

FLORE

Repository istituzionale dell'Università degli Studi

 di Firenze
Amalgams of finite inverse semigroups

Questa è la Versione finale referata (Post print/Accepted manuscript) della seguente pubblicazione:

Original Citation:
Amalgams of finite inverse semigroups / CHERUBINI A; MEAKIN J; B. PIOCHI. - In: JOURNAL OF ALGEBRA. ISSN 0021-8693. - STAMPA. - 285 (2):(2005), pp. 706-725.

Availability:

This version is available at: 2158/255027 since:

Publisher:
Academic Press Incorporated:6277 Sea Harbor Drive:Orlando, FL 32887:(800)543-9534, (407)345-4100,

Terms of use:
Open Access
La pubblicazione è resa disponibile sotto le norme e i termini della licenza di deposito, secondo quanto stabilito dalla Policy per l'accesso aperto dell'Università degli Studi di Firenze
(https://www.sba.unifi.it/upload/policy-oa-2016-1.pdf)

Publisher copyright claim:

Amalgams of finite inverse semigroups

Alessandra Cherubini ${ }^{\text {a,* }}$, John Meakin ${ }^{\text {b }}$, Brunetto Piochi ${ }^{\text {c }}$
${ }^{\text {a }}$ Dipartimento di Matematica, Politecnico di Milano, Piazza L. da Vinci 32, I 20133 Milano, Italy
${ }^{\mathrm{b}}$ Department of Mathematics, University of Nebraska-Lincoln, Lincoln, NE 68588-0323, USA
${ }^{\text {c }}$ Dipartimento di Matematica "U. Dini", Università degli Studi di Firenze, viale Morgagni 67/a, I 50134 Firenze, Italy
Received 31 October 2003
Available online 29 January 2005
Communicated by T.E. Hall

Abstract

We show that the word problem is decidable for an amalgamated free product of finite inverse semigroups (in the category of inverse semigroups). This is in contrast to a recent result of M. Sapir that shows that the word problem for amalgamated free products of finite semigroups (in the category of semigroups) is in general undecidable. © 2005 Elsevier Inc. All rights reserved. Keywords: Word problem; Semigroups amalgams; Inverse semigroups; Schützenberger graph

1. Introduction

If S_{1} and S_{2} are semigroups (groups) such that $S_{1} \cap S_{2}=U$ is a nonempty subsemigroup (subgroup) of both S_{1} and S_{2} then [$S_{1}, S_{2} ; U$] is called an amalgam of semigroups (groups). The amalgamated free product $S_{1} *_{U} S_{2}$ associated with this amalgam in the category of semigroups (groups) is defined by the usual universal diagram.

[^0]0021-8693/\$ - see front matter © 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.jalgebra.2004.12.015

The amalgam $\left[S_{1}, S_{2} ; U\right]$ is said to be strongly embeddable in a semigroup (group) S if there are injective homomorphisms $\phi_{i}: S_{i} \rightarrow S$ such that $\left.\phi_{1}\right|_{U}=\left.\phi_{2}\right|_{U}$ and $S_{1} \phi_{1} \cap S_{2} \phi_{2}=$ $U \phi_{1}=U \phi_{2}$. It is well known that every amalgam of groups embeds in a group (and hence in the amalgamated free product of the group amalgam). However, an early example of Kimura [9] shows that semigroup amalgams do not necessarily embed in any semigroup. On the other hand, T.E. Hall [6] showed that every amalgam of inverse semigroups (in the category of inverse semigroups) embeds in an inverse semigroup, and hence in the corresponding amalgamated free product in the category of inverse semigroups.

An inverse semigroup is a semigroup S with the property that for each element $a \in S$ there is a unique element $a^{-1} \in S$ such that $a=a a^{-1} a$ and $a^{-1}=a^{-1} a a^{-1}$. A consequence of the definition is that idempotents commute in any inverse semigroup. One may also define a natural partial order on such a semigroup S by $a \leqslant b$ iff $a=e b$ for some idempotent e of S.

Inverse semigroups arise very naturally in mathematics as semigroups of partial oneone maps on a set (or partial isometries of a metric space, or homeomorphisms between open subsets of a topological space, or local diffeomorphisms of a differentiable manifold etc). We refer the reader to the book of Petrich [15] for basic results and notation about inverse semigroups and to the more recent books of Lawson [10] and Paterson [14] for many references to the connections between inverse semigroups and other branches of mathematics.

Recently Birget, Margolis, and Meakin [3] showed that even under very nice conditions on a semigroup amalgam $\left[S_{1}, S_{2} ; U\right]$, the corresponding amalgamated free product $S_{1} *_{U} S_{2}$ in the category of semigroups may have undecidable word problem, quite in contrast to the situation for amalgamated free products of groups. This result was further strengthened by Sapir [16] who showed that an amalgamated free product of finite semigroups may have undecidable word problem. However, in the present paper we show that the word problem is decidable for any amalgamated free product of finite inverse semigroups in the category of inverse semigroups.

We refer the reader to [15] for information about free inverse semigroups, and in particular for a description of Munn's solution [13] to the word problem for the free inverse semigroup on a set in terms of Munn trees. Munn's work was greatly extended by Stephen [17] who introduced the notion of Schützenberger graphs associated with presentations of inverse semigroups and their role in the study of the word problem. We refer to the papers by Jones [7] and Jones, Margolis, Meakin, and Stephen [8] for information about the structure of free products of inverse semigroups in the category of inverse semigroups, and to the papers by Haataja, Margolis, and Meakin [5], Bennett [1,2], Stephen [18], and Cherubini, Meakin, and Piochi [4] for detailed information about various classes of amalgamated free products of inverse semigroups. We will make heavy use of Bennett's ideas in our study of amalgamated free products of finite inverse semigroups in this paper. Our strategy for solving the word problem for an amalgamated free product of finite inverse semigroups is to provide a construction of their Schützenberger graphs, very much along the lines of Bennett's construction of the Schützenberger graphs of a lower bounded amalgam [1]. We briefly recall some relevant notation and refer to [1,4,17] and [15] for any undefined notation and terminology.

We will denote the free inverse semigroup on a set X by $\operatorname{FIS}(X)$. It is the quotient of the free semigroup $\left(X \cup X^{-1}\right)^{+}$by the least congruence ρ that makes the resulting quotient semigroup inverse (see [15]). We denote the inverse semigroup S presented by a set X of generators and a set T of relations by $S=\operatorname{Inv}\langle X \mid T\rangle$. This is the quotient of the free semigroup $\left(X \cup X^{-1}\right)^{+}$by the least congruence τ that contains ρ and the relations in T. We refer to $[11,17]$ or the survey paper [12] for much information about presentations of inverse semigroups. Crucial to the study of presentations of inverse semigroups is the notion of the Schützenberger automaton $\mathcal{A}(X, T, w)$ for a word $w \in\left(X \cup X^{-1}\right)^{+}$. This automaton has underlying graph $S \Gamma(X, T, w)$ whose set of vertices is the \mathcal{R}-class containing $w \tau$ and whose edges consist of all triples (s, x, t) where s and t are \mathcal{R}-related to $w \tau$ in $S, x \in X \cup X^{-1}$, and $s . x \tau=t$: we view this edge as being directed from s to t. The graph $S \Gamma(X, T, w)$ is an inverse word graph over X (i.e., a connected graph whose edges are labeled over $X \cup X^{-1}$ in such a way that each edge e labeled by x has a unique inverse edge labeled by x^{-1}) and is also deterministic. The automaton $\mathcal{A}(X, T, w)$ is then defined as the (inverse) automaton on this underlying graph that has as initial state the vertex $w w^{-1} \tau$ and as terminal state the vertex $w \tau$. The importance of these automata stems from the fact that for any two words $w, w^{\prime} \in\left(X \cup X^{-1}\right)^{+}, w \tau=w^{\prime} \tau$ if and only if $\mathcal{A}(X, T, w)=\mathcal{A}\left(X, T, w^{\prime}\right)$, or equivalently if these two automata accept the same language [17]. In view of this we will occasionally abuse notation slightly and denote $\mathcal{A}(X, T, w)$ by $\mathcal{A}(X, T, w \tau)$ when it is convenient.

We refer the reader to Stephen's original paper [17] for a description of an iterative procedure for constructing the Schützenberger automaton $\mathcal{A}(X, T, w)$ from the linear automaton of w by repeated applications of the process of expansions and determinations (edge foldings). The essential idea is that one constructs iteratively a sequence of automata that "approximate" the Schützenberger automaton of w in the sense that the languages that they accept become successively better approximates of the language of the Schützenberger automaton. An inverse automaton \mathcal{B} is called an approximate automaton for $\mathcal{A}(X, T, w)$ if there is a word $w^{\prime} \in L(\mathcal{B})$ such that $w^{\prime} \tau=w \tau$ and every word in $L(\mathcal{B})$ is greater than or equal to w in the natural partial order on the inverse semigroup S, i.e., $L(\mathcal{B}) \subseteq L(\mathcal{A})$. One solves the word problem for a presentation of an inverse semigroup S by effectively constructing the associated Schützenberger automata or an approximation to the Schützenberger automaton that enables to solve the word problem. It is evident that these automata are finite if S is finite.

In his paper [1], Bennett constructs the Schützenberger automata for amalgamated free products of a class of amalgams that he refers to as "lower bounded" amalgams of inverse semigroups. Our construction of the Schützenberger automata corresponding to an amalgamated free product of finite inverse semigroups closely follows the construction of Bennett, but differs from Bennett's construction in some technical ways, as amalgams of finite inverse semigroups are not necessarily lower bounded.

2. V-quotients

We denote by $i(p)$ (respectively $t(p))$ the initial (respectively terminal) vertex of a path p and by $l(p)$ the word labeling the path p in an inverse word graph. We say that p is a path
from α to β if $i(p)=\alpha$ and $t(p)=\beta$. In this case we also say that the word $l(p)$ labels a path from α to β. If p is a path in Λ with $i(p)=t(p)=\alpha$ then p is called a loop based at α. If Λ is a deterministic inverse word graph, and if w labels a path from α to β in Λ, it is convenient to write $\beta=\alpha w$. We also say that αw exists for the word $w \in\left(X \cup X^{-1}\right)^{+}$ in this case.

There is an evident notion of a morphism between inverse word graphs. This is just a graph morphism that preserves labeling of edges. Morphisms between inverse word graphs are referred to as V-homomorphisms in [17]. A surjective morphism is an edge surjective V-epimorphism in the sense of [17]. If Λ is an inverse word graph over X and η is an equivalence relation on the set of vertices of Γ, the corresponding quotient graph Λ / η is called a V-quotient of Λ (see [17] for details). This notion extends to the concept of a V-quotient of an inverse automaton in the obvious way. There is a least equivalence relation on the vertices of an inverse automaton Λ such that the corresponding V-quotient is deterministic. A deterministic V-quotient of Λ is called a $D V$-quotient in this paper. There is a natural V-homomorphism from Λ onto a V-quotient of Λ.

