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1 Introduction

One of the more interesting applications of noncommutative geometry is the study of topo-
logically nontrivial configurations over a noncommutative manifold. In the commutative
case, a general method, based on the Serre-Swan’s theorem allows to paraphrase the study
of nontrivial topologies for vector bundles in terms of projective modules. At a classical level
this theorem asserts the complete equivalence between the category of vector bundles over
a compact manifold M and the category of finite projective modules over the commutative
algebra C'(M) of ( smooth ) functions over M.

The aim of this paper is to make an analogous bridge at a noncommutative level, by
studying an explicit example, i.e. noncommutative monopoles on a fuzzy sphere [I]. In Ref.
[2] ( see also [3]-[5] ) we identified the noncommutative projectors which should clarify the
nontrivial topologies on a fuzzy sphere, however to apply them in a physical framework we
need to deconstruct the projectors and to make a bridge with the more familiar language
of connections [6]-[7]. On the other hand in Refs. [§]-[9] we studied a matrix model, firstly
introduced in refs. [I0]-[I3] which defines U(1) noncommutative gauge theory on a fuzzy
sphere, based on a matrix variable X; [I4]-[20], which contains the information about the
connection. We then investigated in Ref. [d] the possible soliton solutions, but we didn’t

succeed to identify the nontrivial topologies at the connection level.

Therefore our aim is to complete our knowledge on noncommutative gauge theories on
a fuzzy sphere by reaching mainly two objectives: firstly we are able to identify the class
of models for which the projectors of Ref. [2] are indeed solution of the Y — M equations
of motion, and secondly after deconstructing the projectors in terms of more fundamental

vector-valued fields, we are able to identify the nontrivial connections.

The structure of the paper is as follows. Firstly we recall the construction ( see [21] ) of
projectors for a classical monopole on S? by using the Hopf principal fibration 7 : S — S?
on the two-sphere, with U(1) as a structure group. Then we write the Y — M equations
of motion in terms of a classical matrix model and show that the classical projectors are
solution to them. In section 4 we recall the construction of noncommutative projectors
on a fuzzy sphere and, using a simple relation between the matrix model variable X; and
the noncommutative projectors we identify the class of models which allow for nontrivial
topologies as solutions to the Y — M equations of motion. Finally we reconstruct the gauge
connection from the projectors and we give a nice interpretation of a topologically nontrivial

matrix variable X;.



2 Monopole solution in terms of projectors

In Ref. [21] it has been shown how to characterize the nontrivial connections on the two-
sphere S? in terms of projectors ( gauge invariant definition of a connection ), by using the

Hopf principal fibration 7 : S* — S? on the two-sphere S?, with U(1) as structure group.

The general procedure is starting from the algebra of N x N matrices whose entries are
elements of the smooth function algebra C*°(S5?) on the base space S?, i.e. My(C>(S?)).
The section module of the bundle on which the monopole lives can be identified with the
action of a global projector p € My (C™(S2)) on the trivial module (C*(52))", ie. the
right module p(C*(52))", where un element of (C*°(52))" is the vector

fi
If>>=1 .. (2.1)

I

with f1, fa, ..., fy elements of (C*°(52))".

The projectors are written in general as ket-bra valued functions ( with N x N entries )

p =Y >< | <Yl =< Yy, ..., YN (2.2)

The normalization condition on the vector valued function

<Yl >=1 (2.3)

automatically implies that p is a projector since

pPP=p><yplp><iyp|=p p=p (2.4)

and that the projector is of rank 1 over C since

Tr(p) =<yl >= 1. (2.5)

We notice that it is possible to redefine the vector valued function |1 > up to the right

action of an element w € U(1), leaving the projector p invariant.

The associated canonical connection is defined as :



and its curvature

V2 = p(dp)* = ¢ >< dy|dyp >< ¢. (2.7)

The corresponding 1-form connection Ay has a very simple expression in terms of the

vector-valued function [ >

Av =< |dyp > . (2.8)

The classification of gauge non-equivalent connections depends on the possible global left
actions on the vector valued function [¢) >. If this global left action is reduced to the unitary
group SU(N) = {s|ss" = 1} preserving the normalization

[ > [ S=sl > < gl >=1 (2.9)

then we remain in the same class of solutions since the connection Ay is left invariant

AL =< | dy® >=1p|stsdy >= Ay. (2.10)

To obtain gauge non equivalent connections we should act with group elements which do
not preserve the normalization.

