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Local Lipschitz continuity of minimizers of certain integrals of the
Calculus of Variations is obtained when the integrands are convex with
respect to the gradient variable, but are not necessarily uniformly con-
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1 Introduction

In this paper we establish existence and regularity of minimizers of energy in-
tegrals of the type ∫

Ω

f (x,Du(x)) dx , (1.1)

subject to Dirichlet boundary conditions. The main feature of our problem is
the fact that the integrand f = f(x, ξ) is not convex with respect to the gradient
variable ξ.

In recent years the study of non convex variational problems has undergone
remarkable developments, motivated in part by advances in the study of ma-
terial stability and instability. Contemporary issues such as phase transitions
in certain alloys (see [3], [4]), nucleation [20], the onset of microstructure, and
optimal design problems for thin films [18], require a good understanding of exis-
tence of (classical or generalized) equilibrium solutions for nonconvex energies.
In addition, qualitative information on quasistatic solutions (e.g. regularity,
hysteresis, oscillatory behavior) are needed in order to develop the evolutionary
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framework, and, in particular, to search for the dynamical evolution of phase
boundaries. These issues have challenged traditional theories.

Within this setting, a relevant example has been considered by Ball-James
[3], [4], who studied the two “potential wells” problem:

minimize
∫

Ω

f (Du(x)) dx ,

where u : Ω ⊂ R
n → R

n is a vector-valued function, f : Rn×n → [0,+∞)
is identically zero on two distinct potential wells SO(n)ξ, SO(n)η and f >
0 elsewhere. Here ξ, η ∈ Rn×n and SO(n) stands for the special orthogonal
group. The existence of minimizers for the two potential wells problem has
been obtained in two dimensions (i.e., n = 2) by Dacorogna–Marcellini [10] and
by Müller–Šverák [26] (for the case n = 3 see also Dolzmann–Kirchheim–Müller–
Šverák [15]. Nothing is known in higher dimension or for general integrands f
as in (1.1).

In this paper we restrict ourselves to the scalar-valued case, as a starting
point to approach the vectorial setting. Also, the scalar-valued case is still
far from being completely understood, unless the integrand f depends only on
the gradient variable ξ and some special assumptions are made on the boundary
data (see the references quoted below). Here we consider general boundary data
u0 ∈ W 1,p (Ω), p > 1, and we allow the nonconvex integrands f to explicitly
depend on x as in (1.1). In the proofs of the attainment results presented below
the x-dependence introduces substantial technical difficulties.

The proof of the existence results for nonconvex variational problems con-
sidered in this paper hinges on the local Lipschitz continuity of minimizers of
the relaxed problem associated to the bipolar f∗∗ of f . These regularity results
are presented in Section 2, and they apply to minimizers of some integrals of the
Calculus of Variations with integrands f∗∗(x, ξ) convex with respect to ξ ∈ Rn,
but not everywhere uniformly convex ; hence, we believe that the regularity
results presented in Section 2 should be of interest by themselves.

In Section 3 we consider the variational problem

inf
{∫

Ω

f (x,Du(x)) dx : u ∈ u0 +W 1,p
0 (Ω)

}
, (1.2)

where u0 ∈W 1,p (Ω) is a given boundary datum and f = f(x, ξ) is a continuous
function satisfying some growth conditions similar to the ones considered in the
previous Section 2, so as to ensure Lipschitz continuity of minimizers of the
relaxed problem. Here the most relevant fact is that f may be nonconvex with
respect to the variable ξ ∈ Rn.

It is known that the variational problem (1.2) may lack a minimizer (see
Marcellini [22]; see also [6], [21], [12]). In the examples of nonexistence the
following condition, expressed in terms of the bipolar f∗∗ of f , is violated: for
every x ∈ Ω the function f∗∗(x, ·) is affine on the set

A(x) = {ξ ∈ Rn : f(x, ξ) > f∗∗(x, ξ)} ,
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i.e., there exist a continuous function q and a vector field m of class C1, defined
in the open set ΩA := {x ∈ Ω : A(x) 6= ∅}, such that

f∗∗(x, ξ) = q(x) + 〈m(x), ξ〉 , ∀ x ∈ ΩA, ξ ∈ A(x) . (1.3)

We also assume that the boundary (more precisely, the part of the boundary in
Ω) of the set

{x ∈ ΩA : divm(x) = 0} (1.4)

has zero (n-dimensional) measure.
In this paper we prove that (1.3), (1.4) (see also the more general assump-

tions made in Section 3.2) are sufficient conditions for existence of minimizers to
the variational problem (1.2). We emphasize that we do not require any other
condition on the vector field m other than (1.4); in particular, we do not assume
that the vector field m has null divergence. We notice that, while condition (1.3)
is necessary for guaranteeing the existence of minimizers (see [22], [6], [21]), we
do not know whether condition (1.4) may be removed.

Existence theorems without convexity assumptions have been widely inves-
tigated in the one-dimensional case n = 1 (see [12] for an extensive list of
references). Theorem 3.1 in Section 3 is specific to the case n ≥ 2, and it is an
extension of some analogous results, obtained under more restrictive assump-
tions, by Marcellini [22], Mascolo-Schianchi [23], Cellina [7] and Friesecke [21].
In particular, Theorem 3.1 is an extension of related results recently proved by
Sychev [28] and Zagatti [29] for integrands independent of x and under a strong
assumption on the growth of f which ensures the almost everywhere differen-
tiability of minimizers, i.e., p > n, by Celada-Perrotta [5] for p > 1, and by
Dacorogna-Marcellini in [13], [12].

Finally we recall that Marcellini [22] pointed out the necessity of the condi-
tion of affinity (1.3) of the function f∗∗ on the set where f 6= f∗∗ to guarantee
existence of minimizers. Cellina [6], [7] and Friesecke [21] proved the necessity
and sufficiency of the condition of affinity for linear boundary data u0. The
explicit dependence of the integrand on the variable x was first considered by
Mascolo-Schianchi in [24], assuming that the divergence of the vector field m in
(1.3) is identically equal to zero in Ω, in addition to other strong assumptions
on the boundary data u0. Also, in [27] Raymond studied a case where the di-
vergence of the vector field m in (1.3) is always different from zero in Ω, and
some type of explicit dependence on u is allowed.

2 Local Lipschitz Continuity

2.1 Preliminary results

Let f : Rn → [0,+∞) be a continuous function such that

0 ≤ f(ξ) ≤ L(1 + |ξ|p) , (2.1)
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where L > 0, p > 1. We say that f is uniformly convex at infinity if there exist
R, ν > 0 such that, if the segment with endpoints ξ1, ξ2 (that we will denote by
[ξ1, ξ2]) is contained in the complement of the closed ball BR , then

f

(
ξ1 + ξ2

2

)
≤ 1

2
f(ξ1) +

1
2
f(ξ2)− ν(1 + |ξ1|2 + |ξ2|2)

p−2
2 |ξ1 − ξ2|2 . (2.2)

Note that (2.2) is equivalent to

f

(
ξ1 + ξ2

2

)
≤ 1

2
f(ξ1) +

1
2
f(ξ2)− ν′(|ξ1|2 + |ξ2|2)

p−2
2 |ξ1 − ξ2|2 ,

for some ν′ > 0, since |ξ1| , |ξ2| > R > 0.
If the above inequality (2.2) is satisfied for any ξ1, ξ2 ∈ Rn, then we say that

f is uniformly convex in Rn. A form of uniform convexity at infinity was also
considered by Mascolo and Schianchi in [25].

The lemma below is proved in [1].

Lemma 2.1 If γ > −1/2 then there exist positive constants c1 = c1(γ), c2 =
c2(γ) such that, for all ξ, η ∈ Rn,

c1(1 + |ξ|2 + |η|2)γ ≤
∫ 1

0

t(1 + |tξ + (1− t)η|2)γ dt ≤ c2(1 + |ξ|2 + |η|2)γ .

The following result provides two conditions which are equivalent to uniform
convexity in Rn.

Proposition 2.2 Let f : Rn → [0,+∞) be a continuous function satisfying
(2.1). The following conditions are equivalent:

(i) f is uniformly convex in Rn;
(ii) f(ξ) = c1ν(1 + |ξ|2)p/2 + g(ξ), for some c1 = c1(p) > 0, where g(ξ) is a

convex function such that 0 ≤ g(ξ) ≤ L(1 + |ξ|p) for all ξ;
(iii)

∫
Q

[f(ξ +Dϕ(x))− f(ξ)] dx ≥ c2ν
∫
Q

(1 + |ξ|2 + |Dϕ|2)
p−2

2 |Dϕ(x)|2 dx,
for all ξ ∈ Rn, ϕ ∈ C1

0 (Q), where Q = (0, 1)n and c2 = c2(p) is a suitable
constant.

Remark 2.3 The condition (iii) in Proposition 2.2 is related to the notion of
uniform quasiconvexity, introduced by Evans [16] and later studied by Evans-
Gariepy [17].

Proof of Proposition 2.2. (i) =⇒ (ii). We define g(ξ) := f(ξ) − c1ν(1 +
|ξ|2)p/2, where c1 will be chosen later, and we show that g is convex. Given
ξ1, ξ2 ∈ Rn we set ξ := (ξ1 + ξ2)/2. From (i) we easily get that

1
2
g(ξ1) +

1
2
g(ξ2) ≥ g(ξ) + ν(1 + |ξ1|2 + |ξ2|2)

p−2
2 |ξ1 − ξ2|2

+
c1ν

2

[
2(1 + |ξ|2)p/2 − (1 + |ξ1|2)p/2 − (1 + |ξ2|2)p/2

]
.
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Thus the assertion follows immediately from the fact that there exists a constant
c = c(p) such that

(1 + |ξ1|2)p/2 + (1 + |ξ2|2)p/2 − 2(1 + |ξ|2)p/2 ≤ c(1 + |ξ1|2 + |ξ2|2)
p−2

2 |ξ1 − ξ2|2 ,

and by setting c1 := c−1. To establish this inequality we write, for i = 1, 2,

h (ξi) = h (ξ) + 〈Dh (ξ) , ξi − ξ〉

+
∫ 1

0

(1− t)
〈
D2h (ξ + t (ξi − ξ)) (ξi − ξ) , ξi − ξ

〉
dt

where h (ξ) := (1 + |ξ|2)p/2, yielding

(1 + |ξi|2)p/2 − (1 + |ξ|2)p/2 ≤ p(1 + |ξ|2)
p−2

2 〈ξi − ξ, ξ〉

+c(p)|ξi − ξ|2
∫ 1

0

(1− t)(1 + |ξ + t(ξi − ξ)|2)
p−2

2 dt .