It is convenient to record the following lemma for later use in this paper.
Lemma 1. Let Λ be a deterministic inverse word graph over X, let Γ be the V-quotient of Λ obtained by identifying vertices $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ of Λ, and let Δ be the determinized form of Γ. Let \equiv be the smallest equivalence relation on the set of vertices of Λ such that
(1) $\alpha_{i} \equiv \alpha_{j}$ for all i and j, and
(2) if $\beta_{1} \equiv \beta_{2}$ and $\beta_{1} w$ and $\beta_{2} w$ both exist for some word $w \in\left(X \cup X^{-1}\right)^{+}$, and some vertices β_{i} of Λ, then $\beta_{1} w \equiv \beta_{2} w$.

Then two vertices γ_{1} and γ_{2} of Λ are identified in the $D V$-quotient Δ if and only if $\gamma_{1} \equiv \gamma_{2}$.

Proof. It is clear that two vertices γ_{1} and γ_{2} of Λ get identified in Δ if $\gamma_{1} \equiv \gamma_{2}$, since if β_{1} gets identified with β_{2} and there is some word w such that $\beta_{1} w$ and $\beta_{2} w$ both exist, then $\beta_{1} w$ gets identified with $\beta_{2} w$. To prove the converse, note that by Theorem 4.4 of Stephen [17], γ_{1} gets identified with γ_{2} if and only if there is some Dyck word d (i.e., a word that freely reduces to 1) in $\left(X \cup X^{-1}\right)^{+}$such that d labels a path from γ_{1} to γ_{2} in Γ. We prove that $\gamma_{1} \equiv \gamma_{2}$ by induction on the length of d.

If $|d|=2$, then $d=x x^{-1}$ for some letter $x \in X \cup X^{-1}$. Since Λ is deterministic, if $\gamma_{1} \neq \gamma_{2}$, then we must have that x labels an edge from γ_{1} to v_{i} and x^{-1} labels an edge from v_{j} to γ_{2} for some $i \neq j$. But since v_{i} and v_{j} were identified in Γ, then clearly $\gamma_{1} \equiv \gamma_{2}$. This gives a base for the induction.

Suppose that $d=d_{1} d_{2} \ldots d_{k}$ for some Dyck words d_{i} and that $k>1$. Then d_{1} labels a path in Γ from γ_{1} to some vertex δ_{2}, d_{2} labels a path in Γ from δ_{2} to δ_{3}, \ldots, and d_{k} labels a path in Γ from δ_{k} to γ_{2}. By induction, $\gamma_{1} \equiv \delta_{2} \equiv \delta_{3} \equiv \cdots \equiv \gamma_{2}$.

So assume that d cannot be written as a product of smaller Dyck words, and that $|d|>2$. Then we have $d=x c x^{-1}$ for some Dyck word c with $|c|<|d|$. Now c labels a path from some vertex β_{1} of Γ to some other vertex β_{2}. By induction, $\beta_{1} \equiv \beta_{2}$, and $\beta_{1} x^{-1}=\gamma_{1}$ and $\beta_{2} x^{-1}=\gamma_{2}$, so by part (2) of the definition of \equiv, we have $\gamma_{1} \equiv \gamma_{2}$, as required.

Now let $S=\operatorname{Inv}\langle X \mid T\rangle$ be a finite inverse semigroup and let Λ be an inverse word graph over X. We will always assume X and T to be finite in this paper. Recall from [17] that Λ is called closed (relative to the presentation) if Λ is deterministic and whenever $u=v$ is a relation in T and u (respectively v) labels a path in Λ from a vertex α to a vertex β, then v (respectively u) also labels a path in Λ from α to β.

Lemma 2. Let $(\lambda, \Lambda, \lambda)$ be a nontrivial closed inverse automaton relative to a presentation $S=\operatorname{Inv}\langle X \mid T\rangle=\left(X \cup X^{-1}\right)^{+} / \tau$ of a finite inverse semigroup S. Then there exists a unique minimum idempotent $e=u \tau \in S$ such that $(\lambda, \Lambda, \lambda)$ is a $D V$-quotient of the Schützenberger automaton $\mathcal{A}(e)=\mathcal{A}(X, T, u)=\left(\lambda^{*}, \Lambda^{*}, \lambda^{*}\right)$. In particular, Λ is finite. If a word $y \in\left(X \cup X^{-1}\right)^{+}$labels a $\lambda-\theta$ path in $(\lambda, \Lambda, \lambda)$, then y also labels $a \lambda^{*}-\theta^{*}$ path in Λ^{*} for some vertex θ^{*}. If y labels a path starting at λ in Λ and $y \tau$ is an idempotent of S, then y labels a loop at λ in Λ.

Proof. Consider the automaton $(\lambda, \Lambda, \lambda)$. Since this automaton is nontrivial, there is some word u such that $u \tau$ is an idempotent of S and u labels a loop in Λ based at λ. Let $e=$ $u \tau$ be the minimum idempotent of S such that u labels a loop in Λ based at λ. Denote by $\mathcal{A}(e)=\left(\lambda^{*}, \Lambda^{*}, \lambda^{*}\right)$ the Schützenberger automaton of u relative to $\langle X \mid T\rangle$. (In fact $\lambda^{*}=e$ and Λ^{*} is the Schützenberger graph of u relative to $\langle X \mid T\rangle$.) If v is a word in $\left(X \cup X^{-1}\right)^{+}$which labels a loop in $\mathcal{A}(e)$ based at λ^{*} then there is a finite sequence of automata $\mathcal{A}_{1}, \mathcal{A}_{2}, \ldots, \mathcal{A}_{n}$ such that \mathcal{A}_{1} is the linear automaton of u, each \mathcal{A}_{i+1} is obtained from \mathcal{A}_{i} by a full expansion relative to T or an edge folding, and $v \in L\left(\mathcal{A}_{n}\right)$. The fact that ($\lambda, \Lambda, \lambda$) is closed with respect to T implies that if this same sequence of expansions and edge foldings is performed in $(\lambda, \Lambda, \lambda)$, then induction on the number of steps shows that v labels a loop in $(\lambda, \Lambda, \lambda)$ based at λ.

By Theorem 2.5 of [17] there exists a homomorphism ϕ from Λ^{*} to Λ that maps λ^{*} onto λ. If y labels a $\lambda-\theta$ path in Λ it follows that $u y y^{-1}$ labels a loop in Λ based at λ. By minimality of e this implies that $e=\left(u y y^{-1}\right) \tau$, so $u y y^{-1}$ labels a loop in $\mathcal{A}(e)$ based at λ^{*}. Again, since u labels a loop in $\mathcal{A}(e)$ based at λ^{*}, it follows that y labels a $\lambda^{*}-\theta^{*}$ path in Λ^{*} for some vertex θ^{*}. In particular, this implies that ϕ is surjective.

To prove the last statement of the lemma, note that if $y \tau$ is an idempotent of S, then $y y^{-1} \tau=y \tau$, but $y y^{-1}$ labels a loop based at λ, so $y \tau=y y^{-1} \tau \geqslant e$. But this means that y labels a loop based at λ^{*} in $\mathcal{A}(e)$, and so the image of this loop must be a loop labeled by y and based at λ in Λ.

Remark. Note that the Schützenberger automaton $\mathcal{A}(e)$ of Lemma 2 contains every Schützenberger automaton $\mathcal{A}(f)$ which has $(\lambda, \Lambda, \lambda)$ as a $D V$-quotient, for f idempotent. In fact suppose that there exists an idempotent $f=v \tau$ of S such that $(\lambda, \Lambda, \lambda)$ is a $D V$-quotient of the corresponding Schützenberger automaton $\mathcal{A}(f)$. Now v labels a loop in Λ based at λ, whence $f \geqslant e$, so that $\mathcal{A}(f)$ is embedded into $\mathcal{A}(e)$. In the sequel we will refer to $\mathcal{A}(e)$ as the maximum determinizing Schützenberger automaton of $(\lambda, \Lambda, \lambda)$. Clearly the automaton $(\lambda, \Lambda, \lambda)$ accepts a larger language than its maximum determinizing Schützenberger automaton in general.

Recall from [17] that if $\left(\alpha, \Lambda_{1}, \beta\right)$ and ($\gamma, \Lambda_{2}, \delta$) are two birooted inverse word graphs, then $\left(\alpha, \Lambda_{1}, \beta\right) \times\left(\gamma, \Lambda_{2}, \delta\right)$ is the birooted inverse word graph obtained as the V-quotient of the union of these two birooted graphs by identifying β and γ. The next result is an immediate consequence of Lemma 5.2 in [17].

Lemma 3. Let e and f be idempotents of some inverse semigroup $S=\operatorname{Inv}\langle X \mid T\rangle$, with corresponding Schützenberger automata $\mathcal{A}(e)$ and $\mathcal{A}(f)$. Then $\mathcal{A}(e) \times \mathcal{A}(f)$ approximates the Schützenberger automaton $\mathcal{A}($ ef $)$. Furthermore, if $(\alpha, \Lambda, \alpha)$ is a V-quotient of $\mathcal{A}(e)$ and (β, Γ, β) is a V-quotient of $\mathcal{A}(f)$, then $(\alpha, \Lambda, \alpha) \times(\beta, \Gamma, \beta)$ is a V-quotient of $\mathcal{A}(e) \times$ $\mathcal{A}(f)$.

We remark that automata that are closed with respect to T are not necessarily Schützenberger automata relative to the presentation. For example, the inverse monoid

$$
S=\operatorname{Inv}\left\langle a, b \mid a^{2}=b^{3}=1, b a=a b^{2}\right\rangle
$$

is clearly the symmetric group on three letters, so it has only one \mathcal{D}-class and hence only one Schützenberger graph, so the $D V$-quotient of this graph obtained by identifying the vertices corresponding to the group elements 1 and b is a graph with two vertices, so it is not a Schützenberger graph, but it is closed with respect to these defining relations. Note also that b labels a loop at 1 in this graph, but b does not label a loop in the Cayley graph (Schützenberger graph) of S. So loops in a $D V$-quotient of a Schützenberger graph do not all lift to loops in the Schützenberger graph.

3. Finite amalgams

If $\left[S_{1}, S_{2} ; U\right.$] is an amalgam of finite inverse semigroups and $u \in U$, we denote by $w_{i}(u)$ the natural image of u in S_{i} under the embedding of U into S_{i}. If S_{i} is presented as $S_{i}=$ $\operatorname{Inv}\left\langle X_{i} \mid R_{i}\right\rangle=\left(X_{i} \cup X_{i}^{-1}\right)^{+} / \eta_{i}$, where the X_{i} are disjoint alphabets, then the words $w_{i}(u)$ are viewed as words in the alphabet X_{i} and $S_{1} *_{U} S_{2}=\operatorname{Inv}\langle X \mid R \cup W\rangle=\left(X \cup X^{-1}\right)^{+} / \tau$, where $X=X_{1} \cup X_{2}, R=R_{1} \cup R_{2}$ and W is the set of all pairs $\left(w_{1}(u), w_{2}(u)\right)$ for $u \in U$. Furthermore, if $v_{i} \in\left(X_{i} \cup X_{i}^{-1}\right)^{+}$and $v \in\left(X \cup X^{-1}\right)^{+}$, then $\mathcal{A}\left(X, R_{i}, v_{i}\right)$ will denote the Schützenberger automaton of the word v_{i} relative to $\left\langle X_{i} \mid R_{i}\right\rangle$ and $\mathcal{A}(X, R \cup W, v)$ will denote the Schützenberger automaton of the word v relative to $\langle X \mid R \cup W\rangle$. We shall adhere to this notation throughout the remainder of the paper.

