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Abstract

We show that the word problem is decidable for an amalgamated free product of finite i
semigroups (in the category of inverse semigroups). This is in contrast to a recent result of M
that shows that the word problem for amalgamated free products of finite semigroups (in the c
of semigroups) is in general undecidable.
 2005 Elsevier Inc. All rights reserved.
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1. Introduction

If S1 andS2 are semigroups (groups) such thatS1∩S2 = U is a nonempty subsemigrou
(subgroup) of bothS1 andS2 then[S1, S2;U ] is called an amalgam of semigroups (group
The amalgamated free productS1 ∗U S2 associated with this amalgam in the category
semigroups (groups) is defined by the usual universal diagram.
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The amalgam[S1, S2;U ] is said to be strongly embeddable in a semigroup (group)S if
there are injective homomorphismsφi :Si → S such thatφ1|U = φ2|U andS1φ1 ∩ S2φ2 =
Uφ1 = Uφ2. It is well known that every amalgam of groups embeds in a group (and h
in the amalgamated free product of the group amalgam). However, an early exam
Kimura [9] shows that semigroup amalgams do not necessarily embed in any sem
On the other hand, T.E. Hall [6] showed that every amalgam of inverse semigrou
the category of inverse semigroups) embeds in an inverse semigroup, and hence
corresponding amalgamated free product in the category of inverse semigroups.

An inverse semigroup is a semigroupS with the property that for each elementa ∈ S

there is a unique elementa−1 ∈ S such thata = aa−1a anda−1 = a−1aa−1. A conse-
quence of the definition is that idempotents commute in any inverse semigroup. On
also define a natural partial order on such a semigroupS by a � b iff a = eb for some
idempotente of S.

Inverse semigroups arise very naturally in mathematics as semigroups of partia
one maps on a set (or partial isometries of a metric space, or homeomorphisms b
open subsets of a topological space, or local diffeomorphisms of a differentiable ma
etc). We refer the reader to the book of Petrich [15] for basic results and notation
inverse semigroups and to the more recent books of Lawson [10] and Paterson [
many references to the connections between inverse semigroups and other bran
mathematics.

Recently Birget, Margolis, and Meakin [3] showed that even under very nice c
tions on a semigroup amalgam[S1, S2;U ], the corresponding amalgamated free prod
S1 ∗U S2 in the category of semigroups may have undecidable word problem, qu
contrast to the situation for amalgamated free products of groups. This result was
strengthened by Sapir [16] who showed that an amalgamated free product of finite
groups may have undecidable word problem. However, in the present paper we sh
the word problem is decidable for any amalgamated free product of finite inverse
groups in the category of inverse semigroups.

We refer the reader to [15] for information about free inverse semigroups, and in
ticular for a description of Munn’s solution [13] to the word problem for the free inve
semigroup on a set in terms of Munn trees. Munn’s work was greatly extended by St
[17] who introduced the notion of Schützenberger graphs associated with presen
of inverse semigroups and their role in the study of the word problem. We refer t
papers by Jones [7] and Jones, Margolis, Meakin, and Stephen [8] for information
the structure of free products of inverse semigroups in the category of inverse semig
and to the papers by Haataja, Margolis, and Meakin [5], Bennett [1,2], Stephen [18
Cherubini, Meakin, and Piochi [4] for detailed information about various classes of a
gamated free products of inverse semigroups. We will make heavy use of Bennett’s
in our study of amalgamated free products of finite inverse semigroups in this pape
strategy for solving the word problem for an amalgamated free product of finite in
semigroups is to provide a construction of their Schützenberger graphs, very much
the lines of Bennett’s construction of the Schützenberger graphs of a lower bounded
gam [1]. We briefly recall some relevant notation and refer to [1,4,17] and [15] for
undefined notation and terminology.
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We will denote the free inverse semigroup on a setX by FIS(X). It is the quotient of
the free semigroup(X ∪ X−1)+ by the least congruenceρ that makes the resulting quo
tient semigroup inverse (see [15]). We denote the inverse semigroupS presented by a se
X of generators and a setT of relations byS = Inv〈X | T 〉. This is the quotient of the
free semigroup(X ∪ X−1)+ by the least congruenceτ that containsρ and the relations
in T . We refer to [11,17] or the survey paper [12] for much information about pres
tions of inverse semigroups. Crucial to the study of presentations of inverse semig
is the notion of the Schützenberger automatonA(X,T ,w) for a wordw ∈ (X ∪ X−1)+.
This automaton has underlying graphSΓ (X,T ,w) whose set of vertices is theR-class
containingwτ and whose edges consist of all triples(s, x, t) wheres andt areR-related
to wτ in S, x ∈ X ∪ X−1, ands.xτ = t : we view this edge as being directed froms to t .
The graphSΓ (X,T ,w) is an inverse word graphoverX (i.e., a connected graph who
edges are labeled overX ∪ X−1 in such a way that each edgee labeled byx has a unique
inverse edge labeled byx−1) and is also deterministic. The automatonA(X,T ,w) is then
defined as the (inverse) automaton on this underlying graph that has as initial st
vertex ww−1τ and as terminal state the vertexwτ . The importance of these automa
stems from the fact that for any two wordsw,w′ ∈ (X ∪ X−1)+, wτ = w′τ if and only if
A(X,T ,w) = A(X,T ,w′), or equivalently if these two automata accept the same lang
[17]. In view of this we will occasionally abuse notation slightly and denoteA(X,T ,w)