It suffices now to sum the above inequalities for i = 1, 2 and apply Lemma 2.1.
(ii) =⇒ (iii). From Lemma 2.1 we easily get that (iii) holds for the function

ξ 7→ (1+|ξ|2)p/2. Hence the general case follows from Jensen’s inequality applied
to g.

(iii) =⇒ (i). See the proof of Proposition 2.5 with θ = 1/2 in [19].

Lemma 2.4 Let f : Rn → [0,+∞) be a C2 function. Then f satisfies (2.2) if
and only if there exists a constant c0 such that for all ξ ∈ Rn \BR

〈D2f(ξ)λ, λ〉 ≥ c0 ν (1 + |ξ|2)
p−2

2 |λ|2 ∀λ ∈ Rn . (2.3)

The proof of Lemma 2.4 is straightforward and it is left to the reader.

Lemma 2.5 Let f : Rn → [0,+∞) be a continuous function satisfying (2.1)
and (2.2). Then there exist R0, ν0, C0 > 0, depending only on R, ν and L, such
that for all ξ ∈ Rn \ BR0 there exists qξ ∈ Rn such that |qξ| ≤ C0(1 + |ξ|p−1)
and

f(η) ≥ f(ξ) + 〈qξ, η − ξ〉+ ν0(1 + |ξ|2 + |η|2)
p−2

2 |ξ − η|2 ∀η ∈ Rn . (2.4)

Moreover, if |ξ| > R0 , then f∗∗(ξ) = f(ξ).

Proof. For 0 < ε < 1 set fε := ρε ∗ f , where ρε(η) := ε−nρ(η/ε) and ρ(η) =
ρ̂(|η|) is a positive radially symmetric mollifier with support equal to B, with
B := B1, ρ(η) > 0 if |η| < 1 and

∫
B
ρ(η)dη = 1. From (2.2) it follows easily

that if [ξ1, ξ2] ⊂ Rn \BR+1, ξ := (ξ1 + ξ2)/2, then

1
2

[fε(ξ1) +fε(ξ2)] ≥ fε(ξ)+ν|ξ1−ξ2|2
∫
B

ρ(η)(1+|ξ1+εη|2+|ξ2+εη|2)
p−2

2 dη .
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The integral above can be estimated from below by∫
B∩{〈ξ,η〉≥0}

ρ(η)(1+ |ξ1|2 +|ξ2|2 +2ε2|η|2 +4ε〈ξ, η〉)
p−2

2 dη ≥ 1
2

(1+|ξ1|2 +|ξ2|2)
p−2

2

if p ≥ 2, and by∫
B

ρ(η)(1 + 2|ξ1|2 + 2|ξ2|2 + 4ε2|η|2)
p−2

2 dη ≥ 5(p−2)/2(1 + |ξ1|2 + |ξ2|2)
p−2

2

when 1 < p < 2. In both cases

1
2

[fε(ξ1) + fε(ξ2)] ≥ fε(ξ) + cν(1 + |ξ1|2 + |ξ2|2)
p−2

2 |ξ1 − ξ2|2 ;

hence, by Lemma 2.4, if |ξ| ≥ R+ 1, then

〈D2fε(ξ)λ, λ〉 ≥ cν (1 + |ξ|2)
p−2

2 |λ|2, ∀λ ∈ Rn. (2.5)

Moreover, it can be easily checked that 0 ≤ fε(ξ) ≤ C(L)(1 + |ξ|p) for all ξ, and
a simple argument based on the convexity of fε in Rn \BR+1 shows that there
exists a constant C1(L,R) such that

|Dfε(ξ)| ≤ C1(1 + |ξ|p−1), ∀ ξ ∈ Rn \BR+2 . (2.6)

We claim that there exists R0 >> 1 such that, if |ξ| > R0 , then

fε(η) ≥ fε(ξ) + 〈Dfε(ξ), η − ξ〉+ c(1 + |ξ|2 + |η|2)
p−2

2 |ξ − η|2 (2.7)

for all η ∈ Rn. Assume that (2.7) holds. Notice that, if |ξ| > R0 > R + 2, then
by (2.6) there exists a sequence (εh) converging to 0 such that Dfεh(ξ)→ qξ for
some qξ ∈ Rn such that |qξ| ≤ C1(1 + |ξ|p−1). Hence (2.4) follows from (2.7),
letting ε go to 0+. The equality f∗∗(ξ) = f(ξ) for |ξ| > R0 then follows at once
from (2.4).

The remaining of the proof concerns the assertion of the claim (2.7). Fix ξ
such that |ξ| > R0, with R0 > 2(R + 3) to be chosen later, and denote by Cξ
the open cone with vertex at ξ, tangent to the ball BR+3.

Case 1: If η ∈ Rn \ Cξ or η ∈ Cξ \ BR+3 and 〈η, ξ〉 ≥ 0, then fε is convex
along the line t→ ξ+ t(η− ξ) provided R0 is sufficiently large, and (2.7) follows
from (2.5).

Case 2: If η ∈ BR+3 we consider ξ := ξ(R + 3)/|ξ| and a constant M :=
C(L)(1 + (R+ 3)p) such that

0 ≤ fε(η) ≤M

for all η ∈ BR+3 and all ε ∈ (0, 1); by Case 1 we may apply (2.7) to ξ (notice
that ξ ∈ ∂BR+3, 〈ξ, ξ〉 > 0), thus getting

fε(η) = fε(ξ) + fε(η)− fε(ξ)
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≥ fε(ξ) + 〈Dfε(ξ), ξ − ξ〉 −M + c (1 + (R+ 3)2 + |ξ|2)
p−2

2 (|ξ| −R− 3)2

≥ fε(ξ) + 〈Dfε(ξ), η − ξ〉 − |Dfε(ξ)||η − ξ| −M + c̃ (1 + |η|2 + |ξ|2)
p−2

2 |ξ − η|2.
The estimate (2.7) now follows for η and ξ from the previous inequalities, to-
gether with the estimate

|Dfε(ξ)||η − ξ|+M ≤ 1
2
c̃(1 + |η|2 + |ξ|2)

p−2
2 |ξ − η|2,

and the latter holds by virtue of (2.6), and provided ξ > R0 and R0 > 2 (R+ 3)
sufficiently large.

Case 3: Finally, let us assume that η ∈ Cξ \ BR+3, 〈η, ξ〉 < 0. In this case
we have |ξ − η|2 > |ξ|2 + |η|2 and, denoting by η̃ the projection of η on the
boundary of the cone, and by αξ the half angle at the vertex of Cξ,

|η − η̃| ≤ |ξ − η| sinαξ =
R+ 3
|ξ|
|ξ − η| ≤ 1

2
|ξ − η| . (2.8)

Notice that, if R0 is sufficiently large, then [η, η̃] ⊂ Rn \ BR+2 ; therefore we
may use (2.6) to estimate fε(η) − fε(η̃). This, together with (2.7) applied to
η̃ ∈ ∂Cξ, yields

fε(η) = fε(η̃) + fε(η)− fε(η̃)

≥ fε(ξ)+〈Dfε(ξ), η̃−ξ〉−C1(1+|η|p−1+|η̃|p−1)|η−η̃|+c(1+|η̃|2+|ξ|2)
p−2

2 |ξ−η̃|2.
Since, by (2.8), |ξ − η| ≤ 2|ξ − η̃| ≤ 3|ξ − η|, for any p > 1 we have easily

c(1 + |η̃|2 + |ξ|2)
p−2

2 |ξ − η̃|2 ≥ c(p)(1 + |η|2 + |ξ|2)
p−2

2 |ξ − η|2 ,

and, using (2.6) once more, we obtain

fε(η) ≥ fε(ξ) + 〈Dfε(ξ), η − ξ〉 (2.9)
−C1|η − η̃|

[
(1 + |ξ|p−1) + (1 + |η|p−1 + |η̃|p−1)

]
+c(p)(1 + |η|2 + |ξ|2)

p−2
2 |ξ − η|2 .

By virtue of (2.8), and recalling that |ξ|2 + |η|2 < |ξ − η|2, we have

C1|η − η̃|
[
(1 + |ξ|p−1) + (1 + |η|p−1 + |η̃|p−1)

]
≤ c

R+ 3
|ξ|
|ξ − η|(1 + |η|p−1 + |ξ|p−1) ≤ c′R+ 3

|ξ|
|ξ − η|2(1 + |η|2 + |ξ|2)

p−2
2

≤ (c(p)/2)(1 + |η|2 + |ξ|2)
p−2

2 |ξ − η|2

if |ξ| > R0, with R0 large enough. This, together with (2.9), concludes the proof
of (2.7).

Remark 2.6 Let f satisfy (2.1) and (2.2), and fix a point ξ0 such that R0 <
|ξ0| < 2R0. Applying (2.4) with ξ = ξ0 and recall that |qξ| ≤ C0(1 + |ξ|p−1), for
all η such that |η| > 2R0 it holds

f(η) ≥ c̃1(R0, ν0, C0) |η|p − c̃2(R0, ν0, C0) .

Hence, f(ξ) ≥ c1|ξ|p − c2 for all ξ ∈ Rn, with c1, c2 depending only on R, ν, L.
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2.2 A regularity result

In this section we assume that f : Ω × Rn → [0,+∞) is a continuous function
satisfying the growth condition

0 ≤ f(x, ξ) ≤ L(1 + |ξ|p), ∀ (x, ξ) ∈ Ω× Rn (2.10)

and for some L > 0. Let us denote by f∗∗ := f∗∗(x, ξ) the bipolar of f , that
is the convex envelope of f(x, ·). We assume that f∗∗ is continuous and that
f is uniformly convex at infinity with respect to ξ (see (2.2)), i.e., there exist
R, ν > 0 such that if the segment ξ1, ξ2 is contained in the complement of the
closed ball BR, then for all x ∈ Ω

f

(
x,
ξ1 + ξ2

2

)
≤ 1

2
f(x, ξ1)+

1
2
f(x, ξ2)−ν(1+|ξ1|2+|ξ2|2)

p−2
2 |ξ1−ξ2|2. (2.11)

Finally we assume further that, if |ξ| > R, then the vector field x ∈ Ω 7→ fξ(x, ξ)
is weakly differentiable and

|Dxfξ(x, ξ)| ≤ L(1 + |ξ|p−1), ∀ (x, ξ) ∈ Ω× (Rn \BR) . (2.12)

If u ∈W 1,p
loc (Ω) and A ⊂ Ω is open, then we set

F (u,A) :=
∫
A

f(x,Du(x)) dx .

