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Five phosphotyrosine-containing peptides have been synthesized by FMOC solid-phase peptide synthesis. These peptides correspond to the 4114  19 
sequence of the Xenopus src oncogene, to the 1191 1220 sequence of the human EGF receptor precursor, to the 1146-1158 sequence of the human 
insulin receptor, to the 85(~865 sequence of the human/~-PDGF receptor, and to the 5-16 sequence of the erythrocyte human band 3. The peptides 
were used as substrates for activity assay of two isoforms (AcP1 and AcP2) of a low molecular weight cytosolic PTPase. The assay, performed 
in microtiter EIA plates using Malachite green to determine the released phosphate, was rapid, reproducible, and sensitive. Both PTPase isoforms 
were able to hydrolyze all synthesized peptides, though with different affinity and rate. The main kinetic parameters were compared and discussed 

with respect to the role of the two enzymes in the cell. 

Phosphopeptide; Phosphotyrosine protein phosphatase; PTPase; Protein phosphatase; Phosphotyrosine 

1. INTRODUCTION 

A low Mr phosphotyrosine protein phosphatase (E.C. 
3.1.3.48) is present in the cytosol of a number of tissues 
[1]. (The enzyme was previously referred to as low Mr 
acid phosphatase (E.C. 3.1.3.2.)) This enzyme is active 
toward Tyr-phosphorylated protein substrates [24] 
although it also catalyzes the hydrolysis of low Mr 
compounds such as p-nitrophenylphosphate (pNPP), 
L-phosphotyrosine, and acylphosphates [5-7]. 

The mechanism of the enzymatic reaction of the bo- 
vine heart enzyme has recently been identified, de- 
monstrating the formation of a cysteinylphosphate co- 
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Abbreviations: EGF, epidermal growth factor; EIA, enzyme immu- 
noassay; FMOC, fluoren-9-ylmethoxycarbonyl-; RP, reverse-phase; 
OPfp, pentafluorophenyl ester; HOBt, hydroxybenzotriazole; BOC, 
t-butoxycarbonyl-; DMF, dimethylformamide; DIPCDI, diisopro- 
pylcarbodiimide; I'MSBr, trimethylbromosilane; TFA, trifluoroacetic 
acid; FAB, fast atom bombardment; AcP1, rat liver low molecular 
weight PTPase isoform 1; AcP2, rat liver low molecular weight PTPase 
isoform 2; PTyr, phosphotyrosine; srcl P~, phosphorylated peptide cor- 
responding to the 411~,19 sequence of the Xenopus src oncogene 
product; EGFRP~, phosphorylated peptide corresponding to the 
1192 1200 sequence of the human EGF receptor precursor; IRP~, 
Tyrll50-phosphorylated peptide corresponding to the 11461158 
sequence of the human insulin receptor; PDGFRP~2, phosphorylated 
peptide corresponding to the 856 865 sequence of the humanfl-PDGF 
receptor; B3P~, phosphorylated peptide corresponding to the 5-16 
sequence of the human erythrocyte anion channel (band 3). 

valent intermediate during catalysis [8]. The formation 
of a thiolphosphate intermediate appears as a specific 
event in the reaction mechanism of all PTPase family 
members [9-11]. Other phosphatases, such as acid and 
alkaline phosphatases form different covalent interme- 
diates during the catalytic process [12]. The active site 
of this PTPase contains the sequence motif  C-X-X-X-X- 
X-R in the 12 18 zone (both Cys and Arg are essential 
for the activity) and thus resembles the active site motif 
of the classical PTPase family members [13]. 

The enzyme from bovine liver has been sequenced in 
our laboratory [14]. It consists of a single polypeptide 
chain of 157 amino acid residues among which are pres- 
ent 8 cysteines, all in the reduced form [14]; two of these 
cysteine residues are involved in the catalytic site [13- 
15]. In other tissues, two isoenzymes differing only in 
the sequence of the 40-73 region are present [16]; they 
probably arise from alternative splicing. 