We recall some notation from $[1,8]$. Suppose that Γ is an inverse word graph labeled over $X=X_{1} \cup X_{2}$: then an edge of Γ that is labeled from $X_{i} \cup X_{i}^{-1}$ (for some $i \in\{1,2\}$) is said to be colored by i. A subgraph of Γ is called monochromatic if all of its edges have the same color. A lobe of Γ is defined to be a maximal monochromatic connected subgraph of Γ. The coloring of edges extends to coloring of lobes. Two lobes are said to be adjacent if they share common vertices, called intersections. If $v \in V(\Gamma)$ is an intersection vertex, then it is common to two unique lobes, which we denote by $\Delta_{1}(v)$ and $\Delta_{2}(v)$, colored respectively by 1 and 2 . We define the lobe graph $T(\Gamma)$ to be the graph whose vertices are
the lobes of Γ and whose edges correspond to adjacency of lobes. We say that Γ is cactoid if its lobe graph is a finite tree and adjacent lobes have precisely one common intersection.

Theorem 1 [8, Theorem 4.1]. The Schützenberger automata of the free product $S_{1} * S_{2}$ relative to $\langle X \mid R\rangle$ are, up to isomorphism, precisely (a transversal of) the cactoid inverse automata over X whose lobes are Schützenberger graphs relative to either $\left\langle X_{1} \mid R_{1}\right\rangle$ or $\left\langle X_{2} \mid R_{2}\right\rangle$.

We refer the reader to [8] for details of the iterative procedure used to construct the Schützenberger automata for free products of inverse semigroups and to [1] for the iterative construction of the Schützenberger automata of a "lower bounded" amalgam of inverse semigroups. Our construction below of the Schützenberger automata corresponding to an amalgam of finite inverse semigroups very closely follows Bennett's construction [1], the major difference being that the lobes of the automata under construction are closed $D V$-quotients of Schützenberger automata relative to $\left\langle X_{i} \mid R_{i}\right\rangle$ (for $i \in\{1,2\}$), rather than Schützenberger automata, as in [1]. While we will attempt to refer as much as possible to Bennett's construction, the fact that our lobes are not Schützenberger automata does cause some technical difficulties, and several of Bennett's constructions need to be modified. We first need to modify the central construction used in [8]. The idea of this construction is to start with a cactoid automaton over X, close one of its lobes relative to the appropriate presentation $\left\langle X_{i} \mid R_{i}\right\rangle$, and then make the resulting automaton deterministic.

Let $\mathcal{A}=(\alpha, \Delta, \beta)$ be a finite inverse automaton over X. We define the closure of \mathcal{A} with respect to a presentation $\langle X \mid T\rangle$ to be the automaton $\operatorname{cl}(\mathcal{A})$ such that $\operatorname{cl}(\mathcal{A})$ is closed with respect to the presentation, $L(\mathcal{A}) \subseteq L(\operatorname{cl}(\mathcal{A}))$, and if Γ is any other closed automaton with respect to the presentation such that $L(\mathcal{A}) \subseteq L(\Gamma)$, then $L(\mathrm{cl}(\mathcal{A})) \subseteq L(\Gamma)$. The existence of a unique automaton with these properties follows from the work of Stephen [17,18], in particular from Theorem 2.5 of [17] and Lemma 3.4 of [18]. If \mathcal{A} is the linear automaton of some word w then $\operatorname{cl}(\mathcal{A})$ is the Schützenberger automaton $\mathcal{A}(X, T, w)$.

Construction 1. Let $\mathcal{A}=(\alpha, \Gamma, \beta)$ be a finite cactoid inverse automaton over X. Let Δ be a lobe of Γ, colored by i, that is not closed relative to $\left\langle X_{i} \mid R_{i}\right\rangle$. Let λ be any vertex of Δ, let $\mathrm{cl}(\Delta)$ be a disjoint copy of the closure of Δ relative to $\left\langle X_{i} \mid R_{i}\right\rangle$, and let λ^{*} denote the natural image of $\lambda \operatorname{incl}(\Delta)$. Construct the V-quotient $\mathcal{A}^{*}=\left(\alpha^{*},(\Gamma \cup \operatorname{cl}(\Delta)) / \kappa, \beta^{*}\right)$, where κ is the least V-equivalence that identifies λ with λ^{*} and makes the image deterministic, and let α^{*}, β^{*} denote the respective images of α and β.

Lemma 4. Let $\mathcal{A}=(\alpha, \Gamma, \beta)$ be a finite cactoid inverse automaton over X.
(i) The automaton \mathcal{A}^{*} constructed from \mathcal{A} by an application of Construction 1 is also a finite cactoid inverse automaton. Moreover, if \mathcal{A} approximates $\mathcal{A}(X, R, w)$ (respectively $\mathcal{A}(X, R \cup W, w))$ for some word $w \in\left(X \cup X^{-1}\right)^{+}$, then so does \mathcal{A}^{*}.
(ii) After iteratively applying Construction 1 finitely many times, starting from \mathcal{A}, we eventually arrive at a cactoid automaton \mathcal{A}^{\prime} with the property that each lobe of \mathcal{A}^{\prime} is a $D V$-quotient of some Schützenberger graph relative to either $\left\langle X_{1} \mid R_{1}\right\rangle$
or $\left\langle X_{2} \mid R_{2}\right\rangle, \mathcal{A}^{\prime}$ is closed with respect to R, and \mathcal{A}^{\prime} approximates $\mathcal{A}(X, R, w)$ (respectively $\mathcal{A}(X, R \cup W, w))$ if \mathcal{A} does.
(iii) In addition, if this construction is applied iteratively starting from the linear automaton of a word $w \in\left(X \cup X^{-1}\right)^{+}$, then the resulting automaton \mathcal{A}^{\prime} is the Schützenberger automaton $\mathcal{A}(X, R, w)$ (respectively $\mathcal{A}(X, R \cup W, w)$) of w in the free product $S_{1} * S_{2}$.

Proof. The proof of this is essentially a slight modification of the proofs of Propositions 3.1, 3.2, and 3.3 and Theorem 3.4 of [8], so we just outline the proof here and refer the reader to [8] for additional details.

Without loss of generality let us assume that Δ is colored by the color 1 . The closure $\left(\lambda^{*}, \operatorname{cl}(\Delta), \lambda^{*}\right)$ of $(\lambda, \Delta, \lambda)$ is a finite inverse automaton obtained by applying finitely many elementary expansions and edge foldings [17] and is a $D V$-quotient of some Schützenberger automaton relative to $\left\langle X_{1} \mid R_{1}\right\rangle$ by Lemma 2. The automaton \mathcal{A}^{*} is still a cactoid automaton, by essentially the same argument as is used in the proof of Proposition 3.2 of [8] and is an approximate automaton of $\mathcal{A}(w)$ if \mathcal{A} is an approximate automaton of $\mathcal{A}(w)$, by Lemmas 1.3 and 1.5 of [8].

The graph Γ^{*} has at most as many lobes as Γ. Each of its lobes is either a lobe of Γ or was obtained from lobes $\Delta_{1}, \Delta_{2}, \ldots, \Delta_{k}$ of $\Gamma \cup \operatorname{cl}(\Delta)$ by identifying intersection vertices $v_{1}, v_{2}, \ldots, v_{k}$, forming products $\Delta_{i} \times \Delta_{j}$ and folding edges (see [8] for details). From Lemmas 2 and 3, it follows that the lobes of \mathcal{A}^{*} are $D V$-quotients of approximate automata of Schützenberger automata relative to either $\left\langle X_{1} \mid R_{1}\right\rangle$ or $\left\langle X_{2} \mid R_{2}\right\rangle$.

The second statement in the Lemma follows easily from the fact that the automata constructed after an application of Construction 1 have finitely many lobes. The final statement (iii) is Theorem 3.4 of [8].

Let v be an intersection vertex of an inverse automaton over X, with corresponding lobes $\Delta_{1}(v)$ and $\Delta_{2}(v)$. Let $e_{i}(v)$ denote the minimum idempotent of S_{i} labeling a loop based at v in $\Delta_{i}($ for $i=1,2)$ and let $U_{i}\left(e_{i}(v)\right)=\left\{u \in U: u\right.$ labels a loop in Δ_{i} based at $\left.v\right\}$. If $U_{i}\left(e_{i}(v)\right)$ is nonempty, it is a finite subsemigroup of U, so it has a minimum idempotent which we denote by $f\left(e_{i}(v)\right)$. It is clear that if the automaton is deterministic and its lobes are closed $D V$-quotients of Schützenberger automata relative to either $\left\langle X_{1} \mid R_{1}\right\rangle$ or $\left\langle X_{2} \mid R_{2}\right\rangle$, then $\mathcal{A}\left(X_{i}, R_{i}, e_{i}(v)\right)$ is the maximum determinizing Schützenberger automaton of $\left(v, \Delta_{i}(v), v\right)$.

Remark. If Δ_{i} is a Schützenberger graph, then $U_{i}\left(e_{i}(v)\right)=\left\{u \in U \mid e_{i}(v) \leqslant_{i} u\right\}$, where \leqslant_{i} denotes the natural partial order in S_{i}. (This was the definition used by Bennett in [1].) However, these definitions do not in general coincide if Δ_{i} is not a Schützenberger graph, as one readily sees by examining the example after Lemma 2.

We say that an inverse automaton Γ over X has property (L) if for every intersection vertex v of Γ we have

$$
\text { either } \quad U_{1}\left(e_{1}(v)\right)=U_{2}\left(e_{2}(v)\right)=\emptyset \quad \text { or } \quad f\left(e_{1}(v)\right)=f\left(e_{2}(v)\right)
$$

Construction 2 (a). Let $\mathcal{A}=(\alpha, \Gamma, \beta)$ be a finite cactoid inverse automaton over X whose lobes are closed $D V$-quotients of Schützenberger automata relative to either $\left\langle X_{1} \mid R_{1}\right\rangle$ or $\left\langle X_{2} \mid R_{2}\right\rangle$ and suppose that \mathcal{A} does not satisfy property (L). Without loss of generality, by the last statement in Lemma 2, there exists an intersection vertex v of \mathcal{A} such that $U_{1}\left(e_{1}(v)\right) \neq \emptyset$ and $w_{2}\left(f\left(e_{1}(v)\right)\right) \notin U_{2}\left(e_{2}(v)\right)$. (The other case is dual.) Let $f=w_{2}\left(f\left(e_{1}(v)\right)\right)$ and form the product $\mathcal{B}=(v, \Gamma, v) \times \mathcal{A}\left(X_{2}, R_{2}, f\right)$. The union of the images of $\Delta_{2}(v)$ and $\mathcal{A}\left(X_{2}, R_{2}, f\right)$ is a lobe of \mathcal{B} that is a V-quotient of a Schützenberger automaton relative to R_{2} by Lemma 3. By repeated applications of Construction 1 we obtain a rooted cactoid automaton $\mathcal{B}^{\prime}=\left(v^{\prime}, \Gamma^{\prime}, v^{\prime}\right)$ which is closed relative to $\langle X \mid R\rangle$ and whose lobes are closed $D V$-quotients of Schützenberger automata relative to either $\left\langle X_{1} \mid R_{1}\right\rangle$ or $\left\langle X_{2} \mid R_{2}\right\rangle$. The automaton $\mathcal{A}^{\prime}=\left(\alpha^{\prime}, \Gamma^{\prime}, \beta^{\prime}\right.$) (where α^{\prime} and β^{\prime} are the respective images of α and β) is the automaton obtained from \mathcal{A} by an application of Construction 2(a) at the vertex v. (It is intended that this construction encompasses the dual case to the one described here as well.)