The explicit construction of nontrivial connections on the sphere depicted in ref [21]
involves the Hopf fibration. The U(1) principal fibration 7 : S? — S? is explicitly realized
as follows. The initial space is the 3-dimensional sphere:

S% = {(20,21) € C% 2> + |a1]* = 1} (2.11)

with right U(1)-action

SPxU(1) — S (20,21) w = (20w, z1w). (2.12)

The bundle projection 7 : S* — S? defining the Hopf fibration 7 (2, z1) = (z1, To, 3) is
determined to be



r = 20214—2120
To = 7:(2021—212(0

3 = |zl® —|af% (2.13)

We recall the projector construction for monopoles of charge —n,n € N. Let us consider

the following vector-valued function with N = n + 1 components

n — n
<= |20 ( L >zg R, 2] (2.14)

where, for the general n-case we need to introduce the binomial coefficients

n n!

Since the coordinates (zg,21) belong to the sphere S, the normalization condition for

the vector-valued function (214) is satisfied by construction :

<Y v >= (J2o)* + |21 ))" = 1. (2.16)

From < 4¢_,| we can deduce the projector

Pon = [n ><thpl. (2.17)

The normalization condition (I6) ensures that p_,, is a projector

p2_n = |¢—n >< zp—n‘w—n >< ¢—n\ = |¢—n >< ¢_n‘ = P-n
pT_n — (2.18)

and of rank 1 since its trace is the constant 1:

Tr p_p =<t_pltb_, >= 1. (2.19)

While < 1_,,| is defined on the sphere S, the projector p_,, is defined on the sphere 52,

since the left U(1)-action of < t¢_,| leaves the projector p_,, invariant:
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<P = <YL =w" <Yy Vw € U(1)
Pepn — P, =D_n ww=1. (2.20)

Therefore the projector entries can be expressed entirely as functions of the base space
52, as it should be.

To generalize the projector construction for monopoles of charge n, we consider the

vector-valued function:
. —-n n —n—k—=k —n 2 21
<tnl=|Z0, P O e (2.21)

that is again normalized to 1.

The corresponding projector

is invariant under the U(1) action

< Y| =< WY =W" < Yy Yw e U(1). (2.23)

In this classical case since the functions < v_,| and < 1,| are related by complex

conjugation, the corresponding projectors are related by hermiticity:

Po = (p-n)". (2.24)

The corresponding monopoles connections are proportional to the charge number n :

Azn = < Ygn|dihzn >= Fn(Zodzo + Z1dz1) = Fndy
Al = deZQ + Eldzl. (225)

The integer n is related to the Chern number

1 1

c1(psn) = —5— | Tr(Vy,) =

—— | T A(dp=n)?) = +n. 2.26
2 ) 21 [, Tr(Pen(dpza)?) = £ (2.26)



3 Classical Yang-Mills action and matrix models

The monopole connection is not only a topological property of U(1) Yang-Mills theory on
the two-sphere S? but it also satisfies the equations of motion. Therefore our aim is rewriting
the Yang-Mills equations of motion in a form which makes manifest that the projectors of
the classical monopoles are solution to them. This form will be used to make the extension

to the noncommutative case.

Based on our experience on the possible representations of the Yang-Mills action, the
most convenient choice turns out to rewrite the classical Yang-Mills action in terms of matrix

models and then to connect the matrix model variables with the projectors.

Let us recall the most general U(1) Yang-Mills action on the sphere in terms of matrix

models [T0]-[T3]. Let us define the matrix variable

X} =Li+ A [Li, .| = =ik D (3.1)

where A; is related to the Yang-Mills connection A,(2) and to an auxiliary scalar field

¢(w) as follows:

A(Q) = KA + F6©)  2=(0.9) (3.2)

and k¢ are the Killing vectors on the sphere 5%, and R is its radius.

The classical action is defined as :

1 1 2.\
SO0 = St AS =y [ d | I XRE X - Siner XX}
9y M 4 3
£ NXXT). (3:3)

Defining a gauge covariant field strength

Fy = [X],X]]—ie?' X} =
= [LZ, AJ] - [Lj, Az] - iEijkAk (34)

it can be developed in terms of the components fields ([B2) as follows:

Fy(Q) = kYRS Fyy + ewkxk¢ %;la 6+ it k“aa<z> (3.5)

R "R
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where Fyp, = —i(9, Ay — OpA,) for the U(1) case.

