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Abstract

We show that the word problem is decidable for an amalgamated free product of finite inverse
semigroups (in the category of inverse semigroups). This is in contrast to a recent result of M. Sapir
that shows that the word problem for amalgamated free products of finite semigroups (in the category
of semigroups) is in general undecidable.
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1. Introduction

If S1 andsS, are semigroups (groups) such tlfat S, = U is a nonempty subsemigroup
(subgroup) of botls; andS2 then[ Sy, S2; U] is called an amalgam of semigroups (groups).
The amalgamated free produsit x;; S» associated with this amalgam in the category of
semigroups (groups) is defined by the usual universal diagram.
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The amalganiSy, S2; U] is said to be strongly embeddable in a semigroup (gréup)
there are injective homomorphisms: S; — S such thatp:|y = ¢2|y andSi1¢1 N Sado =
Ug¢1 = Udgy. Itis well known that every amalgam of groups embeds in a group (and hence
in the amalgamated free product of the group amalgam). However, an early example of
Kimura [9] shows that semigroup amalgams do not necessarily embed in any semigroup.
On the other hand, T.E. Hall [6] showed that every amalgam of inverse semigroups (in
the category of inverse semigroups) embeds in an inverse semigroup, and hence in the
corresponding amalgamated free product in the category of inverse semigroups.

An inverse semigroup is a semigro§pwith the property that for each element §
there is a unique element! € S such thate = aa=1a anda=! = a~1aa=1. A conse-
guence of the definition is that idempotents commute in any inverse semigroup. One may
also define a natural partial order on such a semig®lyy a < b iff a = eb for some
idempotent of S.

Inverse semigroups arise very naturally in mathematics as semigroups of partial one-
one maps on a set (or partial isometries of a metric space, or homeomorphisms between
open subsets of a topological space, or local diffeomorphisms of a differentiable manifold
etc). We refer the reader to the book of Petrich [15] for basic results and notation about
inverse semigroups and to the more recent books of Lawson [10] and Paterson [14] for
many references to the connections between inverse semigroups and other branches of
mathematics.

Recently Birget, Margolis, and Meakin [3] showed that even under very nice condi-
tions on a semigroup amalgalfiy, S2; U], the corresponding amalgamated free product
S1*y S2 in the category of semigroups may have undecidable word problem, quite in
contrast to the situation for amalgamated free products of groups. This result was further
strengthened by Sapir [16] who showed that an amalgamated free product of finite semi-
groups may have undecidable word problem. However, in the present paper we show that
the word problem is decidable for any amalgamated free product of finite inverse semi-
groups in the category of inverse semigroups.

We refer the reader to [15] for information about free inverse semigroups, and in par-
ticular for a description of Munn’s solution [13] to the word problem for the free inverse
semigroup on a set in terms of Munn trees. Munn’s work was greatly extended by Stephen
[17] who introduced the notion of Schiitzenberger graphs associated with presentations
of inverse semigroups and their role in the study of the word problem. We refer to the
papers by Jones [7] and Jones, Margolis, Meakin, and Stephen [8] for information about
the structure of free products of inverse semigroups in the category of inverse semigroups,
and to the papers by Haataja, Margolis, and Meakin [5], Bennett [1,2], Stephen [18], and
Cherubini, Meakin, and Piochi [4] for detailed information about various classes of amal-
gamated free products of inverse semigroups. We will make heavy use of Bennett's ideas
in our study of amalgamated free products of finite inverse semigroups in this paper. Our
strategy for solving the word problem for an amalgamated free product of finite inverse
semigroups is to provide a construction of their Schitzenberger graphs, very much along
the lines of Bennett's construction of the Schiitzenberger graphs of a lower bounded amal-
gam [1]. We briefly recall some relevant notation and refer to [1,4,17] and [15] for any
undefined notation and terminology.
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We will denote the free inverse semigroup on aXdby FIS(X). It is the quotient of
the free semigroupX U X~1)* by the least congruengethat makes the resulting quo-
tient semigroup inverse (see [15]). We denote the inverse semigraupsented by a set
X of generators and a sét of relations byS = Inv(X | T'). This is the quotient of the
free semigroug X U X 1)t by the least congruencethat containg and the relations
in T. We refer to [11,17] or the survey paper [12] for much information about presenta-
tions of inverse semigroups. Crucial to the study of presentations of inverse semigroups
is the notion of the Schiitzenberger automatbX, 7, w) for a wordw € (X U X~ 1),

This automaton has underlying grapli" (X, T, w) whose set of vertices is th-class
containingwt and whose edges consist of all tripigsx, t) wheres andr areR-related
towr in S, x € X UX 1 ands.xt =: we view this edge as being directed franto ¢.

The graphST (X, T, w) is aninverse word graptover X (i.e., a connected graph whose
edges are labeled ovarU X1 in such a way that each edgéabeled byx has a unique
inverse edge labeled by 1) and is also deterministic. The automatdqX, 7', w) is then
defined as the (inverse) automaton on this underlying graph that has as initial state the
vertexww 1t and as terminal state the vertex. The importance of these automata
stems from the fact that for any two words w’ € (X U X~ 1T, wr = w'z if and only if

AX, T, w)=AX, T, w’), orequivalently if these two automata accept the same language
[17]. In view of this we will occasionally abuse notation slightly and dendté&, 7', w)

by A(X, T, wt) when it is convenient.

We refer the reader to Stephen'’s original paper [17] for a description of an iterative pro-
cedure for constructing the Schiitzenberger automdion 7', w) from the linear automa-
ton of w by repeated applications of the process of expansions and determinations (edge
foldings). The essential idea is that one constructs iteratively a sequence of automata that
“approximate” the Schitzenberger automatowaf the sense that the languages that they
accept become successively better approximates of the language of the Schitzenberger au-
tomaton. An inverse automatdhis called an approximate automaton fa¢X, 7', w) if
there is a wordw’ € L(B) such thatw’t = wt and every word inL(B) is greater than
or equal tow in the natural partial order on the inverse semigréype., L(B) C L(A).

One solves the word problem for a presentation of an inverse semigroypeffectively
constructing the associated Schiitzenberger automata or an approximation to the Schiitzen-
berger automaton that enables to solve the word problem. It is evident that these automata
are finite if S is finite.

In his paper [1], Bennett constructs the Schitzenberger automata for amalgamated free
products of a class of amalgams that he refers to as “lower bounded” amalgams of in-
verse semigroups. Our construction of the Schiitzenberger automata corresponding to an
amalgamated free product of finite inverse semigroups closely follows the construction of
Bennett, but differs from Bennett's construction in some technical ways, as amalgams of
finite inverse semigroups are not necessarily lower bounded.

2. V-quotients

We denote by (p) (respectively (p)) the initial (respectively terminal) vertex of a path
p and byl (p) the word labeling the path in an inverse word graph. We say thais a path
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froma to B if i(p) =« andz(p) = B. In this case we also say that the wa(g) labels a
path frome to 8. If p is a path inA with i(p) =¢(p) = « thenp is called a loop based
ata. If A is a deterministic inverse word graph, andvilabels a path fronx to 8 in A, it
is convenient to writes = «w. We also say thatw existsfor the wordw e (X U X~ 1)+
in this case.