Lemma 5. Let $w \in\left(X \cup X^{-1}\right)^{+}$and let $\mathcal{A}=(\alpha, \Gamma, \beta)$ be a finite cactoid inverse automaton whose lobes are closed $D V$-quotients of Schützenberger automata relative to either $\left\langle X_{1} \mid R_{1}\right\rangle$ or $\left\langle X_{2} \mid R_{2}\right\rangle$ and suppose that \mathcal{A} is an approximate automaton for $\mathcal{A}(X, R \cup W, w)$. If \mathcal{A}^{\prime} is the automaton obtained from \mathcal{A} by an application of Construction 2(a), then \mathcal{A}^{\prime} is also a finite cactoid inverse automaton whose lobes are closed $D V$-quotients of Schützenberger automata relative to either $\left\langle X_{1} \mid R_{1}\right\rangle$ or $\left\langle X_{2} \mid R_{2}\right\rangle$ and \mathcal{A}^{\prime} approximates $\mathcal{A}(X, R \cup W, w)$. Repeated applications of Construction 2(a) to such an automaton \mathcal{A} terminate in a finite number of steps in a finite deterministic cactoid inverse automaton \mathcal{A}^{*} that satisfies property (L) (and whose lobes are closed $D V$-quotients of Schützenberger automata relative to either $\left\langle X_{1} \mid R_{1}\right\rangle$ or $\left\langle X_{2} \mid R_{2}\right\rangle$).

Proof. The proof is really just an adaptation of the proofs of Lemmas 2.2 and 2.3 of [1], the essential difference being that the lobes of the automata under consideration are closed $D V$-quotients of Schützenberger automata relative to either $\left\langle X_{1} \mid R_{1}\right\rangle$ or $\left\langle X_{2} \mid R_{2}\right\rangle$ as opposed to Schützenberger automata. The proof of Lemma 2.2 of [1] carries through with almost no change in this setting. This, combined with Lemma 4 yields the first claim in our lemma. The last claim (the fact that repeated applications of Construction 2(a) must terminate after finitely many steps in an automaton that satisfies property (L)) follows again by adapting the proof of Lemma 2.3 of [1] to the current setting, but is actually easier than Bennett's proof of that lemma since the semigroups S_{1} and S_{2} are both finite, so there are only finitely many possible graphs that can arise as closed $D V$-quotients of Schützenberger automata relative to $\left\langle X_{1} \mid R_{1}\right\rangle$ or $\left\langle X_{2} \mid R_{2}\right\rangle$. Any application of Construction 2(a) at a vertex v replaces a closed $D V$-quotient of a Schützenberger graph in either S_{1} or S_{2} by another closed $D V$-quotient of a Schützenberger graph, and the new graph has either more edges or more loops (i.e., has higher rank fundamental group) than the original graph. Finiteness of each S_{i} puts an upper bound on the number of edges and the rank of the fundamental group of these graphs. We refer the reader to Bennett's proof of Lemmas 2.2 and 2.3 in his paper [1] for full details.

We say that an inverse automaton \mathcal{A} over X has the loop equality property if $U_{1}\left(e_{1}(v)\right)=U_{2}\left(e_{2}(v)\right)$ for each intersection vertex v of \mathcal{A}. If all lobes are in fact Schützenberger graphs, then this concept coincides with the concept of the lower bound equality property of Bennett [1]. It is clear that if \mathcal{A} satisfies the loop equality property, then it must also satisfy property (L), but the converse is false in general.

Lemma 6. Let \mathcal{A} be a finite cactoid inverse automaton over X whose lobes are closed $D V$-quotients of Schützenberger automata relative to either $\left\langle X_{1} \mid R_{1}\right\rangle$ or $\left\langle X_{2} \mid R_{2}\right\rangle$ and suppose that v is an intersection vertex of two lobes $\Delta_{1}(v)$ and $\Delta_{2}(v)$ such that $f\left(e_{1}(v)\right)=$ $f\left(e_{2}(v)\right)$. If there is a path in $\Delta_{1}(v)$, starting at v and labeled by a word $w_{1}(u)$ for some $u \in U$, then there is a path in $\Delta_{2}(v)$, starting at v and labeled by the word $w_{2}(u)$.

Proof. Clearly $e_{1}(v) \leqslant w_{1}(u) w_{1}(u)^{-1}$ and $f\left(e_{2}(v)\right)=f\left(e_{1}(v)\right) \leqslant w_{1}(u) w_{1}(u)^{-1}$. Now $f\left(e_{2}(v)\right) \leqslant 2 w_{2}(u) w_{2}(u)^{-1}$ since both of these elements are in the image of U in S_{2}, so $e_{2}(v) \leqslant 2 w_{2}(u) w_{2}(u)^{-1}$. By the remark after Lemma $2,\left(v, \Delta_{2}(v), v\right)$ is a $D V$-quotient of $\left(v, S \Gamma\left(e_{2}(v)\right), v\right)$. Since $w_{2}(u) w_{2}(u)^{-1}$ labels a loop based at v in $S \Gamma\left(e_{2}(v)\right)$, it follows that $w_{2}(u) w_{2}(u)^{-1}$ labels a loop in $\Delta_{2}(v)$ based at v. But this means that $w_{2}(u)$ labels a path in $\Delta_{2}(v)$ based at v.

Construction 2(b). Let \mathcal{A} be a finite cactoid inverse automaton over X whose lobes are closed $D V$-quotients of Schützenberger automata relative to either $\left\langle X_{1} \mid R_{1}\right\rangle$ or $\left\langle X_{2} \mid R_{2}\right\rangle$ and suppose that \mathcal{A} satisfies property (L) but does not satisfy the loop equality property. Then either there exists some intersection vertex v of \mathcal{A} and a nonidempotent element $u \in U$ such that $w_{1}(u) \in U_{1}\left(e_{1}(v)\right)$ and $w_{2}(u) \notin U_{2}\left(e_{2}(v)\right)$ or there exists an intersection vertex v with the dual property (with subscripts interchanged). Without loss of generality assume that the first case occurs. In Δ_{1} there is a loop based at v labeled by $w_{1}(u)$, while in $\Delta_{2}(v)$ there is a $v-v^{\prime}$ path labeled by $w_{2}(v)$ for some v^{\prime}, by Lemma 6. Form the V-quotient \mathcal{B} of \mathcal{A} obtained by identifying v and v^{\prime} in $\Delta_{2}(v)$. Then apply Constructions 1 and 2(a) to the resulting automaton \mathcal{B}, obtaining an automaton \mathcal{A}^{\prime}. We say that \mathcal{A}^{\prime} is obtained from \mathcal{A} by an application of Construction 2(b).

Lemma 7. Let $\mathcal{A}=(\alpha, \Gamma, \beta)$ be a finite cactoid inverse automaton whose lobes are closed $D V$-quotients of Schützenberger automata relative to either $\left\langle X_{1} \mid R_{1}\right\rangle$ or $\left\langle X_{2} \mid R_{2}\right\rangle$, suppose that \mathcal{A} satisfies property (L) and that \mathcal{A} approximates $\mathcal{A}(X, R \cup W$, w) for some word w. Then the automaton \mathcal{A}^{\prime} obtained from \mathcal{A} by an application of Construction 2(b) also has lobes that are closed $D V$-quotients of Schützenberger automata relative to either $\left\langle X_{1} \mid R_{1}\right\rangle$ or $\left\langle X_{2} \mid R_{2}\right\rangle, \mathcal{A}^{\prime}$ approximates $\mathcal{A}(X, R \cup W, w)$ and \mathcal{A}^{\prime} satisfies property (L). Successive applications of Construction 2(b) lead after finitely many steps to a finite cactoid inverse automaton \mathcal{A}^{*} whose lobes are closed $D V$-quotients of Schützenberger automata relative to $\left\langle X_{1} \mid R_{1}\right\rangle$ or $\left\langle X_{2} \mid R_{2}\right\rangle$ such that \mathcal{A}^{*} approximates $\mathcal{A}(X, R \cup W, w)$ and \mathcal{A}^{*} has the loop equality property.

Proof. It is clear by Lemmas 2 and 5 that the lobes of \mathcal{A}^{\prime} are closed $D V$-quotients of appropriate Schützenberger automata relative to either $\left\langle X_{1} \mid R_{1}\right\rangle$ or $\left\langle X_{2} \mid R_{2}\right\rangle$ and that \mathcal{A}^{\prime} satisfies property (L). Let \mathcal{C} be the automaton obtained from \mathcal{A} by sewing on to \mathcal{A} a loop
labeled by $w_{2}(u)$ based at the vertex v. This operation is an "elementary expansion" in the sense of Stephen [17], since $w_{1}(u)=w_{2}(u)$ is a relation in W and $w_{1}(u)$ labels a loop in $\Delta_{1}(v)$ by assumption. It is clear that the determinized form of the intermediate automaton \mathcal{B} in the description of Construction 2(b) is obtained from \mathcal{C} by a finite sequence edge foldings, so this automaton is an approximate automaton of $\mathcal{A}(X, R \cup W, w)$ by Lemma 5.6 and Theorem 5.7 of [17]. Hence by Lemmas 4 and 5 above, \mathcal{A}^{\prime} is an approximate automaton of $\mathcal{A}(X, R \cup W, w)$.

The proof that a finite sequence of applications of Construction 2(b) terminates in an automaton that satisfies the loop equality property is again a modification of Bennett's proof of his Lemma 2.3 in [1]. Each application of Construction 2(b) effectively introduces an additional relation of the form $w_{1}(u)=w_{2}(u)$ for some $u \in U$ at some intersection vertex v. The construction may also decrease the number of lobes and the number of intersection vertices of the resulting automaton, but each intersection vertex has an image that is also an intersection vertex in the resulting automaton, and loops labeled by $w_{i}(u)$ in a lobe $\Delta_{i}(v)$ are transformed into loops with the same label in the new automaton. Finiteness of the automata and of the semigroup U forces this process to stop after finitely many steps in an automaton that satisfies the loop equality property.

Remark. Construction 2(b) provides one of the essential differences between the argument presented in this paper and Bennett's argument [1]. It is a consequence of this construction that the lobes of the automata under construction are $D V$-quotients of Schützenberger automata (as opposed to Schützenberger automata) relative to either $\left\langle X_{1} \mid R_{1}\right\rangle$ or $\left\langle X_{2} \mid R_{2}\right\rangle$.