The classical Yang-Mills action on the sphere is thus reconstructed:

1 ) ab - _ab ¢
SN = g / A (Fo (4 = )i /3) (F + (4 = 20)ie" 2 +
= 20000°0+ (8(2 = V) = 4(2 = X))o, (3.6)

The auxiliary scalar field ¢ can be decoupled from pure Yang-Mills theory for the par-

ticular value A = 2, in which case the action reduces to :

1
S2) = —— / dQUFo F®° — 20,60 ¢)

49y M
dQ = \/gdfdp = sinfdfdd — F® = g"’ ¢ F,y. (3.7)

The equations of motion of the decoupled action S(2) has two basic solutions:
i) the monopole solution, with ¢ = 0, which is the aim of the present paper;

ii) A, = 0,¢ = const, which has been considered in the appendix of our paper [9].
In the following we will clarify that a simple noncommutative map is able to connect the

noncommutative generalization of these two types of classical solutions.

We notice that rewriting the classical action in terms of matrix models, that becomes
polynomial in the fundamental variables, making simpler the link with the method of pro-

jectors.

It is easy to observe that the projector py can be linked to the matrix variables X?

according to the following formula:

Xz' = poLipo. (3-8)

Being the projector a gauge invariant formulation of the connections, the matrix variable
X, is again gauge invariant and therefore it is not directly connected with X?. In any case
shifting to the gauge covariant formulation is still possible, since the projector py can be put

in the form of a ket-bra valued function:

po = [t >< 9| (3.9)

and , once the vector-valued function < 9| is introduced, the passage from X; to X0 is

manifest:



X0 =< | X;|op >=< |Li|p >= Li+ < ¢|[Ls, |1 >]. (3.10)

As a byproduct we have obtained a representation of the connection A; in terms of the

vector-valued function [¢) >:

Ai =< P|[Li, |4 >]. (3.11)

Before entering into details we firstly notice ( as in ref. [6] ) that the direct introduction
of the link (B8) between matrix model variables and projectors into the classical action (B3])
gives rise to a problem at a level of the variational principle. In fact the equations of motion
obtained by varying the projector py, subject to the conditions pZ = py, pg = pp, contain

more solutions than those obtained by varying the connection X?.

To avoid such ambiguity we will limit ourself to introduce the link with the projectors
B) at the level of Yang-Mills equations of motion and we will show that the monopole

projectors are indeed solutions of them.

By varying the classical Yang-Mills action ([B3) with respect to X? we find the following

equation:

[X]Q’ Fi] =i(A = )€ Fji (3.12)

where

Fy =X, X)) — ieiju Xy (3.13)

For A = 2 these matrix model equations of motion coincide precisely with those of pure

Yang-Mills theory on a two-sphere, by simply posing the auxiliary scalar field ¢ = 0.

We are ready to introduce the constraint X; = poLipo in (BX) and to verify that the
monopole projectors (ZI17) and (222) are indeed solution of [BIZ). Firstly we compute Fj;

Fij = po([Li, po)[ Ly, po] — [Lj, po)[Ls, po)) (3.14)

where we made use of the property:

po[Li, polpo = 0. (3.15)



Therefore the equations (BIZ), rewritten in terms of a generic projector pg, take the

following form:

polL?, ([Li, po][Lj, po] — [Lj, pol[Li, po])Ipo =
= i(A — 1)€ijkpo([Li>Po] [Ljapo] - [Lj>Po] [Li,po])Po- (3.16)

The evaluation of these equations on the classical projectors ([2I7) and ([22) is surpris-
ingly more difficult than the noncommutative case as we shall see later. However we can

verify directly (BI6) for the simplest case, the monopole with charge 1:

1{ 14 cosd sinf e ™
= — ) . 3.17
b ( sinf € 1 — cosh ) ( )

After simple calculations we get

v
Fog = p1(0op10yp1 — Opp10op1) = §sm€ 2

» k
1 x
Fy = _(k?k? - k?kf‘)F% = _§p1€ijkﬁ- (3.18)
It is then enough to apply the formula
(L, 2] = i€jpa’ (3.19)

and eq. ([BIH) to verify that p; is indeed solution of the equations of motion (BI6) for
A =2

Once clarified the interconnection between classical projectors and Y-M equations, it
is interesting to reconstruct the monopole connections starting from the knowledge of the

projectors p4y.