The enzyme has been expressed in E. coli using a 
synthetic polydeoxyribonucleotide with a sequence de- 
rived from that of the enzyme from bovine liver [17]. 

Recently, an experiment concerning the overexpres- 
sion of the low Mr PTPase in v-erb-B transformed fi- 
broblasts [18] seemed to confirm the role of this enzyme 
as a possible regulatory element of cell growth [19]. 

By looking for biologically relevant substrates which 
could be dephosphorylated by this enzyme, it was ob- 
served that the autophosphorylated EGF receptor was 
efficiently dephosphorylated in vitro [3]. On the other 
hand, this search for possible physiological substrates 
for this enzyme, as well as for other PTPases, is hin- 
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dered by the substantial difficulty of providing suitable 
substrates, since tyrosine phosphorylation occurs at 
very low levels within cells and the phosphoproteins are 
difficult to isolate and purify. Moreover, this makes the 
assay of the activity of these enzymes on substrates 
biologically more significant than synthetic phosphate 
esters such as p-nitrophenylphosphate, or L-phosphoty- 
rosine not easy. 

O-Phosphonotyrosyl peptide synthesis can help to 
overcome these difficulties by providing phosphopep- 
tides the sequence of which can be derived from that of 
the phosphorylation site of any phosphotyrosine pro- 
tein kinase target protein the sequence of which is 
known. These peptides can therefore be considered as 
useful tools for routinely measuring the activity of 
PTPases and for preliminary investigations on their 
substrate specificity, if it exists. 

Methods have recently been reported of the use of 
phosphotyrosyl peptides in PTPase activity tests [20,21]; 
these methods allow rapid, sensitive, reproducible, and 
accurate activity measurements that do not require the 
use of 32R In particular, a Malachite green colorimetric 
assay for phosphoserine protein phosphatase activity 
has recently been reported [21]. We extended this 
method to the phosphotyrosine protein phosphatase ac- 
tivity assay, and improved it in order to make the phos- 
phatase assay easier and quicker by performing the re- 
action in microtiter EIA plate wells in the presence of 
varying phosphotyrosine-containing peptides which 
have previously been synthesized. 

We used the above method to check the behavior of 
five phosphopeptides (derived from the sequence near 
the phosphorylation sites of the s r c  gene product, the 
EGF receptor, the insulin receptor, the fl-PDGF recep- 
tor, and the human erythrocyte band 3) as substrates of 
the low Mr phosphotyrosyl protein phosphatase 
isoforms from rat liver (AcP1 and AcP2). 

2. MATERIALS AND METHODS 

FMOC-Tyr(POsMe2)OH was from Bachem, all other amino acid 
derivatives, DMF, piperidine, diisopropylcarbodiimide, and TFA 
were from MilliGen, as well as FMOC-Val-PepSynKA, FMOC-Gln- 
PepSynKA, and FMOC-Leu-PepSynKA resins. The Cl8 RP HiPore 
column was from Bio-Rad. The DEAE-HPLC column was from 
LKB. Membranes for automatic peptide sequencing were from Milli- 
Gen. All other reagents and solvents were of the highest available 
purity. The peptide sequences were taken from the PC-Gene data 
bank. 

OH was coupled in the presence of DIPCDI/HOBt. Side chain protec- 
tion was carried out with t-butyl ester and ether for Asp, Glu, Ser, 
Thr, and Tyr, with the BOC group for Lys, and with the Mtr group 
for Arg. FMOC group deprotection was carried out with 20% piperid- 
ine in DMF. All other synthesis steps were carried out in DMF. 

At completion of the synthesis, the resin-bound peptide was cleaved 
from the resin and deprotected with 1 M TMSBr-thioanisole/TFA 
(m-cresol, 10 mEquiv. Tyr) at 4°C for times varying from 8 to 15 h, 
depending upon each peptide. The crude peptide was either low pres- 
sure evaporated, precipited and washed with cold diethyl ether or 
directly treated with it. The peptide was then purified by semiprepara- 
tive C18 RP-HPLC which, in the case of  srclP, was preceded by 
DEAE-HPLC. 