We next consider the related pair separation property of Bennett. Let $\mathcal{A}=(\alpha, \Gamma, \beta)$ be a finite inverse automaton over X whose lobes are closed $D V$-quotients of Schützenberger automata relative to $\left\langle X_{1} \mid R_{1}\right\rangle$ or $\left\langle X_{2} \mid R_{2}\right\rangle$ and let v be an intersection vertex of \mathcal{A} for which $U_{1}\left(e_{1}(v)\right)=U_{2}\left(e_{2}(v)\right)$. Consider a word $u \in U$ such that $w_{1}(u)$ labels a $v-v_{1}$ path in $\Delta_{1}(v)$ for some vertex v_{1}. Then $w_{1}(u)$ labels a $v^{*}-v_{1}^{*}$ path in the maximum determinizing Schützenberger automaton $\mathcal{A}\left(e_{1}(v)\right)$ by Lemma 2. Hence $w_{1}(u) w_{1}(u)^{-1} \geqslant e_{1}(v)$, whence this element belongs to $U_{1}\left(e_{1}(v)\right)=U_{2}\left(e_{2}(v)\right)$. It follows that $w_{2}(v)$ also labels a $v-v_{2}$ path in Δ_{2} for some vertex v_{2}. Following Bennett [1], we say that $\left(v_{1}, v_{2}\right)$ is a related pair of the intersection vertex v. By a very minor modification of Bennett's argument in the first part of Section 3 of his paper [1], we see that the relation $R(v)$ consisting of all pairs $\left(v_{1}, v_{2}\right)$ such that $\left(v_{1}, v_{2}\right)$ is a related pair of v defines a partial one-one map from $V\left(\Delta_{1}(v)\right)$ to $V\left(\Delta_{2}(v)\right)$. The equivalence relation on Γ generated by $R(v)$ thus identifies the two coordinates of each related pair without identifying any two vertices from the same lobe.

Let \mathcal{A} be a finite inverse automaton over X whose lobes are closed $D V$-quotients of Schützenberger automata relative to $\left\langle X_{1} \mid R_{1}\right\rangle$ or $\left\langle X_{2} \mid R_{2}\right\rangle$ and which satisfies the loop equality property. We say that \mathcal{A} has the related pair separation property if for any lobe Δ of \mathcal{A} (with color 1 without loss of generality) and for any two intersection vertices v and v^{\prime} of Δ that are vertices of Δ but are not common to the same pair of lobes of \mathcal{A}, there is no word $u \in U$ such that $w_{1}(u)$ labels a path in Δ from v to v^{\prime}.

Construction 3. Let $\mathcal{A}=(\alpha, \Gamma, \beta)$ be a finite cactoid inverse automaton whose lobes are closed $D V$-quotients of some Schützenberger automata relative to either $\left\langle X_{1} \mid R_{1}\right\rangle$ or $\left\langle X_{2}\right|$ $\left.R_{2}\right\rangle$ and suppose that \mathcal{A} has the loop equality property. Let v_{0} and v_{1} be two different intersection vertices of a lobe Δ_{2} that is (without loss of generality) colored by the color 2 and suppose that there is a path labeled by $w_{2}(u)$ from v_{0} to v_{1} for some $u \in U$. Let Δ_{0} and Δ_{1} be the two lobes (colored by 1) adjacent to Δ_{2} and intersecting Δ_{2} in v_{0} and v_{1}, respectively. Since \mathcal{A} has the loop equality property, there is a path in Δ_{0} from v_{0} to v_{0}^{\prime} labeled by $w_{1}(u)$ for some vertex v_{0}^{\prime}. Form the graph $\tilde{\Gamma}$ by disconnecting Γ at v_{0} and replacing v_{0} with $v_{0}(0)$ and $v_{0}(2)$ in Δ_{0} and Δ_{2}, respectively. Denote by T_{0} the component of $\tilde{\Gamma}$ that contains $v_{0}(0)$ and by T_{2} the component that contains $v_{0}(2)$. Now put $\mathcal{B}=\left(v_{0}^{\prime}, T_{0}, v_{0}^{\prime}\right) \times\left(v_{1}, T_{2}, v_{1}\right)$. Clearly all lobes of \mathcal{B} except at most $\Delta_{0} \times \Delta_{1}$ are closed $D V$-quotients of Schützenberger automata relative to either $\left\langle X_{1} \mid R_{1}\right\rangle$ or $\left\langle X_{2} \mid R_{2}\right\rangle$. By Lemma 3, $\Delta_{0} \times \Delta_{2}$ is a V-quotient of an approximate automaton relative to $\left\langle X_{1} \mid R_{1}\right\rangle$, so we can apply Constructions $1,2(a)$, and $2(b)$ to the automaton \mathcal{B}. Denote the natural images in \mathcal{B} of α by α^{\prime} and of β by β^{\prime} and let $\mathcal{A}^{\prime}=\left(\alpha^{\prime}, \Gamma^{\prime}, \beta^{\prime}\right)$ be the resulting automaton. We say that \mathcal{A}^{\prime} is obtained from \mathcal{A} by an application of Construction 3 .

Lemma 8. Let $\mathcal{A}=(\alpha, \Gamma, \beta)$ be a finite cactoid inverse automaton whose lobes are closed $D V$-quotients of Schützenberger automata relative to either $\left\langle X_{1} \mid R_{1}\right\rangle$ or $\left\langle X_{2} \mid R_{2}\right\rangle$, that approximates $\mathcal{A}(X, R \cup W, w)$ for some word w and has the loop equality property. If \mathcal{A}^{\prime} is the automaton obtained from \mathcal{A} by an application of Construction 3, then \mathcal{A}^{\prime} also is a finite cactoid inverse automaton whose lobes are closed $D V$-quotients of Schützenberger automata relative to $\left\langle X_{1} \mid R_{1}\right\rangle$ or $\left\langle X_{2} \mid R_{2}\right\rangle$, that has the loop equality property and approximates $\mathcal{A}(X, R \cup W, w)$. Furthermore, repeated applications of this construction will terminate in a finite number of steps in an automaton that has the related pair separation property.

Proof. The only thing that needs to be proved is that the automaton \mathcal{A}^{\prime} approximates $\mathcal{A}(X, R \cup W, w)$: all other statements in the lemma are immediate. Thus we have to show that $L\left(\mathcal{A}^{\prime}\right) \subseteq L(\mathcal{A}(X, R \cup W, w))$ and that in $L\left(\mathcal{A}^{\prime}\right)$ there exists a word τ-equivalent to w. Let \mathcal{B} be the automaton constructed in the description of Construction 3 and denote the natural image of α (respectively β) in \mathcal{B} by α (respectively β) again. Let $\mathcal{A}^{\prime \prime}=(\alpha, \Sigma, \beta$) be the resulting automaton, where Σ is the underlying graph of \mathcal{B}. By Lemmas 4,5 , and 7 it suffices to check that $\mathcal{A}^{\prime \prime}$ is an approximate automaton for $\mathcal{A}(X, R \cup W, w)$.

Let $v_{0}^{\prime}=v_{1}$ be denoted by v in $\mathcal{A}^{\prime \prime}$. Now let $z \in L\left(\mathcal{A}^{\prime \prime}\right)$. Then there exists in Σ an $\alpha-\beta$ path labeled by z. Every $\alpha-\beta$ path which belongs entirely to the same component T_{0} or T_{2} (if any) was already an $\alpha-\beta$ path in Γ, whence its label belongs to $L(\mathcal{A}(X, R \cup W, w)$). So consider an $\alpha-\beta$ path λ in $\mathcal{A}^{\prime \prime}$ containing v and which can be split into parts which belong to different components. Consider $\lambda=\gamma \delta$, where $t(\delta)=\beta, i(\delta)=v$ and if $\beta=v$ then $\lambda=\gamma$, else δ belongs entirely to the same component as the vertex β, and factor $\gamma=\gamma_{1} \gamma_{2} \cdots \gamma_{n}$ where

- $i\left(\gamma_{1}\right)=\alpha, t\left(\gamma_{n}\right)=v, i\left(\gamma_{i+1}\right)=t\left(\gamma_{i}\right)=v, i=1, \ldots, n-1$,
- each of the paths γ_{i} belongs entirely to one of the components T_{0} or $T_{2}, i=1, \ldots, n$,
- γ_{i+1} and γ_{i} belong to different components T_{0} and T_{2}, for $i=1, \ldots, n-1$; the same holds for δ and γ_{n} if $\gamma \neq \lambda$.

Let us prove by induction on n that if γ_{n} is a path in T_{0} (respectively T_{2}), then there exists an $\alpha-v_{0}^{\prime}$ (respectively $\alpha-v_{1}$) path γ^{*} in the graph Γ which is labeled by a word which is less than or equal to $l(\gamma)$ in $S=\left(X \cup X^{-1}\right)^{+} / \tau$. This will prove that $L\left(\mathcal{A}^{\prime \prime}\right) \subseteq$ $L(\mathcal{A}(X, R \cup W, w))$, since this language consists of all words that are greater than or equal to w in S.

Let $n=1$. Then $\gamma=\gamma_{1}$ is an $\alpha-v_{0}^{\prime}$ path belonging to the component T_{0}, whence also it is a path in Γ (similarly if γ_{1} belongs to $\left.T_{2}\right)$.

Now let $\gamma=\gamma_{1} \gamma_{2} \cdots \gamma_{n}$ and suppose that γ_{n} belongs to T_{0}, so that γ_{n} labels a loop based at v_{0}^{\prime}. Thus γ_{n-1} belongs to T_{2} and there exists an $\alpha-v_{1}$ path γ^{\prime} in the graph Γ such that $l\left(\gamma^{\prime}\right) \leqslant l\left(\gamma_{1} \gamma_{2} \cdots \gamma_{n-1}\right)$ in S. In addition, there exists a $v_{1}-v_{0}$ path labeled by $w_{2}(u)$, a $v_{0}-v_{0}^{\prime}$ path labeled by $w_{1}\left(u^{-1}\right)$, and thus an $\alpha-v_{0}^{\prime}$ path labeled by $l\left(\gamma_{1} \gamma_{2} \cdots \gamma_{n-1}\right) w_{2}(u) w_{1}(u)^{-1} l\left(\gamma_{n}\right)$ in Γ. Also $l(\gamma) \tau \geqslant\left(l\left(\gamma_{1} \gamma_{2} \cdots \gamma_{n-1}\right) w_{1}(u) w_{1}(u)^{-1}\right.$. $\left.l\left(\gamma_{n}\right)\right) \tau=\left(l\left(\gamma_{1} \gamma_{2} \cdots \gamma_{n-1}\right) w_{2}(u) w_{1}(u)^{-1} l\left(\gamma_{n}\right)\right) \tau$.

The case when γ_{n} is in T_{2} is symmetric.
Finally, note that in $\mathcal{A}=(\alpha, \Gamma, \beta)$ there exists an $\alpha-\beta$ path labeled by a word w^{\prime} such that $w^{\prime} \tau=w \tau$. If this path has no vertex equal to v_{0} then its label also labels a path in $\mathcal{A}^{\prime \prime}$. So, consider $w^{\prime}=l\left(\gamma_{1}\right) l\left(\gamma_{2}\right) \cdots l\left(\gamma_{n}\right)$, where
$-i\left(\gamma_{1}\right)=\alpha, t\left(\gamma_{n}\right)=\beta, i\left(\gamma_{i+1}\right)=t\left(\gamma_{i}\right)=v_{0}, i=1, \ldots, n-1$,

- each of the paths γ_{i} belongs entirely to the same of the components T_{0} and $T_{2}, i=$ $1, \ldots, n$ and γ_{i+1} and γ_{i} belong to different components T_{0} and T_{2} for $i=1, \ldots, n-1$.