by A(X,T ,wτ) when it is convenient.
We refer the reader to Stephen’s original paper [17] for a description of an iterativ

cedure for constructing the Schützenberger automatonA(X,T ,w) from the linear automa
ton of w by repeated applications of the process of expansions and determinations
foldings). The essential idea is that one constructs iteratively a sequence of autom
“approximate” the Schützenberger automaton ofw in the sense that the languages that t
accept become successively better approximates of the language of the Schützenbe
tomaton. An inverse automatonB is called an approximate automaton forA(X,T ,w) if
there is a wordw′ ∈ L(B) such thatw′τ = wτ and every word inL(B) is greater than
or equal tow in the natural partial order on the inverse semigroupS, i.e.,L(B) ⊆ L(A).
One solves the word problem for a presentation of an inverse semigroupS by effectively
constructing the associated Schützenberger automata or an approximation to the Sc
berger automaton that enables to solve the word problem. It is evident that these au
are finite ifS is finite.

In his paper [1], Bennett constructs the Schützenberger automata for amalgamat
products of a class of amalgams that he refers to as “lower bounded” amalgams
verse semigroups. Our construction of the Schützenberger automata correspondin
amalgamated free product of finite inverse semigroups closely follows the construc
Bennett, but differs from Bennett’s construction in some technical ways, as amalga
finite inverse semigroups are not necessarily lower bounded.

2. V -quotients

We denote byi(p) (respectivelyt (p)) the initial (respectively terminal) vertex of a pa
p and byl(p) the word labeling the pathp in an inverse word graph. We say thatp is a path
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from α to β if i(p) = α andt (p) = β. In this case we also say that the wordl(p) labels a
path fromα to β. If p is a path inΛ with i(p) = t (p) = α thenp is called a loop base
atα. If Λ is a deterministic inverse word graph, and ifw labels a path fromα to β in Λ, it
is convenient to writeβ = αw. We also say thatαw existsfor the wordw ∈ (X ∪ X−1)+
in this case.

There is an evident notion of amorphismbetween inverse word graphs. This is jus
graph morphism that preserves labeling of edges. Morphisms between inverse word
are referred to asV -homomorphismsin [17]. A surjective morphism is an edge surjecti
V -epimorphism in the sense of [17]. IfΛ is an inverse word graph overX andη is an
equivalence relation on the set of vertices ofΓ , the corresponding quotient graphΛ/η

is called aV -quotientof Λ (see [17] for details). This notion extends to the concep
a V -quotient of an inverse automaton in the obvious way. There is a least equiva
relation on the vertices of an inverse automatonΛ such that the correspondingV -quotient
is deterministic. A deterministicV -quotient ofΛ is called aDV -quotient in this paper.
There is a naturalV -homomorphism fromΛ onto aV -quotient ofΛ.

It is convenient to record the following lemma for later use in this paper.