2.2. Peptide purity assessment 
The peptide purity was determined by amino acid analysis, FAB- 

mass spectrometry, and amino acid sequencing. Amino acid analysis 
was carried out as previously described [22]. Values for serine and 
threonine were corrected for loss during hydrolysis. The amino acid 
sequence was determined by Edman degradation by using a MilliGen 
Protein Sequencer mod. 6600 on peptides covalently immobilized on 
polyvinylidene difluoride membranes derivatized with 1,4-phenylene 
diisothiocyanate (Sequelon DITC) or arylamine groups (Sequelon 
AA). Owing to its particular amino acid sequence, B3P~ was sequenced 
manually by Edman degradation. FAB mass spectra were determined 
using a VG Analytical 70-70 EQ instrument as previously described 
[23]. The peptide concentration was determined on the basis of the 
amino acid content. Phosphate analysis in the synthesized peptides 
was performed on a peptide sample of known concentration by the 
method of Fiske and Subbarow [24]. 

2.3. PTPase purification 
The two isoforms of the low molecular weight PTPase, indicated by 

AcP1 and AcP2, were purified from rat liver as previously described 
[161. 

3. RESULTS AND DISCUSSION 

The synthesis and deprotection method used allowed 
us to obtain pure phosphotyrosine-containing peptides, 
even though extensive purification of the crude peptides 
was necessary, probably owing to the presence of impu- 
rities arising mainly from the deprotection step, which 
uses trimethylbromosilane as a hard acid source. For 
this reason we found that, in order to obtain crude 
peptides with minor impurities, the time of deprotection 
was critical and different for the varying synthesized 
phosphopeptides. The purified peptides were checked 
for purity by amino acid analysis, FAB mass spectrom- 
etry, amino acid sequencing, and inorganic phosphate 
determination by both combustion and enzymic hydrol- 
ysis. The correct amino acid composition was obtained 

2.1. Phosphopeptide synthesis 
Tyr(P)-containing peptides were prepared using a MilliGen PepSyn- 

thesizer by FMOC/solid-phase synthesis through dimethytphosphate 
protection using a Kieselguhr-polydimethylacrylamide resin function- 
alized with fl-alanine as internal reference amino acid, the acid labile 
4-hydroxymethylphenoxyacetic acid linkage agent, and containing the 
FMOC-protected COOH-terminal residue. Subsequent peptide bond 
forming reactions utilized a fourfold excess of the OPfp-ester of  the 
appropriate FMOC-amino acid (Dhbt-ester in the case of  Ser and Thr) 
(4 equiv.) in the presence of 1 equiv, of HOBt. FMOCTyr(PO3Me2)- 

Table I 

Sequence of  the synthesized phosphopeptides 

s rc  I Pi 
EGFRP i 
1RP i 
PDGFRPi2 
B3Pi 

H2N-E-D-N-E-YP-T-A-R-Q-COOH 
H2N-A-E-N-A-E-YP-L-R-V-COOH 
H2N-Y-E-T-D-YP-Y-R-K-G-G-K-G-L-COOH 
H2N-N-YP-I-S-K-G-S-T-F-L-COOH 
H2N-Q-D-D-YP-E-D-M-M-E-E-N-L-COOH 

YP = Phosphotyrosine 
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Fig. 1. Standard curve for phosphate determination by the Malachite 

green assay. Each point was the average of four determinations. 

for each peptide (the hydrolysis product, Tyr, was ob- 
served for PTyr). The amino acid sequence data for 
each phosphopeptide were consistent with the expected 
sequence (Table I). The inorganic phosphate determina- 
tion in both ways showed a phosphate/peptide molar 
ratio of  about 1. 

The positive FAB mass spectra of  the target peptides 
contained a distinct molecular ion at m/z values one unit 
higher with respect to the calculated molecular weight 
of each peptide, corresponding to the M + H + species. 