The main result of this section is Theorem 2.7 below. We recall that u is
said to be a local minimizer of F in Ω if

F (u,BR(x0)) ≤ F (v,BR(x0))

whenever BR(x0) ⊂⊂ Ω and v ∈ u+W 1,p
0 (BR(x0)).

Theorem 2.7 Let f : Ω × Rn → [0,+∞) be a continuous function satisfying
(2.10), (2.11) and (2.12). If u ∈W 1,p

loc (Ω) is a local minimizer of the functional
F , then u is locally Lipschitz continuous in Ω. Moreover, there exists a constant
C0, depending on L, p, ν,R, such that, if Br(x0) ⊂ Ω, then

sup
Br/2(x0)

|Du|p ≤ C0

(
1 +−

∫
Br(x0)

|Du|p dx

)
. (2.13)

We first show in Lemma 2.8 that, provided we know already that u is locally
Lipschitz, (2.13) holds with a constant C0 depending only on L, p, ν,R. Once
the a priori estimate (2.13) is established, the regularity result is obtained using
an approximation argument.

Lemma 2.8 Let f satisfy the assumptions of Theorem 2.7. Assume, in addi-
tion, that f is C2 and that, for all x ∈ Ω, ξ, λ ∈ Rn,

Dξiξjf(x, ξ)λiλj ≥ ε0(1 + |ξ|2)
p−2

2 |λ|2, (2.14)
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and that u ∈ W 1,p
loc (Ω) is a locally Lipschitz local minimizer of F in Ω. Then

(2.13) holds with a constant depending only on L, p, ν,R and, in particular,
independent on ε0.

Proof. Step 1: From Lemma 2.4 we have that for every x ∈ Ω, ξ, λ ∈ Rn, with
|ξ| > R,

Dξiξjf(x, ξ)λiλj ≥ cν(1 + |ξ|2)
p−2

2 |λ|2 . (2.15)

Since ũ(y) := u(x0 + ry)/r is a local minimizer in (Ω− x0)/r of the functional
F̃ , where F̃ (v) :=

∫
(Ω−x0)/r

f(x0 + ry,Dv(y))dy still satisfies the assumptions
of Theorem 2.7, it is clear that in order to prove (2.13) we may always assume,
with no loss of generality, that B := B1 ⊂ Ω. Since u satisfies the Euler equation
for F , ∫

B

Dξif(x,Du)Diφdx = 0 , ∀ φ ∈ C1
0 (B),

using (2.14) and the fact that Dξiξjf(x,Du(x)) are locally bounded in B (which
follows from the C2 regularity of f , together with the fact that Du is locally
bounded) we have that u ∈W 2,2

loc (B), by a standard different quotient argument.
We fix s ∈ {1, . . . , n}, η ∈ C1

0 (B), 0 ≤ η ≤ 1, ψ ∈ C2(B), and in the above
Euler equation we take φ = η2Dsψ to obtain∫

B

Dξif(x,Du)Ds(Diψ)η2 dx = −2
∫
B

ηDξif(x,Du)DsψDiη dx .

Integrating by parts the first integral, we have∫
B

Dξiξjf(x,Du)Dj(Dsu)Diψη
2 dx = 2

∫
B

ηDξif(x,Du)DsψDiη dx

−2
∫
B

Dxsξif(x,Du)Diψη
2 dx− 2

∫
B

ηDξif(x,Du)DiψDsη dx (2.16)

for all functions ψ ∈W 1,2(B). Set

V+(x) := 1+R2+
n∑
h=1

[(Dhu(x)−R)+]2, V−(x) := 1+R2+
n∑
h=1

[(Dhu(x)+R)−]2,

and notice that there exist constants c1, c2, depending only on n, such that

c1(V+(x) + V−(x)) ≤ 1 +R2 + |Du(x)|2 ≤ c2(V+(x) + V−(x)) . (2.17)

Let ψ := V β+ (Dsu− R)+, where β ≥ 0. By (2.10) and the convexity of f (x, ·),
|Dξf(x, ξ)| ≤ c(1 + |ξ|2)

p−1
2 , and (2.16) yields∫

B

Dξiξjf(x,Du)Dj(Dsu−R)+Di(Dsu−R)+V β+η
2 dx

+β
∫
B

Dξiξjf(x,Du)Dj(Dsu−R)+(Dsu−R)+Di

(
n∑
h=1

[(Dhu−R)+]2
)
V β−1

+ η2dx
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≤ c
∫
B

η(η + |Dη|)(1 + |Du|p−1)|D(Dsu−R)+|V β+ dx

+cβ
∫
B

η(η+ |Dη|)(1 + |Du|p−1)

∣∣∣∣∣D
(

n∑
h=1

[(Dhu−R)+]2
)∣∣∣∣∣ (Dsu−R)+V β−1

+ dx .

Since all the integrals are evaluated in the set where |Du| > R, summing up
on s, using (2.15), the fact that (Dsu− R)+ ≤ V

1/2
+ and Young’s inequality, it

follows easily that∫
B

(1 + |Du|2)
p−2

2

∣∣∣∣∣D
(

n∑
h=1

[(Diu−R)+]2
)∣∣∣∣∣

2

V β−1
+ η2 dx

≤ c

ν2

∫
B

(1 + |Du|p)V β+ (η2 + |Dη|2) dx ,

where the constant c depends only on n, p, L. Since the integral on the left
hand side is evaluated in the set where |Du| > R, in turn this last inequality is
equivalent to the following one:∫

B

(1 +R2 + |Du|2)
p−2

2

∣∣∣∣∣D
(

n∑
h=1

[(Diu−R)+]2
)∣∣∣∣∣

2

V β−1
+ η2 dx

≤ c

ν2

∫
B

(1 +R2 + |Du|2)p/2 V β+ (η2 + |Dη|2) dx .

Inserting ψ = V β− (Dsu + R)− in (2.16), and using a similar argument, we get
also ∫

B

(1 +R2 + |Du|2)
p−2

2

∣∣∣∣∣D
(

n∑
h=1

[(Diu+R)−]2
)∣∣∣∣∣

2

V β−1
− η2 dx

≤ c

ν2

∫
B

(1 +R2 + |Du|2)p/2 V β− (η2 + |Dη|2) dx .

Therefore, adding the last two inequalities and using (2.17), we arrive to∫
B

V
p−2

2

[
|DV+|2V β−1

+ + |DV−|2V β−1
−

]
η2 dx

≤ c

ν2

∫
B

V p/2+β(η2 + |Dη|2) dx ,

where V := max {V+;V−}.
Step 2: From the inequality above we deduce that∫

B

|DV p/4+β/2|2η2 dx ≤ c(p+ 2β)2

∫
B

V p/2+β(η2 + |Dη|2) dx .

In turn, this implies that∫
B

|D(V p/4+β/2η)|2 dx ≤ c(p+ 2β)2

∫
B

V p/2+β(η2 + |Dη|2) dx ,

10



where the constant c depends only on L, p, n, R, ν. Setting γ := p/4 + β/2 ≥
p/4, using the Sobolev–Poincaré inequality, and the arbitrariness of β ≥ 0, we
get that, for any γ ≥ p/4,

‖V γη‖L2χ(B) ≤ cγ ‖V
γ (η + |Dη|)‖L2(B) ,

where χ := n/(n − 2) if n ≥ 3, or any number > 1 if n = 2. Considering
the sequence of radii ri := 1/2 + 1/2i for i = 1, . . ., we apply the inequality
above to γ = γi := (p/4)χi−1, and choose η ∈ C1

0 (B) such that η = 1 on
Bri+1 , 0 ≤ η ≤ 1, |Dη| ≤ c2i. We obtain

‖V ‖L2γi+1 (Bri+1 ) ≤ (c2iγi)
1/γi ‖V ‖L2γi (Bri )

.

Iterating the above formula yields, for every i,

‖V ‖L2γi+1 (B1/2) ≤ C ‖V ‖Lp/2(B) ,

where C =
∏∞
i=1(c2iγi)1/γi < +∞. Therefore, letting i go to +∞ and using

(2.17), we obtain (2.13).

Remark 2.9 It follows immediately from the proof that the estimate (2.13)
may be generalized to read

sup
Bρ(x0)

|Du|p ≤ C(ρ)

(
1 +−

∫
Br(x0)

|Du|p dx

)
,

for all 0 < ρ < r, where C(ρ) depends only on L, p, ν, R and ρ.

We are now in position to prove Theorem 2.7, by using the following ap-
proximation lemma.

Lemma 2.10 Let g : Rn → [0,+∞) be a C2 convex function such that for all
ξ ∈ Rn

0 ≤ g(ξ) ≤ L(1 + |ξ|p) ,

where p > 1, L > 0, and assume that there exist R, ν > 0, such that if |ξ| > R,
λ ∈ Rn,

Dijg(ξ)λiλj ≥ ν(1 + |ξ|2)
p−2

2 |λ|2 .

Then there exists a constant c = c(n, p) and a sequence gh of C2(Rn) convex
functions such that

(a) 0 ≤ gh(ξ) ≤ cL(1 + |ξ|p) ∀ ξ ∈ Rn ;
(b) for any h there exists εh > 0 such that, for all ξ, λ ∈ Rn,

εh(1 + |ξ|2)
p−2

2 |λ|2 ≤ Dijgh(ξ)λiλj ≤ ε−1
h (1 + |ξ|2)

p−2
2 |λ|2;

(c) Dijgh(ξ)λiλj ≥ cν(1 + |ξ|2)
p−2

2 |λ|2, ∀λ ∈ Rn, |ξ| > R+ 1;
(d) gh → g uniformly on compact subset of Rn.

11



Proof. The proof of this lemma can be obtained arguing as in the Step 2 and
Step 3 of the proof of Lemma 3.4 of [19], with the obvious simple modifications
needed in the present case. Therefore we omit the details.

Proof of Theorem 2.7. Notice that if u is a local minimizer F , then u is also
a local minimizer of the relaxed functional v 7→

∫
Ω
f∗∗(x,Dv)dx, where, for all

x ∈ Ω , f∗∗(x, ξ) is the bipolar of ξ 7→ f(x, ξ). Indeed, if v ∈ u+W 1,p
0 (Br(x0)),

then ∫
Br(x0)

f∗∗(x,Dv) dx

= inf

{
lim inf
h→+∞

∫
Br(x0)

f(x,Dvh) dx : vh − v ⇀ 0 in w −W 1,p
0 (Br(x0))

}
.

