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Abstract

Intersection types are well known to type theorists mainly for two reasons. Firstly, they type all and only the strongly
normalizable lambda terms. Secondly, the intersection type operator is a meta-level operator, that is, there is no direct logical
counterpart in the Curry–Howard isomorphism sense. In particular, its meta-level nature implies that it does not correspond to the
intuitionistic conjunction.

The intersection type system is naturally a type inference system (system à la Curry), but the meta-level nature of the intersection
operator does not allow to easily design an equivalent typed system (system à la Church). There are many proposals in the literature
to design such systems, but none of them gives an entirely satisfactory answer to the problem. In this paper, we will review the
main results in the literature both on the logical interpretation of intersection types and on proposed typed lambda calculi.

The core of this paper is a new proposal for a true intersection typed lambda calculus, without any meta-level notion. Namely,
any typable term (in the intersection type inference) has a corresponding typed term (which is the same as the untyped term by
erasing the type decorations and the typed term constructors) with the same type, and vice versa.

The main idea is to introduce a relevant parallel term constructor which corresponds to the intersection type constructor, in
such a way that terms in parallel share the same resources, that is, the same context of free typed variables. Three rules allow
us to generate all typed terms. The first two rules, Application and Lambda-abstraction, are performed on all the components of
a parallel term in a synchronized way. Finally, via the third rule of Local Renaming, once a free typed variable is bounded by
lambda-abstraction, each of the terms in parallel can do its local renaming, with type refinement, of that particular resource.
c© 2008 Elsevier B.V. All rights reserved.

Keywords: Intersection types; Lambda calculus; Type inference; Church style; Curry style; Parallelism; Shared resources

1. Introduction

The history of intersection types starts in the late seventies: they were introduced in [6,7] as a generalization of
Curry’s type inference system, in order to characterize neatly a larger class of terms. The main idea is the introduction
of a new type-forming operator, the intersection ∧, whose introduction and elimination rules are:

Γ  M : τ1 Γ  M : τ2
(∧I )

Γ  M : τ1 ∧ τ2

Γ  M : τ1 ∧ τ2
(∧E).

Γ  M : τi i = 1, 2
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As it is mentioned in [36], intersection types provide type polymorphism by listing type instances, differing from
the more widely used ∀-quantified types [13,25], which provide type polymorphism by giving a type scheme that can
be instantiated into various type instances via different substitutions of types for quantified type variables.

The system with intersection ITD (Intersection Type Discipline, also known as Intersection Type Assignment TA∧,
or as Intersection Type Inference) turns out to be significantly powerful, since it allows the typing of exactly the
strongly normalizable terms (terminating programs). Thus, for instance, it is more powerful than the ∀ polymorphism
with respect to the set of typable terms (see, for instance, [31,17]).

Another remarkable side of the intersection type operator is its proof-functional nature. In fact, if we look at the
intersection type discipline from the point of view of the formulae-as-types approach (also known as the Curry–
Howard isomorphism, [16]) there is a surprise.

The Curry–Howard isomorphism is the mapping of constructive proofs of logical formulae into programs (lambda
terms or combinators) of related type and conversely. Thus a logical meaning for the type constructor is provided,
while logical systems can be seen in a computational way. As far as the simple types of Curry system are concerned,
the well-known analogy with the implicational fragment of intuitionistic propositional logic L→ is quite natural.
Roughly speaking, an arrow type of the shape α → β is paralleled by the implicational formula A → B, where
the elimination and the introduction rules for the arrow in types correspond, respectively, to the introduction and
elimination rule for the implication in natural deduction, and reduction of typable terms to normal forms corresponds
to normalization of proofs. The simple type discipline has been extended to stronger systems, still prompted by
the Curry–Howard isomorphism. In particular, second- and higher-order logics can be dealt with by introducing
connectives and quantifiers (of suitable order) on types, thus generating Girard’s system F and Fω, [14] (see [30]
for a thorough account on Curry–Howard isomorphism).

For ITD, however, the question “what is the corresponding logical system like?” has not yet been answered
satisfactorily. Let us consider where the difficulty lies. Since ITD extends the Curry system by adding a new type
constructor with corresponding rules, it is reasonable to look for a logic L∧, extending L→ both in the language and
in the set of deduction rules, such that the above mentioned isomorphism holds between L∧ and ITD.

Difficulties arise from the specific shape of the (∧I ) rule, saying that a term has (a deduction proves) a type (a
formula) σ ∧ τ if and only if this term has (the same deduction proves) both σ and τ . Therefore the first candidate
to correspond to intersection seems to be a restricted form of the usual intuitionistic propositional conjunction &: in
other words, the provability of a conjunctive formula A&B must require that both conjuncts are provable by proofs
with the same structure. In such a system, the &-introduction rule would be constrained by a global meta-linguistic
condition of applicability involving the shape of the whole subderivations.

These features led some authors to investigate intersection as a proof-functional (as opposed to truth-functional)
operator, in the context of “untyped terms as realizers of logical formulae”. Lopez-Escobar first referred to∧ as “... the
first... connective which is truly proof-functional”, [19]. Following that approach, in [20] and [1], a first-order logic
was defined to derive predicate formulae such as RA[M], meaning “the lambda term M realizes the propositional
formula A”. Actually, in this logic no specific rule is given to represent the ∧-derivability; the predicate RA∧B[M] is
proved by the proof of the predicate RA[M]&RB[M], which is defined as equivalent to the former one since the two
subjects of the predicates connected by & are equal (where & is the usual conjunction).

A question arises: what is the main consequence of dealing with a proof-functional operator from the point of view
of types? The main consequence is that the intersection type system is naturally a type inference system (system à la
Curry), but the meta-level nature of the intersection operator does not allow to easily design an equivalent (explicitly)
typed system (system à la Church). Note that, in fact, no syntax is introduced in the term in order to match the
intersection introduction in the (∧I ) rule, which implies that in ITD there are terms that do not encode deductions,
therefore an immediate issue which arises is how to make a type-annotated variant of the system. There are many
proposals in the literature to design such a typed system, which we will discuss later, but none of them gives an
entirely satisfactory answer to the problem addressed in the present paper.

The core of this paper is a new proposal for a true intersection typed lambda calculus, without any meta-level
notion. Namely, any typable term (in the intersection type inference) has a corresponding typed term (which is the
same as the untyped term by erasing the type decorations and the typed term constructors) with the same type, and
vice versa.

Let us discuss what is needed to get to a typed intersection system. First of all, it follows from the discussion on
the logical meaning of intersection that it is necessary to design a system where there is no intersection introduction
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as such. In order to do so, we shall define a system proved to be equivalent to ITD, in which no rule involves any
proof-functional condition for the rule’s applicability, by containing relations on subderivations. Then, we must deal
with the lambda-abstraction operation carefully: intuitively, when an intersection typed variable is bounded, we must
have a mechanism to record in the term the different uses we make of such a resource in the term itself (that is, only
some parts of its type may be exploited for any occurrence of the variable). In fact, Venneri, [34,10], succeeded in
completely removing the (∧I ) rule from a type system with intersection types, but this was for combinatory logic
(that obviously does not have any form of lambda-abstraction), rather than for the lambda calculus, and that particular
approach seems unlikely to be transferable to the lambda calculus. But from this approach we learn something: the
intersection operator has been shown there to correspond to a mix of the intuitionistic conjunction of different instances
of the same theorem and the application of theorems on conjunction in a relevant logic [21].

Intuitively, our main idea is then to introduce a relevant parallel term constructor representing the intersection,
which permits performing an intersection introduction only at the very start of a type derivation via the Axiom: typed
variables are projected in parallel and each one is coerced in order to show only the relevant hypotheses for each future
term of the parallel. This way, the terms in parallel share the same resources, that is, the same context of free typed
variables, but each of the terms does it in a “customized” way. Moreover, the parallel constructor is non-idempotent
and non-commutative, exactly like the intersection type operator (in its strict version, see the beginning of Section 3).
These two facts imply that it is possible to make as many copies as we want of a variable in the context (thanks to
non-idempotence), and in the order we prefer (thanks to non-commutativity); thus, we prepare all the necessary warps
to weave the terms, each of them typed with one component of an intersection type.