The PTPase activity of the two purified enzymes 
(AcP1 and AcP2) was determined by a Malachite green 
test. 400 ml of  0.1 M acetate buffer, pH 5.5, containing 
1 mM EDTA and varying concentrations of each 
phosphopeptide were incubated at 37°C for 20 min in 
the presence of 5 U/ml of either AcP1 or AcP2. The 
reaction was stopped by adding 100 ml of the staining 
solution previously described [20,24] and left standing 
for 10 min at room temperature. The mixture was then 
centrifuged, 400 ml of  the supernatant transferred in 
wells of microtiter EIA plates and the absorbance at 600 
nm measured. The amount of inorganic phosphate re- 
leased was determined by comparison with a standard 
curve prepared together with the experiments using an 
inorganic phosphate standard solution. 

Fig. 1 shows the standard curve of  the phosphate 
determination. As can be seen, the limit of sensitivity of 
this test is about 0.5 nmol of phosphate. The test was 
highly reproducible, with minor differences among ab- 
sorbance values relative to different experiments. 

Using this assay procedure, we have been able to 
determine the main kinetic parameters of  AcP1 and 
AcP2 relative to the synthesized phosphotyrosine con- 
taining peptides as well as to either PNPP and free 
phosphotyrosine. Table II reports the kinetic data of  the 
two enzyme isoforms. It can be noted that the two en- 
zymes show pH optimum values in the 4.5-5.5 range on 

phosphotyrosine and PNPP, as well as on all phos- 
phorylated peptides, except B3Pi, on which they elicit a 
pH optimum in the 4.0-5.0 range, probably due to the 
sharp acidic nature of this peptide. This further con- 
firms a positive regulation of the enzyme activity by the 
H + ion. As for affinity for the varying substrates tested 
and catalytic rate of their hydrolysis by the two en- 
zymes, it can be pointed out that the apparent Km values 
of the two enzymes for the phosphorylated peptides, as 
well as for phosphotyrosine and PNPP, are very similar 
and in the 0.2-0.6 mM range, except for the apparent 
Km value of AcP2 for L-phosphotyrosine, which is one 
order of magnitude higher. Exceptions are represented 
by the low affinity values of both enzymes for 
PDGFRPi2 as well as of  AcP1 for B3P~. The low affinity 
of AcP1 and AcP2 for PDGFRP~2 could be due to the 
fact that, differently from the other peptides, the 
phosphotyrosine residue is located near the N-terminus 
in this peptide; this could render the positioning of the 
phosphotyrosine residue into the active site more diffi- 
cult. The absence of a free a-amino group near the 
phosphotyrosine residue of the other peptides could be 
the cause of the lowering of the apparent Km values to 
levels similar to those of PNPP (Table I). AcP1 shows 
a low affinity also for B3P~; in this case, the high appar- 
ent Km value could tentatively be ascribed to the acidic 

Table II 

Main kinetic parameters of AcP1 and AcP2 for varying phos- 
phorylated substrates 

AcP l AcP2 

Km (mM) 

PNPP 0.3 0.3 
P-Tyr 0.6 6.0 
src 1P~ 0.2 0.2 
IrP~ 0.4 0.6 
EGFRPi 0.7 0.6 
PDGFRPi2 3.0 2.0 
B3Pi 1.4 0.4 

Vm, X (pmol • min -I .mg 

PNPP 99.0 69.8 
P-Tyr 86.1 48.1 
srclP~ 3.7 2.8 
lrPl 3.1 4.6 
EGFRPi 8.0 3.7 
PDGFRP i 107.7 9.6 
B3Pi 68.0 10.5 

pH optimum 

PNPP 4.5 5.5 4.5 5.5 
P-Tyr 4.9-5.9 4.6-5.4 
srclP~ 4.5-5.5 4.5-5.5 
IRPi 5.0 5.5 5.0 5.5 
EGFRP i 4.5 5.5 4.5 5.5 
PDGFRPi2 5.~5.5 5.0 5.5 
B3P~ 4.0-5.0 4.0 5.0 
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na ture  o f  B3Pi, which is s t rongly  negat ive  at  p H  values 
near  the p H  op t imum,  lacking  any basic  residue.  