There is an evident notion of morphismbetween inverse word graphs. This is just a
graph morphism that preserves labeling of edges. Morphisms between inverse word graphs
are referred to a¥ -homomorphisma [17]. A surjective morphism is an edge surjective
V-epimorphism in the sense of [17]. K is an inverse word graph ovef andn is an
equivalence relation on the set of verticesIof the corresponding quotient graptyn
is called aV-quotientof A (see [17] for details). This notion extends to the concept of
a V-quotient of an inverse automaton in the obvious way. There is a least equivalence
relation on the vertices of an inverse automatbruch that the corresponding-quotient
is deterministic. A deterministi&’ -quotient of A is called aDV-quotientin this paper.
There is a naturalV -homomorphism from onto aV-quotient of A.

It is convenient to record the following lemma for later use in this paper.

Lemma 1. Let A be a deterministic inverse word graph o\&r let I be theV -quotient of
A obtained by identifying vertices, ao, ..., a, Of A, and letA be the determinized form
of I'. Let= be the smallest equivalence relation on the set of verticessafch that

(1) aj =«j forall i and j, and
(2) if B1= B and 1w and Bow both exist for some word € (X U X~ 1)*, and some
verticespg; of A, thengiw = Bow.

Then two vertices, and y» of A are identified in theDV-quotientA if and only if
Y1=Y2:

Proof. Itis clear that two verticeg; andy, of A getidentified inA if y1 = y», since if g1
gets identified withg, and there is some word such thatg;w and gw both exist, then
B1w gets identified withBow. To prove the converse, note that by Theorem 4.4 of Stephen
[17], y1 gets identified withy, if and only if there is some Dyck word (i.e., a word that
freely reduces to 1) inX U X 1)t such that/ labels a path frony; to y» in I". We prove
thaty; = y2 by induction on the length af.

If |d| =2, thend = xx~1 for some letterx € X U X 1. Since A is deterministic, if
¥1 # y2, then we must have thatlabels an edge fromy to v; andx 1 labels an edge from
v; to y» for somei # j. But sincev; andv; were identified inI”, then clearlyy; = y».
This gives a base for the induction.

Suppose thad = d1d> . .. d; for some Dyck wordsl; and thatk > 1. Thend; labels a
path inI" from y1 to some vertexXy, d» labels a path i” from 82 to 83, ..., anddy labels
a path inI” from §; to y». By induction,y1 =8> =83 =--- = y».

So assume thatcannot be written as a product of smaller Dyck words, and|that 2.
Then we havel = xcx 1 for some Dyck word: with |c| < |d|. Now ¢ labels a path from
some vertexg; of I" to some other verteg,. By induction, 81 = B2, andg1x 1 = y; and
Box~1 =y, so by part (2) of the definition a&, we havey; = y», as required. O
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Now letS = Inv(X | T) be afinite inverse semigroup and lebe an inverse word graph
over X. We will always assum& andT to be finite in this paper. Recall from [17] that
is calledclosed(relative to the presentation) i is deterministic and whenever=v is a
relation inT andu (respectively) labels a path im from a vertexx to a vertexs, thenv
(respectively) also labels a path irt from « to 8.

Lemma 2. Let (A, A, 1) be a nontrivial closed inverse automaton relative to a presenta-
tion S = Inv(X | T) = (X U X~1)* /7 of a finite inverse semigrouf. Then there exists

a unique minimum idempoteat= ut € S such that(x, A, A) is a DV-quotient of the
Schitzenberger automatot(e) = A(X, T, u) = (\*, A*, A*). In particular, A is finite. If
awordy e (X UX 1T labels ar—6 pathin(x, A, 1), theny also labels ax*—9* path in

A* for some vertex*. If y labels a path starting at in A and yt is an idempotent of,
theny labels a loop at in A.

Proof. Consider the automatdia, A, A). Since this automaton is nontrivial, there is some
word u such that:t is an idempotent of andu labels a loop inA based ai. Lete =

ut be the minimum idempotent & such thatu labels a loop inA based af.. Denote

by A(e) = (0%, A*, A*) the Schitzenberger automatonuofelative to(X | T). (In fact

A* = e and A* is the Schiitzenberger graph wfrelative to(X | T).) If v is a word in

(X U X~H* which labels a loop ind(e) based at* then there is a finite sequence of
automatads, Ao, ..., A, such thatd; is the linear automaton af, eachA4, 1 is obtained
from A; by a full expansion relative t& or an edge folding, and € L(A,). The fact that

(A, A, )) is closed with respect té implies that if this same sequence of expansions and
edge foldings is performed ik, A, 1), then induction on the number of steps shows that
v labels aloop inA, A, 1) based ak.

By Theorem 2.5 of [17] there exists a homomorphignfrom A* to A that mapsi*
ontoA. If y labels axr— path in A it follows thatuyy~?! labels a loop inA based af.

By minimality of e this implies that = (uyy~1)t, souyy~! labels a loop in4(e) based
atA*. Again, since: labels a loop ind(e) based at*, it follows thaty labels av*—6* path
in A* for some vertex*. In particular, this implies thap is surjective.

To prove the last statement of the lemma, note thatriis an idempotent of, then
yy~lt = yr, butyy~! labels a loop based at soyr = yy 1t > e. But this means that
labels a loop based at in A(e), and so the image of this loop must be a loop labeled by
yandbasedatin A. O

Remark. Note that the Schitzenberger automatdte) of Lemma 2 contains every
Schitzenberger automatof( /) which has(i, A, A) as aDV-quotient, for f idempo-
tent. In fact suppose that there exists an idempafestvr of S such that(x, A, ) is a

DV -quotient of the corresponding Schitzenberger automdigf). Now v labels a loop

in A based af., whencef > e, so thatA(f) is embedded intod(e). In the sequel we
will refer to A(e) as themaximum determinizing Schiitzenberger automafaia, A, 1).
Clearly the automato(., A, A) accepts a larger language than its maximum determinizing
Schitzenberger automaton in general.
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Recall from [17] that if(e, A1, B) and(y, A2, §) are two birooted inverse word graphs,
then(a, A1, B) x (y, A2, §) is the birooted inverse word graph obtained asWthguotient
of the union of these two birooted graphs by identifyifigand y. The next result is an
immediate consequence of Lemma 5.2 in [17].

Lemma 3. Lete and f be idempotents of some inverse semigrSup Inv(X | T), with
corresponding Schitzenberger automdta) and. A(f). ThenA(e) x A(f) approximates
the Schiitzenberger automatgiief). Furthermore, if(«, A, «) is a V-quotient of A(e)
and(B, I', B) is aV-quotient ofA(f), then(a, A, @) x (8, I, B) is aV-quotient ofA(e) x
ACf).

We remark that automata that are closed with respeEtaoe not necessarily Schiitzen-
berger automata relative to the presentation. For example, the inverse monoid

S=Inv(a,b|a®=b>=1, ba = ab?)

is clearly the symmetric group on three letters, so it has onlydass and hence only

one Schutzenberger graph, so th& -quotient of this graph obtained by identifying the
vertices corresponding to the group elements 1iaiga graph with two vertices, so it is

not a Schitzenberger graph, but it is closed with respect to these defining relations. Note
also thatb labels a loop at 1 in this graph, bbitdoes not label a loop in the Cayley graph
(Schiitzenberger graph) 6f So loops in aDV -quotient of a Schitzenberger graph do not

all lift to loops in the Schitzenberger graph.