Also, by virtue of Lemma 2.5, the function f∗∗ satisfies the assumptions of
Theorem 2.7. Therefore, with no loss of generality, we may assume that f is
convex in ξ.

Step 1: Let us assume that

f(x, ξ) =
N∑
i=1

ai(x)gi(ξ) ,

where, for i = 1, . . . , N , the function gi ∈ C2(Rn) satisfies the assumptions of
Lemma 2.10 for some L,R, ν > 0, and 〈D2gi(ξ)λ, λ〉 ≥ ε0(1 + |ξ|2)(p−2)/2|λ|2
for all ξ, λ ∈ Rn and for some ε0 > 0. Moreover, let us assume that, for all i,
the function ai is a nonnegative C2 function such that ‖Dai‖∞ ≤ M and that
γ−1 <

∑N
i=1 ai(x) < γ for all x ∈ Ω and for some positive constant γ.

For every i let us denote by gi,h a sequence of C2(Rn) functions such that
gi,h → gi uniformly on the compact sets of Rn, satisfying the conditions (a), (b)
and (c) of Lemma 2.10, and let us set for all (x, ξ) ∈ Ω× Rn

fh(x, ξ) :=
N∑
i=1

ai(x) gi,h(ξ) .

From Remark 2.6 it follows easily that there exist constants c1, c2, depending
only on L,R, ν, γ, such that, for all (x, ξ) and for any h,

f(x, ξ), fh(x, ξ) ≥ c1|ξ|p − c2 . (2.18)

Given Br(x0) ⊂⊂ Ω, we denote by uh the solution of the problem

min

{∫
Br(x0)

fh(x,Dv) dx : v ∈ u+W 1,p
0 (Br(x0))

}
. (2.19)

Since the functions gi,h satisfy condition (b) of Lemma 2.10, standard elliptic
regularity theory implies that uh ∈ C1,α(Ω) ∩ W 2,2

loc (Ω) for any h. From the
assumptions on f , from the approximation provided by Lemma 2.10, and from
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(2.18), it follows that the sequence uh is bounded in W 1,p(Br(x0)). Moreover,
by Lemma 2.8 (see Remark 2.9), for all ρ < r we obtain

sup
Bρ(x0)

|Duh|p ≤ C

(
1 +−

∫
Br(x0)

|Duh|p dx

)
, (2.20)

where the constant C depends ultimately only on L, p, R, ν, γ, M and ρ, but
not on h. Hence we may assume, up to a subsequence, that uh ⇀ u∞ weakly*
in W 1,∞(Bρ(x0)) for any ρ < r. Since fh → f uniformly on compact sets of Rn

and the integrand f is convex, for any ρ < r we have∫
Bρ(x0)

f(x,Du∞)dx ≤ lim inf
h→+∞

∫
Bρ(x0)

f(x,Duh)dx = lim inf
h→+∞

∫
Bρ(x0)

fh(x,Duh)dx

≤ lim inf
h→+∞

∫
Br(x0)

fh(x,Du) dx =
∫
Br(x0)

f(x,Du) dx ,

where we used the fact that uh is a solution for (2.19). Letting ρ → r and
recalling that u is a local minimizer of the functional F , we deduce that u∞ is
also a minimizer of F in Br(x0). Since the functional F is strictly convex, we
have that u = u∞. Passing to the limit as h→ +∞ in (2.20), we conclude that
u is also locally Lipschitz. Indeed, using the minimality of uh and (2.20), we
get

sup
Br/2(x0)

|Du|p ≤ lim inf
h→+∞

(
sup

Br/2(x0)

|Duh|p
)

≤ c lim inf
h→+∞

(
1 +−

∫
Br(x0)

|Duh|p dx

)
≤ c lim inf

h→+∞

(
1 +−

∫
Br(x0)

fh(x,Duh) dx

)

≤ c lim inf
h→+∞

(
1 +−

∫
Br(x0)

fh(x,Du) dx

)
≤ c

(
1 +−

∫
Br(x0)

|Du|p dx

)
.

Step 2: Let us now assume that f ∈ C2(Ω×Rn) and that there exists ε0 > 0
such that Dξiξjf(x, ξ)λiλj ≥ ε0(1 + |ξ|2)(p−2)/2|λ|2 for all (x, ξ) ∈ Ω × Rn and
for any λ ∈ Rn. Fix an open set A ⊂⊂ Ω and let us prove that (2.13) holds for
any ball Br(x0) ⊂ A (with a constant C0 not depending on A).

To this aim let ψ ∈ C∞0 (Rn) be a cut-off function such that 0 ≤ ψ(x) ≤ 1
for all x, suppψ ⊂ (−3, 3)n and such that ψ(x) ≡ 1 if x ∈ [−1, 1]n. For
any h ∈ N we denote by Qi,h(xi,h) the standard covering of Rn with closed
cubes, centered at xi,h , with sides parallel to the coordinates axes, side length
equal to 2/h and having pairwise disjoint interiors. Then, for any i, h, we set
ψi,h(x) := ψ (h (x− xi,h)) and

σh(x) :=
∞∑
i=1

ψi,h(x), ϕi,h(x) :=
ψi,h(x)
σh(x)

.

13



Finally, for all h such that 12
√
n/h <dist(A; ∂Ω), and for every x ∈ A, ξ ∈ Rn,

we set

fh(x, ξ) :=
∞∑
i=1

ϕi,h(x)f(xi,h, ξ) .

Notice that the above sum is actually finite (indeed it consists of at most 3n

terms), and that each function fh is of the type considered in Step 1. Moreover,
we claim that the functions fh satisfy the assumptions of Lemma 2.8 with suit-
able constants L, ε0, R, ν not depending on h. The verification of our claim in
the case of assumptions (2.10), (2.11) (or equivalently (2.15)) and (2.14) follows
easily by the corresponding assumptions on f . We limit ourselves to show that
for any h

|Dxξfh(x, ξ)| ≤ cL(1 + |ξ|p−1), ∀ (x, ξ) ∈ A× (Rn \BR) , (2.21)

where L is the constant appearing in (2.12) (relative to f) and c is a constant
depending only on n, ψ, but not on h. Let us fix x0 ∈ A and ξ ∈ Rn \BR. By
construction there exist at most 3n cubes, Qj1,h(xj1,h), . . . , Qj3n ,h(xj3n ,h), such
that for any x in a suitable neighborhood U of x0

fh(x, ξ) =
3n∑
l=1

ϕjl,h(x) f(xjl,h, ξ),
3n∑
l=1

ϕjl,h(x) = 1 .

Therefore for all x ∈ U we have that

Dxξfh(x, ξ) =
3n∑
l=1

Dxϕjl,h(x)Dξf(xjl,h, ξ) (2.22)

=
3n∑
l=2

Dxϕjl,h(x) [Dξf(xjl,h, ξ)−Dξf(xj1,h, ξ)] .

In view of assumption (2.12), we have that for all l,

|Dξf(xjl,h, ξ)−Dξf(xj1,h, ξ)| ≤
c(n)L
h

(1 + |ξ|p−1) .

On the other hand, for any j, there exists a set of indices Ij containing j, with
#(Ij) = 3n, such that, for all x ∈ Rn,

Dxϕj,h(x) =
Dxψj,h(x)
σh(x)

−
ψj,h(x)
σ2
h(x)

∑
k∈Ij

Dxψk,h(x) .

Therefore, since by construction σh(x) ≥ 1 for all x, we have that, for all x ∈ Rn
and any j,

|Dxϕj,h(x)| ≤ (3n + 1)h(‖Dxψ‖∞) .

In view of the above estimates and from (2.22), we may conclude that for all
(x, ξ) ∈ A× (Rn \BR) and for any h

|Dxξfh(x, ξ)| ≤ c(n)L ‖Dxψ‖∞ · (1 + |ξ|p−1) ,
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and thus (2.21) follows. Finally, notice that fh(x, ξ) → f(x, ξ) uniformly in
A ×K for every K compact subset of Rn. Hence the rest of the proof goes as
in Step 1, since also in this case the function ξ → f(x, ξ) is strictly convex for
all x ∈ A.

Step 3: Let f satisfy the assumptions of Theorem 2.7. Fix an open set A ⊂⊂
Ω, an infinitesimal sequence εh of positive numbers and a positive symmetric
mollifier ρ. For h large enough we set for all (x, ξ) ∈ A× Rn

fh(x, ξ) :=
∫
B×B

ρ(y)ρ(η)f(x+ εhy, ξ + εhη) dydη + εh(1 + |ξ|p) ,

where B is the unit open ball in Rn. Notice that each function fh is of the
type considered in Step 2 and that fh(x, ξ) → f(x, ξ) uniformly on any set of
the type A×K, with K ⊂ Rn compact. Moreover, the functions fh satisfy the
assumptions of Theorem 2.7 with the corresponding constants L, R, ν bounded
from above and away from zero.

As in Step 1, given a ball Br(x0) ⊂ A we denote by uh the solution of the
problem

min

{∫
Br(x0)

fh(x,Dv) dx : v ∈ u+W 1,p(Br(x0))

}
.

From the assumptions on f and the construction of the functions fh it follows
easily that the sequence uh is bounded in W 1,p(Br(x0)). Moreover, by Step 2,
for all ρ < r we have

sup
Bρ(x0)

|Duh|p ≤ C

(
1 +−

∫
Br(x0)

|Duh|p dx

)
,

where the constant C depends only on L, p, R, ν and ρ, but not on h. Hence
we may assume that, up to a subsequence, uh ⇀ u∞ weakly* in W 1,∞(Bρ(x0))
for any ρ < r. As in Step 1 we have again that also u∞ is a minimizer of F in
Br(x0). However, in the present case the functional F is not necessarily strictly
convex, hence we may not conclude as before that u∞ = u in Br(x0).

Set E0 := {x ∈ Br(x0) : |Du∞(x)+Du(x)| > 2R0}, where R0 is the constant
provided by Lemma 2.5. If E0 has positive measure, then from the convexity of
f(x, ·) and Remark 2.6 we have, setting ũ := (u+ u∞)/2,∫
Bρ(x0)\E0

f(x,Dũ) dx ≤ 1
2

∫
Bρ(x0)\E0

f(x,Du) dx+
1
2

∫
Bρ(x0)\E0

f(x,Du∞) dx .