Three rules allow us to generate all typed terms. The first two rules, Application and Lambda-abstraction, are
performed on all the components of a parallel term in a synchronized way. Finally, via the third rule of Local
Renaming, once a free typed variable is bounded by lambda-abstraction, each of the terms in parallel can do its
local renaming, with type refinement according to the term’s relevant hypotheses on that particular resource. Notice
that Local Renaming corresponds to an intersection elimination, performed only at the very end of a type derivation,
that is, Local Renaming can be seen as the dual of the Axiom.

Thus, we have achieved: (i) a way of representing intersection, via the relevant parallel, without ever introducing
it, except at the very start of a derivation to list the resources that will be used; (ii) none of our rules require any
meta-level condition on their application; (iii) each use of each resource is documented in the term via coercions.

The paper is structured as follows. Section 2 discusses logical interpretations of the intersection type construct.
Sections 3 and 4 are the core of the paper, presenting the typed lambda calculus and its basic properties, respectively.
Section 5 concerns the definition of a minimal version of the Intersection Type Discipline à la Curry, and Section 6 is
devoted to proving that it is isomorphic to our typed lambda calculus. Section 7 formalizes the typed reduction rules.
Finally, Section 8 concludes the paper by discussing earlier related approaches to typed calculi.

2. Intersection types from logical and computational points of view

Applications of intersection types have flourished in the past two decades, from filter-models semantics for the pure
lambda calculus, [3], to intersection-based programming languages [26,23]. Different formulations of the intersection
type inference system and related results are presented in [32]. A general definition of the intersection type theory and
a survey on various formulations can be found in [2]. An account on more programming languages related research
is presented in [36]. We now focus on the connections between intersection types and logics, which are the bridge
between the classical intersection type inference system and the most wanted intersection typed system, subject of this
paper.

The work [11] summarizes the studies on the relation between logics of entailments, developed for purely
philosophical reasons in the early seventies, and intersection and union type theories. In particular, from the minimal
positive relevant logic B+ derives a model of lambda calculus and combinatory logic. Recently, further progress has
been made in this direction: [9] compares B+ with the semantics-based approach to subtyping introduced by Frisch,
Castagna and Benzaken [12] in the definition of a type system with intersection and union. The paper [9] shows
that, for the functional core of the system, such a notion of subtyping (which is defined in purely set-theoretical
terms) coincides with the relevant entailment of the logic B+. But this brings us back to the result in [34], where the
classical subtyping relation defined on intersection types, exploited to get a pure truth-functional inference system for
combinatory logic, was proved to correspond to the implicational-conjunctive fragment of B+.
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Going towards a typed intersection type system, we consider three results, one coming from the logical side, the
other ones from the programming languages realm. In [4], a natural deduction reformulation of the system of [34] is
presented: the resulting inference system for the lambda calculus does not have any meta-level rule and it has a strong
logical counterpart, therefore is somewhat close to a typed version, but it fails to type all terms that are typable in
ITD. In [23], a typed for construct is proposed, which gives a type variable a finite set of types to range over: also
this construct turns out not to be enough to capture the intersection type inference completely. The paper [35] can be
considered the seminal work that associates to intersection types the notion of a parallel composition of typed terms
which codify the same untyped term, but it is still far from presenting a typed intersection type system. Much more
satisfactory proposals towards a typed intersection system are [5,27,36,18], which we will compare with our approach
at the end of the paper in Section 8.

3. The typed calculus

In our calculus, we use intersection types in their strict version as defined in [33] (see also [8]). In this approach,
an intersection type of the shape τ1 ∧ · · · ∧ τn (n ≥ 1) is such that each τi is either a type variable or an arrow type,
and each arrow type is of the shape (τ1 ∧ · · · ∧ τn) → τ , i.e., intersections can occur only at the left-hand side of
the arrow type constructor. Furthermore, an intersection type τ1 ∧ · · · ∧ τn is considered here as an ordered list of
the types τ1, . . . , τn , thus, for instance, τ1 6= τ1 ∧ τ1 (no idempotence) and τ1 ∧ τ2 6= τ2 ∧ τ1 (no commutativity);
moreover, since the intersection type operator is not a binary operator, there is no associativity (while in the standard
non-strict binary formulation of the intersection type system it holds that (τ1 ∧ τ2)∧ τ3 = τ1∧ (τ2 ∧ τ3)). This choice
is motivated by our setting of explicitly typed λ-terms; more motivations for such a record-like syntax for intersection
types are presented in [36]. Such a choice is enforced by the syntax of types presented below.

Let TVar be a countable (infinite) set of type variables, ranged over by α and β (possibly with subscripts). The
set T of types (ranged over by σ , possibly with subscripts) and its subset of monotypes (ranged over by τ , δ, and ρ,
possibly with subscripts) are defined by the following grammar:

Monotypes τ ::= α | (σ → τ )
Types σ ::= (τ1 ∧ · · · ∧ τn) (n ≥ 1).

In writing types we will assume that ∧ takes precedence over→ and that→ associates to the right. We will omit
outermost brackets, unless they make the type easier to read.

Notation 1 (Intersection of Intersections). Given n types σi ≡ τ i
1∧· · ·∧τ i

ki
, such that 1 ≤ i ≤ n, then σ1

∧
· · ·

∧
σn

will denote the intersection type:

τ 1
1 ∧ · · · ∧ τ 1

k1
∧ · · · ∧ τ n

1 ∧ · · · ∧ τ n
kn

.

Notation 2.

• τ ∈ (τ1 ∧ · · · ∧ τn) means that τ ≡ τi , for some i such that 1 ≤ i ≤ n (τ is a component of τ1 ∧ · · · ∧ τn).
• σ v (τ1 ∧ · · · ∧ τn) means that τi ∈ σ , for all i such that 1 ≤ i ≤ n.
• σ v {τ1, . . . , τn} means that τi ∈ σ , for all i such that 1 ≤ i ≤ n.

It is important to notice that the second clause of the above notation, σ1 v σ2, is different from the standard
subtyping relation on intersection types that is introduced and used in the inference system in [3]. In our context,
σ1 v σ2 is only a notation for the property that each (monotype) component of σ2 is also a component of σ1. This
relation is not integrated in our typing rules: for instance, σ1 v σ2 and σ2 v σ1 do not imply σ1 = σ2, and typed
terms of type σ1 are different from typed terms of type σ2. We also include the third clause above, where we write
σ v {τ1, . . . , τn} to denote that each monotype of the set {τ1, . . . , τn} is a component of σ .

In the definition of our calculus we follow the style of the simply typed λ-calculus as presented in [15] (instead of
other common formulations of typed calculi using pseudo-terms and distinct typing rules, such as in [30]).

Therefore, we start by assuming sets of variables indexed by the set of types. Let Varσ denote a denumerable set
of variables for each σ ∈ T . Any x ∈ Varσ is denoted as xσ to represent the pair (x, σ ) (typed variable). Notice that
two typed variables xσ and yσ ′ are distinct, xσ

6≡ yσ ′ , if σ 6≡ σ ′ or x 6≡ y. Let Var denote the denumerable set of all
typed variables.

We also assume a denumerable set C of constants cσ⇒τ (coercions), that are defined as follows.
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Definition 3 (Coercion). For any type σ and for any monotype τ such that τ ∈ σ , the constant cσ⇒τ denotes the
coercion from σ to τ ; we call σ the domain and τ the range of cσ⇒τ . We call any coercion of the shape cτ⇒τ an
identity coercion.

Definition 4 (Range Set). Let Σ be a finite set of coercions such that all coercions have the same domain; we define
the range set as follows:

R(Σ )
def
= {τ | cσ⇒τ

∈ Σ }.

Using Var and C , we will define the generating rules (Definition 7) that generate the set of all and only the well-
formed (well-typed) terms of our calculus.