Lemma 1. LetΛ be a deterministic inverse word graph overX, let Γ be theV -quotient of
Λ obtained by identifying verticesα1, α2, . . . , αn of Λ, and let∆ be the determinized form
of Γ . Let≡ be the smallest equivalence relation on the set of vertices ofΛ such that

(1) αi ≡ αj for all i andj , and
(2) if β1 ≡ β2 and β1w and β2w both exist for some wordw ∈ (X ∪ X−1)+, and some

verticesβi of Λ, thenβ1w ≡ β2w.

Then two verticesγ1 and γ2 of Λ are identified in theDV -quotient∆ if and only if
γ1 ≡ γ2.

Proof. It is clear that two verticesγ1 andγ2 of Λ get identified in∆ if γ1 ≡ γ2, since ifβ1
gets identified withβ2 and there is some wordw such thatβ1w andβ2w both exist, then
β1w gets identified withβ2w. To prove the converse, note that by Theorem 4.4 of Step
[17], γ1 gets identified withγ2 if and only if there is some Dyck wordd (i.e., a word that
freely reduces to 1) in(X ∪ X−1)+ such thatd labels a path fromγ1 to γ2 in Γ . We prove
thatγ1 ≡ γ2 by induction on the length ofd .

If |d| = 2, thend = xx−1 for some letterx ∈ X ∪ X−1. SinceΛ is deterministic, if
γ1 �= γ2, then we must have thatx labels an edge fromγ1 to vi andx−1 labels an edge from
vj to γ2 for somei �= j . But sincevi andvj were identified inΓ , then clearlyγ1 ≡ γ2.
This gives a base for the induction.

Suppose thatd = d1d2 . . . dk for some Dyck wordsdi and thatk > 1. Thend1 labels a
path inΓ from γ1 to some vertexδ2, d2 labels a path inΓ from δ2 to δ3, . . . , anddk labels
a path inΓ from δk to γ2. By induction,γ1 ≡ δ2 ≡ δ3 ≡ · · · ≡ γ2.

So assume thatd cannot be written as a product of smaller Dyck words, and that|d| > 2.
Then we haved = xcx−1 for some Dyck wordc with |c| < |d|. Now c labels a path from
some vertexβ1 of Γ to some other vertexβ2. By induction,β1 ≡ β2, andβ1x

−1 = γ1 and
β2x

−1 = γ2, so by part (2) of the definition of≡, we haveγ1 ≡ γ2, as required. �
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Now letS = Inv〈X | T 〉 be a finite inverse semigroup and letΛ be an inverse word grap
overX. We will always assumeX andT to be finite in this paper. Recall from [17] thatΛ

is calledclosed(relative to the presentation) ifΛ is deterministic and wheneveru = v is a
relation inT andu (respectivelyv) labels a path inΛ from a vertexα to a vertexβ, thenv

(respectivelyu) also labels a path inΛ from α to β.

Lemma 2. Let (λ,Λ,λ) be a nontrivial closed inverse automaton relative to a prese
tion S = Inv〈X | T 〉 = (X ∪ X−1)+/τ of a finite inverse semigroupS. Then there exist
a unique minimum idempotente = uτ ∈ S such that(λ,Λ,λ) is a DV -quotient of the
Schützenberger automatonA(e) = A(X,T ,u) = (λ∗,Λ∗, λ∗). In particular, Λ is finite. If
a wordy ∈ (X ∪ X−1)+ labels aλ–θ path in(λ,Λ,λ), theny also labels aλ∗–θ∗ path in
Λ∗ for some vertexθ∗. If y labels a path starting atλ in Λ andyτ is an idempotent ofS,
theny labels a loop atλ in Λ.

Proof. Consider the automaton(λ,Λ,λ). Since this automaton is nontrivial, there is so
word u such thatuτ is an idempotent ofS andu labels a loop inΛ based atλ. Let e =
uτ be the minimum idempotent ofS such thatu labels a loop inΛ based atλ. Denote
by A(e) = (λ∗,Λ∗, λ∗) the Schützenberger automaton ofu relative to〈X | T 〉. (In fact
λ∗ = e andΛ∗ is the Schützenberger graph ofu relative to〈X | T 〉.) If v is a word in
(X ∪ X−1)+ which labels a loop inA(e) based atλ∗ then there is a finite sequence
automataA1,A2, . . . ,An such thatA1 is the linear automaton ofu, eachAi+1 is obtained
from Ai by a full expansion relative toT or an edge folding, andv ∈ L(An). The fact that
(λ,Λ,λ) is closed with respect toT implies that if this same sequence of expansions
edge foldings is performed in(λ,Λ,λ), then induction on the number of steps shows
v labels a loop in(λ,Λ,λ) based atλ.

