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ABSTRACT
A new analysis of Deep Sea Drilling Project (DSDP) Leg 84 data demonstrates that the

dominant process controlling the Guatemala margin tectonic evolution since ca. 25 Ma is
subduction-erosion. Data from benthic foraminifera, assemblages from upper-slope DSDP
Sites 568, 569, and 570 indicate long-term, progressive subsidence from upper to middle
bathyal depths (600–1000 m) ca. 19 Ma to modern abyssal depths (.2000 m). Rapid
subsidence migrated landward starting at the Oligocene-Miocene boundary time under
the current middle slope, where it increased sharply ca. 19 Ma, reached the current upper
slope by ca. 15 Ma, and arrived at the uppermost slope ca. 2 Ma. Subsidence indicates
crustal thinning by basal tectonic erosion of mass from the underside of the upper plate.
Under the assumption that, in the Miocene, the morphology of the forearc was similar to
that of today, landward migration of the trench was at a rate of 0.8–0.9 km/m.y. This
linear rate corresponds to a tectonic erosion rate of the submerged forearc of 11.3–13.1
km3·m.y.21·km21. The evolution of arc magmatism and superfast spreading at the East
Pacific Rise since early Miocene time may have caused slab shallowing and tectonic erosion
that readjusted the forearc geometry.

Keywords: subduction-erosion, convergent margins, benthic foraminifera, Guatemala, Middle
America Trench.

Figure 1. A: Tectonics of Middle America Trench. B: Map of sites of Deep Sea Drilling
Project (DSDP) Legs 67 (in gray) and 84 (in black) across Guatemalan continental
slope offshore San José.

INTRODUCTION
Subduction-erosion is a prominent process

in most convergent-margin systems (von Hu-
ene and Scholl, 1991; Clift and Vannucchi,
2004), but is difficult to study because destruc-
tion of the forearc greatly limits the investi-
gation of geologic evidence on land. Conven-
tional ocean drilling is not able to reach the
plate boundary, where seismic records show
truncated upper-plate reflections and other
signs of erosion along the base of the upper
plate (Ranero and von Huene, 2000). Conse-
quently, subduction-erosion is inferred from
other evidence, the most indicative for the sub-
merged forearc being (1) long-term subsidence
and tilting of the continental slope, (2) regional
tectonic extension of the slope apron, and (3)
disrupted topography across the lower slope
and in the wake of subducted ocean-floor relief
(von Huene and Lallemand, 1990; von Huene
et al., 2000; Vannucchi et al., 2001). Evidence
of margin subsidence—as revealed particularly
by the paleodepths inferred by benthic fora-
minifera in slope sediment—helps in estimat-
ing crustal thinning of the forearc, subduction-
erosion rates, and the amount of upper-plate
material removed (Vannucchi et al., 2003).

*E-mail: paolav@geo.unifi.it.

Here we focus on evidence for subsidence
offshore Guatemala, an area drilled during
Deep Sea Drilling Project (DSDP) Legs 67 and
84 (Aubouin et al., 1984; von Huene et al.,
1985a) to investigate subduction accretion pro-
cesses (Fig. 1). Prior to drilling, accretion was

proposed as the principal process shaping the
margin, as inferred from landward-dipping
seismic reflections (Seely et al., 1974). DSDP
Legs 67 and 84 sites were drilled in a transect
across the continental slope within and adja-
cent to San José Canyon (Fig. 1). No accreted
oceanic sediment was encountered, although
DSDP Leg 84 recovered the margin’s igneous
basement, Late Cretaceous–Eocene sediment,
and the overlying late Oligocene to Quaternary
slope-apron sequence. However, the tectonic
history was poorly constrained. These studies,
together with seismic and bathymetric data
(Moore et al., 1986), characterized the Guate-
malan margin as subducting trench sediment,
and the uppermost slope being uplifted be-
cause of compressional deformation, limited
underplating, or strike-slip transport (Moore et
al., 1986; von Huene, 1989). In this paper we
report an analysis of the Guatemalan margin
vertical movement history, the best proxy, in
the absence of modern seismic profiles, for in-
fering subduction erosion, in analogy with the
nearby Costa Rica margin (Vannucchi et al.,
2001, 2003). The analysis demonstrates a
long-term subsidence of the Guatemalan mar-
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Figure 2. Stratigraphic
columns, location, and
bathymetric distribution
of Deep Sea Drilling Pro-
ject Leg 84 Guatemala
Trench sites (mbsf—
meters below seafloor).

gin that shifts the tectonic interpretation from
nonaccretionary to clearly erosional.