Coercions are intended as type upcasts that are applied to all and only the occurrences of typed variables inside
typed terms. Namely, cσ⇒τ (xσ ) denotes that this occurrence of xσ is regarded as a term of type τ (xσ is called the
argument of cσ⇒τ ), by simply forgetting the additional type information contained in σ (additional components of σ

that are different from τ ). We require any occurrence of a typed variable xσ in a term to be wrapped by a coercion
that explicitly states which part of the type information σ is relevant for this occurrence of xσ .

A typed context Γ is a finite set of distinct typed variables. Namely, if Γ = xσ1
1 , . . . , xσn

n , we will write Γ = (x1
σ1 :

σ1, . . . , xn
σn : σn), to emphasize the types of the variables. The notation Γ , xσ

: σ denotes the context Γ ∪ xσ
: σ ,

where xσ
: σ does not belong to Γ .

The set Terms(Γ ) of typed terms relative to Γ is the set of well-formed terms typed starting from Γ . For readability,
instead of writing T σ

∈ Terms(Γ ) (i.e., T is a term of type σ relative to Γ ), we will write Γ ` T : σ .
One of the main distinguishing features of our calculus is the strict parallel operator on typed terms that

corresponds to the intersection operator on monotypes. In general, a parallel term of the shape M1
τ1 | · · · |Mn

τn has
type τ1 ∧ · · · ∧ τn where each τi is the type corresponding to Mi . All typed terms Mi

τi are not parallel compositions
of typed terms (i.e., no nested parallels are allowed), as well as all τi are monotypes (i.e., all τi are not intersections).
Moreover, all Mi

τi share the same free variables in such a way that M1
τ1 | · · · |Mn

τn is a typed term relative to a unique
context Γ .

We exploit the following conventions for denoting terms:

• we use Mτ and N τ (possibly with subscripts) to denote terms having monotypes;
• we use Π σ (possibly with subscripts) to denote a parallel term. Thus, for instance, Πσ denotes a parallel term of

the shape

M1
τ1 | · · · |Mn

τn , with σ ≡ τ1 ∧ · · · ∧ τn;

• we use T σ to range over Mτ , N τ and Π σ (this is a sound notation as a type of length one is a monotype).

Now we present the generating rules defining formally the set of typed terms, in any given context Γ , that are all
and only the well-formed expressions of our intersection typed lambda calculus. The following preliminary notation
and definition are used to enhance the readability of the generating rules.

Notation 5 (Juxtapose Parallel Terms). We use the following notations on parallel terms:

• If Π1
σ1 ≡ N1

τ1 | · · · |Nk
τk and Π2

σ2 ≡ M1
ρ1 | · · · |M j

ρ j , where σ1 ≡ τ1 ∧ · · · ∧ τk and σ2 ≡ ρ1 ∧ · · · ∧ ρ j , then
Π1

σ1 |Π2
σ2 : σ1

∧
σ2 will denote the parallel term:

N1
τ1 | · · · |Nk

τk |M1
ρ1 | · · · |M j

ρ j : τ1 ∧ · · · ∧ τk ∧ ρ1 ∧ · · · ∧ ρ j .

• As a generalization, Π1
σ1 | · · · |Πn

σn : σ1
∧
· · ·

∧
σn will denote the parallel term:

((Π1
σ1 |Π2

σ2)|. . .)|Πn
σn .

Definition 6. Given a variable xσ and a term Mτ , we define the following sets:

• Coerce(xσ , Mτ ) is the set of all the coercions with argument xσ occurring in Mτ ;

• Range(xσ , Mτ )
def
= R(Coerce(xσ , Mτ )).
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Definition 7 (Generating Rules).

(AX) Axiom:
if Γ contains xσ

: σ then

Γ ` cσ⇒τ1(xσ )| · · · |cσ⇒τn (xσ ) : τ1 ∧ · · · ∧ τn (n ≥ 1)

where each τi ∈ σ , 1 ≤ i ≤ n.
(SAp) Synchronized Application:

if

Γ ` M1
σ1→τ1 | · · · |Mn

σn→τn : (σ1 → τ1) ∧ · · · ∧ (σn → τn) (n ≥ 1)

and

Π1
σ1 | · · · |Πn

σn : σ1

∧
· · ·

∧
σn

then

Γ ` M1
σ1→τ1Π1

σ1 | · · · |Mn
σn→τn Πn

σn : τ1 ∧ · · · ∧ τn .

(SAb) Synchronized Abstraction:
if

Γ , xσ
: σ ` M1

τ1 | · · · |Mn
τn : τ1 ∧ · · · ∧ τn (n ≥ 1)

then

Γ ` λxσ .M1
τ1 | · · · |λxσ .Mn

τn : (σ → τ1) ∧ · · · ∧ (σ → τn).

(LR) Local Renaming:
if

Γ ` λxσ .M1
τ1 | · · · |λxσ .Mn

τn : (σ → τ1) ∧ · · · ∧ (σ → τn) (n ≥ 1)

then

Γ ` λz1
σ1 .M1

τ1
| · · · |λzn

σn .Mn
τn
: (σ1 → τ1) ∧ · · · ∧ (σn → τn)

where, for all i such that 1 ≤ i ≤ n:
• zi

σi is a fresh typed variable such that σ v σi v Range(xσ , Mi
τi );

• M i
τi
= Mi

τi [cσ⇒δ(xσ )← cσi⇒δ(zi
σi )] for all cσ⇒δ in Coerce(xσ , Mi

τi ).

The notation Mτ
[cσ⇒δ(xσ ) ← cσ ′⇒δ(yσ ′)] denotes the substitution of cσ ′⇒δ(yσ ′) for cσ⇒δ(xσ ) in Mτ , if xσ is

free in Mτ and yσ ′ is not free in Mτ .
We will sometimes omit the superscript type from a typed term if the type is reconstructible trivially from its

subterms’ types, e.g., we will write λxσ .Mτ instead of (λxσ .Mτ )σ→τ .
The (AX) rule says that a free typed variable xσ (seen as a shared resource) can be used by the typed terms that

are in a parallel composition. Moreover, any occurrence of that variable must be coerced by a coercion that records
explicitly the component τ of σ such that xσ is viewed as a term of type τ in that particular occurrence. Thus (AX)
implies that all variables must always be coerced (Property 11), and, in fact, (AX) replaces the standard projection
rule Γ , xσ

: σ ` xσ
: σ . This choice makes the calculus uniform and the rules and proofs simpler.

Then, typed terms are constructed by using the rules (SAp) and (SAb). By (SAp) simultaneous applications are
performed between parallel terms. By (SAb) a simultaneous λ-abstraction acts on all the components of a parallel
term, where the unique context Γ guarantees that the same typed variable is bound in all these terms. By this rule, the
resource xσ , that was shared by M1

τ1 | · · · |Mn
τn , becomes an independent local resource for each λxσ .Mi

τi .
Finally, by (LR) rule, once the variable xσ has been bound to a local copy for each λxσ .Mi

τi , all the components of
the parallel term λxσ .M1

τ1 | · · · |λxσ .Mn
τn are free to rename that variable with a fresh name in an independent way.

Notice that we require each zi
σi to be a fresh variable, thus no name clash can arise during this substitution (refresh).

Furthermore, by performing this renaming of xσ each term λxσ .Mi
τi can discard some (all) of the typed information

contained in σ that are not used in Mi
τi . Namely, the fresh typed variables zi

σi are such that:
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• σ v σi , i.e., σi cannot add new monotypes with respect to the intersection type σ ;
• σi v Range(xσ , Mi

τi ), i.e., σi must contain at least all the monotypes that are relevant to the well-typedness of
Mi

τi .

Moreover, we notice that, by the above definition of generating rules:

• M1
τ1 | · · · |Mn

τn in the particular case of n = 1 denotes the term M1
τ1 having monotype τ1; in this case, we say that

M1 is not in parallel (with other terms);
• in M1

τ1 | · · · |Mn
τn each Mi

τi , having monotype τi , is either a coerced variable, or an application of the shape
Mσ→τΠ σ where M has a monotype and Π is a parallel term, or a λ-abstraction λxσ .Mτ , where τ is a monotype.

