental signals

1. Experimental aspects

The experimental signals that are represented in, e.g.,
�13�, or in Paper II where we will present an analysis of
m-toluidine �19�, are not the inverse Laplace transforms of
Eqs. �2.9b� and �2.9c� for three different reasons.

First, there is an experimental uncertainty on the time the
pumps start to act. In �19�, this time will be negative and we
thus write it as −t0.

Second, the response function of the experimental setup,
including the duration of the pulses of the pumps, is not a
	�t� function, but a function F�t�, which extends over a time
long enough not to be neglected.

Finally, the long-time part of the experimental signals is
dominated by the aH �thermal grating detected by the density
modulation� term of R
d,
ex

2 �q� ,�� which, as shown in �16�, is
negative. Conversely the experimental signals, see, e.g., �13�,
are always represented with a positive long time part. A fac-
tor �−1� has to be added to the preceding formulas before
comparing them to the experimental signals.

2. The isotropic and anisotropic signals

Equations �2.9b� and �2.9c� are too general because, as
already indicated in �14�, when one limits the study of the
HD-TG signals of supercooled liquids to times longer than,
say 5 ns for q=0.63 �m−1, either the signals exhibit no po-
larization effects �e.g., for glycerol, or o-TP�, or these effects
are limited to the role of the probe and detection beams �e.g.,
for salol, or m-toluidine�. No case is known where 
ex plays
a role in this time regime, which implies that the molecular
orientation source �the b

3
ex−1
3 r��� term of Eq. �2.9c�� may be

neglected and the index 
ex dropped from any formula. The

roles of 	��r� , t� and Q� �r� , t� can then be disentangled if one
defines the two following linear combinations of the experi-
mental signals SVV

expt�q� ,�� �
d=1� and SHH
expt�q� ,�� �
d=−1�:

Siso
expt�q� ,t� = 	2SVV

expt�q� ,t� + SHH
expt�q� ,t�

3

 , �3.1a�
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Saniso
expt �q� ,t� =

SVV
expt�q� ,t� − SHH

expt�q� ,t�
2

. �3.1b�

In view of the three points made in Sec. III A 1 and Footnote
3, those two signals have to be compared with

S��q� ,t� =
2

�
�

0

�

Im�S��q� ,���cos ��t + t0�d� , �3.2�

where � stands either for “iso” or for “aniso” with

Siso�q� ,�� = iaI0PL�q� ,��	�m����
�

H

1 + i��h�q� ,��

− iaq2
F��� , �3.3a�

Saniso�q� ,�� =
��

�m

b

a
r���Siso�q� ,�� , �3.3b�

I0 representing the intensity on the detector.

B. Fit formula for Siso„q� ,�… and Saniso„q� ,�…

In order to express Siso�q� ,�� and Saniso�q� ,�� under forms
adapted to a fit of the experimental signals, it is convenient
to write, e.g., ���� in the form, see Eqs. �2.6b� and �2.7b�,

���� = i�th�1 − ���g������� , �3.4�

with

���g������ �
�	����

�th , �3.5�

where, by definition, whatever the index i, a function gi���i�
is the LT of a relaxation function gi�t� which has a value
equal to 1 for t=0 and whose final relaxation dynamics is
governed by a relaxation time �i. Following Eq. �3.5�, �i is
then the �→� limit of the corresponding rhs. In practical
applications, gi�t� will be, for instance, a Kohlrausch func-
tion, or �gi���i� will be a Cole-Davidson function.

Using similar notations for CV��� and �����, Eqs. �3.3a�
and �3.3b� may then be expressed as

Siso�q� ,�� = − IisoPL�q� ,��	1 − ���g������
1 + i��h�q� ,��

− ia0
F��� ,

�3.6�

Saniso�q� ,�� = Kaniso�g������Siso�q� ,�� �3.7�

with

��h�q� ,�� = ��h
0�q��1 − �CV

�gCV
���CV

�� , �3.8�

a0 =
�q2

�m�th

a

H
, �3.9a�

Kaniso =
��

�m

��

�R
2

b

a
�3.9b�

and

Iiso =
I0�m�th

�
Ha; �3.10�

for a given wave vector q� , a0 thus characterizes the relative
efficiencies of a and H as sources of the signal while Kaniso
characterizes the relative efficiencies of the molecular orien-
tation and mass density channels in the detection mechanism.