The  different  affinities o f  AcP1 and  AcP2 for bo th  
free phospho ty ros ine  and  B3Pi p r o b a b l y  reside in pecu- 
l iar  differences in the sequence 40-73,  the only segment  
which is different  in the two enzymes.  On the o ther  
hand,  the Km values o f  each enzyme for the different  
tested subst ra tes  suggest  tha t  there is a var iab i l i ty  in 
p h o s p h o p e p t i d e  subs t ra te  affinity, s r c l P  showing the 
highest  affinity and  hence, p robab ly ,  the best  fi t t ing into 
the subs t ra te  b ind ing  site. 

P D G F R P i 2  and B3P~ are the mos t  efficiently hydro -  
lyzed pept ides ,  and  in this case it can be po in ted  out  that  
AcP1 shows a h igher  hydrolys is  rate  with respect  to 
AcP2.  The  P D G F R P i  2 and  B3Pi hydrolys is  rate  by 
AcP1 is very high, a lmos t  two orders  o f  magn i tude  
higher  than  tha t  o f  the o ther  pept ides  and  the same 
o rde r  o f  magn i tude  as tha t  o f  P N P P  and  free 
phospho tyros ine ;  the hydro lys i s  rate o f  the two pept ides  
by AcP2 is qui te  lower, t hough  higher  than  tha t  o f  any  
o ther  tested pept ide.  This  obse rva t ion  is no tewor thy ,  
indica t ing  tha t  PDGFRP~2  and B3P~ are good  pept ide  
subs t ra tes  for  AcP1 and,  to a lesser extent,  for  AcP2,  
and  suggests tha t  the ca ta ly t ic  efficiency and  affinity o f  
the two enzymes on the purified, tyrosine-  
p h o s p h o r y l a t e d  pro te ins  should  be checked.  These da t a  
also suppor t  the hypothesis ,  ar is ing f rom the different  
amino  acid sequences in the 40-73 region,  tha t  the two 
enzymes elicit some differences in the ca ta ly t ic  sites and  
have different  cel lular  target  substrates .  F u r t h e r m o r e ,  
these findings, toge ther  with those relat ive to the differ- 
ent  behav ior  o f  AcP1 and AcP2 towards  inhib i tors  and  
ac t iva tors  [15], suggest that  the two isoenzymes,  which 
are expressed at  the same t ime in different  tissues [26], 
pe r fo rm different  phys io logica l  functions.  We th ink  tha t  
the use o f  synthet ic  pept ides  conta in ing  phospho ty -  
rosine and  the avai labi l i ty  o f  a sui table  m e t h o d  to meas-  
ure their  d e p h o s p h o r y l a t i o n  rate  (like the one descr ibed  
in this paper)  are useful for screening a m o n g  synthet ic  
subs t ra tes  in the search for  the phys io logica l  phos-  
phory la t ed  pro te in  subs t ra tes  for every specific PTPase.  

Acknowledgements: This work was supported in part by the Consiglio 
Nazionale delle Ricerche, target project on Peptidi bioattivi and in 
part by the Ministero della Universit/t e della Ricerca Scientifica e 
Tecnologica (60%). The peptide synthesizer was achieved through a 
grant from the Consorzio Interuniversitario di Biotecnologie. The 
authors thank the Centro di Spettrometria di Massa of the Medical 
School of the University of Florence for FAB mass spectrometry 
analyses. 

R E F E R E N C E S  

[1] Aranjo, ES., Mies, V. and Miranda, O. (1976) Biochim. Biophys. 
Acta 452, 121-130. 

[2] Chernoff, J. and Lee, H.C. (1985) Arch. Biochem. Biophys. 240, 
135 145. 

[3] Ramponi, G., Manao, G., Camici, G., Cappugi, G., Ruggiero, 
M. and Bottaro, D.P. (1989) FEBS Lett. 250, 469-473. 