We assume that it is always possible to rename bound variables with fresh names, by extending the standard α-
renaming on λ-calculus to our terms. Therefore, we will consider typed terms syntactically equal modulo α-renaming
of typed bound variables.

In Section 4 we will list the main structural properties of the typed terms, in particular, the Inversion Lemma.

3.1. Examples

The following examples show how to use the generating rules to prove that two significant typed terms belong to
our calculus.

Example 8. This example shows a typed term of type (α→ α) ∧ (β → β) (representing two parallel typed versions
of the identity λx .x).

` λzα.cα⇒α(zα)|λwβ .cβ⇒β(wβ) : (α→ α) ∧ (β → β)

⇑ (LR)

` λxα∧β .cα∧β⇒α(xα∧β)|λxα∧β .cα∧β⇒β(xα∧β) : (α ∧ β → α) ∧ (α ∧ β → β)

⇑ (SAb)

xα∧β
: α ∧ β ` cα∧β⇒α(xα∧β)|cα∧β⇒β(xα∧β) : α ∧ β. (AX)

If we started with three (coerced) variable terms we could have generated three identities in parallel of type
(α→ α) ∧ (β → β) ∧ (α ∧ β → α); we show only the result of this after applying the last generating rule (LR):

` λzα .cα⇒α(zα)|λwβ .cβ⇒β (wβ )|λyα∧β .cα∧β⇒α(yα∧β ) :
(α→ α) ∧ (β → β) ∧ (α ∧ β → α).

Example 9. This example shows a typed term of type
(((α1 → β1) ∧ α1)→ β1) ∧ (((α2 → β2) ∧ α2)→ β2)

representing two parallel typed versions of the auto-application λx .xx .

` λy(α1→β1)∧α1 .c(α1→β1)∧α1⇒α1→β1(y(α1→β1)∧α1)c(α1→β1)∧α1⇒α1(y(α1→β1)∧α1)

| λz(α2→β2)∧α2 .c(α2→β2)∧α2⇒α2→β2(z(α2→β2)∧α2)c(α2→β2)∧α2⇒α2(z(α2→β2)∧α2) :

(((α1 → β1) ∧ α1)→ β1) ∧ (((α2 → β2) ∧ α2)→ β2)

⇑ (LR)

`λxσ .cσ⇒α1→β1(xσ )cσ⇒α1(xσ ) | λxσ .cσ⇒α2→β2(xσ )cσ⇒α2(xσ ) : (σ → β1) ∧ (σ → β2)

where σ ≡ (α1 → β1) ∧ α1 ∧ (α2 → β2) ∧ α2

⇑ (SAb)

xσ
: σ `cσ⇒α1→β1(xσ )cσ⇒α1(xσ ) | cσ⇒α2→β2(xσ )cσ⇒α2(xσ ) : β1 ∧ β2

⇑ (SAp)

xσ
: σ `cσ⇒α1→β1(xσ ) | cσ⇒α2→β2(xσ ) : (α1 → β1) ∧ (α2 → β2)

xσ
: σ `cσ⇒α1(xσ ) | cσ⇒α2(xσ ) : α1 ∧ α2.
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Now we could apply, using rule (SAp), this typed term to the identity: we would need a typed parallel term made
of four identity typed terms (it easy to build such terms following Example 8): I α1→β1 |I α1 |I α2→β2 |I α2 .

4. Properties

In this section we present the main structural properties of the typed terms, and, in particular, the Inversion Lemma.

Property 10 (Intersection Types and Parallel Terms). If

Γ ` T σ
: σ and σ ≡ τ1 ∧ · · · ∧ τn , with n > 1,

then T σ is a parallel term, namely, T σ
≡ M1

τ1 | · · · |Mn
τn for some M1

τ1 , . . . , Mn
τn .

Proof. Trivial. �

Property 11 (Basic Properties). If Γ ` M1
τ1 | · · · |Mn

τn : τ1 ∧ · · · ∧ τn then:

(1) for any (xσ
: σ) ∈ Γ and for any Mi

τi (1 ≤ i ≤ n), each occurrence of xσ in Mi
τi is the argument of a coercion

of the shape cσ⇒τ where τ ∈ σ ;
(2) for any term of the shape N1

ρ1 | · · · |Nk
ρk , where for all i (1 ≤ i ≤ k) there exists j (1 ≤ j ≤ n) such that

Ni
ρi ≡ M j

τ j , the judgement

Γ ` N1
ρ1 | · · · |Nk

ρk : ρ1 ∧ · · · ∧ ρk

is derivable (i.e., if we can derive a parallel, we can also derive a permutation of it, a shorter parallel, a parallel
with duplication).

Proof. Both points are proved by induction on the derivation of
Γ ` M1

τ1 | · · · |Mn
τn : τ1 ∧ · · · ∧ τn . �

Intuitively, the second point of the previous property states that Γ ` N1
ρ1 | · · · |Nk

ρk : ρ1 ∧ · · · ∧ ρk can be
generated by applying the same sequence of generating rules that were used to obtain Γ ` M1

τ1 | · · · |Mn
τn :

τ1 ∧ · · · ∧ τn , in particular:

• for permutation, we only need to re-arrange the derivations we already have;
• for a shorter parallel, we choose only the derivations we need;
• for duplication, we only need to prepare the n-uple of (coerced) copies of the sought variable by applying the

projection rule (AX) accordingly.

Lemma 12 (Inversion Lemma).

1. If Γ ` cσ⇒τ1(xσ )| · · · |cσ⇒τn (xσ ) : τ1 ∧ · · · ∧ τn then xσ
: σ ∈ Γ .

2. If Γ ` M1
σ1→τ1Π1

σ1 | · · · |Mn
σn→τn Πn

σn : τ1 ∧ · · · ∧ τn then

Γ ` M1
σ1→τ1 | · · · |Mn

σn→τn : (σ1 → τ1) ∧ · · · ∧ (σn → τn)

and

Γ ` Π1
σ1 | · · · |Πn

σn : σ1

∧
· · ·

∧
σn .

3. If Γ ` λxσ .M1
τ1 | · · · |λxσ .Mn

τn : (σ → τ1) ∧ · · · ∧ (σ → τn) then

Γ , xσ
: σ ` M1

τ1 | · · · |Mn
τn : τ1 ∧ · · · ∧ τn .

4. If Γ ` λx1
σ1 .M1

τ1 | · · · |λxn
σn .Mn

τn : (σ1 → τ1) ∧ · · · ∧ (σn → τn) such that all xi
σi are distinct, then there exits

zσ such that

Γ , zσ
: σ ` M1

τ1
| · · · |Mn

τn
: τ1 ∧ · · · ∧ τn

where
• σ v σi v Range(zσ , M i

τi
), for all i , 1 ≤ i ≤ n;

• M i
τi
= Mi

τi [cσi⇒δ(xi
σi )← cσ⇒δ(zσ )], for all cσi⇒δ in Coerce(xi

σi , Mi
τi ).
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Table 1
Type inference rules

[AX] Γ , x : τ1 ∧ · · · ∧ τn  x : τi ∀i, 1 ≤ i ≤ n

[APP]
Γ  M : τ1 ∧ · · · ∧ τn → τ

Γ  N : τ1 . . . Γ  N : τn

Γ  M N : τ

[ABS]
Γ , x : σ  M : τ

Γ  λx .M : σ → τ

Proof. By induction on the derivation of the given judgements. We proceed by inspection of the generating rules. The
only interesting cases are 3 and 4. Namely, 3 follows from (SAb) applied in the reverse order, and 4 follows from (LR)
(in the reverse order) and then from 3. �

Property 13 (Property on Range). Given the typed term λxσ .Mτ , then

Range(xσ , Mτ ) = Range(zσ ′ , M
τ
)

where M
τ
= Mτ

[cσ⇒δ(xσ ) ← cσ ′⇒δ(zσ ′)], for all cσ⇒δ in Coerce(xσ , Mτ ), and σ ′ is such that either σ ′ v σ or
σ v σ ′ v Range(xσ , Mτ ).