BENTHIC FORAMINIFERA AS
PALEOBATHYMETRIC TRACERS

Along the DSDP transect, the Neogene–
Quaternary sediment thickness (Fig. 2) varies
because of rough basement topography (von
Huene et al., 1985b) and unconformities, some
of which are interpreted as recording localized
downslope sediment movement (Baltuck et al.,
1985); others, such as the prominent early
Miocene unconformity, extend over much of
the margin (von Huene, 1989).

The ubiquitous mixing of benthic forami-
niferal assemblages from upslope, together
with poorly reflective slope deposits cut by
small canyons in the upper slope, led Baltuck
et al. (1985) to conclude that mass wasting was
the dominant process on the Guatemalan mar-
gin. Nonetheless, Miocene–Pleistocene benthic
foraminifera were locally interpreted as indi-
cating gradual uplift of the margin, together
with vertical migrations of water masses (Mc-
Dougall, 1985).

In this study, the benthic foraminifera dis-
tributions from DSDP Sites 568, 569, and 570
were analyzed by using the benthic foraminif-
era data of McDougall (1985). For each site,
benthic assemblages were extracted by Q-
mode principal component analysis (PCA) per-
formed on centered data after exclusion of
both rare species and samples with fewer than
40 specimens. Loading scores of dominant and
important associated taxa of the PCA assem-
blage obtained from the three sites are reported
in Table DR1.1 Following Van Morkhoven et

1GSA Data Repository item 2004099, Table
DR1, composition and bathymetric significance of
principal component analysis data, Appendix 1, tec-
tonic erosion rate calculations, and Figure 4, cal-
culation of volume lost, is available online at
www.geosociety.org/pubs/ft2004.htm, or on request
from editing@geosociety.org or Documents Secre-
tary, GSA, P.O. Box 9140, Boulder, CO 80301-
9140, USA.

al. (1986) and through assemblage compari-
sons with Holocene equivalents from similar
environments (McDougall, 1985; Murray,
1991; Schmiedl et al., 1997), we determined
the bathymetric significance of the taxa dom-
inating the PCA assemblages. Variations
through time of the first three principal com-
ponents allow interpretation of the paleobathy-
metry evolution at the three sites (Fig. 3). We
reconstructed long-term deepening of the de-
positional setting from an upper to middle
bathyal depth (600–1000 m) during the Mio-
cene to a modern lower bathyal to abyssal
depth ($2000 m) (Fig. 3).

We considered the possibility, suggested by
McDougall (1985), that the trend in benthic
foraminiferal assemblages reflects vertical mi-
grations of different water masses, rather than
bathymetric changes. However, this hypothesis
can be discounted for two reasons: (1) If the
successive emplacement of different bottom-
water masses was the primary factor influenc-
ing the distribution of benthic foraminifera,
then the successive phases of shoaling and
deepening of different bottom-water masses
proposed by McDougall (1985) would not be
reflected in a progressive deepening signature.
(2) DSDP Sites 568 and 569, although at differ-
ent water depths, record synchronous bottom-
water changes, so if the benthic foraminiferal
distribution was reflecting water-mass proper-
ties rather than paleodepth, they would still re-
sult in coeval changes in the record of bathy-
metric indices.

Using the age assignments of Aubouin et al.
(1985), we compare the bathymetric evolution
of the three sites. On the upper slope to up-
permost slope (DSDP Site 570), the PCA as-
semblage indicates a major deepening during
the Pleistocene, when increased proportions of
middle and middle to lower bathyal assem-
blages were recorded (Fig. 3). At this site, the
increasing scores of upper bathyal forms as-
sociated with relatively stable values of PCA1
(lower bathyal) and PCA3 (upper to middle

bathyal) assemblages may indicate a moderate
shallowing during the late Pliocene and part
of the Pleistocene. However, the same trend
may indicate the increase in the amount of
downslope-transported material shown by
higher sand contents (from 6%–12% to 22%–
24%) and the presence of slumping during this
interval (von Huene et al., 1985a).