3. Finiteamalgams

If [S1, S2; U]is an amalgam of finite inverse semigroups aredU, we denote byw; ()
the natural image af in S; under the embedding @f into S;. If S; is presented a$; =
Inv(X; | R;) = (X; U Xfl)J“/ni, where theX; are disjoint alphabets, then the wordsu)
are viewed as words in the alphagtand Sy xy So =Inv(X | RUW) = (XU X HT/z,
whereX = X1U X», R = R1U Ry andW is the set of all pairgw1 (u), wa(u)) foru e U.
Furthermore, ifv; € (X; U Xi_l)Jr andv e (X U X1t thenA(X, R;, v;) will denote the
Schitzenberger automaton of the wagdrelative to(X; | R;) and A(X, R U W, v) will
denote the Schiitzenberger automaton of the wordlative to(X | R U W). We shall
adhere to this notation throughout the remainder of the paper.

We recall some notation from [1,8]. Suppose tlrats an inverse word graph labeled
over X = X1 U X>: then an edge of" that is labeled fronk; U Xl.‘1 (for somei € {1, 2})
is said to becoloredby i. A subgraph off” is calledmonochromatidf all of its edges have
the same color. Aobeof I' is defined to be a maximal monochromatic connected subgraph
of I'. The coloring of edges extends to coloring of lobes. Two lobes are saicamj@eent
if they share common vertices, calledersections|f v € V(I") is an intersection vertex,
then it is common to two unique lobes, which we denotesyv) and Ax(v), colored
respectively by 1 and 2. We define tlodbe graphT () to be the graph whose vertices are
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the lobes of” and whose edges correspond to adjacency of lobes. We say thatctoid
if its lobe graph is a finite tree and adjacent lobes have precisely one common intersection.

Theorem 1 [8, Theorem 4.1]The Schitzenberger automata of the free prodijct S
relative to(X | R) are, up to isomorphism, precise€(g transversal of the cactoid inverse
automata overX whose lobes are Schitzenberger graphs relative to eitkief Ry) or
(X2| R2).

We refer the reader to [8] for details of the iterative procedure used to construct the
Schitzenberger automata for free products of inverse semigroups and to [1] for the it-
erative construction of the Schiitzenberger automata of a “lower bounded” amalgam of
inverse semigroups. Our construction below of the Schiitzenberger automata correspond-
ing to an amalgam of finite inverse semigroups very closely follows Bennett's construction
[1], the major difference being that the lobes of the automata under construction are closed
DV -quotients of Schiitzenberger automata relativeXto| R;) (for i € {1, 2}), rather than
Schitzenberger automata, as in [1]. While we will attempt to refer as much as possible to
Bennett’s construction, the fact that our lobes are not Schiitzenberger automata does cause
some technical difficulties, and several of Bennett's constructions need to be modified. We
first need to modify the central construction used in [8]. The idea of this construction is
to start with a cactoid automaton ovEr close one of its lobes relative to the appropriate
presentationX; | R;), and then make the resulting automaton deterministic.

LetA = (a, A, B) be afinite inverse automaton ovEr We define thelosureof A with
respect to a presentati¢i | T') to be the automaton €H) such that dlA) is closed with
respect to the presentatiab(.A4) C L(cl(A)), and if I" is any other closed automaton with
respect to the presentation such thay) C L(I"), thenL(cl(A)) € L(I"). The existence
of a unique automaton with these properties follows from the work of Stephen [17,18], in
particular from Theorem 2.5 of [17] and Lemma 3.4 of [18].Afis the linear automaton
of some wordw then cl A) is the Schiitzenberger automatdX, 7', w).

Construction 1. Let A = (a, I', B) be a finite cactoid inverse automaton owerLet A be

a lobe ofI", colored byi, that is not closed relative toX; | R;). Let A be any vertex ofA,

let cl(A) be a disjoint copy of the closure af relative to(X; | R;), and letA* denote the
natural image of. in cl(A). Construct thé/-quotient4A* = («*, (I"Ucl(A))/«, B*), where

«k is the leastV -equivalence that identifies with A* and makes the image deterministic,
and leta*, 8* denote the respective imagescoéindj.

Lemmad. Let A = (a, I', B) be afinite cactoid inverse automaton ovér

(i) The automatond* constructed fromA by an application of Constructiohis also a
finite cactoid inverse automaton. Moreover,AfapproximatesA(X, R, w) (respec-
tively A(X, R U W, w)) for some wordw € (X U X 1), then so doest*.

(i) After iteratively applying Constructiorl finitely many times, starting from,
we eventually arrive at a cactoid automatodi with the property that each lobe
of A" is a DV-quotient of some Schitzenberger graph relative to eitiar| R1)
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or (X2 | R2), A’ is closed with respect t&®, and A’ approximatesA(X, R, w) (re-
spectivelyA(X, R U W, w)) if A does.

(iii) In addition, if this construction is applied iteratively starting from the linear automa-
ton of awordw € (X UX~1)*, then the resulting automato#’ is the Schiitzenberger
automatonA(X, R, w) (respectivelyd(X, RUW, w)) of w in the free producsy = S».

Proof. The proof of this is essentially a slight modification of the proofs of Proposi-
tions 3.1, 3.2, and 3.3 and Theorem 3.4 of [8], so we just outline the proof here and refer
the reader to [8] for additional details.

Without loss of generality let us assume tiaais colored by the color 1. The closure
(A%, cl(a), A*) of (&, A, A) is afinite inverse automaton obtained by applying finitely many
elementary expansions and edge foldings [17] and isVaquotient of some Schitzen-
berger automaton relative {1 | R1) by Lemma 2. The automatad* is still a cactoid
automaton, by essentially the same argument as is used in the proof of Proposition 3.2 of
[8] and is an approximate automatondtw) if A is an approximate automaton dfw),
by Lemmas 1.3 and 1.5 of [8].

The graphI™ has at most as many lobes As Each of its lobes is either a lobe of
I' or was obtained from lobedq, Ao, ..., A, of I" Ucl(A) by identifying intersection
verticesvy, vy, ..., v, forming productsd; x A; and folding edges (see [8] for details).
From Lemmas 2 and 3, it follows that the lobes4f are DV -quotients of approximate
automata of Schitzenberger automata relative to eftier R1) or (X2 | R2).

The second statement in the Lemma follows easily from the fact that the automata con-
structed after an application of Construction 1 have finitely many lobes. The final statement
(iii) is Theorem 3.4 of [8]. O

Let v be an intersection vertex of an inverse automaton &/gwith corresponding
lobesA1(v) and Az(v). Let e; (v) denote the minimum idempotent §f labeling a loop
based at in A; (fori =1, 2) and letU; (e; (v)) = {u € U: u labels aloop imA; based ab}.