Proof. Trivial. �

5. Type inference system

In this section we show that the intersection typed lambda calculus we presented is the typed version of the standard
Intersection Type Discipline (ITD). ITD has different equivalent versions in the literature (see [32] for an overview
of the various existing systems and their equivalence). In the present paper we consider its simplest formulation,
originated in [8] and formalized with strict types in [33].

Type environments, denoted by Γ , are finite (possibly empty) sets of assumptions of the shape x : σ , where x is
an untyped variable, σ is a type and all term variables are distinct. The environment Γ , x : σ denotes the environment
Γ ∪ {x : σ }, where no assumption on x belongs to Γ . For any λ-term M , type environment Γ and type σ , Γ  M : σ
is a type assertion (read “M has type σ in Γ ”). The type inference system is defined by the axioms and rules presented
in Table 1.

A deduction is a tree of assertions: those at the tops of the branches are axioms, and those below are deduced from
assertions immediately above by a rule (see [15] for detailed definitions on deductions). We write D : Γ  M : σ to
denote that there is a deduction D whose conclusion is Γ  M : σ .

We emphasize the main characterizing features of our formulation of ITD. No explicit rule for introducing
intersection

Γ  M : τi ∀i = 1..n
(∧I )

Γ  M : τ1 ∧ · · · ∧ τn

is defined in this calculus, namely, a proved assertion Γ  M : σ implies that σ ≡ τ for some τ , i.e., σ is a
monotype. Instead, such a rule is implicitly used whenever necessary, i.e., in [APP] rule. Analogously, we have no
explicit intersection elimination rule such as

Γ  M : τ1 ∧ · · · ∧ τn
(∧E).

Γ  M : τi ∀i = 1..n

This rule is implicitly used whenever necessary, i.e., on assumptions, that is, in [AX]. As a consequence, the rules that
are applied in any deduction of Γ  M : σ are univocally determined by the structure of M .

Clearly, (∧I ) rule could be added to the inference system, without increasing its power: Γ  M : τ1 ∧ · · · ∧ τn in
the extended system if and only if Γ  M : τi , for all i such that 1 ≤ i ≤ n, in the core system.



104 V. Bono et al. / Theoretical Computer Science 398 (2008) 95–113

Remark 14. In the standard formulation of the intersection type inference system, intersection types are usually
considered equivalent modulo reordering, idempotence and associativity. This equivalence is extended to arrow types
containing intersection types. In the typed calculus, instead, this equivalence does not hold on intersection types. Thus,
for the sake of simplicity, when mapping deductions to typed terms, the types of typed terms will be considered equal
to the corresponding types used in the deductions under the above equivalence.

Definition 15 (Relevant Assumptions). Given a deduction D : Γ  M : τ , then for all x such that x : σ ∈ Γ , the set
R(x, D) of the relevant assumptions on x in D is defined as follows:

R(x, D)
def
= {τi | Γ  x : τi occurs in D}.

Property 16 (Weakening on types of variables). For any term M, environment Γ , monotypes τ, τ1, . . . , τn , if

D : Γ , x : τ1 ∧ · · · ∧ τn  M : τ,

then, for every ρ1, . . . , ρk (k ≥ 1), there exists a deduction

D : Γ , x : τ1 ∧ · · · ∧ τn ∧ ρ1 ∧ · · · ∧ ρk  M : τ

where D is equal to D except that it uses the environment augmented with the ρi (1 ≤ i ≤ k).

Proof. Trivial, by induction on the structure of M . �

Property 17 (Relevant Environments). For any term M, environment Γ , type σ and monotype τ , if

D : Γ , x : σ  M : τ,

then, for any σ ′ such that σ v σ ′ v R(x, D), there exists a deduction

D ′ : Γ , x : σ ′  M : τ

where D ′ is equal to D except that it uses the environment with the assertion x : σ ′.

Proof. Trivial, by induction on the structure of M . �

In the following section we prove the equivalence between ITD and the intersection typed lambda calculus
presented in the previous sections.

6. Deductions and typed terms

First of all we consider Λ|, the λ-calculus Λ extended with terms in parallel. Terms of Λ| are defined as follows:

M ::= x | (λx .M) | (M M) | (M | · · · |M).

Arbitrary Λ| terms are denoted by M and N with or without subscripts. Clearly the set Λ of λ-terms is a proper
subset of Λ| (erase the last production in the grammar above).

We use the standard convention on λ-terms for omitting parentheses when writing Λ| terms. Concerning parallel
terms M1| · · · |Mn (n > 1), they will always be enclosed by parentheses to avoid ambiguities when they are subterms
of other terms; we only omit outermost parentheses.

As far as pure λ-terms are concerned, we consider syntactic identity modulo α-renaming, denoted with ≡α . We
extend this syntactic equivalence≡α to parallel terms in a trivial way: Λ| are considered identical modulo α-renaming
of bound variables. Thus, we can use the usual notation M[x ← N ] to denote the result of substituting N for each
free occurrence of x in N and making any renaming of bound variables needed to avoid clashes.

Definition 18 (Parallel Collapse). The function ()∗ : Λ|→ Λ that collapses parallel terms is defined as follows:

• (x)∗ = x ;
• (M N )∗ = (M)∗(N )∗;
• (λx .M)∗ = λx .(M)∗;
• (M1| · · · |Mn)∗ = (M1)

∗.
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Definition 19 (Equivalence ∼). The equivalence relation ∼ on Λ| terms is defined as follows:

• if M and N are pure λ-terms (∈ Λ) then M ∼ N if and only if M ≡α N ;
• otherwise:

. λx .M ∼ λy.N if and only if M ∼ (N [y ← x]);

. M N ∼ M ′N ′ if and only if M ∼ M ′ and N ∼ N ′;

. M1| · · · |Mn ∼ N1| · · · |Nk (n, k ≥ 1) if and only if M1 ∼ · · · ∼ Mn ∼ N1 ∼ · · · ∼ Nk .

The type erasure function E : Terms → Λ|, given a typed term Mτ , returns the untyped Λ| term obtained by
removing all the coercions and all the type annotations from Mτ .

Definition 20 (Type Erasure Function E). The type erasure function E : Terms→ Λ| is defined as follows:

• E(cσ⇒τ (xσ )) = x ;
• E(λxσ .Mτ ) = λx .E(Mτ );
• E(M1

τ1 | · · · |Mn
τn ) = E(Mτ1

1 )| · · · |E(Mτn
n ).

The following lemma shows that, by applying the type erasure E to any typed term Mτ , we obtain a Λ| term such
that all components of a parallel composition are equivalent.

Lemma 21 (Structural Equivalence of Terms in Parallel). If

Γ ` M1
τ1 | · · · |Mn

τn : τ1 ∧ · · · ∧ τn

then

E(M1
τ1) ∼ E(M2

τ2) ∼ · · · ∼ E(Mn
τn ).

Proof. By structural induction on M1
τ1 | · · · |Mn

τn using generating rules. The only interesting case is (LR):

Γ ` λx1
σ1 .M1

τ1 | · · · |λxn
σn .Mn

τn : (σ1 → τ1) ∧ · · · ∧ (σn → τn).

By using the Inversion Lemma (Lemma 12) we obtain

Γ , zσ
: σ ` M1

τ1
| · · · |Mn

τn
: τ1 ∧ · · · ∧ τn .

By induction hypothesis, all the E(M i
τi
) are equivalent. Thus also E(λzσ .M i

τi
) are all equivalent. By the definition

of M i (see Lemma 12) and by the definition of E , also E(λzσ .M i
τi
) ∼ E(λxi

σi .Mi
τi ) for all i such that 1 ≤ i ≤ n,

thus all the E(λxi
σi .Mi

τi ) are equivalent. �

Thus, since all typed terms in parallel represent the same underlying untyped λ-term (modulo α-renaming), by
Lemma 21, it makes sense to remove also the | term constructor, by identifying the components that are in parallel
with one (any) of them. For this aim, we extend the erasure E to the type erasure function E : Terms→ Λ.