Also, applying twice (2.4) in Lemma 2.5, first with ξ := Dũ and η := Du, and
then with ξ := Dũ and η := Du∞, adding up these two inequalities yields∫
Bρ(x0)∩E0

f(x,Dũ) dx <
1
2

∫
Bρ(x0)∩E0

f(x,Du)dx+
1
2

∫
Bρ(x0)∩E0

f(x,Du∞)dx .

Adding these two inequalities we get a contradiction with the minimality of u
and u∞. Therefore E0 has zero measure. Applying Step 2 to the functions uh,
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(2.4) to the functions fh, and using the minimality of uh, we deduce that

sup
Br/2(x0)

|Du∞|p ≤ lim inf
h→+∞

(
sup

Br/2(x0)

|Duh|p
)

≤ C̃ lim inf
h→+∞

(
1 +−

∫
Br(x0)

|Duh|p dx

)
≤ c lim inf

h→+∞

(
1 +−

∫
Br(x0)

fh(x,Duh) dx

)

≤ c lim inf
h→+∞

(
1 +−

∫
Br(x0)

fh(x,Du∞) dx

)
≤ c

(
1 +−

∫
Br(x0)

|Du∞|p dx

)
.

Then the result follows, since |Du(x) +Du∞(x)| ≤ 2R0 for a.e. x.

3 Attainment of minima for nonconvex prob-
lems

Here we give an existence result for the variational problem

inf
{∫

Ω

f (x,Du(x)) dx : u ∈ u0 +W 1,p
0 (Ω)

}
, (3.1)

where Ω is a bounded open set of Rn and u0 ∈ W 1,p(Ω), p > 1. Throughout
this section we assume that f : Ω× Rn → R is a continuous function satisfying
the growth condition

c1|ξ|p − c2 ≤ f(x, ξ) ≤ L(1 + |ξ|p), ∀ (x, ξ) ∈ Ω× Rn, (3.2)

for some constants c1, c2, L > 0, and is uniformly convex at infinity with respect
to ξ, i.e., there exist R, ν > 0 such that, if the segment [ξ1, ξ2] is contained in
R
n \BR, then

f

(
x,
ξ1 + ξ2

2

)
≤ 1

2
f(x, ξ1) +

1
2
f(x, ξ2)−ν(1 + |ξ1|2 + |ξ2|2)

p−2
2 |ξ1− ξ2|2 (3.3)

for every x ∈ Ω (see (2.2)). Notice that, if 0 ≤ f(x, ξ) ≤ L(1 + |ξ|p), then
condition (3.3) implies the coercivity inequality in the left hand side of (3.2)
(see Remark 2.6). In addition, we assume that there exists the distributional
derivative Dxξf(x, ξ) and

|Dxξf(x, ξ)| ≤ L(1 + |ξ|p−1), ∀x ∈ Ω, |ξ| > R, (3.4)

provided L in (3.2) is chosen to be sufficiently large (see (2.12)). Let us denote
by f∗∗ := f∗∗(x, ξ) the bipolar of f , that is the convex envelope of f(x, ·) (i.e.,
the largest convex function in ξ which is less than or equal to f(x, ·) on Rn).
We assume that f∗∗ is continuous; hence, for any x ∈ Ω, the set

A(x) := {ξ ∈ Rn : f(x, ξ) > f∗∗(x, ξ)} (3.5)
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is open.
We shall prove the existence of a minimizer for the problem (3.1) under the

main assumption that f∗∗(x, ·) is affine on each connected component of A(x).
However, in order to present the argument of the proof in a simplified setting,
we shall treat first the case where f∗∗(x, ·) is affine (with the same slope) on
the whole set A(x). We will refer to this situation as the model case. The proof
of this case contains all the ideas and technical tools which are needed to treat
the general situation in which f∗∗(x, ·) is affine (with possibly different slopes)
on each connected component of A(x).

3.1 The model case

As before f : Ω × Rn → R is a continuous function satisfying (3.2)−(3.4).
We assume that f∗∗ : Ω × Rn → R is continuous and we denote by A(x) the
set defined in (3.5) and by ΩA := {x ∈ Ω : A(x) 6= ∅}. Since f and f∗∗ are
continuous functions, ΩA is open. Here we consider the case where f∗∗(x, ·) is
affine in A(x); more precisely, we assume that there exist a function q ∈ C0 (ΩA)
and a vector field m ∈ C1 (ΩA;Rn) such that

f∗∗(x, ξ) = q(x) + 〈m(x), ξ〉 , ∀ x ∈ ΩA, ξ ∈ A(x) . (3.6)

We also assume that the boundary of the set where the divergence of m is equal
to zero is negligible, i.e.,

meas (Ω ∩ ∂ {x ∈ ΩA : divm(x) = 0}) = 0 . (3.7)

Finally, for every x ∈ ΩA, we set

E(x) := {ξ ∈ Rn : f∗∗(x, ξ) = q(x) + 〈m(x), ξ〉} ;

note that, by the growth conditions in (3.2) and by the assumption that f is
uniformly convex at infinity with respect to ξ, then the set E(x) is bounded
uniformly for x ∈ ΩA (see also Lemma 2.5). We assume there exists an increas-
ing function ω : [0,+∞) → [0,+∞), with ω(t) = 0 if and only if t = 0, such
that, if x ∈ ΩA, ξ ∈ ∂E(x), η ∈ Rn \ E(x), then

f∗∗
(
x,
ξ + η

2

)
≤ 1

2
f∗∗(x, ξ) +

1
2
f∗∗(x, η)− ω (|ξ − η|) . (3.8)

The main result of this section is the following existence theorem.

Theorem 3.1 Let f, f∗∗ : Ω × Rn → R be continuous functions (f not neces-
sarily convex with respect to ξ ∈ Rn). Under the above assumptions on f and
f∗∗ ((3.2)−(3.4) and (3.6)−(3.8)), for any given boundary datum u0 ∈W 1,p (Ω)
the variational problem (3.1) attains its minimum. Moreover, any minimizers
is of class W 1,∞

loc (Ω).
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The proof of Theorem 3.1 is obtained using the same method as in the work
of Dacorogna–Marcellini [13], [12], who considered integrands independent of x.
Our proof however follows from some new lemmas. The first one concerns the
relaxed variational problem

inf
{∫

Ω

f∗∗ (x,Du(x)) dx : u ∈ u0 +W 1,p
0 (Ω)

}
. (3.9)

Lemma 3.2 The minimum of the relaxed variational problem (3.9) is attained.
Moreover, there exist a minimizer v ∈W 1,∞

loc (Ω)∩
(
u0 +W 1,p

0 (Ω)
)

of (3.9) and
an open set Ω′ ⊂ Ω (possibly empty) such that{

Dv(x) ∈ A(x) a.e. x ∈ Ω′

Dv(x) /∈ A(x) a.e. x ∈ Ω \ Ω′ (3.10)

and divm = 0 in Ω′.

Remark 3.3 Formally, if Dv(x) ∈ A(x) then by (3.6)

f∗∗(x,Dv(x)) = q(x) + 〈m(x), Dv(x)〉 .

Therefore, the Euler’s equation for v gives

n∑
s=1

∂

∂xs
f∗∗ξs (x,Dv) = divm(x) = 0, a.e. x such that Dv(x) ∈ A(x) .

Thus (3.10) would follow if we could define Ω′ := {Dv(x) ∈ A(x)}. A striking
feature of Lemma 3.2 is that the set Ω′ may be chosen to be open, and so
Lemma 3.2 may be considered to be a strong form of Euler’s first variation for
the minimizers. The property (3.10) is a regularity result, and in fact it follows
from the regularity results obtained in Section 2.

The proof of Lemma 3.2 follows the argument by Dacorogna–Marcellini [12]
in Theorem 10.9. Previous arguments related to Lemma 3.2 are due to De
Blasi–Pianigiani [14], Sychev [28], and Zagatti [29].

Proof of Lemma 3.2. As before we denote by ΩA the open subset of Ω
consisting of those points x such that A(x) 6= ∅. We split ΩA into three sets
(possibly empty),

Ω+
A := {x ∈ ΩA : divm(x) > 0} , Ω−A := {x ∈ ΩA : divm(x) < 0} , (3.11)

Ω0
A := {x ∈ ΩA : divm(x) = 0} . (3.12)

Since divm is a continuous function, Ω+
A ∪ Ω−A ∪ int Ω0

A is an open set and, by
(3.7),

meas
(
ΩA\

(
Ω+
A ∪ Ω−A ∪ int Ω0

A

))
≤ meas

(
Ω ∩ ∂Ω0

A

)
= 0 .
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By (3.2), (3.3), (3.4), Lemma 2.5, and Theorem 2.7 the relaxed varia-
tional problem (3.9) has a minimizer u∗∗ in the Sobolev class W 1,∞

loc (Ω) ∩(
u0 +W 1,p(Ω)

)
. Thus, by Rademacher theorem (see, for example, Theorem

2.2.1 of [30], or Theorem 2.14 of [2]) u∗∗ is classically differentiable for almost
every x ∈ Ω.

Let x0 be a point of ΩA \ ∂Ω0
A where u∗∗ is differentiable. Then

u∗∗(x) = u∗∗(x0) + 〈Du∗∗(x0), x− x0〉+ o (|x− x0|) , x ∈ Ω. (3.13)

Also, assume that

Du∗∗(x0) ∈ A(x0) = {ξ ∈ Rn : f(x0, ξ) > f∗∗(x0, ξ)} .

Since ΩA and A(x) are open sets, there exists γ ∈ (0, 1) (depending on u∗∗ and
x0) such that

x ∈ ΩA, ξ ∈ A(x), (3.14)

for all (x, ξ) ∈ Ω× Rn such that

|x− x0| ≤ γ, |ξ −Du∗∗(x0)| ≤ 2γ . (3.15)

Recall that x0 ∈ ΩA \ ∂Ω0
A ; thus we can also assume that γ is sufficiently small

so that {
x0 ∈ Ω±A , |x− x0| ≤ γ =⇒ x ∈ Ω±A ,
x0 ∈ int Ω0

A, |x− x0| ≤ γ =⇒ x ∈ int Ω0
A.