If U;(e; (v)) is nonempty, it is a finite subsemigroup@f so it has a minimum idempotent
which we denote byf(e; (v)). It is clear that if the automaton is deterministic and its
lobes are closed® V-quotients of Schitzenberger automata relative to eitkierf R1) or

(X2 | R2),thenA(X;, R;, e; (v)) is the maximum determinizing Schiitzenberger automaton
of (v, A; (v), v).

Remark. If A; is a Schitzenberger graph, thEp(e; (v)) = {u € U | ¢; (v) <; u}, where
<; denotes the natural partial orderSn (This was the definition used by Bennett in [1].)
However, these definitions do not in general coincida;ifis not a Schiitzenberger graph,
as one readily sees by examining the example after Lemma 2.

We say that an inverse automatbnover X has property(L) if for every intersection
vertexv of I we have

either U1(e1(v)) = Uz(e2(v)) =0 or f(e1(v)) = f(e2(v)).
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Construction 2(a). Let A = (a, I', B) be a finite cactoid inverse automaton oxewhose
lobes are closed V-quotients of Schiitzenberger automata relative to eitigr| R1)

or (X2 | R2) and suppose thatl does not satisfy propertyL). Without loss of gen-
erality, by the last statement in Lemma 2, there exists an intersection veroéx4
such thatUy(e1(v)) # @ and wa(f (e1(v))) ¢ Uaz(e2(v)). (The other case is dual.) Let

f =w2(f(e1(v))) and form the producB = (v, I', v) x A(X2, R2, ). The union of the
images ofAs(v) and A(X2, R2, f) is a lobe of B that is aV-quotient of a Schiitzen-
berger automaton relative ®, by Lemma 3. By repeated applications of Construction 1
we obtain a rooted cactoid automatBh= (v, I'’, v’) which is closed relative toX | R)

and whose lobes are closélV -quotients of Schiitzenberger automata relative to either
(X1| R1) or{X2| R2). The automatond’ = (a’, I'’, B') (wherea’ andp’ are the respective
images ofae and g) is the automaton obtained from by an application of Construc-
tion 2(a) at the vertex. (It is intended that this construction encompasses the dual case to
the one described here as well.)

Lemma 5. Letw € (X U X1t and let A = (o, I', B) be a finite cactoid inverse au-
tomaton whose lobes are closéalV -quotients of Schitzenberger automata relative to
either (X1 | R1) or (X2 | R2) and suppose tha is an approximate automaton for
AX,RU W,w). If A" is the automaton obtained frord by an application of Con-
struction2(a), then 4’ is also a finite cactoid inverse automaton whose lobes are closed
DV -quotients of Schitzenberger automata relative to eith@r| R1) or (X2 | R2) and

A’ approximatesA(X, R U W, w). Repeated applications of Constructid(a)to such an
automatonA terminate in a finite number of steps in a finite deterministic cactoid inverse
automatonA* that satisfies propertyL) (and whose lobes are closdaV -quotients of
Schitzenberger automata relative to eithi®r | R1) or (X2 | R2)).

Proof. The proof is really just an adaptation of the proofs of Lemmas 2.2 and 2.3 of [1],
the essential difference being that the lobes of the automata under consideration are closed
DV -quotients of Schiitzenberger automata relative to eitkigi R1) or (X2 | R2) as op-

posed to Schitzenberger automata. The proof of Lemma 2.2 of [1] carries through with
almost no change in this setting. This, combined with Lemma 4 yields the first claim in our
lemma. The last claim (the fact that repeated applications of Construction 2(a) must ter-
minate after finitely many steps in an automaton that satisfies progeityallows again

by adapting the proof of Lemma 2.3 of [1] to the current setting, but is actually easier than
Bennett’s proof of that lemma since the semigro§p&nd S, are both finite, so there are

only finitely many possible graphs that can arise as cl@sgdquotients of Schiitzenberger
automata relative t@X1 | R1) or (X2 | R2). Any application of Construction 2(a) at a vertex

v replaces a closef®V-quotient of a Schiitzenberger graph in eitSgior S> by another
closedDV-quotient of a Schiitzenberger graph, and the new graph has either more edges
or more loops (i.e., has higher rank fundamental group) than the original graph. Finiteness
of eachsS; puts an upper bound on the number of edges and the rank of the fundamental
group of these graphs. We refer the reader to Bennett's proof of Lemmas 2.2 and 2.3 in his
paper [1] for full details. O
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We say that an inverse automatot over X has theloop equality propertyif
U1i(e1(v)) = Uz(e2(v)) for each intersection vertaxof A. If all lobes are in fact Schiitzen-
berger graphs, then this concept coincides with the concept dbwer bound equality
propertyof Bennett [1]. It is clear that if4 satisfies the loop equality property, then it must
also satisfy propertyl(), but the converse is false in general.

Lemma 6. Let A be a finite cactoid inverse automaton ov&rwhose lobes are closed
DV -quotients of Schitzenberger automata relative to eith@r| R1) or (X2 | R2) and
suppose that is an intersection vertex of two lobelg (v) and A2 (v) such thatf (e1(v)) =
f(e2(v)). If there is a path inA1(v), starting atv and labeled by a wordbv, («) for some
u € U, then there is a path im»(v), starting atv and labeled by the word,(u).

Proof. Clearly e1(v) < wi(w)wi(u)~t and f(e2(v)) = f(e1(v)) < wi(u)wy(u)~L. Now
fea(v)) <2 wa(u)wo(u)~1 since both of these elements are in the imagé& dah S», so
e2(v) <o wa(u)wo(u) L. By the remark after Lemma 2y, Ax(v), v) is a DV -quotient of
(v, ST (e2(v)), v). Sincewo(u)wo(u)~* labels a loop based atin SI"(ex(v)), it follows
that wo(u)w2(u) 1 labels a loop inA»(v) based aw. But this means thab,(«) labels a
path inAx(v) based ab. O

Construction 2(b). Let 4 be a finite cactoid inverse automaton ovemwhose lobes are
closedDV -quotients of Schiitzenberger automata relative to eitkief R1) or (X2 | R2)
and suppose that satisfies propertyl() but does not satisfy the loop equality property.
Then either there exists some intersection veitexf .4 and a nonidempotent element
u € U such thatw1(u) € U1(e1(v)) andwz(u) ¢ Uz(e2(v)) or there exists an intersection
vertexv with the dual property (with subscripts interchanged). Without loss of generality
assume that the first case occursdinthere is a loop based atabeled byw; (1), while in
A(v) there is a—v’ path labeled by (v) for somev’, by Lemma 6. Form th& -quotient

B of A obtained by identifying: andv’ in A2(v). Then apply Constructions 1 and 2(a) to
the resulting automatofi, obtaining an automatad’. We say thatd’ is obtained fromA4

by an application of Construction 2(b).