By Theorem 2.5 of [17] there exists a homomorphismφ from Λ∗ to Λ that mapsλ∗
onto λ. If y labels aλ–θ path inΛ it follows that uyy−1 labels a loop inΛ based atλ.
By minimality of e this implies thate = (uyy−1)τ , souyy−1 labels a loop inA(e) based
atλ∗. Again, sinceu labels a loop inA(e) based atλ∗, it follows thaty labels aλ∗–θ∗ path
in Λ∗ for some vertexθ∗. In particular, this implies thatφ is surjective.

To prove the last statement of the lemma, note that ifyτ is an idempotent ofS, then
yy−1τ = yτ , butyy−1 labels a loop based atλ, soyτ = yy−1τ � e. But this means thaty
labels a loop based atλ∗ in A(e), and so the image of this loop must be a loop labeled
y and based atλ in Λ. �
Remark. Note that the Schützenberger automatonA(e) of Lemma 2 contains ever
Schützenberger automatonA(f ) which has(λ,Λ,λ) as aDV -quotient, forf idempo-
tent. In fact suppose that there exists an idempotentf = vτ of S such that(λ,Λ,λ) is a
DV -quotient of the corresponding Schützenberger automatonA(f ). Now v labels a loop
in Λ based atλ, whencef � e, so thatA(f ) is embedded intoA(e). In the sequel we
will refer to A(e) as themaximum determinizing Schützenberger automatonof (λ,Λ,λ).
Clearly the automaton(λ,Λ,λ) accepts a larger language than its maximum determini
Schützenberger automaton in general.
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Recall from [17] that if(α,Λ1, β) and(γ,Λ2, δ) are two birooted inverse word graph
then(α,Λ1, β) × (γ,Λ2, δ) is the birooted inverse word graph obtained as theV -quotient
of the union of these two birooted graphs by identifyingβ andγ . The next result is an
immediate consequence of Lemma 5.2 in [17].

Lemma 3. Let e and f be idempotents of some inverse semigroupS = Inv〈X | T 〉, with
corresponding Schützenberger automataA(e) andA(f ). ThenA(e)×A(f ) approximates
the Schützenberger automatonA(ef ). Furthermore, if(α,Λ,α) is a V -quotient ofA(e)

and(β,Γ,β) is aV -quotient ofA(f ), then(α,Λ,α)×(β,Γ,β) is aV -quotient ofA(e)×
A(f ).

We remark that automata that are closed with respect toT are not necessarily Schütze
berger automata relative to the presentation. For example, the inverse monoid

S = Inv
〈
a, b

∣∣ a2 = b3 = 1, ba = ab2〉

is clearly the symmetric group on three letters, so it has only oneD-class and hence onl
one Schützenberger graph, so theDV -quotient of this graph obtained by identifying th
vertices corresponding to the group elements 1 andb is a graph with two vertices, so it
not a Schützenberger graph, but it is closed with respect to these defining relations
also thatb labels a loop at 1 in this graph, butb does not label a loop in the Cayley gra
(Schützenberger graph) ofS. So loops in aDV -quotient of a Schützenberger graph do
all lift to loops in the Schützenberger graph.

3. Finite amalgams

If [S1, S2;U ] is an amalgam of finite inverse semigroups andu ∈ U , we denote bywi(u)

the natural image ofu in Si under the embedding ofU into Si . If Si is presented asSi =
Inv〈Xi | Ri〉 = (Xi ∪X−1

i )+/ηi , where theXi are disjoint alphabets, then the wordswi(u)

are viewed as words in the alphabetXi andS1 ∗U S2 = Inv〈X | R ∪ W 〉 = (X ∪ X−1)+/τ ,
whereX = X1 ∪ X2, R = R1 ∪ R2 andW is the set of all pairs(w1(u),w2(u)) for u ∈ U .
Furthermore, ifvi ∈ (Xi ∪ X−1

i )+ andv ∈ (X ∪ X−1)+, thenA(X,Ri, vi) will denote the
Schützenberger automaton of the wordvi relative to〈Xi | Ri〉 andA(X,R ∪ W,v) will
denote the Schützenberger automaton of the wordv relative to〈X | R ∪ W 〉. We shall
adhere to this notation throughout the remainder of the paper.