To reach this goal it is convenient to recall the formula (BII)
A; =< ¢|[Li, | >] (3.20)

where the commutator action reduces to a derivative action in the classical case:

[Li,] = —i(k0Os + kPO, + kV'Dy)
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kY = (—sing,cosp,0)

kY = (—cosgcotgh, —singcotgh, 1)
cos¢p  sing

B = (— _ _ 21
( sinf’ sin@’o) (3.21)

where kY, l{;f are the killing vector of the sphere and k?’ is the residue of the extended
action on S3. Unfortunately the derivative action contains the dependence on the auxiliary
U(1) variable 9 of the three sphere S?, since the vector-valued function < |, by construction,
depends on the total space S3, while the projectors depend only on the physical base space
S2.

Therefore for the simplest monopole n = 1

< 1| = (Z0,71) (3.22)

with

20 = cos=ei(2%) 27 = sinzel("z”) (3.23)
2 2
we obtain at first sight for the connection
A = K Ag+ kA +EVA,
1 1
A¢ = 5 Ag =0 A¢ = —50089. (324)

We haven’t yet been able to identify the monopole connection for the presence of the
spurious component A,. However since the field strength Fj; depends only on the variables
0 and ¢, being determined by the projectors py, as in the formula ([BI4), it turns out that
the presence of the component A, is purely fictitious and can be removed by redefining the

vector-valued function < |:

e

<] =< Y| =¢€7 <] forn=1 (3.25)

or in the general case

<] m< Y| = €Mt <1h|  YneN. (3.26)

After this redefinition, which doesn’t alter the projectors, we obtain the well-known result

for the monopole connection:

10



Ag=0 Ay= —gcosﬁ. (3.27)

We have therefore learned that the Lie derivative action is equivalent to the ordinary
derivate action d = dﬁ% + dgﬁa% if and only if the vector-valued function < | can be
projected to the basic space S2. This redefinition, which is simple in the classical case, turns

out to be necessary also in the noncommutative case.

4 Noncommutative projectors

In Ref. [2] ( see also [3]-[5] ) , we have been able to extend the classical monopoles in terms of

new noncommutative projectors having as entries the elements of the fuzzy-sphere algebra:

[i’i, i’j] = iOéEijki’k Z (i’l)2 = R2
2
o= (4.1)

VN(N +2)

In the N — oo limit this algebra reduces to the classical two-sphere. Our construction is
based on the observation that the classical x; coordinates are related to a couple of complex
coordinates by the Hopf principal fibration. The noncommutativity between the coordi-
nates is then realized by promoting the two complex coordinates to a couple of independent

oscillators:

zi — a; a;, a}] = 0;

T = %(aoai + arap)

Ty = i%(aoai — ayaf)

T3 = %(aoag) — ayal)

N = alag+dla. (4.2)

The operator & is equal to « for representations with fixed total oscillator number N=N ,
which is the characteristic noncommutative parameter of the fuzzy sphere. As it happens
in the principal Hopf fibration we can redefine the oscillators with a U(1) factor which is

cancelled in the combinations Z;.
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Basically, the projectors are constructed in terms of vector-valued operators < 1|, tak-
ing values in the oscillator algebra, while the projectors will be dependent on polynomial

functions of the fuzzy-sphere algebra z; only.

To construct the projectors p,(Z;) we have considered the (n + 1)-dimensional vectors:

|, >= N, ( " )(ao)"_k(al)k . (4.3)

Constraining the vector < 1,,| to be normalized one notice that the function NV, is fixed

to be dependent only on the number operator N

< Y|ty >=1
- 1
N, = N,(N) = = : (4.4)
VTSN —i+n)
Then the n-monopoles projector is simply

and it satisfies the basic properties of a projector, due to the normalization condition
().
It is easy to notice that in the ket-bra product there appear only combinations of os-

cillators, commuting with the number operator N, and therefore the action of p, can be

restricted to a fixed value N = N and its entries belong to the fuzzy-sphere algebra.