Suppose, without loss of generality, that γ_{i} belongs to T_{0} for i even.
Certainly in the automaton $\mathcal{A}^{\prime \prime}$ there is an $\alpha-\beta$ path labeled by the word $w^{\prime \prime}=$ $l\left(\gamma_{1}\right) w_{2}\left(u^{-1}\right) w_{1}(u) l\left(\gamma_{2}\right) w_{1}\left(u^{-1}\right) w_{2}(u) l\left(\gamma_{3}\right) \cdots l\left(\gamma_{n}\right)$ and $w^{\prime \prime} \tau=w^{\prime \prime \prime} \tau$ where $w^{\prime \prime \prime}=$ $l\left(\gamma_{1}\right) w_{2}(u)^{-1} w_{2}(u) l\left(\gamma_{2}\right) w_{1}(u)^{-1} w_{1}(u) \cdots l\left(\gamma_{n}\right)$.

Clearly $w^{\prime \prime \prime} \tau \leqslant w^{\prime} \tau$ in S. But $w^{\prime \prime \prime}$ labels a path from α to β in Γ, so $w^{\prime \prime \prime} \in L(\mathcal{A}) \subseteq$ $L(\mathcal{A}(X, R \cup W, w))$. Hence $w^{\prime \prime \prime} \tau \geqslant w^{\prime} \tau$ in S. Thus $w^{\prime \prime \prime} \tau=w^{\prime \prime} \tau=w^{\prime} \tau$ in S. This shows that $\mathcal{A}^{\prime \prime}$ is an approximate automaton for $\mathcal{A}(X, W \cup R, w)$, as required.

We now consider the adjacent lobe assimilation property of Bennett [1].
Construction 4. Let $\mathcal{A}=(\alpha, \Gamma, \beta)$ be a finite inverse word graph, whose lobes are closed $D V$-quotients of some Schützenberger automata relative to either $\left\langle X_{1} \mid R_{1}\right\rangle$ or $\left\langle X_{2} \mid R_{2}\right\rangle$ and which has the loop equality property and the related pair separation property. Then for each intersection vertex v and for every $v-v_{1}$ path in $\Delta_{1}(v)$ labeled by $w_{1}(u)$ for some $u \in U$ there exists a unique $v-v_{2}$ path in $\Delta_{2}(v)$ labeled by $w_{2}(u)$, and conversely; v_{1} and v_{2} cannot be intersection vertices of our graph by the related pair separation property. Identify v_{1} and v_{2}, i.e., consider the V-quotient of the graph Γ with respect to the equivalence relation $v_{1}=v_{2}$ and repeat this construction with respect to all related pairs in $\Delta_{1}(v)$ and $\Delta_{2}(v)$. Since all lobes are finite, then we end after finitely many identifications: we say that the two lobes $\Delta_{1}(v)$ and $\Delta_{2}(v)$ were assimilated.

Lemma 9. Let $\mathcal{A}=(\alpha, \Gamma, \beta)$ be a finite cactoid inverse automaton, whose lobes are closed $D V$-quotients of some Schützenberger automata relative to either $\left\langle X_{1} \mid R_{1}\right\rangle$ or $\left\langle X_{2} \mid R_{2}\right\rangle$ and which has the loop equality property and the related pair separation property and suppose that \mathcal{A} approximates $\mathcal{A}(X, R \cup W, w)$. After finitely many applications of Construction 4, we get a finite inverse automaton whose lobes are closed $D V$-quotients of some Schützenberger automata relative to either $\left\langle X_{1} \mid R_{1}\right\rangle$ or $\left\langle X_{2} \mid R_{2}\right\rangle$, which approximates $\mathcal{A}(X, R \cup W, w)$, has the loop equality property and the related pair separation property and where all adjacent lobes are assimilated.

Proof. Denote by v^{\prime} the vertex of the graph Γ^{\prime} obtained from Γ by identifying v_{1} with v_{2} in Construction 4. We first show that $U_{1}\left(e_{1}\left(v^{\prime}\right)\right)=U_{2}\left(e_{2}\left(v^{\prime}\right)\right)$ in Γ^{\prime}. Recall that there exists a $v-v_{1}$ path in $\Delta_{1}(v)$ labeled by $w_{1}(u)$ for some $u \in U$ and a $v-v_{2}$ path in $\Delta_{2}(v)$ labeled by $w_{2}(u)$.

If $u^{\prime} \in U_{1}\left(e_{1}\left(v^{\prime}\right)\right)$, then u^{\prime} labels a loop based at v_{1} in $\Delta_{1}(v)$ and so $u u^{\prime} u^{-1} \in U_{1}\left(e_{1}(v)\right)$, as it labels a loop based in v in $\Delta_{1}(v)$; hence by the loop equality property $u u^{\prime} u^{-1} \in$ $U_{2}\left(e_{2}(v)\right)$ and labels a loop based at v in $\Delta_{2}(v)$. But u labels a $v-v_{2}$ path in $\Delta_{2}(v)$ so that u^{\prime} also labels a loop based at v_{2} whence $u^{\prime} \in U_{2}\left(e_{2}\left(v^{\prime}\right)\right)$.

This enables us to repeat Construction 4 as many times as we need on each pair of lobes, obtaining an automaton that satisfies the loop equality property after each step. The related pair separation property still holds after every application of the construction, since all the vertices we are working on are connected by paths whose labels belong to U. By the finiteness of U and of the number of lobes of the automaton we finish after finitely many applications of this construction.

Note that an application of Construction 4 may also be accomplished by sewing on to \mathcal{A} a path labeled by $w_{2}(u)$ from v to v_{1} (in the notation of the construction) and then folding edges in the resulting automaton. It follows from Lemma 5.6 and Theorem 5.7 of [17] that the resulting automaton is also an approximate automaton of $\mathcal{A}(X, R \cup W, w)$.

Since assimilation does not affect adjacency of lobes, a lobe path is reduced in Γ if and only if it is reduced in the assimilated form of Γ. Following Bennett [1], we say that an inverse automaton \mathcal{A} whose lobes are closed $D V$-quotients of Schützenberger automata relative to either $\left\langle X_{1} \mid R_{1}\right\rangle$ or $\left\langle X_{2} \mid R_{2}\right\rangle$ is opuntoid if:
(i) it has the loop equality property;
(ii) it has the adjacent lobe assimilation property;
(iii) it has no nontrivial reduced lobe loops (i.e., its lobe graph is a tree).

From the discussions above, it is clear that the automaton that we obtain from the linear automaton of a word $w \in\left(X \cup X^{-1}\right)^{+}$by closing under repeated applications of Constructions $1-4$ above is a finite inverse opuntoid automaton that approximates $\mathcal{A}(X, R \cup W, w)$. We refer to this automaton as the core automaton of w and denote it by Core (w) : this is not the Schützenberger automaton of w and it is also not the case that $\operatorname{Core}(w)=\operatorname{Core}\left(w^{\prime}\right)$ if $w \tau=w^{\prime} \tau$, but as we shall see below, the Schützenberger automaton $\mathcal{A}(X, R \cup W, w)$ is readily obtained from $\operatorname{Core}(w)$ by successive applications of Construction 5 below, and carries all of the essential information of $\mathcal{A}(X, R \cup W, w)$.

Let Γ be an opuntoid graph and let $v \in V(\Gamma)$ be a vertex belonging to a lobe Δ_{i} colored by $i \in\{1,2\}$. Then (again analogously to Bennett [1]), we say that v is a bud of Γ if it is not an intersection vertex and $U_{i}\left(e_{i}(v)\right)$ is not empty. This is equivalent to saying that there is some path in Δ_{i} starting at v and labeled by an element $u \in U$, because in that case, $u u^{-1} \in U_{i}\left(e_{i}(v)\right)$. (Clearly, no such path can end in an intersection vertex, by the adjacent lobe assimilation property.) The graph Γ is complete if it has no buds: an opuntoid automaton is complete if its underlying graph is complete.

Construction 5. Let $\mathcal{A}=(\alpha, \Gamma, \beta)$ be an opuntoid automaton, suppose that \mathcal{A} is not complete and let v be a bud, so v is not an intersection, belonging to a lobe Δ_{2} colored say by 2 , with $U_{2}\left(e_{2}(v)\right) \neq \emptyset$. Form the automaton $\mathcal{B}=\left(v^{*}, \Gamma^{*}, v^{*}\right)=(v, \Gamma, v) \times \mathcal{A}\left(X_{1}, R_{1}, f\right)$, with $f=w_{1}\left(f\left(e_{2}(v)\right)\right)$. By Lemma 6 , if $u \in U_{2}\left(e_{2}(v)\right)$, then $w_{1}(u)$ labels a path starting at v and ending at v^{\prime}, say, in the new adjoined lobe $\mathcal{A}\left(X_{1}, R_{1}, f\right)$, but this path is not necessarily a loop. Form a lobe Δ_{1} by first identifying all such vertices v^{\prime} with v in $\mathcal{A}\left(X_{1}, R_{1}, f\right)$, then determinizing, and then closing with respect to R_{1}. Finally, apply Construction 4 at the vertex v to assimilate Δ_{2} and the new lobe Δ_{1}, and denote the resulting automaton by \mathcal{A}^{*}.

Lemma 10. Let $\mathcal{A}=(\alpha, \Gamma, \beta)$ be an opuntoid automaton whose lobes are closed $D V$ quotients of some Schützenberger automata relative to either $\left\langle X_{1} \mid R_{1}\right\rangle$ or $\left\langle X_{2} \mid R_{2}\right\rangle$ and suppose that \mathcal{A} approximates $\mathcal{A}(X, R \cup W, w)$. Then each application of Construction 5 leads to an opuntoid automaton \mathcal{A}^{*} whose lobes are closed $D V$-quotients of some Schützenberger automata relative to either $\left\langle X_{1} \mid R_{1}\right\rangle$ or $\left\langle X_{2} \mid R_{2}\right\rangle$ and which approximates $\mathcal{A}(X, R \cup W, w)$. In particular, the new automaton \mathcal{A}^{*} has one more lobe than \mathcal{A}, and the automaton \mathcal{A} is unchanged by this process.

It is convenient to split the proof of this lemma into several parts.

Lemma 11. Fix the notation as in the statement of Construction 5. Let u be an element of U such that $w_{2}(u)$ labels a loop based at v in Δ_{2} but u is not an idempotent of U. Let n be the smallest integer such that u^{n} is an idempotent of U. Then $w_{1}(u)^{n}$ labels a loop based at v in $\mathcal{A}\left(X_{1}, R_{1}, f\right)$. Denote by v_{i} the vertex in $\mathcal{A}\left(X_{1}, R_{1}, f\right)$ at the end of the path starting at v and labeled by $w_{1}(u)^{i}$, for $i=1, \ldots, n-1$. Then for all i, a word $s \in\left(X_{1} \cup X_{1}^{-1}\right)^{+}$ labels a path in $\mathcal{A}\left(X_{1}, R_{1}, f\right)$ starting at v_{i} if and only if s labels a word in $\mathcal{A}\left(X_{1}, R_{1}, f\right)$ starting at v. Furthermore, s labels a loop based at v in $\mathcal{A}\left(X_{1}, R_{1}, f\right)$ if and only if s labels a loop based at v_{i} in $\mathcal{A}\left(X_{1}, R_{1}, f\right)$.