We recall some notation from [1,8]. Suppose thatΓ is an inverse word graph labele
overX = X1 ∪ X2: then an edge ofΓ that is labeled fromXi ∪ X−1

i (for somei ∈ {1,2})
is said to becoloredby i. A subgraph ofΓ is calledmonochromaticif all of its edges have
the same color. Alobeof Γ is defined to be a maximal monochromatic connected subg
of Γ . The coloring of edges extends to coloring of lobes. Two lobes are said to beadjacent
if they share common vertices, calledintersections. If v ∈ V (Γ ) is an intersection vertex
then it is common to two unique lobes, which we denote by∆1(v) and∆2(v), colored
respectively by 1 and 2. We define thelobe graphT (Γ ) to be the graph whose vertices a
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the lobes ofΓ and whose edges correspond to adjacency of lobes. We say thatΓ is cactoid
if its lobe graph is a finite tree and adjacent lobes have precisely one common inters

Theorem 1 [8, Theorem 4.1].The Schützenberger automata of the free productS1 ∗ S2

relative to〈X | R〉 are, up to isomorphism, precisely(a transversal of) the cactoid inverse
automata overX whose lobes are Schützenberger graphs relative to either〈X1 | R1〉 or
〈X2 | R2〉.

We refer the reader to [8] for details of the iterative procedure used to constru
Schützenberger automata for free products of inverse semigroups and to [1] for
erative construction of the Schützenberger automata of a “lower bounded” amalg
inverse semigroups. Our construction below of the Schützenberger automata corre
ing to an amalgam of finite inverse semigroups very closely follows Bennett’s constru
[1], the major difference being that the lobes of the automata under construction are
DV -quotients of Schützenberger automata relative to〈Xi | Ri〉 (for i ∈ {1,2}), rather than
Schützenberger automata, as in [1]. While we will attempt to refer as much as poss
Bennett’s construction, the fact that our lobes are not Schützenberger automata doe
some technical difficulties, and several of Bennett’s constructions need to be modifie
first need to modify the central construction used in [8]. The idea of this construct
to start with a cactoid automaton overX, close one of its lobes relative to the appropri
presentation〈Xi | Ri〉, and then make the resulting automaton deterministic.

LetA = (α,∆,β) be a finite inverse automaton overX. We define theclosureof A with
respect to a presentation〈X | T 〉 to be the automaton cl(A) such that cl(A) is closed with
respect to the presentation,L(A) ⊆ L(cl(A)), and ifΓ is any other closed automaton wi
respect to the presentation such thatL(A) ⊆ L(Γ ), thenL(cl(A)) ⊆ L(Γ ). The existence
of a unique automaton with these properties follows from the work of Stephen [17,1
particular from Theorem 2.5 of [17] and Lemma 3.4 of [18]. IfA is the linear automato
of some wordw then cl(A) is the Schützenberger automatonA(X,T ,w).

Construction 1. Let A = (α,Γ,β) be a finite cactoid inverse automaton overX. Let ∆ be
a lobe ofΓ , colored byi, that is not closed relative to〈Xi | Ri〉. Let λ be any vertex of∆,
let cl(∆) be a disjoint copy of the closure of∆ relative to〈Xi | Ri〉, and letλ∗ denote the
natural image ofλ in cl(∆). Construct theV -quotientA∗ = (α∗, (Γ ∪cl(∆))/κ,β∗), where
κ is the leastV -equivalence that identifiesλ with λ∗ and makes the image determinist
and letα∗, β∗ denote the respective images ofα andβ.

Lemma 4. LetA = (α,Γ,β) be a finite cactoid inverse automaton overX.

(i) The automatonA∗ constructed fromA by an application of Construction1 is also a
finite cactoid inverse automaton. Moreover, ifA approximatesA(X,R,w) (respec-
tivelyA(X,R ∪ W,w)) for some wordw ∈ (X ∪ X−1)+, then so doesA∗.