PCA assemblages from DSDP Site 568
show two clear subsidence phases. Subsidence
at the Pliocene-Pleistocene boundary (ca. 2
Ma) is well constrained by a decrease in mid-
dle bathyal assemblages and a contemporane-
ous increase in middle to lower bathyal assem-
blages. Unfortunately, the low number of
specimens from samples between 250 and 200
m below seafloor precludes accurate dating. A
second deepening step is observed in the Pleis-
tocene samples, wherein loading scores of the
PCA2 assemblage increase sharply (Fig. 3).
Using one-dimensional backstripping analysis
(Sclater and Christie, 1980), it was possible to
isolate the tectonic—as opposed to the sedi-
ment loading—component of the basement
subsidence. In deep-water settings such as the
Guatemala margin, the bulk of the subsidence
follows water-depth changes as the trend ob-
served in PCA assemblages. Backstripping at
DSDP Site 568 improved the resolution of the
slow beginning of subsidence, in the middle
Miocene (ca. 15 Ma; Fig. 3).

At DSDP Site 569 the trend is similar to that
observed at DSDP Site 568. However, the ben-
thic foraminiferal record suggests that initial
deepening occurred at DSDP Site 569 during
the early Miocene (ca. 19 Ma); an increase in
the proportion of the lower bathyal taxa is
shown by the statistical analysis (Fig. 3). This
predates the deepening observed at the Miocene-
Pliocene transition at DSDP Site 568, where a
second stage of deepening from lower bathyal
to abyssal depth is well constrained by a sharp
increase in the proportion of abyssal taxa.
Backstripping shows that subsidence predated
the deepening signature recorded by benthic
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Figure 3. Q-mode benthic foraminiferal as-
semblages from Deep Sea Drilling Project
(DSDP) Sites 568, 569, and 570. Paleoenvi-
ronmental significance of first three axes is
inferred from highest loading scores in r-
mode principal component axis (Table DR1;
see footnote 1). Depth classification is after
Van Morkhoven et al. (1986). Sediment-
unloaded depths to basement at Sites
568, 569, and 570 were calculated after un-
loading sedimentary sections using one-
dimensional backstripping method of Scla-
ter and Christie (1980) and accounting for
changes in sea level by using reconstruction
of Haq et al. (1987). Eustatic curve is indi-
cated with ‘‘e’’ in figure. u—upper; l—lower;
m—middle; mbsf—meters below seafloor.
This method effectively isolates subsidence
component that is not caused by sediment
loading and compaction or by eustatic sea-
level change and is thus interpreted as hav-
ing tectonic origin.

foraminifera starting at the Oligocene-Miocene
boundary (Fig. 3).

DISCUSSION AND CONCLUSIONS
Benthic foraminifera assemblages indicate

that the 600-m-deep Guatemalan shelf subsid-
ed to 1000 m upper-slope depth ca. 19 Ma and
subsequently subsided to .2000 m (Fig. 3).
Middle-slope subsidence may have started af-
ter 28 Ma, but it accelerated after ca. 19 Ma.
Upper-slope deepening, first seen between 11
and 16 Ma, migrated landward, reaching the
uppermost slope after 2 Ma. The long-term
deepening rates average 80 m/m.y. for the
middle- to upper-slope sites and 550–600 m/
m.y. for the uppermost slope site. Rapid sub-
sidence of the middle- to upper-slope DSDP
Sites 568 and 569 coincides with a lithologic
break from calcareous to siliceous oozes, in-
dicating a major environmental change. The
consistent subsidence-rate differences between
the middle- to upper-slope sites and the up-
permost slope may indicate a transition from
constant to very fast subsidence in the Pliocene–
Pleistocene (DSDP Site 570) (Fig. 3). Subsi-
dence due to the normal faulting inferred from
early seismic records (Aubouin et al., 1984)
and later documented in reprocessed records is
much less than that resolved from
biostratigraphy.

Assuming that the Miocene forearc was con-
figured as currently known, tectonic erosion rate
can be estimated for the Guatemalan sector of
the Middle America Trench. The absence of
modern seismic data leaves uncertainties in the
crustal thickness beneath the upper-slope sites,
producing an uncertainty in the rate of erosion
of ;10%. DSDP Site 569 reached the forearc
basement and can be used to calculate forearc
crustal-volume loss. Because the Guatemalan
Trench has a forearc slope angle of ;5.58 and
DSDP Site 569, 32 km from the trench axis,
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has subsided ;1500 m since the early Miocene,
a maximum of 16 km of frontal erosion since
19 Ma is implied. This results in an average
trench-retreat rate of ;0.8 km/m.y. The corre-
sponding rate of crustal loss from the sub-
merged forearc is ;11.3 km3·m.y.21·km21 (see
explanation in Appendix 1; see footnote 1),
much less than farther south off the Nicoya Pen-
insula of northern Costa Rica, where the long-
term erosion rate since 16 Ma is ;45
km3·m.y.21·km21 (Vannucchi et al., 2001,
2003). Recent analysis shows that major tec-
tonic erosion in that region increased after 6.5
Ma to a rate of 107–123 km3·m.y.21·km21, co-
eval with initial subduction of the Cocos Ridge
(Vannucchi et al., 2003).