Lemma?7.Let A= («, I', B) be a finite cactoid inverse automaton whose lobes are closed
DV -quotients of Schiitzenberger automata relative to eith@r| R1) or (X2 | R2), sup-
pose that4 satisfies propertyL) and that4 approximates4d(X, RU W, w) for some word

w. Then the automatad’ obtained fromA by an application of Constructic®(b)also has
lobes that are closef® V -quotients of Schiitzenberger automata relative to eitier| R1)

or (X2 | Ry), A’ approximatesA(X, R U W, w) and A’ satisfies propertyL). Successive
applications of Constructio@(b) lead after finitely many steps to a finite cactoid inverse
automaton4* whose lobes are closadV -quotients of Schiitzenberger automata relative
to (X1 | R1) or (X2 | R) such that4* approximatesd(X, RU W, w) and. A* has the loop
equality property.

Proof. It is clear by Lemmas 2 and 5 that the lobesAfare closedDV-quotients of
appropriate Schiitzenberger automata relative to e{tkief R1) or (X2 | R2) and thatA’
satisfies propertyl(). Let C be the automaton obtained frashby sewing on taA4 a loop
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labeled bywa(u) based at the vertex This operation is an “elementary expansion” in the
sense of Stephen [17], sinag (1) = w2(u) is a relation inW andwj («) labels a loop in
A1(v) by assumption. It is clear that the determinized form of the intermediate automaton
B in the description of Construction 2(b) is obtained fr6ray a finite sequence edge fold-
ings, so this automaton is an approximate automatof(af, RUW, w) by Lemma 5.6 and
Theorem 5.7 of [17]. Hence by Lemmas 4 and 5 abo{/eis an approximate automaton

of A(X,RUW, w).

The proof that a finite sequence of applications of Construction 2(b) terminates in an au-
tomaton that satisfies the loop equality property is again a modification of Bennett's proof
of his Lemma 2.3 in [1]. Each application of Construction 2(b) effectively introduces an ad-
ditional relation of the formw; (1) = wo(u) for someu € U at some intersection vertex
The construction may also decrease the number of lobes and the number of intersection
vertices of the resulting automaton, but each intersection vertex has an image that is also
an intersection vertex in the resulting automaton, and loops labeled; @y in a lobe
A; (v) are transformed into loops with the same label in the new automaton. Finiteness of
the automata and of the semigroUpforces this process to stop after finitely many steps
in an automaton that satisfies the loop equality property.

Remark. Construction 2(b) provides one of the essential differences between the argument
presented in this paper and Bennett's argument [1]. It is a consequence of this construction
that the lobes of the automata under construction are-quotients of Schitzenberger
automata (as opposed to Schiitzenberger automata) relative to/&itHek1) or (X2 | R2).

We next consider theelated pair separation propertyf Bennett. Letd = (a, I', 8) be
a finite inverse automaton ov&rwhose lobes are closddV -quotients of Schitzenberger
automata relative t¢X1 | R1) or {X» | R2) and letv be an intersection vertex od for
which U1 (e1(v)) = Ua(e2(v)). Consider a word € U such thatws(«) labels av—v1 path
in A1(v) for some vertex;. Thenws () labels av*—vj path in the maximum determiniz-
ing Schitzenberger automatofi(e1(v)) by Lemma 2. Henceus(u)wi(u) ™t > e1(v),
whence this element belongsi (e1(v)) = Uz(e2(v)). It follows thatw,(v) also labels a
v—v2 path inA; for some vertex,. Following Bennett [1], we say thdb1, vy) is arelated
pair of the intersection vertex. By a very minor modification of Bennett's argument in
the first part of Section 3 of his paper [1], we see that the relakiop consisting of all
pairs (v1, v2) such that(vi, vp) is a related pair ob defines a partial one—one map from
V(A1(v)) to V(A2(v)). The equivalence relation afi generated byR (v) thus identifies
the two coordinates of each related pair without identifying any two vertices from the same
lobe.

Let A be a finite inverse automaton ov&rwhose lobes are closelV-quotients of
Schitzenberger automata relative(®; | R1) or (X2 | R2) and which satisfies the loop
equality property. We say that has therelated pair separation property for any lobe A
of A (with color 1 without loss of generality) and for any two intersection verticesd
v’ of A that are vertices oft but are not common to the sarpair of lobes of 4, there is
no wordu € U such thatw («) labels a path im from v to v'.
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Construction 3. Let A = («, I', B) be a finite cactoid inverse automaton whose lobes are
closedDV -quotients of some Schiitzenberger automata relative to €iXhgrR1) or (X2 |

R2) and suppose thatl has the loop equality property. Lep and vy be two different
intersection vertices of a loha, that is (without loss of generality) colored by the color
2 and suppose that there is a path labeledvbgt:) from vg to vy for someu € U. Let
Ag and A; be the two lobes (colored by 1) adjacentA@ and intersectingA, in vg
andv1, respectively. Sinced has the loop equality property, there is a pathdin from

vo to vy labeled byw; (1) for some vertexy;. Form the graph”™ by disconnecting” at

vo and replacingg with vo(0) andvp(2) in Ag and A,, respectively. Denote b¥yp the
component of " that containsip(0) and by7» the component that containg(2). Now put

B = (vg. To, vp) x (v1, T2, v1). Clearly all lobes of3 except at mosiAg x A are closed
DV -quotients of Schiitzenberger automata relative to eitlfer| R1) or (X» | R2). By
Lemma 3,40 x Ay is a V-quotient of an approximate automaton relative(}y | R1),

so we can apply Constructions 1, 2(a), and 2(b) to the autontat@enote the natural
images inB of « by o’ and of 8 by g’ and letA’ = («’, I'’, B’) be the resulting automaton.
We say thatd’ is obtained fromA by an application of Construction 3.

Lemma8. Let A= («, I', B) be a finite cactoid inverse automaton whose lobes are closed
DV -quotients of Schiitzenberger automata relative to eith@r| R1) or (X» | R2), that
approximatesA(X, R U W, w) for some wordw and has the loop equality property. Jf

is the automaton obtained from by an application of Constructio8, thenA’ also is a

finite cactoid inverse automaton whose lobes are cld3&dquotients of Schiitzenberger
automata relative tq X1 | R1) or (X2 | R2), that has the loop equality property and ap-
proximatesA4(X, R U W, w). Furthermore, repeated applications of this construction will
terminate in a finite number of steps in an automaton that has the related pair separation

property.

Proof. The only thing that needs to be proved is that the automatoapproximates
A(X, RU W, w): all other statements in the lemma are immediate. Thus we have to show
that L(A) € L(A(X, RUW,w)) and that inL (A’) there exists a word-equivalent tow.
Let B be the automaton constructed in the description of Construction 3 and denote the
natural image ofx (respectivelyB) in B by a (respectivelyg) again. Letd” = (a, X, B)
be the resulting automaton, wheXeis the underlying graph df. By Lemmas 4, 5, and 7
it suffices to check thatl” is an approximate automaton fdi( X, R U W, w).

Let vy = v1 be denoted by in A”. Now letz € L(A"). Then there exists i’ ana—8
path labeled by. Everya—g path which belongs entirely to the same comporfgrir 7
(if any) was already an—8 path inI", whence its label belongs to(A(X, R U W, w)).
So consider am—8 path in A” containingv and which can be split into parts which
belong to different components. Consides y§, wheret(8) = 8,i(§) =vandifg=v
thenx = y, else§ belongs entirely to the same component as the vegteand factor

Y =¥y1v2---¥a Where

e i(y)=0a,t(yy)=v,i(yi+1) =t(yi)=v,i=1...,n—1,
e each of the pathg; belongs entirely to one of the componefigsor 75,i =1, ..., n,
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e y;1+1 andy; belong to different componenty and7>, fori =1,...,n — 1; the same
holds foré andy,, if y # .