(ii) After iteratively applying Construction1 finitely many times, starting fromA,
we eventually arrive at a cactoid automatonA′ with the property that each lob
of A′ is a DV -quotient of some Schützenberger graph relative to either〈X1 | R1〉
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or 〈X2 | R2〉, A′ is closed with respect toR, andA′ approximatesA(X,R,w) (re-
spectivelyA(X,R ∪ W,w)) if A does.

(iii) In addition, if this construction is applied iteratively starting from the linear autom
ton of a wordw ∈ (X∪X−1)+, then the resulting automatonA′ is the Schützenberge
automatonA(X,R,w) (respectivelyA(X,R∪W,w)) ofw in the free productS1∗S2.

Proof. The proof of this is essentially a slight modification of the proofs of Prop
tions 3.1, 3.2, and 3.3 and Theorem 3.4 of [8], so we just outline the proof here and
the reader to [8] for additional details.

Without loss of generality let us assume that∆ is colored by the color 1. The closu
(λ∗,cl(∆),λ∗) of (λ,∆,λ) is a finite inverse automaton obtained by applying finitely m
elementary expansions and edge foldings [17] and is aDV -quotient of some Schützen
berger automaton relative to〈X1 | R1〉 by Lemma 2. The automatonA∗ is still a cactoid
automaton, by essentially the same argument as is used in the proof of Proposition
[8] and is an approximate automaton ofA(w) if A is an approximate automaton ofA(w),
by Lemmas 1.3 and 1.5 of [8].

The graphΓ ∗ has at most as many lobes asΓ . Each of its lobes is either a lobe
Γ or was obtained from lobes∆1,∆2, . . . ,∆k of Γ ∪ cl(∆) by identifying intersection
verticesv1, v2, . . . , vk , forming products∆i × ∆j and folding edges (see [8] for details
From Lemmas 2 and 3, it follows that the lobes ofA∗ areDV -quotients of approximat
automata of Schützenberger automata relative to either〈X1 | R1〉 or 〈X2 | R2〉.

The second statement in the Lemma follows easily from the fact that the automat
structed after an application of Construction 1 have finitely many lobes. The final stat
(iii) is Theorem 3.4 of [8]. �

Let v be an intersection vertex of an inverse automaton overX, with corresponding
lobes∆1(v) and∆2(v). Let ei(v) denote the minimum idempotent ofSi labeling a loop
based atv in ∆i (for i = 1,2) and letUi(ei(v)) = {u ∈ U : u labels a loop in∆i based atv}.
If Ui(ei(v)) is nonempty, it is a finite subsemigroup ofU , so it has a minimum idempote
which we denote byf (ei(v)). It is clear that if the automaton is deterministic and
lobes are closedDV -quotients of Schützenberger automata relative to either〈X1 | R1〉 or
〈X2 | R2〉, thenA(Xi,Ri, ei(v)) is the maximum determinizing Schützenberger automa
of (v,∆i(v), v).

Remark. If ∆i is a Schützenberger graph, thenUi(ei(v)) = {u ∈ U | ei(v) �i u}, where
�i denotes the natural partial order inSi . (This was the definition used by Bennett in [1
However, these definitions do not in general coincide if∆i is not a Schützenberger grap
as one readily sees by examining the example after Lemma 2.

We say that an inverse automatonΓ overX has property(L) if for every intersection
vertexv of Γ we have

either U1
(
e1(v)

) = U2
(
e2(v)

) = ∅ or f
(
e1(v)

) = f
(
e2(v)

)
.
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Construction 2(a). LetA = (α,Γ,β) be a finite cactoid inverse automaton overX whose
lobes are closedDV -quotients of Schützenberger automata relative to either〈X1 | R1〉
or 〈X2 | R2〉 and suppose thatA does not satisfy property (L). Without loss of gen-
erality, by the last statement in Lemma 2, there exists an intersection vertexv of A
such thatU1(e1(v)) �= ∅ and w2(f (e1(v))) /∈ U2(e2(v)). (The other case is dual.) Le
f = w2(f (e1(v))) and form the productB = (v,Γ, v) × A(X2,R2, f ). The union of the
images of∆2(v) andA(X2,R2, f ) is a lobe ofB that is aV -quotient of a Schützen
berger automaton relative toR2 by Lemma 3. By repeated applications of Constructio
we obtain a rooted cactoid automatonB′ = (v′,Γ ′, v′) which is closed relative to〈X | R〉
and whose lobes are closedDV -quotients of Schützenberger automata relative to ei
〈X1 | R1〉 or 〈X2 | R2〉. The automatonA′ = (α′,Γ ′, β ′) (whereα′ andβ ′ are the respectiv
images ofα and β) is the automaton obtained fromA by an application of Construc
tion 2(a) at the vertexv. (It is intended that this construction encompasses the dual ca
the one described here as well.)