Moreover the projector P, has a positive trace given by

N+n—+1

Tr pp="Tr |, >< ,| = N1

Tri=N+n+1< TrI=(N+1)(n+1). (4.6)

Being the algebra of the fuzzy sphere a finite-dimensional algebra, the trace of the pro-

jector p,, is always a positive integer and less than the trace of the identity.
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To construct the solution for p_,(n > 0) it is enough to take the adjoint of the components
of the vector (3)), apart the normalization factor, which is different in this case. Consider

the (n 4 1)-dimensional vectors:

5= N, (”)maw—k(ank . W)

Again normalizing the vector < v¢_,| fixes the function N,, to be dependent only on the

number operator:

< w—n|¢—n >=1
- 1

N, = N,(N) = :
%Hgﬂﬁ+i+2—m

(4.8)

The corresponding projector p_,, doesn’t exist for all values of n, but only for 0 < n <

N + 2. In fact the corresponding trace is given by:

N+1-—
Trp_n:Tr\w_n><w_n\:%Tr]:N+l—n< Tr 1. (4.9)

This trace is an integer, but it is positive definite if and only if the following bound is

respected:

n<N+1. (4.10)

For the special case n = N 4+ 1 we simply obtain a null projector.

In summary the projectors pi,(Z;) have the nice property to be a smooth deformation of
the classical projectors pi,(x;), making evident the existence of noncommutative monopoles
which tends for N — oo to the classical ones. We recall that this procedure has been

successfully extended to the fuzzy four-sphere case [22].

To construct the corresponding connection we need more work because we must be sure

that the action of the Lie derivative [L;,.] on the vectors |14, > has as a smooth limit the
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classical Lie derivative on the sphere and this criterium requires an adjustment of the present

construction.

5 Properties of noncommutative projectors

Let us start from the generic noncommutative projectors p,; defining the corresponding

matrix model variables as in eq. ([B.8)), we easily obtain, using the oscillator algebra, *

n N "

N +n
~(_ N +2
X( ™) = —-n Lz ) E T —— —-n >Lz< —n)| — -n >Lz< —-n
; P(=n) LiD(—n) N+2_n\¢< ) Vn) = [Y(n) Y| +
+W(—n)>z4§_")<¢(_n)\ 0O<n<N+1. (5.1)

The ( gauge invariant ) connection is not only proportional to the classical monopole

charge n but it has another dependence from n in the denominator:

> A <o | = . n > L < b, >0
o > A" <] =~ Ul
> AT < = " oy > Li <
) > A U N o Yen U(-n)|
0<n<N+1 (5.2)
Let’s see what happens for the field strength:
) _ nN__.
F’ij = —m'lﬂjkhﬂn > Lk < ¢n| n >0
= (—n) n(N—|—2) .
FiW o= ———— e > Ly < Yn
i (N+2—n)2“““w< ) > L <)
0<n<N+1. (5.3)

Differently from the classical case, the field strength is no more simply proportional to

the instanton number n unless in the N — oo limit; this is the main obstacle to define

*For the simplest case n = 1, N = 1 we have checked that the result can be expressed as a sum of two
independent angular momenta, one is intrinsic to the fuzzy sphere algebra L; ® 1 and the other 1 ® S; acting

on the (n 4+ 1) ® (n 4 1) auxiliary representation space of the projector.
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an integer Chern class for the noncommutative monopole, due to the nonlinear additional

contribution.

The corresponding equations of motion are solved by a certain value of A\, due to the

identity:

o(n) 7=(n . N r(n n

X B =iy e A=2- g >0

~(—n) ~(—n . N+2 ~

K F ) = iy el A2 g O<n< N

(5.4)

We see therefore that the class of models we are interested in is situated around the
classical value A = 2 confirming an interpretation already outlined in our paper [9]. In
particular we noticed that to define noncommutative soliton solutions, having a smooth
limit to the classical ones, it was necessary to perturb the A coupling constant in a similar

form:

c

For the special case A\, = 2 we already found a class of solutions tending to the classical
solution ¢ = const., A, = 0; in this case the matrix model variable X; was equal to a rescaling
of the background solution by a factor (1 + f(=)):

X,=(1+ f(%))i:l — ¢=const A,=0. (5.6)

Evidently, inside the class of models (E4)) it is possible to reach a different classical limit:

X, — ¢ =0, A, =monopole (5.7)

and we will discuss later how this fact happens. We have already reached an important
result, i.e. we know for what class of models our noncommutative projectors are solutions

of the YM equations of motion.
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6 Reconstruction of the gauge connection from projec-

tors

The reconstruction of the gauge connection from the noncommutative projectors requires

another step, since the vector < 1|, used for the computation in [3), is function of

the oscillator algebra, which is more general of the fuzzy sphere algebra. This produces a

discontinuity problem in the classical limit. In fact the Lie derivative, when it acts on the

oscillator algebra, has the form

and it can be represented in

1

2
1

2
1

2

[aoai + alag,

il T

[i(apa; — ara)

[aoag — ajay,

T']

)

)]

the classical limit with the extended action:

(—sing, cos, 0)

cosp  sing

( sinf’  sinf’ 0).