(3.16)

Choose δ ∈ (0, γ] (depending on x0) sufficiently small such that

|o (|x− x0|)|
|x− x0|

≤ γ, ∀x ∈ Bδ(x0), x 6= x0 , (3.17)

and
δ ≤ γ

2 |Du∗∗(x0)|+ 4γ
, Bδ(x0) ⊂ Ω . (3.18)

By (3.16) and by the definition of Ω+
A, Ω−A, Ω0

A in (3.11), (3.12), we have{
x0 ∈ Ω±A =⇒ divm(x) ≷ 0 ∀x ∈ Bδ(x0),
x0 ∈ int Ω0

A =⇒ divm(x) = 0 ∀x ∈ Bδ(x0).
(3.19)

For every r ∈ (0, δ], let us define in Ω the function vrx0
by

vrx0
(x) := u∗∗(x0) + 〈Du∗∗(x0), x− x0〉 ± γ · (r − 2 |x− x0|) , x ∈ Ω,

the sign + being chosen if x0 ∈ Ω+
A, while the sign − is selected if x0 ∈ Ω−A. If

x0 ∈ int Ω0
A then any sign in the definition of vrx0

(x) is a good choice; in order
to fix the ideas, we choose the sign + if x0 ∈ int Ω0

A. Since |D |x|| = 1 for
everyx ∈ Rn \ {0}, we obtain∣∣Dvrx0

(x)−Du∗∗(x0)
∣∣ = 2γ · |∓D |x− x0|| = 2γ a.e. x ∈ Ω,
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and thus by (3.14), (3.15),

Dvrx0
(x) ∈ A(x), a.e. x ∈ Bδ(x0), ∀ r ∈ (0, δ] . (3.20)

If x0 ∈ Ω+
A ∪ int Ω0

A we set

G(x0, r) :=
{
x ∈ Bδ(x0) ⊂ Ω : vrx0

(x) ≥ u∗∗(x)
}
, (3.21)

and if x0 ∈ Ω−A we define

G(x0, r) :=
{
x ∈ Bδ(x0) ⊂ Ω : vrx0

(x) ≤ u∗∗(x)
}
. (3.22)

We claim that G(x0, r) is a closed set satisfying

Br/3(x0) ⊂ G(x0, r) ⊂ Br(x0). (3.23)

Let us verify (3.23) when x0 ∈ Ω+
A ∪ int Ω0

A. If x ∈ Bδ(x0) but x /∈ Br(x0) (that
is r < |x− x0| ≤ δ) then by (3.13) and (3.17) we get

vrx0
(x)− u∗∗(x) = γ · (r − 2 |x− x0|)− o (|x− x0|)

< −γ |x− x0| − o (|x− x0|) = − |x− x0| ·
(
γ +

o (|x− x0|)
|x− x0|

)
≤ 0.

Thus vrx0
(x)− u∗∗(x) < 0 and x /∈ G(x0, r). On the other hand if x ∈ Br/3(x0),

then r/3 ≥ |x− x0| , and again by (3.13), (3.17), we obtain

vrx0
(x)− u∗∗(x) = γ · (r − 2 |x− x0|)− o (|x− x0|) ≥

γ |x− x0| − o (|x− x0|) = |x− x0|
(
γ − o (|x− x0|)

|x− x0|

)
≥ 0

and x ∈ G(x0, r). Thus (3.23) is proved.
By (3.21) and the continuity of u∗∗ and vrx0

we have

∂G(x0, r) =
{
x ∈ Bδ(x0) : vrx0

(x) = u∗∗(x)
}
,

thus ∂G(x0, r) and ∂G(x0, r
′) are disjoint for r 6= r′ and we conclude that only

countably many of these boundary sets can have positive measure. Therefore
we can always choose a sequence rh of real numbers such that rh → 0 as h→ +∞,

0 < rh ≤ δ, ∀h ∈ N,
meas (∂G(x0, rh)) = 0, ∀h ∈ N.

(3.24)

Let us consider the measurable subset of Ω

M :=
{
x0 ∈ Ω+

A ∪ Ω−A ∪ int Ω0
A : u∗∗ differentiable at x0, Du∗∗(x0) ∈ A(x0)

}
and consider the family of open sets

G := {intG(x, rh) : x ∈M, rh as in (3.24)} .
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Since G is a fine covering of M and each set G(x, r) ∈ G satisfies (3.23), by
Vitali’s covering theorem (see, for example, Chapter 10 of [12]), there exists in
G a (at most) countable subcollection G′ of sets with disjoint closures such that
the open set

Ω′ =
⋃

intG(xk,rk)∈G′
intG(xk, rk) , (3.25)

covers M up to a set of zero measure, i.e. meas (M \ Ω′) = 0. Let us define the
function v in Ω by

v(x) :=
{
u∗∗(x) if x ∈ Ω \ Ω′,
vrkxk(x) if x ∈ G(xk, rk), (3.26)

and introduce the functions

uh(x) :=
{
u∗∗(x) if x ∈ Ω \ ∪hk=1G(xk, rk),
vrkxk(x) if x ∈ G(xk, rk), for some 1 ≤ k ≤ h.

By (3.21) and (3.22) the functions uh belong to u∗∗ + W 1,p
0 (Ω) ∩W 1,∞

loc (Ω) for
all h, since uh is locally maximum or minimum of two W 1,p(Ω) ∩ W 1,∞

loc (Ω)
functions. Moreover, we claim that each uh is a minimizer of (3.9). To this aim,
notice that by (3.19), (3.21), (3.22), we have for all h

divm(x) (uh(x)− u∗∗(x)) ≥ 0 a.e. x ∈ ∪hk=1G(xk, rk) . (3.27)

Moreover, by (3.20)

Duh(x) ∈ A(x), a.e. x ∈ ∪hk=1G(xk, rk) . (3.28)

and Duh(x) = Du∗∗(x) a.e. in Ω \ ∪hk=1G(xk, rk). By the convexity inequality
f∗∗(x, ξ) ≥ q(x) + 〈m(x), ξ〉, valid for every x ∈ ΩA and every ξ ∈ Rn, we have

inf
{∫

Ω

f∗∗ (x,Du(x)) dx : u ∈ u0 +W 1,p
0 (Ω)

}

=
∫

Ω\∪hk=1G(xk,rk)

f∗∗ (x,Du∗∗(x)) dx+
∫
∪hk=1G(xk,rk)

f∗∗ (x,Du∗∗(x)) dx

≥
∫

Ω\∪hk=1G(xk,rk)

f∗∗ (x,Du∗∗(x)) dx+
∫
∪hk=1G(xk,rk)

{q(x) + 〈m(x), Du∗∗(x)〉} dx,

where we have used the fact that ∪hk=1G(xk, rk) ⊂ ΩA (see (3.14), (3.15) and
(3.23)).

Since uh ∈ u∗∗+W 1,p
0 (intG(xk, rk)) for all 1 ≤ k ≤ h, using (3.27) we obtain∫

G(xk,rk)

{〈m(x), Du∗∗(x)〉 − 〈m(x), Duh(x)〉} dx

= −
∫
G(xk,rk)

divm(x) (u∗∗(x)− uh(x)) dx ≥ 0 .
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Therefore we may conclude, from the inequality above and by (3.28), that

inf
{∫

Ω

f∗∗ (x,Du(x)) dx : u ∈ u0 +W 1,p
0 (Ω)

}

≥
∫

Ω\∪hk=1G(xk,rk)

f∗∗ (x,Du∗∗(x)) dx+
∫
∪hk=1G(xk,rk)

{q(x) + 〈m(x), Duh(x)〉} dx

=
∫

Ω

f∗∗ (x,Duh(x)) dx .

This proves the minimality of each uh. By (3.2) the sequence uh is bounded
in W 1,p(Ω) and since uh(x) converges to v(x) a.e. in Ω, it follows that uh
converges weakly to v in W 1,p(Ω). In particular, v ∈ u0 + W 1,p

0 (Ω) and, by
lower semicontinuity, v is also a minimizer of (3.9). Theorem 2.7 now yields
v ∈W 1,∞

loc (Ω). By (3.20) we have

Dv(x) ∈ A(x), a.e. x ∈ Ω′.

On the other hand, since v = u∗∗ in Ω \Ω′, there exists a negligible set E0 such
that, for all x ∈ (Ω \ Ω′) \ E0, v and u∗∗ are differentiable at x and Dv(x) =
Du∗∗(x). Thus, if x /∈ E0 ∪ (M \ Ω′) ∪

(
Ω ∩ ∂Ω0

A

)
, which is a set of measure

zero, and if x /∈ Ω \ Ω′, then we have

Dv(x) /∈ A(x) .

Finally, let us prove that divm = 0 in Ω′. To this end notice that, since

f∗∗(x, ξ) = q(x) + 〈m(x), ξ〉 , whenever x ∈ ΩA and ξ ∈ A(x),

the function ξ → f∗∗(x, ξ) is differentiable in A(x) and Dξf
∗∗(x, ξ) = m(x) for

every x ∈ Ω′, ξ ∈ A(x). Therefore the standard argument used to derive the
Euler equation of an integral functional still applies in the open set Ω′ and the
Euler’s equation in weak form gives∫

Ω′
divm(x)ϕ(x) dx = 0 , ∀ ϕ ∈ C1

0 (Ω′) ,

which proves that divm = 0 in Ω′.

The second lemma that we consider in this section uses the notion of Ku-
ratowski convergence, or convergence in the Hausdorff metric of a sequence of
compact sets of Rn. We recall that a sequence Eh of compact sets of Rn con-
verges, as h→ +∞, in the sense of Kuratowski (or in the Hausdorff metric) to
a compact set E ⊂ Rn if, for every ε > 0, there exists h0 such that

Eh ⊂ Iε (E) , E ⊂ Iε (Eh) ∀h > h0 ,

where Iε (·) denotes the neighborhood of radius ε of the set under consideration.
We recall that, if the sequence Eh is bounded in Rn uniformly with respect to

22



h ∈ N, then Eh → E in the sense of Kuratowski if and only if the following two
properties hold:

(i) for every ξ ∈ E there exists a sequence ξh, with ξh ∈ Eh for every h ∈ N,
such that ξh converges to ξ as h→ +∞;

(ii) if a sequence ξh, with ξh ∈ Eh for every h ∈ N, admits a subsequence
ξhk converging to a point ξ, then ξ ∈ E.

In the sequel we need some properties of the distance function to a convex
set. For the statements and the proofs, we refer the reader to the Appendix.