Lemma 5. Let w ∈ (X ∪ X−1)+ and letA = (α,Γ,β) be a finite cactoid inverse au
tomaton whose lobes are closedDV -quotients of Schützenberger automata relative
either 〈X1 | R1〉 or 〈X2 | R2〉 and suppose thatA is an approximate automaton fo
A(X,R ∪ W,w). If A′ is the automaton obtained fromA by an application of Con
struction2(a), thenA′ is also a finite cactoid inverse automaton whose lobes are cl
DV -quotients of Schützenberger automata relative to either〈X1 | R1〉 or 〈X2 | R2〉 and
A′ approximatesA(X,R ∪ W,w). Repeated applications of Construction2(a) to such an
automatonA terminate in a finite number of steps in a finite deterministic cactoid inv
automatonA∗ that satisfies property(L) (and whose lobes are closedDV -quotients of
Schützenberger automata relative to either〈X1 | R1〉 or 〈X2 | R2〉).

Proof. The proof is really just an adaptation of the proofs of Lemmas 2.2 and 2.3 o
the essential difference being that the lobes of the automata under consideration are
DV -quotients of Schützenberger automata relative to either〈X1 | R1〉 or 〈X2 | R2〉 as op-
posed to Schützenberger automata. The proof of Lemma 2.2 of [1] carries throug
almost no change in this setting. This, combined with Lemma 4 yields the first claim i
lemma. The last claim (the fact that repeated applications of Construction 2(a) mu
minate after finitely many steps in an automaton that satisfies property (L)) follows again
by adapting the proof of Lemma 2.3 of [1] to the current setting, but is actually easie
Bennett’s proof of that lemma since the semigroupsS1 andS2 are both finite, so there ar
only finitely many possible graphs that can arise as closedDV -quotients of Schützenberg
automata relative to〈X1 | R1〉 or 〈X2 | R2〉. Any application of Construction 2(a) at a vert
v replaces a closedDV -quotient of a Schützenberger graph in eitherS1 or S2 by another
closedDV -quotient of a Schützenberger graph, and the new graph has either more
or more loops (i.e., has higher rank fundamental group) than the original graph. Fini
of eachSi puts an upper bound on the number of edges and the rank of the fundam
group of these graphs. We refer the reader to Bennett’s proof of Lemmas 2.2 and 2.3
paper [1] for full details. �
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We say that an inverse automatonA over X has the loop equality propertyif
U1(e1(v)) = U2(e2(v)) for each intersection vertexv of A. If all lobes are in fact Schützen
berger graphs, then this concept coincides with the concept of thelower bound equality
propertyof Bennett [1]. It is clear that ifA satisfies the loop equality property, then it m
also satisfy property (L), but the converse is false in general.

Lemma 6. Let A be a finite cactoid inverse automaton overX whose lobes are close
DV -quotients of Schützenberger automata relative to either〈X1 | R1〉 or 〈X2 | R2〉 and
suppose thatv is an intersection vertex of two lobes∆1(v) and∆2(v) such thatf (e1(v)) =
f (e2(v)). If there is a path in∆1(v), starting atv and labeled by a wordw1(u) for some
u ∈ U , then there is a path in∆2(v), starting atv and labeled by the wordw2(u).