Subduction erosion affected the middle slope
of the Guatemalan margin from Oligocene–
early Miocene (ca. 25 Ma) time, although sub-
sidence may have started even earlier closer to
the trench axis. The presence of calc-alkaline
ash layers in upper Oligocene sediment indi-
cates that subduction was active at this time,
possibly starting in the Late Cretaceous
(Hoernle et al., 2002). However, moderate rates
of subsidence, at least before the Pliocene–
Pleistocene (Fig. 3), suggest a slow, quasi-
stable tectonic erosion not accelerated by col-
lision of seamounts or ridges, in accordance
with the absence of such features on the in-
coming plate.

Early Miocene plate development reorga-
nized the Cocos plate. Magnetic anomalies
from the Cocos plate and corresponding re-
gions of the Pacific plate demonstrate that East
Pacific Rise spreading during the middle Mio-
cene was ;200 mm/yr, ;30%–40% faster
than the fastest modern spreading rate (Wilson,
1996). The end of this episode of fast spread-
ing was 18 Ma; initiation can reasonably be
estimated as 24–25 Ma (Wilson, 1996), fol-
lowed by the breakup of the Farallon plate at
23 Ma. That event led to the initiation of the
Cocos-Nazca spreading center (Barckhausen et
al., 2001) and caused subduction below Cen-
tral America to change from eastward to more
northeastward (Barckhausen et al., 2001). The
plate-tectonic configuration change is coinci-
dent with a peak of explosive volcanism in
Guatemala and Honduras (Sigurdsson et al.,
2000) that produced the silicic ignimbrites,
tuffs, ash, and related pyroclastic sediment
known as the Chalatenango Formation and Pa-
dre Miguel Group (Reynolds, 1980, 1987). A
connection between the two episodes is un-
clear (Sigurdsson et al., 2000), but the high
rates of explosive volcanism can be related to
increased availability of subducted continental
material removed from the upper plate by slab
shallowing and consequent subduction-
erosion. In Guatemala, as in Nicaragua (Ra-
nero et al., 2000), reorganization of the Cocos
plate is inferred to have caused the subduction
of progressively younger lithosphere that led

to shallowing of the angle of the subducting
slab and thus faster subduction-erosion rates.
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lápagos hotspot: Implications for the tectonic and
biological evolution of the Americas: Geology,
v. 30, p. 795–798.

McDougall, K., 1985, Miocene to Pleistocene benthic
foraminifers and paleoceanography of the Middle
America slope, DSDP Leg 84, in von Huene, R.,
and Aubouin, J., Initial reports of the Deep Sea
Drilling Project, Volume 84: Washington, D.C.,
U.S. Government Printing Office, p. 363–418.

Moore, G.F., Shipley, T.H., and Lonsdale, P.F., 1986,
Subduction erosion versus sediment offscraping
at the toe of the Middle America Trench off Gua-
temala: Tectonics, v. 5, p. 513–523.

Murray, J.W., 1991, Ecology and paleoecology of ben-
thic foraminifera: London, UK, Longman Scien-
tific and Technical, 397 p.

Ranero, C.R., and von Huene, R., 2000, Subduction
erosion along the Middle America convergent
margin: Nature, v. 404, p. 748–752.

Ranero, C.R., von Huene, R., Flueh, E., Duarte, M.,
Baca, D., and McIntosh, K., 2000, A cross section
of the convergent Pacific margin of Nicaragua:
Tectonics, v. 19, p. 335–357.

Reynolds, J.H., 1980, Late Tertiary volcanic stratigra-
phy of northern Central America: Bulletin of Vol-
canology, v. 43, p. 601–607.

Reynolds, J.H., 1987, Timing and sources of Neogene
and Quaternary volcanism in south-central Gua-
temala: Journal of Volcanology and Geothermal
Research, v. 33, p. 9–22.