Let E(x) 6= ∅ be a compact subset of Rn for every value of a parameter x in
an open set ΩA ⊂ Rn. We say that the set function E(x) is continuous in the
sense of Kuratowski if E(xk) converges in the sense of Kuratowski to E(x) for
every x, xk ∈ ΩA such that xk → x.

Lemma 3.4 Let f : ΩA × Rn → R be a continuous function such that the
bipolar f∗∗ is also continuous and satisfies (3.6) and (3.8). Let E(x) ⊂ Rn be
defined by

E(x) := {ξ ∈ Rn : f∗∗(x, ξ)− [q(x) + 〈m(x), ξ〉] = 0} .

Then the map x ∈ ΩA 7→ E(x) is continuous in the sense of Kuratowski.

Proof. Let xh be a sequence in ΩA converging to x ∈ ΩA. We claim that, if
ξhk ∈ E(xhk) and ξhk → ξ, then ξ ∈ E(x). In fact, since

f∗∗(xhk , ξhk) = q(xhk) +
〈
m(xhk), ξhk

〉
,

the continuity of f∗∗, m, and q yields ξ ∈ E(x).
Let us now show that, given ξ ∈ E(x), there exist ξh ∈ E(xh) such that

ξh → ξ. Indeed, if this is not true, then we can find ε > 0 and a sequence hk such
that dist (ξ;E(xhk)) > ε for all k ∈ N. For every k ∈ N choose ξhk ∈ ∂E(xhk)
such that

∣∣ξ − ξhk ∣∣ = dist (ξ;E(xhk)) > ε. Extracting, if necessary, a further
subsequence, we may assume that ξhk → η, and η ∈ E(x) by the first part of
the proof. Since ξ /∈E(xhk) and ξhk ∈ ∂E(xhk), from (3.8) we get, for all k ∈ N,

f∗∗
(
xhk ,

ξ + ξhk
2

)
≤ 1

2
f∗∗(xhk , ξ) +

1
2
f∗∗(xhk , ξhk)− ω

(
|ξ − ξhk |

)
.

Passing to the limit as k → +∞, we get

f∗∗
(
x,
ξ + η

2

)
≤ 1

2
f∗∗(x, ξ) +

1
2
f∗∗(x, η)− ω (ε) .

Since f∗∗(x, ·) is affine on E(x) and ξ, η ∈ E(x), the inequality above implies
ω (ε) ≤ 0, which gives a contradiction since ω(t) > 0 for all t > 0.
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Lemma 3.5 Under the same assumptions of Lemma 3.4 the function F : ΩA×
R
n → R, defined by

F (x, ξ) =
{

dist (ξ; ∂E(x)) if ξ ∈ Rn \ E(x),
−dist (ξ; ∂E(x)) if ξ ∈ E(x),

is continuous in ΩA × Rn and convex with respect to ξ ∈ Rn.

Proof. The convexity of F (x, ·) follows from Lemma 4.3 and the convexity
of E(x). The continuity of F with respect to x ∈ ΩA is a direct consequence
of Lemma 4.2, asserting the continuity of the distance function with respect
to the Kuratowski convergence, and of Lemma 3.4, yielding the continuity of
the set function E(x) with respect to x. The continuity of F with respect to
(x, ξ) then follows from the fact that for all x ∈ ΩA, ξ, η ∈ Rn we have that
|F (x, ξ)− F (x, η)| ≤ |ξ − η|.

We are now ready to give the proof of Theorem 3.1.
Proof of Theorem 3.1. By Lemma 3.2 the minimum of the relaxed variational
problem (3.9) is attained and there exist a minimizer v and an open set Ω′ ⊂ Ω
(possibly empty) such that{

Dv(x) ∈ A(x) a.e. x ∈ Ω′

Dv(x) /∈ A(x) a.e. x ∈ Ω \ Ω′ ,

with divm = 0 in Ω′.
If Ω′ is an empty set then Dv(x) /∈ A(x) a.e. x ∈ Ω, and so f∗∗(x,Dv(x)) =

f(x,Dv(x)) a.e. x ∈ Ω, and v is also a minimizer for the original problem (3.1).
Otherwise, recalling (3.25), we consider for all k the Dirichlet problem for

the implicit differential equation{
F (x,Du (x)) = 0, a.e. x ∈ intG(xk, rk) ,
u (x) = v (x) , x ∈ ∂G(xk, rk) , (3.29)

where F : ΩA × Rn → R is the signed distance function defined in Lemma 3.5.
Notice that v is Lipschitz continuous on G(xk, rk), and since A(x) ⊂ E(x) we
deduce that

F (x,Dv (x)) ≤ 0 a.e. x ∈ intG(xk, rk) . (3.30)

Therefore, we may apply Theorem 2.3 by Dacorogna-Marcellini [12] (note that
(3.30) is exactly the compatibility condition (2.6) required in Theorem 2.3 in
[12]) to obtain the existence of a function vk ∈ W 1,∞ (intG(xk, rk)) satisfying
(3.29). Notice that F (x, ξ) = 0 if and only if ξ ∈ ∂E(x), and thus Dvk(x) ∈
∂E(x) ⊂ Rn \A(x) almost everywhere in intG(xk, rk). Therefore

f∗∗(x,Dvk(x)) = f(x,Dvk(x)) a.e. x ∈ intG(xk, rk). (3.31)

Let us now prove that the functions

wh(x) :=
{
vk (x) if x ∈ G(xk, rk), 1 ≤ k ≤ h ,
v(x) if x ∈ Ω \ ∪hk=1G(xk, rk) ,
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are all minimizers in the class u0 +W 1,p
0 (Ω) of the integral in (3.9). In fact, by

the affinity assumption (3.6), for any h we get∫
Ω

f∗∗ (x,Dv(x)) dx−
∫

Ω

f∗∗ (x,Dwh(x)) dx (3.32)

=
h∑
k=1

∫
G(xk,rk)

{f∗∗ (x,Dv(x))− f∗∗ (x,Dvk(x))} dx

=
h∑
k=1

∫
G(xk,rk)

〈m(x), Dv(x)−Dvk(x)〉 dx = 0 ,

where we have used the fact that v = vk on ∂G(xk, rk), together with the
property that divm = 0 in Ω′. The minimality of the function wh follows
immediately.

The proof will be over once we show that wh converges strongly in W 1,p(Ω)
to a function w. Indeed, the limiting function w will then be the required
minimizer because by (3.2), (3.32), and (3.31),∫

Ω

f (x,Dw(x)) dx = lim
h→+∞

∫
Ω

f (x,Dwh(x)) dx

=
∫

Ω

f∗∗ (x,Dv(x)) dx+ lim
h→+∞

[∫
Ω

f (x,Dwh(x)) dx−
∫

Ω

f∗∗ (x,Dwh(x)) dx
]

=
∫

Ω

f∗∗ (x,Dv(x)) dx+ lim
h→+∞

∫
Ω′\(∪k≤hG(xk,rk))

[f (x,Dv(x))− f∗∗ (x,Dv(x))] dx

=
∫

Ω

f∗∗ (x,Dv(x)) dx ,

where we have used the fact that f(x,Dv(x)) = f∗∗(x,Dv(x)) for a.e. x /∈ Ω′.
In order to prove that wh converges in W 1,p(Ω), it suffices to show that Dwh is
a Cauchy sequence in Lp. Since vk minimizes the integral∫

G(xk,rk)

f∗∗(x,Du(x)) dx

in the class v+W 1,p
0 (intG(xk, rk)), by (3.2) there exists a constant c such that

for all k ∫
G(xk,rk)

|Dvk|p dx ≤ c
∫
G(xk,rk)

(1 + |Dv|p) dx .

Hence, if h > k we get∫
Ω

|Dwh −Dwk|p dx =
h∑

i=k+1

∫
G(xi,ri)

|Dvi −Dv|p dx

≤ c
∫

Ω′\(∪i≤kG(xi,ri))

(1 + |Dv|p) dx ,

and the integral on the right hand side converges to zero as k →∞.
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3.2 The general case

In the previous section we have proved Theorem 3.1 under the assumption that
the bipolar function f∗∗ coincides with the affine function 〈m(·), ξ〉+q(·) on the
set A(x) = {ξ ∈ Rn : f(x, ξ) > f∗∗(x, ξ)} defined in (3.5). Here we consider the
more general situation where the set A(x) can be split into an union of a (at
most countable) family of pairwise disjoint open sets Aj(x), and that in each
Aj(x) the function f∗∗(x, ξ) coincides with an affine function 〈mj(x), ξ〉+ q(x),
where the slopes mj and the functions qj may vary with j.

Precisely, let f : Ω×Rn → R be a continuous function, satisfying the growth
condition (3.2), the uniform convexity condition (3.3), and (3.4). As before, we
assume that f∗∗ is continuous and we denote by ΩA the set of points x ∈ Ω
such that A(x) 6= ∅. Moreover, we assume that, for all x ∈ ΩA, there exists a
sequence Aj(x) of pairwise disjoint open sets such that

A(x) = ∪jAj(x) , (3.33)

and that, for every j, the set ΩAj := {x ∈ Ω : Aj(x) 6= ∅} is open. Further,
assume that, for all j, there exist a function qj ∈ C0

(
ΩAj

)
and a vector field

mj ∈ C1
(
ΩAj ;R

n
)

such that

f∗∗(x, ξ) = qj(x) + 〈mj(x), ξ〉 , ∀ x ∈ ΩAj , ξ ∈ Aj(x) , (3.34)

and the boundary of the set where the divergence of mj is equal to zero is
negligible; i.e., for all j,

meas
(
Ω ∩ ∂

{
x ∈ ΩAj : divmj(x) = 0

})
= 0 .

For all x ∈ ΩAj set

Ej(x) := {ξ ∈ Rn : f∗∗(x, ξ) = qj(x) + 〈mj(x), ξ〉}

and we assume that, for every j ∈ N, there exists an increasing function ωj :
[0,+∞)→ [0,+∞), with ωj(t) = 0 if and only if t = 0, such that, if x ∈ ΩA, ξ ∈
∂Ej(x), η ∈ Rn \ Ej(x), then

f∗∗
(
x,
ξ + η

2

)
≤ 1

2
f∗∗(x, ξ) +

1
2
f∗∗(x, η)− ωj (|ξ − η|) . (3.35)

As in the previous section we have the following existence result.

Theorem 3.6 Let f, f∗∗ : Ω × Rn → R be continuous functions (f not neces-
sarily convex with respect to ξ ∈ Rn). Under the above assumptions on f and
f∗∗, for any given boundary datum u0 ∈W 1,p (Ω) the variational problem (3.1)
attains its minimum. Moreover, any minimizers is of class W 1,∞

loc (Ω).