Definition 22 (Type Erasure Function E ). The type erasure function E : Terms→ Λ is defined as follows:

E (Mτ )
def
= (E(Mτ ))∗.

Notation 23.

• If Γ is a type environment, then Γt represents the corresponding typed context

Γt = {x
σ
: σ | x : σ ∈ Γ }.

• Conversely, if Γ is a typed context, then Γu represents the corresponding (untyped) type environment

Γu = {x : σ | x
σ
: σ ∈ Γ }.

• For the sake of simplicity, we assume that all typed variables have different variable names; thus we avoid cases
where we have two distinct typed variables xσ and xσ ′ with σ 6= σ ′ that should be differently renamed when
translating them into (untyped) term variables.
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Theorem 24 (From Deductions to Typed Terms). Given a set of deductions

D1 : Γ  M : τ1
...

Dn : Γ  M : τn (n ≥ 1)

there exists a typed term

Γt ` M1
τ1 | · · · |Mn

τn : τ1 ∧ · · · ∧ τn

such that

1. M ≡α E (M1
τ1) ≡α E (M2

τ2) ≡α . . . ≡α E (Mn
τn );

2. Range(xσ , Mi
τi ) = R(x, Di ) for each xσ such that xσ

: σ ∈ Γt and for all i such that 1 ≤ i ≤ n.

Proof. By structural induction on M , which corresponds to an induction on the sum of the depths of the deductions
Di (since deduction rules are syntax driven).

• M ≡ x .
We have the deductions Di : Γ , x : σ  x : τi with 1 ≤ i ≤ n. Their existence implies that τi ∈ σ , for all i

such that 1 ≤ i ≤ n. Thus the typed term is

Γt , xσ
: σ ` cσ⇒τ1(xσ )| · · · |cσ⇒τn (xσ ) : τ1 ∧ · · · ∧ τn .

• M ≡ M N .
In any deduction Di : Γ  M N : τi the last applied rule is [APP], i.e.,

Γ  M : ρi
1 ∧ · · · ∧ ρi

ki
→ τi

Γ  N : ρi
1 . . . Γ  N : ρi

ki [APP]
Γ  M N : τi

.

Now, let σi ≡ ρi
1 ∧ · · · ∧ ρi

ki
. By induction hypothesis we have

Γt ` M1
σ1→τ1 | · · · |Mn

σn→τn : (σ1 → τ1) ∧ · · · ∧ (σn → τn),

Γt ` Π1
σ1 | · · · |Πn

σn : σ1
∧
· · ·

∧
σn where Πi

σi ≡ Ni 1
ρi

1 | · · · |Ni ki

ρi
ki

for which the theorem assertions hold. Thus, we can apply (SAp):

Γt ` M1
σ1→τ1Π1

σ1 | · · · |Mn
σn→τn Πn

σn : τ1 ∧ · · · ∧ τn .

Points 1 and 2 follow from the induction hypothesis (in particular, point 2 holds on each Mi
σi→τi Πi

σi , by induction
hypothesis).
• M ≡ λx .M .

Consider the deductions Di : Γ  λx .M : σi → τi , i = 1..n. The last applied rule in each deduction is

Γ , x : σi  M : τi
[ABS].

Γ  λx .M : σi → τi

By Property 16, we have that for each Di there exists a D i such that the last applied rule in D i is

Γ , x : σ1

∧
· · ·

∧
σn  M : τi

[ABS]
Γ  λx .M : σi → τi

where (∗) R(x, D i ) ≡ R(x, Di ). Let σ = σ1
∧
· · ·

∧
σn .

By induction hypothesis, we have

(∗∗) Γt , xσ
: σ ` M1

τ1 | · · · |Mn
τn : τ1 ∧ · · · ∧ τn
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where Range(xσ , Mi
τi ) ≡ R(x, D i ) and, by (∗) also Range(xσ , Mi

τi ) ≡ R(x, Di ). We then use (SAb) to obtain

Γt ` λxσ .M1
τ1 | · · · |λxσ .Mn

τn : (σ → τ1) ∧ · · · ∧ (σ → τn).

Since Range(xσ , Mi
τi ) ≡ R(x, D i ), we can apply (LR) to have

Γt ` λz1
σ1 .M1

τ1
| · · · |λzn

σn .Mn
τn
: (σ1 → τ1) ∧ · · · ∧ (σn → τn)

where E (λzi
σi .M i

τi
) ≡α E (λxσ .Mi

τi ).
Finally, (2) follows from the property (2) on Γt by induction hypothesis (∗∗) and by Property 13. �

Theorem 25 (From Typed Terms to Deductions). Given the typed term

Γ ` M1
τ1 | · · · |Mn

τn : τ1 ∧ · · · ∧ τn (n ≥ 1)

there exist a term M and n deductions D1, . . . ,Dn

D1 : Γu  M : τ1
...

Dn : Γu  M : τn

such that

1. M ≡α E (M1
τ1) ≡α E (M2

τ2) ≡α . . . ≡α E (Mn
τn );

2. Range(xσ , Mi
τi ) = R(x, Di ) for each x such that x : σ ∈ Γu and for all i such that 1 ≤ i ≤ n.

Proof. By induction on the generating rules.

• The case of (AX) is trivial.
• Case (SAp). We have

Γ ` M1
σ1→τ1Π1

σ1 | · · · |Mn
σn→τn Πn

σn : τ1 ∧ · · · ∧ τn

where σi ≡ ρi
1 ∧ · · · ∧ ρi

ki
and Πi

σi ≡ Ni 1
ρi

1 | · · · |Ni ki

ρi
ki .

By Inversion Lemma

Γ ` M1
σ1→τ1 | · · · |Mn

σn→τn : (σ1 → τ1) ∧ · · · ∧ (σn → τn),
Γ ` Π1

σ1 | · · · |Πn
σn : σ1

∧
· · ·

∧
σn .

By induction hypothesis there exist the deductions:

Di : Γu  M : σi → τi i = 1..n
D j : Γu  N : ρi

j j = 1..ki

where the assertions 1 and 2 hold. Now we can apply [APP] to obtain the desired n deductions:

Γu  M : ρi
1 ∧ · · · ∧ ρi

ki
→ τi

Γu  N : ρi
1 . . . Γu  N : ρi

ki [APP]
Γu  M N : τi

where 1 and 2 hold by the induction hypothesis.
• Case (SAb). Similar to the previous case: use the inversion lemma, then the induction hypothesis and finally rule

[ABS].
• Case (LR). We have

Γ ` λx1
σ1 .M1

τ1 | · · · |λxn
σn .Mn

τn : (σ1 → τ1) ∧ · · · ∧ (σn → τn)

and, by the Inversion Lemma,

Γ , xσ
: σ ` M1

τ1
| · · · |Mn

τn
: τ1 ∧ · · · ∧ τn
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where σ v σi v Range(xσ , M i
τi
), for all i such that 1 ≤ i ≤ n (and Mi are defined as in Lemma 12). By induction

hypothesis, we have n deductions D1, . . . ,Dn such that:

Di : Γu, x : σ  M : τi (1 ≤ i ≤ n)

where the assertions 1 and 2 hold. Moreover, for each Di , Range(xσ , M i
τi
) = Range(xσ , Mi

τi ) (by Property 13)
and Range(xσ , Mi

τi ) = R(x, Di ) (by (2) of the induction hypothesis), then we obtain σ v σi v R(x, Di ).
Thus, using Property 17 on allDi we obtain the deductions D ′i (1 ≤ i ≤ n):

D ′i : Γu, x : σi  M : τi .

The thesis then follows by adding an application of [ABS] to each D ′i ; it is easy to verify that Γu still satisfies (2)
in each D ′i . �

Corollary 26. If Γ  M : τ1 ∧ · · · ∧ τn in the inference system extended with (∧I ) rule, then Γt ` M1
τ1 | · · · |Mn

τn :

τ1 ∧ · · · ∧ τn , where M ≡α E (Mi
τi ) for all i such that 1 ≤ i ≤ n.