Let us prove by induction on that if y, is a path inTy (respectivelyT?), then there
exists ana—v( (respectivelyo—v1) pathy* in the graphl” which is labeled by a word
which is less than or equal igy) in S = (X U X~ 1)* /7. This will prove thatL(A")
L(A(X, RUW,w)), since this language consists of all words that are greater than or equal
towinS.

Letn = 1. Theny = y1 is ana—v; path belonging to the componery, whence also it
is a path inI” (similarly if y1 belongs tar?).

Now let y = y1y2-- -y, and suppose that, belongs toTp, so thaty, labels a loop
based aty. Thusy,_1 belongs toT> and there exists an—v; path y’ in the graph
I’ such thati(y’) < I(y1y2---y»—1) in S. In addition, there exists a;—vg path la-
beled byws(u), a vo—vj path labeled bywi(u~1), and thus anx—v] path labeled by
[(y1y2- - Ya—Dw2)w1(@) "1 (y,) in T'. Also L(y)T = ((yry2- - Ya—Dwi@wa ) -
[yn)T = ((1y2- - ya-Dw2(w)w1) Uyt

The case whep, is in T, is symmetric.

Finally, note that ind = («, I', B) there exists amw—g path labeled by a word’ such
thatw’t = wr. If this path has no vertex equal tg then its label also labels a pathi{’.
So, considew’ =1(y1)I(y2) - - -1(y,), Where

—i(yD)=a t(yn) =B, iviv1) =t(yi))=vo, i=1,...,n -1,
— each of the pathg; belongs entirely to the same of the componefigand 7», i
1, ...,n andy;;1 andy; belong to different components and7> fori =1,...,n—

=l

Suppose, without loss of generality, thatbelongs taTy for i even.

Certainly in the automatord” there is ana—8 path labeled by the wordv”
IyDw2u™Hwi @) (v w1 Hwa)l(y3) -+ 1(y,) and w’t = w”t where w” =
1(yD)w2() " wa)l (y2)wi(w) wi(u) - L(yn).

Clearlyw”z < w'zr in S. But w” labels a path fromx to 8 in I", sow” € L(A) C
L(A(X,RUW,w)). Hencew”t > w't in S. Thusw”'t = w”t = w’z in S. This shows
that.A” is an approximate automaton faiX, W U R, w), as required. O

We now consider thadjacent lobe assimilatioproperty of Bennett [1].

Construction 4. Let A = («a, I', B) be a finite inverse word graph, whose lobes are closed
DV -quotients of some Schitzenberger automata relative to dixhelr R1) or (X2 | R2)

and which has the loop equality property and the related pair separation property. Then
for each intersection vertaxand for everyw—v; path inA1(v) labeled byw1(«) for some

u € U there exists a unique-v, path inAz(v) labeled byw,(u), and converselyy; andvz

cannot be intersection vertices of our graph by the related pair separation property. Identify
v1 and vy, i.e., consider thé/-quotient of the graph™ with respect to the equivalence
relationv; = vy and repeat this construction with respect to all related paigs;itv) and

Az (v). Since all lobes are finite, then we end after finitely many identifications: we say that
the two lobesA(v) and A, (v) wereassimilated
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Lemma9. Let A = (a, I', B) be afinite cactoid inverse automaton, whose lobes are closed
DV -quotients of some Schitzenberger automata relative to eifigf R1) or (X2 | R2)

and which has the loop equality property and the related pair separation property and
suppose thatd approximatesA(X, R U W, w). After finitely many applications of Con-
struction4, we get a finite inverse automaton whose lobes are cld®&dquotients of
some Schitzenberger automata relative to eitfdér | R1) or (X2 | R2), which approx-
imates A(X, R U W, w), has the loop equality property and the related pair separation
property and where all adjacent lobes are assimilated.

Proof. Denote byv’ the vertex of the grapi™’ obtained fromI” by identifying vy with
v2 in Construction 4. We first show that; (e1(v")) = Ua(e2(v")) in I'. Recall that there
exists av—v1 path in A1 (v) labeled byw(x) for someu € U and av—v, path in Az(v)
labeled byw(u).

If u’ € Ur(e1(v')), thenu' labels aloop based af in A1(v) and sauu’'u~t € Uy (e1(v)),
as it labels a loop based nin A1(v); hence by the loop equality properiy/u—* e
Uz(e2(v)) and labels a loop based@atn A2 (v). Butu labels av—v; path inAz(v) so that
u’ also labels a loop based@atwhenceu’ € Uz(e2(v')).

This enables us to repeat Construction 4 as many times as we need on each pair of
lobes, obtaining an automaton that satisfies the loop equality property after each step. The
related pair separation property still holds after every application of the construction, since
all the vertices we are working on are connected by paths whose labels beldngyahe
finiteness ofU and of the number of lobes of the automaton we finish after finitely many
applications of this construction.

Note that an application of Construction 4 may also be accomplished by sewingdon to
a path labeled bw» () from v to v1 (in the notation of the construction) and then folding
edges in the resulting automaton. It follows from Lemma 5.6 and Theorem 5.7 of [17] that
the resulting automaton is also an approximate automatot(& R U W, w). O

Since assimilation does not affect adjacency of lobes, a lobe path is reducetiand
only if it is reduced in the assimilated form &f. Following Bennett [1], we say that an
inverse automato whose lobes are closedV -quotients of Schiitzenberger automata
relative to either X1 | R1) or (X2 | R2) is opuntoidif:

(i) it has the loop equality property;
(i) it has the adjacent lobe assimilation property;
(i) it has no nontrivial reduced lobe loops (i.e., its lobe graph is a tree).

From the discussions above, it is clear that the automaton that we obtain from the linear
automaton of a wora € (X U X~ 1)* by closing under repeated applications of Construc-
tions 1-4 above is a finite inverse opuntoid automaton that approximdaiésr U W, w).

We refer to this automaton as there automatorof w and denote it by Cole): this is

not the Schiitzenberger automatorwoéind it is also not the case that Carg = Corgw’)

if wt = w'z, but as we shall see below, the Schiitzenberger autoro&&nR U W, w)

is readily obtained from Cof&) by successive applications of Construction 5 below, and
carries all of the essential information df{ X, RU W, w).
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Let I" be an opuntoid graph and ke V (I") be a vertex belonging to a lolb& colored
by i € {1, 2}. Then (again analogously to Bennett [1]), we say that abudof I" if it is
not an intersection vertex and; (e; (v)) is not empty. This is equivalent to saying that
there is some path id; starting atv and labeled by an elemente U, because in that
caseuu~t € U;(e;(v)). (Clearly, no such path can end in an intersection vertex, by the
adjacent lobe assimilation property.) The grdpis completdf it has no buds: an opuntoid
automaton is complete if its underlying graph is complete.