—i(kP0p + kPO + kYO,

(—cospcotgh, —singcotgl, 1)

(6.2)

As a consequence, a spurious dependence on the variable 1) € S is generated, which is

physically irrelevant since the field strength is function only of the two-sphere S2.

At the classical level we already discussed such problem and we have observed that the

vector |¢p > has a sort of U(1) gauge arbitrariness [¢) >— |1 > € leaving the projector

invariant.

What is the analogue of this phase ambiguity at a noncommutative level 7 Let’s write

for example the vector-valued operator |¢) > in the case n = —1:

|¢n:—1 >

1

sl

1
> nl—l—l
ZZV?’L1+7’L2+2

n1=0mn2=0

ag

a

16
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Iny 4+ 1,ne >< ny,ng



ad - > n2+1
a; = \/——————=n,ne +1><ng,n
! ZZ_O n1+n2+2|1 2 ! 2

1
<YPn=—a| = (a0, 01)—=——= = (G0, @)
VN+1

) o oo n 1
= “ s > 1,
Qo Z:OZ::O n1+n2+2|n1 N9 n1+ 7”L2|

ng
Z LHW ng >< ny,ng + 1
n1+n2+2 1,762 1,762

<¢_1|¢_1> = 1. (63)

The problem which complicates the classical limit is that the action of |[)_; > doesn’t
commute with the number operator N and therefore it is not possible to restrict its action
to a fixed number N, as instead we have done for the projectors. It is then necessary to
correct the vector [¢)_; > with an operator, acting on the right and not commuting with the

number operator, i.e. a quasi-unitary operator:

|1 >— [P >= vy > U UUt =1 (UU=1-R) (6.4)

in order to keep invariant the noncommutative projectors. The presence of the quasi-
unitary operator U adjusts the classical limit, making possible to extrapolate the noncom-

mutative connection. Many choices for U are possible, for example:

U, = Z Z |n1,n2 ><ng+ 1,n2| (65)

n1=0n2=0

or

U, = Z Z |n1,n2 ><ng,Ng + 1| (66)

n1=0n2=0

are equally good, since the difference between these two operators is a gauge transforma-

tion of the connection. Let’s compute

’ ?0
|¢—1 > = |77D—1 > Ul = ;,
ai

-~ > > 7’L1—|—1
dy = — L 4 lne><ni+1,n
D ) R R A

n1=0mn2=0
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ad > ad n2—|—1
N 3p of A R

n1=0n9o=0

At this point [N, [¢// ; >] = 0 and we can truncate the action of [¢/ ; > to a fixed number
N:

N-1
-~ k41
oy = D\ yk LN —E-1>< kLN k-1

k=0
N—1

~ N —k

aily = \/7\/€,N—k><k+l,]\f—k—1|. (6.8)
poare N+1

These actions can be reexpressed in terms of spherical harmonics of the fuzzy sphere, i.e.

the physical functional space of the noncommutative case.

We can verify that |1’ > gives rise to connections satisfying the Y-M equations of

motion ( in the gauge-covariant formulation ). Since

N +2

Xi=lp 4 >U—=
[ N +1

(UTLU)UT <] = [y > X; < ¢4 (6.9)

we can deduce that the physical matrix model variable X; is of the form:

N +2
X; = ——U'LU
N+1
. N+2
Fij = [Xzan] — ZEiijk = mleijk(UTLjU)
. 1

N+1
The generalization of these results to the case |¢)_,, > with n generic (n < N +1 ) is
straightforward.

We can summarize these results as follows. The matrix model solution X; for charge —n

is obtained in two steps:

i) re-scaling the background solution XZ-(O) = M+2 1. as already noticed in the appendix

~ N+2-n
of the paper [9], leading to the classical solution ¢ = const., A, = 0;

ii) dressing with the quasi-unitary operator X; = U TXZ-(O)U , shifting the solution in an-
other class with respect to i), the monopole class. Therefore the noncommutative map

between the two classes is realized with a quasi-unitary operator
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U: (¢ =const., A, =0) — (¢ =0, A, = monopole).