Proof. By Theorems 24 and 25. �

Example 27. Let us consider Example 9 of Section 3.1, where we proved that the following is a typed term:

` λy(α1→β1)∧α1 .c(α1→β1)∧α1⇒α1→β1(y(α1→β1)∧α1)c(α1→β1)∧α1⇒α1(y(α1→β1)∧α1)

| λz(α2→β2)∧α2 .c(α2→β2)∧α2⇒α2→β2(z(α2→β2)∧α2)c(α2→β2)∧α2⇒α2(z(α2→β2)∧α2) :

(((α1 → β1) ∧ α1)→ β1) ∧ (((α2 → β2) ∧ α2)→ β2)

.

The above term encodes the following pair of deductions D1 and D2 where:
D1 :  λx .xx : ((α1 → β1) ∧ α1)→ β1
D2 :  λx .xx : ((α2 → β2) ∧ α2)→ β2.

which are constructed in parallel by applying the same rule at each step (σ1 ≡ (α1 → β1) ∧ α1 and σ2 ≡ (α2 → β2)∧

α2):

x : σ1  x : (α1 → β1) x : σ1  x : α1
[APP]

x : σ1  xx : β1
[ABS]

 λx .xx : σ1 → β1

x : σ2  x : (α2 → β2) x : σ2  x : α2
[APP]

x : σ2  xx : β2
[ABS]

 λx .xx : σ2 → β2

.

Conversely, the encoding of D1 and D2 in parallel, defined by the typed term above, can be obtained as follows.
We first start from the context Γ = σ1

∧
σ2. Then, the encoding is constructed bottom-up, by using the generating

rules, as in Example 9. Namely, [APP] in D1 and D2 corresponds to (SAp) on the coerced variables in parallel,
[ABS] corresponds to (SAb) and a final (LR) recovers the fact that different assumptions on x are used in D1 and D2,
respectively.

7. Reducing typed terms

Every reduction on a component of a parallel term must correspond to the same reduction on the other components.
Thus, we give a reduction strategy that acts in a synchronized way on all the components of a parallel term. Notice
that the choice of the strategy is not relevant: the reduction of typed terms will correspond to a reduction on the
corresponding λ-terms and every λ-term that has a type in the deduction system is strongly normalizable.

Our choice of operational semantics is the usual one-step eager or call-by-value reduction for λ-calculus (see, e.g.,
[22, p.93]). We extend this reduction strategy to the Intersection Typed Lambda Calculus here presented: we only
need to perform each reduction step on all the terms that are in parallel, simultaneously. Notice that this reduction is
not intended to produce normal forms or to fully reduce open terms that may have free variables.

Definition 28 (Values). Typed values, ranged over by v and u, are defined as follows:

• cσ⇒τ1(xσ )| · · · |cσ⇒τn (xσ ) is a value;
• λx1

σ1 .M1
τ1 | · · · |λxn

σn .Mn
τn is a value.
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Table 2
Reduction rules for typed terms

M1
σ1→τ1 | · · · |Mn

σn→τn −→ N1
σ1→τ1 | · · · |Nn

σn→τn

(R1)
M1

σ1→τ1Π1
σ1 | · · · |Mn

σn→τn Πn
σn −→ N1

σ1→τ1Π1
σ1 | · · · |Nn

σn→τn Πn
σn

Π1
σ1 | · · · |Πn

σn −→ Π ′1
σ1 | · · · |Π ′n

σn

(R2)
v1

σ1→τ1Π1
σ1 | · · · |vn

σn→τn Πn
σn −→ v1

σ1→τ1Π ′1
σ1 | · · · |vn

σn→τn Π ′n
σn

(App)
(λx1

σ1 .M1
τ1 )v1

σ1 | · · · |(λxn
σn .Mn

τn )vn
σn −→ N1

τ1 | · · · |Nn
τn

where Ni
τi = Mi

τi [cσi⇒δ(xi
σi )← 〈vi

σi 〉δ] for all cσi⇒δ in Coerce(xi
σi , Mi

τi )

Notation 29 (Juxtapose Parallel Values). We extend Notation 1 to parallel values:

π1
σ1 | · · · |πn

σn : σ1

∧
· · ·

∧
σn

where πi are values in parallel vi 1
τ i

1 | · · · |vi ki

τ i
ki and σi ≡ τ i

1 ∧ · · · ∧ τ i
ki

.

Definition 30 (Projection on Typed Parallel Values). If

v ≡ v1
τ1 | · · · |vn

τn : τ1 ∧ · · · ∧ τn

is a typed parallel value and τ ∈ (τ1 ∧ · · · ∧ τn), we define 〈v1
τ1 | · · · |vn

τn 〉τ as follows:

〈v1
τ1 | · · · |vn

τn 〉τ
def
=

{
v1

τ1 if τ ≡ τ1
〈v2

τ2 | · · · |vn
τn 〉τ otherwise.

The reduction rules are defined in Table 2. The most important step in the reduction procedure consists in applying
the rule (App) that performs simultaneously the standard contraction of the typed redexes that are in a parallel
composition, i.e.,

(λx1
σ1 .M1

τ1)v1
σ1 | · · · |(λxn

σn .Mn
τn )vn

σn .

This means that, for each i , all free occurrences of xi
σi in Mi

τi will be replaced by vi
σi . By the definition of typed

terms, any occurrence of xi
σi in Mi

τi is wrapped by a coercion, say cσi⇒τ , such that cσi⇒τ (xi
σi ) is a subterm of

type τ and τ ∈ σi ; moreover, if σi is an intersection of monotypes, then vi
σi is a parallel term having a component

(which is not a parallel) of type τ . Therefore, the contraction of the redex (λxi
σi .Mi

τi )vi
σi will consist in replacing

the subterm cσi⇒τ (xi
σi ) by a component of vi

σi having type τ , i.e., 〈vi
σi 〉τ , for all free occurrences of xi

σi in Mi
τi .

Moreover, since typed terms are considered syntactically equal modulo typed α-renaming of bound variables, then
we can assume that no bound-variable clashes will arise during this substitution. Notice that we substitute directly to
the (coerced) variable the projection of the argument. Thus, during the reduction, the property that each variable is the
argument of a coercion still holds (Property 11), by the definition of values (Definition 28) and by the definition of
projection (Definition 30).

Lemma 31 (Typed Substitution Lemma). If

Γ , xσ
: σ ` M1

τ1 | · · · |Mn
τn : τ1 ∧ · · · ∧ τn

and v is a typed value such that

Γ ` v ≡ π1
σ1 | · · · |πn

σn : σ1

∧
· · ·

∧
σn with σi v R(Coerce(xσ , Mi

τi ))

then

Γ ` N1
τ1 | · · · |Nn

τn : τ1 ∧ · · · ∧ τn

where Ni
τi = Mi

τi [cσ⇒δ(xσ )← 〈πi
σi 〉δ], for all cσ⇒δin Coerce(xσ , Mi

τi ).
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Proof. By structural induction on M1
τ1 | · · · |Mn

τn .

Base M1
τ1 | · · · |Mn

τn are coercions on a typed variable. The only non-void case is M1
τ1 | · · · |Mn

τn ≡

cσ⇒τ1(xσ )| · · · |cσ⇒τn (xσ ), where τi ∈ σ for all i such that 1 ≤ i ≤ n.
Since R(Coerce(xσ , Mi

τi )) = {τi } and σi v R(Coerce(xσ , Mi
τi )), then τi ∈ σi and we have that

〈πi
σi 〉τi is defined and so is M1

τ1
| · · · |Mn

τn
= 〈π1

σ1〉τ1 | · · · |〈πn
σn 〉τn . Then, by applying Property 11 on

the assumption Γ ` π1
σ1 | · · · |πn

σn : σ1
∧
· · ·

∧
σn we have Γ ` 〈π1

σ1〉τ1 | · · · |〈πn
σn 〉τn : τ1 ∧ · · · ∧ τn .