Construction 5. Let A = («, I, 8) be an opuntoid automaton, suppose thas not com-
plete and leb be a bud, se is not an intersection, belonging to a lolde colored say by 2,
with Uz(e2(v)) # 0. Form the automatol® = (v*, I'*, v*) = (v, I, v) x A(X1, R1, f),
with f = w1(f(e2(v))). By Lemma 6, ifu € Uz(e2(v)), thenw(u) labels a path start-
ing atv and ending at’, say, in the new adjoined lohd (X1, Ry, f), but this path is
not necessarily a loop. Form a lokfg by first identifying all such vertices’ with v in
A(X1, R1, f), then determinizing, and then closing with respedioFinally, apply Con-
struction 4 at the vertex to assimilated; and the new lobel;, and denote the resulting
automaton byA*.

Lemma 10. Let A = («, I', B) be an opuntoid automaton whose lobes are cloBad-
quotients of some Schitzenberger automata relative to eitkigl R1) or (X» | R2)
and suppose thatl approximates4A(X, R U W, w). Then each application of Construc-
tion 5 leads to an opuntoid automato#* whose lobes are closeld vV -quotients of some
Schitzenberger automata relative to eith&g | R1) or (X2 | R2) and which approximates
A(X, RUW, w). In particular, the new automatad* has one more lobe thad, and the
automatonA is unchanged by this process.

It is convenient to split the proof of this lemma into several parts.

Lemma 11. Fix the notation as in the statement of Constructiohetu be an element of
U such thatwo () labels a loop based atin A2 butu is not an idempotent df . Letn be
the smallest integer such that is an idempotent of/ . Thenw1 (#)" labels a loop based at
vin A(X1, R1, f). Denote by; the vertex ind(X1, R1, f) at the end of the path starting
atv and labeled bywy(u)’, fori =1,...,n — 1. Then for alli, a words € (X1 U X; H*
labels a path in4(X1, R1, f) starting atv; if and only ifs labels a word inA(X1, R1, f)
starting atv. Furthermore,s labels a loop based at in A(X1, Ry, f) if and only ifs
labels a loop based af; in A(X1, R1, f).

Proof. Suppose first that labels a path ind(X1, Ry, f) starting atv. Thenss—! la-
bels a loop iNA(X1, R1, f) based aw, soss~t > f. Henceuss tu=1 > ufu=1in U.
Sinceufu~1 is an idempotent ot/ that labels a path based atin A(X1, Ry, f), we
haveufu=t > f, and hencarss~u=1 > f, whences labels a path starting at; in
A(X1, R1, f). If s labels a loop av, since A(X1, R1, f) is a Schitzenberger automa-
ton, thenusu—1 must label a loop at also, since: labels a path from to vy, sos labels
aloop atv1. A similar argument applies to the verticgsfor i > 1.
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Conversely, ifs labels a path starting at in A(X1, R1, f), thenuss~1u=1 > f, so
uss~tu™" > w1 fu==D in U. This latter idempotent is greater than or equalfto
again by minimality of f. Also, " is an idempotent ol/. Henceuss~1 > f, and it
follows thatss~1 > f, whences labels a path ind(X1, R1, f), starting aw. If s labels a
loop atvs, then as above"su™" labels a loop ab, and since:” labels a loop ab this
means that labels a loop av. A similar argument applies if we start at a vertexfor
i > 1. This verifies the claim above.O

Lemma 12. Fix the notation as in the statement of LemirialLet A be theDV-quotient
of A(X1, Ry, f) obtained by identifying all of the vertices, vy, ..., v,_1 with v and then
determinizing. Then two verticeg andy» of A(X1, R1, f) are identified inA if and only
if there is some wordv that labels a path ind(X1, R1, f) from v; to 1 and a path in
A(X1, Ry, f) fromu; to y, for somei, j. Furthermore, a word € (X3 U Xl_l)Jr labels a
path in A(X1, Ry, f) starting aty, if and only ifs labels a path ind(X1, R1, f) starting
at y».

Proof. Definey1 ~ y» if and only if there exists a word labeling a path fromy; to y1
and fromv; to y, for somei, j. We claim that~ coincides with the equivalence relation
= of Lemma 1. Clearly~ is included in=. We show that- is an equivalence relation.

Suppose thaty ~ y2 and y2 ~ y3. Then there exist words and s and vertices
v;, Vj, vk, v such thatw labels a path fromy; to y1 and a path from; to y, ands la-
bels a path fromy to y» and a path fromy; to y3. There is a path labeled by from v;
to vy for somer. Henceu'sw =1 labels a loop ind(X1, R1, f) based ab;. By Lemma 11,
u'sw1 also labels a loop itd(X 1, R1, f) based ab;. This loop must go fromy; to some
vertexv;, (via the path labeled by’), then fromv;, to some vertex3 (via a path labeled
by s), and then back te; (via a path labeled by ~1). But sincew labels a path from;
to 1, we must havev—1 labels a path frony; to v;, and so8 = y1. Hence there is a path
labeled bys from v, to y1, and also a path labeled byfrom v; to y3, sOy1 ~ y3.

It is also clear from Lemma 11 thatji ~ y» ands is a word in(X U X~1)*, thens
labels a path ind(X1, Ry, f) starting fromy if and only if s labels a path ind(X1, R1, f)
starting fromy, (just extend the path labeled by some wardrom v; to y; and fromv;
to y2: ws labels a path starting af if and only if it also labels a path starting a,
by Lemma 11). Hence- satisfies the two properties defining the equivalence relatipn
and so~ is equal to=. The last statement in the lemma also follows from the above
argument. O

Lemma 13. In the notation of Lemmaz2, the lobeA is closed with respect to the rela-
tionsR;.

Proof. Suppose thag; andy, are two vertices ofA and that there is a path ia labeled
by a words from y1 to y» and thats = ¢ is a relation inR1. We must show thatalso labels
a path inA from y1 to y». Assume first that neither, nor y» is equal to the image af in
the natural morphism from (X1, Ry, f) to A. Thus we may regargh andy, as vertices
of A(X1, Ry, f).
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By construction ofA from A(X1, R1, f), and by Lemma 12, there must be a factor-
ization of the words as a produck = s1s2...s¢ and verticesy;, 8;,i =1, ..., k, where
81 = y1, Bx = y2, s; labels a path from$; to 8;, fori =1,...,k and ; ~ §;4+1 for
i=1,...,k—1.

By Lemma 12, labels a path frong; to some vertexu, such thatuy ~ B2 ~ 83, and
thenss labels a path fromu, to some vertexus with s ~ 83 ~ 84, and so on. Thus we
eventually produce a path labeled by= s1s2...s¢ in A(X1, Ry, f) starting ats; = 1
and ending at a vertex; ~ y». Since A(X1, R, f) is closed with respect to the presenta-
tion Ry, it follows that there is a path il (X1, R1, f) from y1 to u labeled by the word.
Sinceu, ~ y2, we see that there is a path from to y» labeled byr in A. HenceA is
closed with respect to the relatiols, as required. A similar argument applies if one or
both of the vertices; is equal to the image af in the natural map fromd(X1, R1, f)
toA. O

Proof of Lemma 10. We first need to prove that when Construction 5 is applied, we have
Ui(e1(v)) = Uaz(e2(v)) at the new intersection point(in the notation of Construction 5).
By construction, we clearly hau@z(e2(v)) € Ui(e1(v)). To prove the converse, we need
to show that every loop basedain A; labeled by an element df, also labels a loop
based ab in A2. Now the lobeA of Construction 5 is obtained by identifying all vertices
v; (u) of A(X1, R1, f), as described above, for all wordghat label loops at in A2, then
determinizing, and then closing with respeci®p But by Lemma 13, théd V -quotient of
A(X1, R1, f) obtained by performing the identifications and the determinizing is already
closed with respect t&;. Thus we need only to consider loops in thi% -quotientA; of
A(X1, R1, f).