Remark 3.7 Notice that the assumptions (3.33) and (3.34) are equivalent to
the following local assumption: for any (x0, ξ0) ∈ Ω×Rn such that f(x0, ξ0) >
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f∗∗(x0, ξ0) there exist δ > 0, a function q ∈ C0 (Bδ(x0)), and a vector field
m ∈ C1 (Bδ(x0);Rn) such that, if |x− x0| < δ, |ξ − ξ0| < δ, then

f∗∗(x, ξ) = q(x) + 〈m(x), ξ〉 . (3.36)

In fact, set D := {(x, ξ) ∈ Ω× Rn : f(x, ξ) > f∗∗(x, ξ)}. The set D is open,
hence we may consider its connected components Dj . For every x ∈ Ω and
every j let us set Aj(x) := {ξ ∈ Rn : (x, ξ) ∈ Dj}. For every x the family
{Aj(x)} is a partition of A(x) := {ξ ∈ Rn : f(x, ξ) > f∗∗(x, ξ)}. Moreover, the
set ΩAj := {x ∈ Ω : Aj(x) 6= ∅} is open, since it is equal to the projection of Dj

onto Rn. Finally, the existence for every j of a function qj ∈ C0(ΩAj ) and a
vector field mj ∈ C1(ΩAj ;R

n) satisfying (3.34) is an immediate consequence of
the local assumption (3.36) and of the connectedness of Dj .

To prove Theorem 3.6 one may follow exactly the same argument used in
the proof of Theorem 3.1, with the obvious changes due to the fact that now
we have to deal separately with the different affine representations (3.34) of
f∗∗. Therefore we shall limit ourselves to point out where the proof has to be
modified.

The statement of Lemma 3.2 must be replaced by the following one.

Lemma 3.8 The minimum of the relaxed variational problem (3.9) is attained.
Moreover, there exists a minimizer v ∈W 1,∞

loc (Ω)∩
(
u0 +W 1,p(Ω)

)
of (3.9) and

there exist pairwise disjoint open sets Ω′j ⊂ Ω (possibly empty) such that{
Dv(x) ∈ Aj(x) a.e. x ∈ Ω′j
Dv(x) /∈ A(x) a.e. x ∈ Ω \ ∪jΩ′j

and divmj = 0 in Ω′j.

Proof. To proof this lemma we argue as in the proof of Lemma 3.2, splitting
each open set ΩAj into the three open sets

Ω+
Aj

:=
{
x ∈ ΩAj : divmj(x) > 0

}
, Ω−Aj :=

{
x ∈ ΩAj : divmj(x) < 0

}
,

Ω0
Aj :=

{
x ∈ ΩAj : divmj(x) = 0

}
.

Taking a point x0 ∈ ΩAj \ ∂Ω0
Aj

such that u∗∗ is differentiable in x0 and
Du∗∗(x0) ∈ Aj(x0) for some j, we construct the function vrx0

as before, noticing
that the parameter γ can be always chosen so small (see (3.20)) that

Dvrx0
(x) ∈ Aj(x) a.e. x ∈ Bδ(x0), ∀ r ∈ (0, δ] . (3.37)

Arguing as in the model case, we get again a sequence G(xk, rk) of pairwise
disjoint sets such that the open set

Ω′ :=
⋃

intG(xk,rk)∈G′
intG(xk, rk)
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covers, up to a set of measure zero, the set of points x0 where u∗∗ is differentiable
and Du∗∗(x0) ∈ Aj(x0) for some j. Therefore, if we define v as in (3.26) we
have again that Dv(x) /∈ A(x) for a.e. x ∈ Ω \ Ω′ and, by (3.37) that for any k
there exists jk such that

Dv(x) ∈ Ajk(x) for a.e. x ∈ G(xk, rk) .

In particular Ω′ can be written as the disjoint union of the open sets

Ω′j =
⋃{

intG(xs, rs) : Dvrsxs(x) ∈ Aj(x) ∀x ∈ G(xs, rs)
}

and Dv(x) ∈ Aj(x) a.e. x ∈ Ω′j , for all j. The rest of the proof follows with the
obvious modifications.

Proof of Theorem 3.6. We claim that, for all j, the set function x ∈ ΩAj 7→
Ej(x) is continuous in the sense of Kuratowski. It can be easily checked via the
same argument used in Lemma 3.4, by virtue of assumption (3.35) (this is the
only point where this hypothesis is needed). Therefore, in view of Lemma 3.5,
for every j the function Fj defined by

Fj (x, ξ) :=
{

dist (ξ; ∂Ej(x)) if ξ ∈ Rn \ Ej(x)
−dist (ξ; ∂Ej(x)) if ξ ∈ Ej(x),

is continuous in ΩAj ×Rn and convex with respect to ξ. Then, replacing (3.20)
with (3.37), the proof goes on exactly as in the model case.

4 Appendix: some properties of the distance
function

In this section we prove some properties of the signed distance function to a
convex set, which has been used in Section 3 in order to establish Lemma 3.4
and Lemma 3.5. We recall that if E ⊂ Rn then the signed distance function to
E is a function dE : Rn → R defined as follows:

dE(ξ) :=
{

dist (ξ; ∂E) if ξ /∈ E,
−dist (ξ; ∂E) if ξ ∈ E. (4.1)

Lemma 4.1 Let E ⊂ Rn be a closed convex set. If ξ ∈ Rn is such that

ξ ∈ Iδ (E) , dist (ξ; ∂Iδ (E)) > δ,

for some δ > 0, then ξ ∈ E (more precisely ξ ∈ intE).

Proof. If ξ /∈ E then we consider the projection ξ0 of ξ on E and a supporting
hyperplane H to E through ξ0. This hyperplane H separates ξ from E. Let us
denote by η the point

η := ξ + δ
ξ − ξ0

|ξ − ξ0|
;
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clearly |η − ξ| = δ. Since by the assumptions Bδ(ξ) ⊂ Iδ (E), in particular
η ∈ Iδ (E). On the other hand, dist (η;E) ≥ dist (η;H) = |ξ − ξ0| + δ > δ,
which gives a contradiction.

Lemma 4.2 Let Eh and E be convex, compact sets of Rn, such that Eh → E
in the sense of Kuratowski. Then

d(ξ) = lim
h→+∞

dh(ξ), ∀ ξ ∈ Rn,

where dh and d are, respectively, the signed distance functions to Eh and E.

Proof. Note that we use the assumption of convexity of the sets Eh, E only in
Steps 2 and 3 below.

Step 1: Let us consider the case where ξ /∈ E. Then there exists ε > 0 such
that dist (ξ; ∂E) > ε and, for large h ∈ N, ξ /∈ Eh. Let ξ0 ∈ E be a point such
that d(ξ) = |ξ − ξ0|, and let ξh be a sequence of points in Eh converging to ξ0.
Then

d(ξ) = lim
h→+∞

|ξ − ξh| ≥ lim sup
h→+∞

dh(ξ).

Conversely, let ξhk ∈ Ehk be such that

lim inf
h→+∞

dh(ξ) = lim
k→+∞

∣∣ξ − ξhk ∣∣ .
By extracting, if necessary, a further subsequence, we may assume that ξhk →
ξ0, for some ξ0 ∈ E. Thus

lim inf
h→+∞

dh(ξ) = lim
k→+∞

∣∣ξ − ξhk ∣∣ = |ξ − ξ0| ≥ d(ξ).

Step 2: Let ξ ∈ ∂E. There exists a sequence hk such that

lim sup
h→+∞

dh(ξ) = lim
k→+∞

dhk(ξ).

Let ξhk ∈ Ehk be such that ξhk → ξ. Since
∣∣ξ − ξhk ∣∣ ≥ dhk(ξ), we obtain

lim sup
h→+∞

dh(ξ) ≤ 0 = d(ξ).

Suppose now that lim infh→+∞ dh(ξ) < 0. As before, there exists a sequence hk
such that lim infh→+∞ dh(ξ) = limk→+∞ dhk(ξ). Fix ε > 0. For k large enough
dhk(ξ) < 0 and ξ ∈ Ehk ⊂ Iε (E). Let us denote by ν a unit vector in Rn,
orthogonal to a supporting hyperplane to E at ξ, pointing to the exterior of E.
By the convexity of E, the vector ξ + 2εν /∈ Iε (E), and so ξ + 2εν /∈ Ehk for
large k. Therefore, for such k, dist (ξ; ∂Ehk) = |dhk(ξ)| < 2ε. This implies that
lim infh→+∞ dh(ξ) ≥ 0.

Step 3: Let ξ ∈ intE and fix δ ∈ (0,dist (ξ; ∂E)) such that Bδ(ξ) ⊂ E. For
every ε < δ there exists hε such that E ⊂ Iε (Eh) for h > hε. If η ∈ Bδ−ε(ξ) ⊂
E ⊂ Iε (Eh), then dist (η; ∂Iε (Eh)) > ε; therefore, by Lemma 4.1, we have that
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Bδ−ε(ξ) ⊂ Eh for h > hε (in particular ξ ∈ intEh) and dist (ξ; ∂Eh) ≥ δ − ε.
From this it follows that lim infh→+∞ dist (ξ; ∂Eh) = lim infh→+∞ [−dh(ξ)] ≥ δ.
Letting δ → dist (ξ; ∂E), we get

d(ξ) ≥ lim sup
h→+∞

dh(ξ).

Conversely, let ξ0 ∈ ∂E be such that |ξ − ξ0| = dist (ξ; ∂E). From Step 2 it
follows that there exists ξh ∈ ∂Eh such that |ξh − ξ0| → 0. We also have

dist (ξ; ∂Eh) ≤ |ξh − ξ| ≤ |ξh − ξ0|+ dist (ξ; ∂E) .

Since ξ ∈ Eh,

lim inf
h→+∞

dh(ξ) = lim inf
h→+∞

[−dist (ξ; ∂Eh)] ≥ − dist (ξ; ∂E) = d(ξ)

and the proof is complete.

In the next lemma we prove the convexity of the signed distance function to
a convex set.

Lemma 4.3 If E is a compact, convex subset of Rn then the signed distance
dE , defined in (4.1), is a convex function.

Proof. The signed distance from an half space is an affine function. Therefore
the signed distance dE is convex, since it is the supremum of the family of signed
distance functions from all the half spaces containing E.
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