Induction step

• Γ , xσ
: σ ` λyσ ′ .N

τ ′1
1 | · · · |λyσ ′ .N

τ ′n
n : τ1 ∧ · · · ∧ τn , where xσ

6≡ yσ ′ and τi ≡ σ ′→ τ ′i .
By Inversion Lemma 12 we have

Γ , xσ
: σ, yσ ′

: σ ′ ` N
τ ′1
1 | · · · |N

τ ′n
n : τ

′

1 ∧ · · · ∧ τ ′n .

Then the result follows by applying the rule (SAb) to the induction hypothesis.

• Γ , xσ
: σ ` λx1

σ1 .N
τ ′1
1 | · · · |λxn

σn .N
τ ′n
n : τ1 ∧ · · · ∧ τn where xi

σi 6≡ xσ and τi ≡ σi → τ ′i .
The proof is similar to the previous case: use Inversion Lemma, induction hypothesis, (SAb) generating

rule and finally (LR) to reconstruct the term.
• Γ , xσ

: σ ` N1
σ1→τ1Π1

σ1 | · · · |Nn
σn→τn Πn

σn : τ1 ∧ · · · ∧ τn .
Use Inversion Lemma, induction hypothesis and (SAp) generating rule. �

Theorem 32 (Subject Reduction). If Γ ` M : σ and M −→ M ′, then Γ ` M ′ : σ .

Proof. We proceed by induction on the (depth of) the reduction M −→ M ′, with case analysis on the last applied
rule.

Base (λx1
σ1 .M1

τ1)π1
σ1 | · · · |(λxn

σn .Mn
τn )πn

σn −→ N1
τ1 | · · · |Nn

τn , where
Ni

τi = Mi
τi [cσi⇒δ(xi

σi )← 〈πi
σi 〉δ], for all cσi⇒δ in Coerce(xi

σi , Mi
τi ).

By Inversion Lemma we have:
(1) Γ ` λx1

σ1 .M1
τ1 | · · · |λxn

σn .Mn
τn : (σ1 → τ1) ∧ · · · ∧ (σn → τn);

(2) Γ ` π1
σ1 | · · · |πn

σn : σ1
∧
· · ·

∧
σn .

By Inversion Lemma on (1) we have:
(3) Γ , zσ

: σ ` M1
τ1
| · · · |Mn

τn
: τ1 ∧ · · · ∧ τn

where
• σ v σi v R(Coerce(zσ , M i

τi
)), for all i, 1 ≤ i ≤ n;

• M i
τi
= Mi

τi [cσi⇒δ(xi
σi )← cσ⇒δ(zσ )], for all cσi⇒δ in Coerce(xi

σi , Mi
τi ).

Since σi v R(Coerce(zσ , M i
τi
)), we can apply Lemma 31 to (3) and (2) and we obtain

Γ ` N 1
τ1
| · · · |N n

τn
: τ1 ∧ · · · ∧ τn , where

N i
τi
= M i

τi
[cσ⇒δ(zσ )← 〈πi

σi 〉δ], for all cσ⇒δ in Coerce(zσ , M i
τi
).

Since Ni
τi ≡ N i

τi for all i such that 1 ≤ i ≤ n, we have the thesis.
Induction step. All cases follow easily from the induction hypothesis, by applying the generating rules. In particular,

use Lemma 31 in the case of (App), similarly to the base case above. �

8. Conclusions and related approaches

In this paper we presented a typed lambda calculus which is an equivalent formulation à la Church of the well-
known Intersection Type Discipline à la Curry (in which all strongly normalizing λ-terms have a typed version). The
main ideas underlying our calculus can be summarized as follows: a relevant parallel term constructor represents the
assignment of an intersection type to a pure λ-term; typed terms in parallel share the same set of typed variables, so
that λ-abstraction can be defined as a simultaneous operation on all terms in parallel and acts on the same variable;
by a local renaming, once a free typed variable is λ-abstracted, each of the terms in parallel can do its local renaming
with relevant type refinement on that variable.

Now we summarize some related approaches, both from the point of view of the encoding of logical deductions
for intersection types by lambda terms, and from the point of view of the definitions of intersection typed calculi
independently from a logical characterization. We believe that the approaches considered in this section gave
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significant insights into the problem of finding a typed characterization of the Intersection Type Discipline (ITD),
in that they all contributed, in different ways, to the main underlying ideas of our proposal.

Capitani, Loreti and Venneri introduced in [5] the notion of a strict parallel composition of deductions for
representing the intersection derivability. They devised a propositional logic with hyperformulae and defined how
to encode parallel deductions by untyped lambda terms in order to prove that the logical system of hyperformulae
is isomorphic to ITD. However, the encoding proposed in [5] is partially a meta-level definition, since it involves
transformations on the whole subdeductions, thus that approach cannot be extended to define correctly a typed lambda-
abstraction.

Ronchi Della Rocca, in [27], discussed how to design an explicitly typed lambda calculus, corresponding to ITD,
and based on the Intersection Logic IL [28]. Informally speaking, a deduction of IL is a set of intuitionistic deductions
that can be thought of as writable in parallel. It is important to notice that a meta-level condition of structural
equivalence on deductions is the key-point to decide how deductions can be grouped together in IL. Following this
logical characterization, a complete decoration of IL deductions by typed terms is proposed in [27]. Indeed, the
definition of this decorating algorithm involves the definition of the type erasure function on typed terms. Informally
speaking, the meta-level condition of equivalence on IL deductions is here represented by “kits”, which are trees whose
leaves are labelled by pure lambda terms; thus checking that subterms coming from the same “kit” guarantees that
their erasure yields the same untyped term. For these reasons, the resulting calculus is a decoration language which
provides many suggestions towards a true typed calculus. The definition of “molecules”, as a refinement of the notion
of hyperformulae, has been formulated by Pimentel, Ronchi Della Rocca and Roversi in [24], in order to formalize
how to group isomorphic deductions (type deductions for the same lambda term). In that paper, the authors obtain
an elegant proof-theoretical account of ITD, which clarifies the main relations between the intuitionistic conjunction
and the intersection operator. A decoration of such deductions is provided by using pure lambda terms that codify
only the order of the application of the structural rules. Liquori and Ronchi Della Rocca presented a formulation
à la Church of a lambda calculus with intersection types in a recent paper [18]. The novelty of this result, with
respect to the approaches listed above, consists in proposing a calculus which is defined “per se” instead of decorating
type deductions for untyped terms. However, this calculus is based on an unusual notion of context: each variable is
associated with both a mark (an integer) and some types, in such a way that a typed variable is represented as a pair
(variable, mark), where the mark can be associated with different intersection types. Thus, typed terms must always
be associated to proof-trees representing different type derivations for different types of their marked variables.

Wells and Haack [36] proposed the first true explicitly typed lambda calculus with the same power as the
Intersection Type Discipline. The notable characteristic of this proposal is the notion of “branching types” that are
composed by a join operator to model their intersection. Namely, every well-formed type has a kind, in order to
keep track of its branching shape. Then the key technical point is the operation of “expansion” that, applied to
a type in a given branching shape, results in a new branching shape of that type where some of its subterms are
duplicated. Comparing [36]’s proposal with our typed calculus, we can say that we adopt an opposite approach to the
addressed problem. Branching types are devised to squash together different type deductions, concerning the same
untyped lambda term, into a compact notation; in a sense, types can be viewed as type schemes representing all virtual
instances that are obtained by expanding (duplicating) subdeductions according to the associated pattern (parameter).
Completely different, our approach codifies all such expanded deductions by typed terms, that are constructed in a
parallel composition by sharing the same resources and by using only synchronized rules for forming well-typed
terms from well-typed subterms, where synchronization means that the rules act simultaneously on the components
of a parallel term. From our point of view, a drawback of the calculus of [36] can be seen in the fact that typing rules
can require to expand the type context in order to check the well-formedness of a typed term (see rule ∀i in [36]); as a
consequence, also during typed beta-reduction, terms that are replaced by free variables must be expanded accordingly.
Instead, our goal was to define a typed calculus whose terms are simply generated by their typed subterms, without
involving any operation on free variables, in such a way that an Inversion Lemma naturally arises. We think we have
reached such a goal.
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