So letu’ be an element ot/ such thatw1(x") labels a loop based at in A;. By
factoring the wordy’ as a produci’ = uju;...u; where eachy; labels an appropriate
path in A(X1, R1, f) and by applying an argument very similar to the argument used in
the proof of Lemma 13, we see thétlabels a path ind(X1, Ry, f) from v; (u) to v; (it)
for someu, u € U such thatwo(u) andw2(«2) label loops inA2 based ab, and some, ;.
Thenwi (u)' w1 (u’)w1(i2)~/ labels a loop based atin A(X1, R1, f).

It follows thatu’u’iu=/ >1 f. Also, u'u’a=/ € U of course. Now by the remark after
Lemma 2,45 is a DV-quotient of A(X2, Rz, e2(v)) anduu'i =/ =5 f =5 ea(v). It fol-
lows thatwy(u! )wo(u')wo(ii~7) labels a loop based atin A(X2, Rz, e2(v)), and hence
in Az. Sincew2(u) andw2(iz) label loops inA2 based ab, we see thaiw,(u) also labels
a loop inA; based ab. HencelUj (e1(v)) = Ua(e2(v)) at the new intersection point (in
the notation of Construction 5).

It is now clear that after we apply Construction 4, the resulting automatn
is opuntoid. We need only verify thatl* is an approximate automaton fof(w) =
(o, ST (wt), B). It suffices to prove that the automatoti obtained fromA by adding
the lobeA; atv is an approximate automaton fa{w) = («, ST (wt), B).

InfactL(A) € L(A'), sothatinL(A’) there is a wordy’ such thatw’'t = wt. Consider
awords which labels ind” ana—g path inA’. If this path does not contain any edgesiin,
then clearlys € L = L(A(w)) = {z € (X U XYt | zz > wr}. In addition, ifs = s1s»
wheres; labels a path fronx to v in A ands2 labels a path fromv to g in A, and ifu
is an element ot/ such thatw2(«) labels a loop inA; based ab, then we also see that
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stw2(fHwz(u)s2 € L. So assume that factors ass = sit15212.. . . frsx+1 Wheres; labels
aa—v path in A, ¢; labels a loop inA; based ab, s; labels a loop in4 based at for
i=1,...,k, andsg41 labels a path from to 8 in A.

Proceed by induction ok, the above casé = 0, where no edges of the—8 path
labeled bys are in A1, being the basis for the induction. So we may assume that
s111 . . . Sp—1ti—1skwa( f)wa(u) " Lsp41 € L for each element € U such thatwy(u) la-
bels a loop inA, based at. By Lemma 2.z, labels a path fromv to some vertexs in
A(X1, R1, ), whereg is identified withv in the DV -quotientA; of A(X1, R1, f), as
constructed in Lemma 12. By the construction of thi¥ -quotient, there is some word
u € U such thatw,(u) labels a loop im2 andw1 (1) labels a path frong to v in A1. Thus
frw1(u) labels a loop based atin A(X1, R1, f), whences w1 (u) =1 wi(f).

Now by induction hypotheses;rs...sg—1tx—1(siSk+1) =s w, and by fwy(u) =g
wi1(f), wegetsity ... sptrw1(U)Sk+1 =5 S1t1 .. - Skw1(f)Sk+1 =5 W, SOS = §111 . . . SktkSk+1
> s111 .. sehw1wiw) s = s sewi(Hwaw) " sega =g sir . scwa(f) -
wo(u) " Lspy1 >5 w. Hences € L, as required. O

We are now in a position to prove the main theorem of the paper.

Theorem 2. LetS = S1xy S2 be an amalgamated free product of finite inverse semigroups
S1 and S2 amalgamating a common inverse subsemigroypvheres; = Inv(X; | R;) are
given finite presentations ¢f for i = 1, 2. Then the word problem faf is decidable.

Proof. Let wi andw, be two words in(X U X~1)*. We need a decision procedure to
show whethemw; € L(A(X, R U W, w1)) or not. Suppose thatv,| = n. lteratively apply
Constructions 1, 2(a), 2(b), 3, and 4 to the wardto obtain an automatod that is an
approximate automaton fof(X, R U W, wj). Applications of Construction 5 to this and
subsequent automata leaeunchanged. By Lemma 10, the opuntoid nature of all subse-
guent automata means that the lobe graph of each of these automata is obtained from the
previous lobe graph (tree) by adding one more vertex and edge, and that the only change
that results by applying Construction 5 is to add one more lobe to the original automa-
ton. Apply Construction 5 to4 and subsequent automata enough times so that either no
further application of Construction 5 is possible, or we build all automata whose lobe
graphs contain all possible paths of lengtistarting from the initial lobe (the lobe con-
taining the initial vertex) of the automato#. The wordw; is accepted by the automaton
A(X, RU W, wy) if and only if it is accepted by one of the automata iteratively obtained
from A by application of Construction 5. Thus we have a finite decision procedure to test
whetherws € L(A(X, RUW, w1)). By the results of Stephen [17], this provides a solution

to the word problem fos. O

Recalling our definition of opuntoid automaton (slightly different from Bennett’s), one
can use arguments very similar to [1] Lemma 5.4 to show that:

Theorem 3. Let S = S1 xy S2 be an amalgamated free product of finite inverse semigroups
S1 and S amalgamating a common inverse subsemigroypvheresS; = Inv(X; | R;) are
given finite presentations o for i =1,2. Let X = X1 U X2, R=R1 U Ry and W be
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the set of all pairs(w1(u), w2(u)) for u € U. Then Schitzenberger automata relative to
(X | RU W) are complete opuntoid automata.

Proof. Note first that a complete opuntoid automaton which approximates the Schiitzen-
berger automatos (X, R U W, w) for some wordw € X is isomorphic to the Schitzen-
berger automaton. In fact its lobes are closed with respect to the preserf&tior;),
whence it is closed with respect t& | R). But it is complete, whence it is also closed
with respect ta X | W).

Now, let us start from a core automaton Cawe. If it is complete, it is the Schitzen-
berger automaton ab relative to(X | R U W). Otherwise repeated applications of Con-
struction 5 give a sequence of opuntoid autométa A’ ¢ A” C - -- which approximate
the Schitzenberger automatonafThis sequence forms a direct systdnn the category
of inverse automata over X, whose direct limit

ima= [] A
k=1,...,00

also approximates the Schitzenberger automaton whence, being complete, it is the
Schitzenberger automatot(X, RU W, w). O
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