(6.11)

We note that the action of quasi-unitary operators on the background generates reducible

representations of the SU(2) Lie algebra, revealing their topological character. Therefore

the classification of nontrivial topologies on a fuzzy sphere is reduced to the classification of

reducible representations of the SU(2) Lie algebra T.

It remains to be investigated if this construction can be repeated for the case |1, >, n >

0, for example n = 1:

|¢n:l >

< | >

1 a \ [ ao
smln)-(2)
X = ny+1
Z Z Q/mh’bl,ng ><ng + 1,ng|

n1=0n2=0

iiuﬂ\n ng >< ny,ng + 1]
n1+n2+1 1,762 1,762

n1=0n2=0

1 ~

\/?(50751) = (@, 1)

+1
iiunliﬂm + 1,ns >< ny, no|
n1+n2+1 1 s 102 1,762

n1=0n2=0

f:f: Lﬂm ng + 1 >< ny, no
an%—nz%—l 1,72 1,12

n1=0n2=0

1-10,0><0,0=1— P,

The last normalization condition is equivalent to the identity since:

Yy > Po=Fy <n| =0

the action of |¢); > on the projector Py is null.

(6.12)

(6.13)

If we try to redefine |¢; > in order to commute with the number operator, we are forced

to introduce the adjoint of the quasi-unitary operator U

o0 o0
f = Z Z Iny + 1, ns >< nq,nol.

n1=0n2=0

(6.14)

Since there are no one-dimensional representations of SU(2) Lie algebra, the case n = N leads to a

vanishing matrix variable, also if the corresponding projector is non-vanishing.
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However in this case the dressing unfortunately alters the form of the projector p; since

[e.e]

[0 >< @] = |1 > UTU < | =[¢n > (1= 10,0 ><0,n|) < ¢n]. (6.15)
n=0

In fact the extra contribution is not cancelled by the presence of |¢; >. We have checked,

for the special case N = 1 using the basis of Pauli matrices, that only the combination 1 —p;

can be written as a ket-bra valued operator, but unfortunately 1 — p; doesn’t satisfy the

Y-M equations of motion. We therefore find a contradictory result, since it is impossible

for the charge n monopoles to define a connection satisfying the Y-M equations of motion,

while the corresponding projector does it. We conclude that at noncommutative level there

is in general no equivalence relation between projectors and connections, as it happens in
the classical case.

7 Conclusions

This work clarifies how to introduce topologically nontrivial configurations on the fuzzy
sphere. In particular it reveals the mechanism with which the noncommutative topology
can smoothly extend the commutative one. In Ref. [2] we were able to construct some
noncommutative projectors having as entries the elements of the fuzzy sphere algebra, and
tending smoothly in the N — oo limit to the classical monopoles on the sphere S2. However
at a physical level the classical monopoles are also solutions of the equations of motion of
the Y — M action on the sphere. Our first result is to identify a class of models for which

the noncommutative projectors [2] are solutions of the corresponding equations of motion.

In the spirit of the Serre-Swan theorem we have then tried to reconstruct the gauge
connection or equivalently the matrix model variables X; corresponding to these projectors.
In this sense we have reached a partially successful result because it is possible to deconstruct
only the projectors with negative charge —k ( p_x, k > 0), but not those of positive charge
pr, k> 0.

In the p_x(k > 0) case, we have isolated the corresponding matrix model solution, which

results to be composed in two steps:

i) with a re-scaling of the background solution, which is necessary to require that the

noncommutative topology has as a classical smooth limit the commutative one;

ii) dressing with a quasi-unitary operator, that maps the background, which is an irre-

ducible representation of the SU(2) Lie algebra, to a reducible representation. Therefore, at
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a level of the matrix model, the classification of the topologically nontrivial configurations
is reduced to the classification of the reducible representations of the SU(2) Lie algebra, at
least in the fuzzy sphere case. The fact that we are able to find connections only for negative
charge projectors p_j (0 < k < N +1) is explained with the fact that in a (N +1) x (N +1)
matrix variable X; we can insert a ( reducible ) representation with rank less than (N + 1),
but not bigger than (N + 1).

The case of positive charge projectors py (k > 0) , where it is not possible to define a
corresponding connection satisfying the Y — M equations of motion is a counterexample to
an eventual equivalence relation between projectors and connections, as instead it happens
in the classical case.
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