Proof. Suppose first that s labels a path in $\mathcal{A}\left(X_{1}, R_{1}, f\right)$ starting at v. Then $s s^{-1}$ labels a loop in $\mathcal{A}\left(X_{1}, R_{1}, f\right)$ based at v, so $s s^{-1} \geqslant f$. Hence $u s s^{-1} u^{-1} \geqslant u f u^{-1}$ in U. Since $u f u^{-1}$ is an idempotent of U that labels a path based at v in $\mathcal{A}\left(X_{1}, R_{1}, f\right)$, we have $u f u^{-1} \geqslant f$, and hence $u s s^{-1} u^{-1} \geqslant f$, whence s labels a path starting at v_{1} in $\mathcal{A}\left(X_{1}, R_{1}, f\right)$. If s labels a loop at v, since $\mathcal{A}\left(X_{1}, R_{1}, f\right)$ is a Schützenberger automaton, then $u s u^{-1}$ must label a loop at v also, since u labels a path from v to v_{1}, so s labels a loop at v_{1}. A similar argument applies to the vertices v_{i} for $i>1$.

Conversely, if s labels a path starting at v_{1} in $\mathcal{A}\left(X_{1}, R_{1}, f\right)$, then $u s s^{-1} u^{-1} \geqslant f$, so $u^{n} s s^{-1} u^{-n} \geqslant u^{n-1} f u^{-(n-1)}$ in U. This latter idempotent is greater than or equal to f, again by minimality of f. Also, u^{n} is an idempotent of U. Hence $u^{n} s s^{-1} \geqslant f$, and it follows that $s s^{-1} \geqslant f$, whence s labels a path in $\mathcal{A}\left(X_{1}, R_{1}, f\right)$, starting at v. If s labels a loop at v_{1}, then as above, $u^{n} s u^{-n}$ labels a loop at v, and since u^{n} labels a loop at v this means that s labels a loop at v. A similar argument applies if we start at a vertex v_{i} for $i>1$. This verifies the claim above.

Lemma 12. Fix the notation as in the statement of Lemma 11. Let Δ be the $D V$-quotient of $\mathcal{A}\left(X_{1}, R_{1}, f\right)$ obtained by identifying all of the vertices $v_{1}, v_{2}, \ldots, v_{n-1}$ with v and then determinizing. Then two vertices γ_{1} and γ_{2} of $\mathcal{A}\left(X_{1}, R_{1}, f\right)$ are identified in Δ if and only if there is some word w that labels a path in $\mathcal{A}\left(X_{1}, R_{1}, f\right)$ from v_{i} to γ_{1} and a path in $\mathcal{A}\left(X_{1}, R_{1}, f\right)$ from v_{j} to γ_{2} for some i, j. Furthermore, a word $s \in\left(X_{1} \cup X_{1}^{-1}\right)^{+}$labels a path in $\mathcal{A}\left(X_{1}, R_{1}, f\right)$ starting at γ_{1} if and only if s labels a path in $\mathcal{A}\left(X_{1}, R_{1}, f\right)$ starting at γ_{2}.

Proof. Define $\gamma_{1} \sim \gamma_{2}$ if and only if there exists a word w labeling a path from v_{i} to γ_{1} and from v_{j} to γ_{2} for some i, j. We claim that \sim coincides with the equivalence relation \equiv of Lemma 1 . Clearly \sim is included in \equiv. We show that \sim is an equivalence relation.

Suppose that $\gamma_{1} \sim \gamma_{2}$ and $\gamma_{2} \sim \gamma_{3}$. Then there exist words w and s and vertices $v_{i}, v_{j}, v_{k}, v_{l}$ such that w labels a path from v_{i} to γ_{1} and a path from v_{j} to γ_{2} and s labels a path from v_{k} to γ_{2} and a path from v_{l} to γ_{3}. There is a path labeled by u^{t} from v_{j} to v_{k} for some t. Hence $u^{t} s w^{-1}$ labels a loop in $\mathcal{A}\left(X_{1}, R_{1}, f\right)$ based at v_{j}. By Lemma 11, $u^{t} s w^{-1}$ also labels a loop in $\mathcal{A}\left(X_{1}, R_{1}, f\right)$ based at v_{i}. This loop must go from v_{i} to some vertex v_{h} (via the path labeled by u^{t}), then from v_{h} to some vertex β (via a path labeled by s), and then back to v_{i} (via a path labeled by w^{-1}). But since w labels a path from v_{i} to γ_{1}, we must have w^{-1} labels a path from γ_{1} to v_{i}, and so $\beta=\gamma_{1}$. Hence there is a path labeled by s from v_{h} to γ_{1}, and also a path labeled by s from v_{l} to γ_{3}, so $\gamma_{1} \sim \gamma_{3}$.

It is also clear from Lemma 11 that if $\gamma_{1} \sim \gamma_{2}$ and s is a word in $\left(X \cup X^{-1}\right)^{+}$, then s labels a path in $\mathcal{A}\left(X_{1}, R_{1}, f\right)$ starting from γ_{1} if and only if s labels a path in $\mathcal{A}\left(X_{1}, R_{1}, f\right)$ starting from γ_{2} (just extend the path labeled by some word w from v_{i} to γ_{1} and from v_{j} to γ_{2} : ws labels a path starting at v_{i} if and only if it also labels a path starting at v_{j}, by Lemma 11). Hence \sim satisfies the two properties defining the equivalence relation \equiv, and so \sim is equal to \equiv. The last statement in the lemma also follows from the above argument.

Lemma 13. In the notation of Lemma 12, the lobe Δ is closed with respect to the relations R_{1}.

Proof. Suppose that γ_{1} and γ_{2} are two vertices of Δ and that there is a path in Δ labeled by a word s from γ_{1} to γ_{2} and that $s=t$ is a relation in R_{1}. We must show that t also labels a path in Δ from γ_{1} to γ_{2}. Assume first that neither γ_{1} nor γ_{2} is equal to the image of v in the natural morphism from $\mathcal{A}\left(X_{1}, R_{1}, f\right)$ to Δ. Thus we may regard γ_{1} and γ_{2} as vertices of $\mathcal{A}\left(X_{1}, R_{1}, f\right)$.

By construction of Δ from $\mathcal{A}\left(X_{1}, R_{1}, f\right)$, and by Lemma 12 , there must be a factorization of the word s as a product $s=s_{1} s_{2} \ldots s_{k}$ and vertices $\delta_{i}, \beta_{i}, i=1, \ldots, k$, where $\delta_{1}=\gamma_{1}, \beta_{k}=\gamma_{2}, s_{i}$ labels a path from δ_{i} to β_{i}, for $i=1, \ldots, k$ and $\beta_{i} \sim \delta_{i+1}$ for $i=1, \ldots, k-1$.

By Lemma 12, s_{2} labels a path from β_{1} to some vertex μ_{2} such that $\mu_{2} \sim \beta_{2} \sim \delta_{3}$, and then s_{3} labels a path from μ_{2} to some vertex μ_{3} with $\mu_{3} \sim \beta_{3} \sim \delta_{4}$, and so on. Thus we eventually produce a path labeled by $s=s_{1} s_{2} \ldots s_{k}$ in $\mathcal{A}\left(X_{1}, R_{1}, f\right)$ starting at $\delta_{1}=\gamma_{1}$ and ending at a vertex $\mu_{k} \sim \gamma_{2}$. Since $\mathcal{A}\left(X_{1}, R_{1}, f\right)$ is closed with respect to the presentation R_{1}, it follows that there is a path in $\mathcal{A}\left(X_{1}, R_{1}, f\right)$ from γ_{1} to μ_{k} labeled by the word t. Since $\mu_{k} \sim \gamma_{2}$, we see that there is a path from γ_{1} to γ_{2} labeled by t in Δ. Hence Δ is closed with respect to the relations R_{1}, as required. A similar argument applies if one or both of the vertices γ_{i} is equal to the image of v in the natural map from $\mathcal{A}\left(X_{1}, R_{1}, f\right)$ to Δ.

Proof of Lemma 10. We first need to prove that when Construction 5 is applied, we have $U_{1}\left(e_{1}(v)\right)=U_{2}\left(e_{2}(v)\right)$ at the new intersection point v (in the notation of Construction 5). By construction, we clearly have $U_{2}\left(e_{2}(v)\right) \subseteq U_{1}\left(e_{1}(v)\right)$. To prove the converse, we need to show that every loop based at v in Δ_{1} labeled by an element of U, also labels a loop based at v in Δ_{2}. Now the lobe Δ_{1} of Construction 5 is obtained by identifying all vertices $v_{i}(u)$ of $\mathcal{A}\left(X_{1}, R_{1}, f\right)$, as described above, for all words u that label loops at v in Δ_{2}, then determinizing, and then closing with respect to R_{1}. But by Lemma 13, the $D V$-quotient of $\mathcal{A}\left(X_{1}, R_{1}, f\right)$ obtained by performing the identifications and the determinizing is already closed with respect to R_{1}. Thus we need only to consider loops in this $D V$-quotient Δ_{1} of $\mathcal{A}\left(X_{1}, R_{1}, f\right)$.

So let u^{\prime} be an element of U such that $w_{1}\left(u^{\prime}\right)$ labels a loop based at v in Δ_{1}. By factoring the word u^{\prime} as a product $u^{\prime}=u_{1} u_{2} \ldots u_{k}$ where each u_{i} labels an appropriate path in $\mathcal{A}\left(X_{1}, R_{1}, f\right)$ and by applying an argument very similar to the argument used in the proof of Lemma 13, we see that u^{\prime} labels a path in $\mathcal{A}\left(X_{1}, R_{1}, f\right)$ from $v_{i}(u)$ to $v_{j}(\bar{u})$ for some $u, \bar{u} \in U$ such that $w_{2}(u)$ and $w_{2}(\bar{u})$ label loops in Δ_{2} based at v, and some i, j. Then $w_{1}(u)^{i} w_{1}\left(u^{\prime}\right) w_{1}(\bar{u})^{-j}$ labels a loop based at v in $\mathcal{A}\left(X_{1}, R_{1}, f\right)$.

It follows that $u^{i} u^{\prime} \bar{u}^{-j} \geqslant_{1} f$. Also, $u^{i} u^{\prime} \bar{u}^{-j} \in U$ of course. Now by the remark after Lemma $2, \Delta_{2}$ is a $D V$-quotient of $\mathcal{A}\left(X_{2}, R_{2}, e_{2}(v)\right)$ and $u^{i} u^{\prime} \bar{u}^{-j} \geqslant_{2} f \geqslant_{2} e_{2}(v)$. It follows that $w_{2}\left(u^{i}\right) w_{2}\left(u^{\prime}\right) w_{2}\left(\bar{u}^{-j}\right)$ labels a loop based at v in $\mathcal{A}\left(X_{2}, R_{2}, e_{2}(v)\right)$, and hence in Δ_{2}. Since $w_{2}(u)$ and $w_{2}(\bar{u})$ label loops in Δ_{2} based at v, we see that $w_{2}\left(u^{\prime}\right)$ also labels a loop in Δ_{2} based at v. Hence $U_{1}\left(e_{1}(v)\right)=U_{2}\left(e_{2}(v)\right)$ at the new intersection point v (in the notation of Construction 5).