PL
−1�q� ,��, Eq. �2.13�, also needs to be parametrized. We

shall write its ��̃L��� term under the approximate form

��̃L��� = �L
2�gL���L� + i��̄ , �3.11�

where gL���L� is the LT of a “longitudinal” relaxation func-
tion, governed at long times by a unique relaxation time, �L,
while �̄ represents a weakly temperature dependent instanta-
neous normal damping process. Also, as the isothermal con-
tribution to PL�q� ,�� represents a correction to the adiabatic
phonon propagator, we neglect the frequency dependence of
CV��� and of ���� in the first factor of this correction. One
thus obtains for this isothermal contribution

i�mTm
�2���
CV���

1

1 + i��h�q� ,��
� − �mTm

��th�2

CV
th

1

1 + i��h�q� ,��

= ca
2� 1

�
− 1 1

1 + i��h�q� ,��
.

�3.12�

Here, � is the usual ratio between the specific heat at con-
stant pressure and at constant volume, in their thermody-
namic limit, and the relation between the two last terms of
Eq. �3.12� is discussed in the Appendix. PL

−1�q� ,�� is thus
approximated by

PL
−1�q� ,�� = �2 − q2	ca

2 + �L
2�gL���L� + i��̄ + ca

2� 1

�
− 1

�
1

1 + i��h�q� ,��
 , �3.13�

where the expression of ��h�q� ,�� is given by Eq. �3.8�: the
adiabatic approximation of PL�q� ,�� then consists simply in
making �=1 in Eq. �3.13� while � takes a larger value in the
isothermal case. This remark is of practical importance be-
cause, as shown in �16�, the long time part of the IST signal,
thus of Siso�q� , t�, relaxes on the time scale

�̄h
0�q� = ��h

0�q� . �3.14�

Equations �3.2�, �3.6�–�3.8�, and �3.13� represent the formu-
las that have to be used to interpret a HD-TG series of ex-
periments performed on a supercooled liquid formed of an-
isotropic molecules. However, those expressions still contain
too many temperature dependent parameters to allow for
their reliable determination; some of them have to be deter-
mined from independent experiments. We shall illustrate this
point in Paper II �19� where we shall make use of these
equations to interpret m-toluidine data recorded between 330
and 190 K at LENS.
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APPENDIX

It was shown in �16� that the inverse of the phonon propa-
gator, PL

−1�q� ,��, was given by

PL
−1�q� ,�� = ��2 − q2

„ci
2 + �m

−1��L��� + g�q,��…� , �A1�

where

�L��� = �b��� +
4

3
�T��� �A2�

and

g�q,�� = − i�mTm
�2���
CV���

i��h�q� ,��
1 + i��h�q� ,��

. �A3�

In Eq. �A2�, �b��� is the LT of the bulk viscosity relaxation
function while �T���, called the “transverse” viscosity, see
�20�, is given by

�T��� = �s��� −
��

�
D���r2��� . �A4�

The second term of the rhs of Eq. �A4� shows that this trans-
verse viscosity results from the renormalization of �s���, the
LT of the shear viscosity, by the coupling of the transverse
phonon to the orientational density. Furthermore, g�q ,�� can
be expressed as

g�q,�� = − i�mTm
�2�� = 0�
CV�� = 0�

− i�mTm� �2���
CV���

−
�2�� = 0�
CV�� = 0�

+ i�mTm
�2���
CV���

1

1 + i��h�q� ,��
. �A5�

The first term of the rhs of Eq. �A5� can be added to ci
2 to

give

ci
2 − i�mTm

�2�� = 0�
CV�� = 0�

= ci
2 + �mTm

��th�2

CV
th = ci

2 + ci
2�� − 1�

� ca
2, �A6�

where we have made used of the classical thermodynamic
relation

�mTm
��th�2

CV
th = ci

2�� − 1� �A7�

with

� =
CP

th

CV
th . �A8�

This introduces the adiabatic phonon velocity. Furthermore,
adding the second term of the same rhs to �m

−1��L��� in Eq.
�A1� yields

�̃L��� = �b��� +
4

3
�T��� −

i�m
2 Tm

�
� �2���

CV���
−

�2�� = 0�
CV�� = 0� ,

�A9�

which is the “longitudinal” viscosity appearing in Eq. �2.13�,
the third term of the same rhs being the isothermal
contribution.
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