[4] Zhang, Z.Y. and Van Etten, R.L. (1990) Arch. Biochem. Bio- 
phys. 282, 39-49. 

[5] Heinrikson, R.L. (1969) J. Biol. Chem. 244, 299 307. 
[6] Lawrence, G.L. and Van Etten, R.L. (1981) Arch. Biochem. 

Biophys. 206, 122 131. 
[7] Ramponi, G., Cappugi, G., Manao, G. and Camici, G. (1980) 

Proceedings of the 26th National Congress of the Societ/~ Italiana 
di Biochimica, Bologna, September 24~26, p. 167. 

[8] Wo, Y.Y.E, Zhou, M.M., Stevis, E, Davis, J.E, Zhang, Z.Y. and 
Van Etten, R.L. (1992) Biochemistry 3l, 1712 1721. 

[9] Pot, D.A. and Dixon, J.E. (1992) Biochim. Biophys. Acta 1136, 
35-43. 

[10] Cho, H., Krishnaraj, R., Kitas, E., Bannwarth, W., Walsh, C.T. 
and Anderson, K.S. (1992)J. Am. Chem. Soc. 114, 7296 7298. 

[11] Guan, K.L. and Dixon, J.E. (1991) J. Biol. Chem. 266, 17026 
17030. 

[12] Vincent, J.B., Crowder, M.W. and Averill, B.A. (1992) Trends 
Biochem. Sci. 17, 105 110. 

[13] Cirri, P., Chiarugi, P., Camici, G., Manao, G., Raugei, G., Cap- 
pugi, G. and Ramponi, G. (1993) Eur. J. Biochem., in press. 

[14] Camici, G., Manao, G., Cappugi, G., Modesti, A., Stefani, M. 
and Ramponi, G. (1989) J. Biol. Chem. 264, 2560 2567. 

[15] Chiarugi, P., Marzocchini, R., Raugei, G., Pazzagli, C., Berti, A., 
Camici, G., Manao, G., Cappugi, G. and Ramponi, G. (1992) 
FEBS Len. 310, 9-12. 

[16] Manao, G., Pazzagli, L., Cirri, E, Caselli, A., Camici, G., Cap- 
pugi, G., Saeed, A. and Ramponi, G. (1992) J. Prot. Chem. 11, 
333 345. 

[17] Raugei, G., Marzocchini, R., Modesti, A., Ratti, G., Cappugi, 
G., Camici, G., Manao, G. and Ramponi, G. (1991) Biochem. 
Int. 23, 317 326. 

[18] Ramponi, G., Ruggiero, M., Raugei, G., Berti, A., Modesti, A. 
Degl'Innocenti, D., Magnelli, L., Pazzagli, C., Chiarugi, P. and 
Camici, G. (1992) Int. J. Cancer 51,652 656. 

[19] Hunter, T. (1989) Cell 58, 1013 1016. 
[20] Madden, J.A., Bird, M.I., Man, Y., Raven, T. and Myles, D.D. 

(1991) Anal. Biochem. 199, 210-215. 
[21] Geladopoulos, T.E, Sotiroudis, T.G. and Evangelopoulos, A.E. 

(1991) Anal. Biochem. 192, 112 116. 
[22] Manao, G., Camici, G., Cappugi, G., Stefani, M., Liguri, G., 

Berti, A. and Ramponi, G. (1985) Arch. Biochem. Biophys. 241, 
418-424. 

[23] Camici, G., Manao, G., Cappugi, G., Berti, A., Stefani, M., 
Liguri, G. and Ramponi, G. (1983) Eur. J. Biochem. 137, 269 
277. 

[24] Fiske, H. and Subbarow, Y. (1925) J. Biol. Chem. 66, 375. 
[25] Baykov, A.A., Evtushenko, O.A. and Avaeva, S.M. (1988) Anal. 

Biochem. 171, 26(~270. 
[26] Fujimoto, S., Murakami, R., Ishikawa, A., Himi, K. and Ohara, 

A. (1988) Chem. Farm. Bull. 36, 3020-3026. 

134 