It is now clear that after we apply Construction 4, the resulting automaton \mathcal{A}^{*} is opuntoid. We need only verify that \mathcal{A}^{*} is an approximate automaton for $\mathcal{A}(w)=$ $(\alpha, S \Gamma(w \tau), \beta)$. It suffices to prove that the automaton \mathcal{A}^{\prime} obtained from \mathcal{A} by adding the lobe Δ_{1} at v is an approximate automaton for $\mathcal{A}(w)=(\alpha, S \Gamma(w \tau), \beta)$.

In fact $L(\mathcal{A}) \subseteq L\left(\mathcal{A}^{\prime}\right)$, so that in $L\left(\mathcal{A}^{\prime}\right)$ there is a word w^{\prime} such that $w^{\prime} \tau=w \tau$. Consider a word s which labels in \mathcal{A}^{\prime} an $\alpha-\beta$ path in \mathcal{A}^{\prime}. If this path does not contain any edges in Δ_{1}, then clearly $s \in L=L(\mathcal{A}(w))=\left\{z \in\left(X \cup X^{-1}\right)^{+} \mid z \tau \geqslant w \tau\right\}$. In addition, if $s=s_{1} s_{2}$ where s_{1} labels a path from α to v in \mathcal{A} and s_{2} labels a path from v to β in \mathcal{A}, and if u is an element of U such that $w_{2}(u)$ labels a loop in Δ_{2} based at v, then we also see that
$s_{1} w_{2}(f) w_{2}(u) s_{2} \in L$. So assume that s factors as $s=s_{1} t_{1} s_{2} t_{2} \ldots t_{k} s_{k+1}$ where s_{1} labels a $\alpha-v$ path in \mathcal{A}, t_{i} labels a loop in Δ_{1} based at v, s_{i} labels a loop in \mathcal{A} based at v for $i=1, \ldots, k$, and s_{k+1} labels a path from v to β in \mathcal{A}.

Proceed by induction on k, the above case $k=0$, where no edges of the $\alpha-\beta$ path labeled by s are in Δ_{1}, being the basis for the induction. So we may assume that $s_{1} t_{1} \ldots s_{k-1} t_{k-1} s_{k} w_{2}(f) w_{2}(u)^{-1} s_{k+1} \in L$ for each element $u \in U$ such that $w_{2}(u)$ labels a loop in Δ_{2} based at v. By Lemma $2, t_{k}$ labels a path from v to some vertex β in $\mathcal{A}\left(X_{1}, R_{1}, f\right)$, where β is identified with v in the $D V$-quotient Δ_{1} of $\mathcal{A}\left(X_{1}, R_{1}, f\right)$, as constructed in Lemma 12. By the construction of this $D V$-quotient, there is some word $u \in U$ such that $w_{2}(u)$ labels a loop in Δ_{2} and $w_{1}(u)$ labels a path from β to v in Δ_{1}. Thus $t_{k} w_{1}(u)$ labels a loop based at v in $\mathcal{A}\left(X_{1}, R_{1}, f\right)$, whence $t_{k} w_{1}(u) \geqslant_{1} w_{1}(f)$.

Now by induction hypotheses, $s_{1} t_{1} \ldots s_{k-1} t_{k-1}\left(s_{k} s_{k+1}\right) \geqslant_{S} w$, and by $t_{k} w_{1}(u) \geqslant_{S}$ $w_{1}(f)$, we get $s_{1} t_{1} \ldots s_{k} t_{k} w_{1}(u) s_{k+1} \geqslant \geqslant_{s} s_{1} t_{1} \ldots s_{k} w_{1}(f) s_{k+1} \geqslant s w$, so $s=s_{1} t_{1} \ldots s_{k} t_{k} s_{k+1}$ $\geqslant_{S} s_{1} t_{1} \ldots s_{k} t_{k} w_{1}(u) w_{1}(u)^{-1} s_{k+1} \geqslant_{S} s_{1} t_{1} \ldots s_{k} w_{1}(f) w_{1}(u)^{-1} s_{k+1}=S s_{1} t_{1} \ldots s_{k} w_{2}(f)$. $w_{2}(u)^{-1} s_{k+1} \geqslant_{S} w$. Hence $s \in L$, as required.

We are now in a position to prove the main theorem of the paper.
Theorem 2. Let $S=S_{1} *_{U} S_{2}$ be an amalgamated free product of finite inverse semigroups S_{1} and S_{2} amalgamating a common inverse subsemigroup U, where $S_{i}=\operatorname{Inv}\left\langle X_{i} \mid R_{i}\right\rangle$ are given finite presentations of S_{i} for $i=1,2$. Then the word problem for S is decidable.

Proof. Let w_{1} and w_{2} be two words in $\left(X \cup X^{-1}\right)^{+}$. We need a decision procedure to show whether $w_{2} \in L\left(\mathcal{A}\left(X, R \cup W, w_{1}\right)\right)$ or not. Suppose that $\left|w_{2}\right|=n$. Iteratively apply Constructions $1,2(\mathrm{a}), 2(\mathrm{~b}), 3$, and 4 to the word w_{1} to obtain an automaton \mathcal{A} that is an approximate automaton for $\mathcal{A}\left(X, R \cup W, w_{1}\right)$. Applications of Construction 5 to this and subsequent automata leave \mathcal{A} unchanged. By Lemma 10 , the opuntoid nature of all subsequent automata means that the lobe graph of each of these automata is obtained from the previous lobe graph (tree) by adding one more vertex and edge, and that the only change that results by applying Construction 5 is to add one more lobe to the original automaton. Apply Construction 5 to \mathcal{A} and subsequent automata enough times so that either no further application of Construction 5 is possible, or we build all automata whose lobe graphs contain all possible paths of length n starting from the initial lobe (the lobe containing the initial vertex) of the automaton \mathcal{A}. The word w_{2} is accepted by the automaton $\mathcal{A}\left(X, R \cup W, w_{1}\right)$ if and only if it is accepted by one of the automata iteratively obtained from \mathcal{A} by application of Construction 5 . Thus we have a finite decision procedure to test whether $w_{2} \in L\left(\mathcal{A}\left(X, R \cup W, w_{1}\right)\right)$. By the results of Stephen [17], this provides a solution to the word problem for S.

Recalling our definition of opuntoid automaton (slightly different from Bennett's), one can use arguments very similar to [1] Lemma 5.4 to show that:

Theorem 3. Let $S=S_{1} *_{U} S_{2}$ be an amalgamated free product of finite inverse semigroups S_{1} and S_{2} amalgamating a common inverse subsemigroup U, where $S_{i}=\operatorname{Inv}\left\langle X_{i} \mid R_{i}\right\rangle$ are given finite presentations of S_{i} for $i=1,2$. Let $X=X_{1} \cup X_{2}, R=R_{1} \cup R_{2}$ and W be
the set of all pairs $\left(w_{1}(u), w_{2}(u)\right)$ for $u \in U$. Then Schützenberger automata relative to $\langle X \mid R \cup W\rangle$ are complete opuntoid automata.

Proof. Note first that a complete opuntoid automaton which approximates the Schützenberger automaton $\mathcal{A}(X, R \cup W, w)$ for some word $w \in X^{+}$is isomorphic to the Schützenberger automaton. In fact its lobes are closed with respect to the presentation $\left\langle X_{i} \mid R_{i}\right\rangle$, whence it is closed with respect to $\langle X \mid R\rangle$. But it is complete, whence it is also closed with respect to $\langle X \mid W\rangle$.

Now, let us start from a core automaton Core (w). If it is complete, it is the Schützenberger automaton of w relative to $\langle X \mid R \cup W\rangle$. Otherwise repeated applications of Construction 5 give a sequence of opuntoid automata $\mathcal{A} \subset \mathcal{A}^{\prime} \subset \mathcal{A}^{\prime \prime} \subset \cdots$ which approximate the Schützenberger automaton of w. This sequence forms a direct system A in the category of inverse automata over X, whose direct limit

$$
\lim A=\bigcup_{k=1, \ldots, \infty} \mathcal{A}^{k}
$$

also approximates the Schützenberger automaton whence, being complete, it is the Schützenberger automaton $\mathcal{A}(X, R \cup W, w)$.

Acknowledgments

The first and third authors' research was partially supported by MURST and by GNAMPA-GNSAGA Intergroup project « Aspetti analitici, geometrici e combinatorici dei sistemi dinamici e dei linguaggi formali ». The second author's research was partially supported by NSF and the Center for Communication and Information Science of the University of Nebraska at Lincoln.

References

[1] P. Bennett, Amalgamated free products of inverse semigroups, J. Algebra 198 (1997) 499-534.
[2] P. Bennett, On the structure of inverse semigroup amalgams, Internat. J. Algebra Comput. 7 (5) (1997) 577-604.
[3] J.-C. Birget, S.W. Margolis, J.C. Meakin, On the word problem for tensor products and amalgams of monoids, Internat. J. Algebra Comput. 9 (3-4) (1999) 271-294.
[4] A. Cherubini, J. Meakin, B. Piochi, Amalgams of free inverse semigroups, Semigroup Forum 54 (1997) 199-220.
[5] S. Haataja, S.W. Margolis, J. Meakin, Bass-Serre theory of groupoids and the structure of full regular semigroups amalgams, J. Algebra 183 (1) (1996) 38-54.
[6] T.E. Hall, Free products with amalgamation of inverse semigroups, J. Algebra 34 (1975) 375-385.
[7] P.R. Jones, Free products of inverse semigroups, Trans. Amer. Math. Soc. 282 (1984) 293-317.
[8] P.R. Jones, S.W. Margolis, J.C. Meakin, J.B. Stephen, Free products of inverse semigroups II, Glasgow Math. J. 33 (1991) 373-387.
[9] N. Kimura, On semigroups, PhD thesis, Toulane University of Louisiana, 1957.
[10] M.V. Lawson, Inverse Semigroups. The Theory of Partial Symmetries, World Scientific, River Edge, NJ, 1998.
[11] S.W. Margolis, J.C. Meakin, Inverse monoids trees and context-free languages, Trans. Amer. Math. Soc. 335 (1) (1993) 259-276.
[12] J. Meakin, An invitation to inverse semigroups, in: K.P. Shum, P.C. Yuen (Eds.), Proc. Hong Kong Conf. on Ordered Structures and Algebra of Computer Languages, World Scientific, River Edge, NJ, 1993, pp. 91115.
[13] W.D. Munn, Free inverse semigroups, Proc. London Math. Soc. 30 (1974) 385-404.
[14] A.L.T. Paterson, Groupoids, Inverse Semigroups, and Their Operator Algebras, Birkhäuser Boston, Boston, MA, 1999.
[15] N. Petrich, Inverse Semigroups, Wiley, New York, 1984.
[16] M.V. Sapir, Algorithmic problems for amalgams of finite semigroups, J. Algebra 229 (2) (2000) 514-531; M.V. Sapir, Erratum to "Algorithmic problems for amalgams of finite semigroups," J. Algebra 232 (2) (2000) 767-785.
[17] J.B. Stephen, Presentation of inverse monoids, J. Pure Appl. Algebra 63 (1990) 81-112.
[18] J.B. Stephen, Amalgamated free products of inverse semigroups, J. Algebra 208 (2) (1998) 399-424.

[^0]: * Corresponding author.

 E-mail addresses: alessandra.cherubini@polimi.it (A. Cherubini), jmeakin@math.unl.edu (J. Meakin), piochi@math.unifi.it (B. Piochi).