Schmiedl, G., Mackensen, A., and Müller, P.J., 1997,
Recent benthic foraminifera from the eastern
South Atlantic Ocean: Dependence on food sup-
ply and water masses: Marine Micropaleontology,
v. 32, p. 249–287.

Sclater, J.G., and Christie, P.A.F., 1980, Continental
stretching: An explanation of the post–mid-
Cretaceous subsidence of the central North Sea
basin: Journal of Geophysical Research, v. 85,
p. 3711–3739.

Seely, D.R., Vail, P.R., and Walton, G.G., 1974, Trench
slope model, in Burk, C.A., and Drake, C.L., eds.,
The geology of continental margins: New York,
Springer Verlag, p. 249–260.

Sigurdsson, H., Kelley, S., Leckie, R., Carey, S., Bra-
lower, T., and King, J., 2000, History of circum-
Caribbean explosive volcanism: 40Ar/39Ar dating
of tephra layers, in Leckie, R., and Sigurdsson,
H., eds., Proceedings of the Ocean Drilling Pro-
gram, Scientific results, Volume 165: College Sta-
tion, Texas, Ocean Drilling Program, p. 299–314.

Van Morkhoven, F.P.C.M., Berggren, W.A., and Ed-
wards, A.S., 1986, Cenozoic cosmopolitan deep-
water benthic foraminifera: Bulletin des Centres
de Recherches Exploration-Production Elf-
Aquitaine, v. 11, p. 421.

Vannucchi, P., Scholl, D.W., Meschede, M., and
McDougall-Reid, K., 2001, Tectonic erosion and
consequent collapse of the Pacific margin of Cos-
ta Rica: Combined implications from ODP Leg
170, seismic offshore data, and regional geology
of the Nicoya Peninsula: Tectonics, v. 20,
p. 649–668.

Vannucchi, P., Ranero, C.R., Galeotti, S., Straub, S.M.,
Scholl, D.W., and McDougall-Ried, K., 2003,
Fast rates of subduction erosion along the Costa
Rica Pacific margin: Implications for nonsteady
rates of crustal recycling at subduction zones:
Journal of Geophysical Research, v. 108, 2511,
doi: 10. 1029/2002JB002207.

von Huene, R., 1989, The middle America convergent
plate boundary, Guatemala, in Winterer, E.L., et
al., eds., The eastern Pacific Ocean and Hawaii:
Boulder, Colorado, Geological Society of Amer-
ica, Geology of North America, v. N, p. 535–550.

von Huene, R., and Lallemand, S., 1990, Tectonic ero-
sion along the Japan and Peru convergent mar-
gins: Geological Society of America Bulletin,
v. 102, p. 704–720.

von Huene, R., and Scholl, D.W., 1991, Observations
at convergent margins concerning sediment sub-
duction, subduction erosion, and the growth of
continental crust: Reviews of Geophysics, v. 29,
p. 279–316.

von Huene, R., Aubouin, J., Arnott, R.J., Baltuck, M.,
Bourgois, J., Helm, R., Ogawa, Y., Kvenvolden,
K.A., McDonald, T.J., Taylor, E., McDougall, K.,
Filewicz, M.V., Winsborough, B., and Lienert, B.,
1985a, Initial reports of the Deep Sea Drilling
Project, Volume 84: Washington, D.C., U.S. Gov-
ernment Printing Office, 967 p.

von Huene, R., Miller, J., Taylor, D., and Blackman, D.,
1985b, A study of geophysical data along the
Deep Sea Drilling Project active margin transect
off Guatemala, in von Huene, R., and Aubouin,
J., Initial reports of the Deep Sea Drilling Project,
Volume 84: Washington, D.C., U.S. Government
Printing Office, p. 895–909.

von Huene, R., Ranero, C.R., Weinrebe, W., and Hinz,
K., 2000, Quaternary convergent margin tectonics
of Costa Rica, segmentation of the Cocos plate,
and Central American volcanism: Tectonics,
v. 19, p. 314–334.

Wilson, D.S., 1996, Fastest known spreading on the
Miocene Cocos-Pacific plate boundary: Geophys-
ical Research Letters, v. 23, p. 3003–3006.

Manuscript received 24 December 2003
Revised manuscript received 6 March 2004
Manuscript accepted 11 March 2004

Printed in USA