Proof. Clearly e1(v) � w1(u)w1(u)−1 andf (e2(v)) = f (e1(v)) � w1(u)w1(u)−1. Now
f (e2(v)) �2 w2(u)w2(u)−1 since both of these elements are in the image ofU in S2, so
e2(v) �2 w2(u)w2(u)−1. By the remark after Lemma 2,(v,∆2(v), v) is aDV -quotient of
(v, SΓ (e2(v)), v). Sincew2(u)w2(u)−1 labels a loop based atv in SΓ (e2(v)), it follows
thatw2(u)w2(u)−1 labels a loop in∆2(v) based atv. But this means thatw2(u) labels a
path in∆2(v) based atv. �
Construction 2(b). Let A be a finite cactoid inverse automaton overX whose lobes are
closedDV -quotients of Schützenberger automata relative to either〈X1 | R1〉 or 〈X2 | R2〉
and suppose thatA satisfies property (L) but does not satisfy the loop equality proper
Then either there exists some intersection vertexv of A and a nonidempotent eleme
u ∈ U such thatw1(u) ∈ U1(e1(v)) andw2(u) /∈ U2(e2(v)) or there exists an intersectio
vertexv with the dual property (with subscripts interchanged). Without loss of gene
assume that the first case occurs. In∆1 there is a loop based atv labeled byw1(u), while in
∆2(v) there is av–v′ path labeled byw2(v) for somev′, by Lemma 6. Form theV -quotient
B of A obtained by identifyingv andv′ in ∆2(v). Then apply Constructions 1 and 2(a)
the resulting automatonB, obtaining an automatonA′. We say thatA′ is obtained fromA
by an application of Construction 2(b).

Lemma 7. LetA = (α,Γ,β) be a finite cactoid inverse automaton whose lobes are clo
DV -quotients of Schützenberger automata relative to either〈X1 | R1〉 or 〈X2 | R2〉, sup-
pose thatA satisfies property(L) and thatA approximatesA(X,R∪W,w) for some word
w. Then the automatonA′ obtained fromA by an application of Construction2(b)also has
lobes that are closedDV -quotients of Schützenberger automata relative to either〈X1 | R1〉
or 〈X2 | R2〉, A′ approximatesA(X,R ∪ W,w) andA′ satisfies property(L). Successive
applications of Construction2(b) lead after finitely many steps to a finite cactoid inve
automatonA∗ whose lobes are closedDV -quotients of Schützenberger automata relat
to 〈X1 | R1〉 or 〈X2 | R2〉 such thatA∗ approximatesA(X,R ∪W,w) andA∗ has the loop
equality property.

Proof. It is clear by Lemmas 2 and 5 that the lobes ofA′ are closedDV -quotients of
appropriate Schützenberger automata relative to either〈X1 | R1〉 or 〈X2 | R2〉 and thatA′
satisfies property (L). Let C be the automaton obtained fromA by sewing on toA a loop
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labeled byw2(u) based at the vertexv. This operation is an “elementary expansion” in
sense of Stephen [17], sincew1(u) = w2(u) is a relation inW andw1(u) labels a loop in
∆1(v) by assumption. It is clear that the determinized form of the intermediate autom
B in the description of Construction 2(b) is obtained fromC by a finite sequence edge fol
ings, so this automaton is an approximate automaton ofA(X,R∪W,w) by Lemma 5.6 and
Theorem 5.7 of [17]. Hence by Lemmas 4 and 5 above,A′ is an approximate automato
of A(X,R ∪ W,w).

The proof that a finite sequence of applications of Construction 2(b) terminates in
tomaton that satisfies the loop equality property is again a modification of Bennett’s
of his Lemma 2.3 in [1]. Each application of Construction 2(b) effectively introduces a
ditional relation of the formw1(u) = w2(u) for someu ∈ U at some intersection vertexv.
The construction may also decrease the number of lobes and the number of inter
vertices of the resulting automaton, but each intersection vertex has an image that
an intersection vertex in the resulting automaton, and loops labeled bywi(u) in a lobe
∆i(v) are transformed into loops with the same label in the new automaton. Finiten
the automata and of the semigroupU forces this process to stop after finitely many st
in an automaton that satisfies the loop equality property.�
Remark. Construction 2(b) provides one of the essential differences between the arg
presented in this paper and Bennett’s argument [1]. It is a consequence of this const
that the lobes of the automata under construction areDV -quotients of Schützenberg
automata (as opposed to Schützenberger automata) relative to either〈X1 | R1〉 or 〈X2 | R2〉.

We next consider therelated pair separation propertyof Bennett. LetA = (α,Γ,β) be
a finite inverse automaton overX whose lobes are closedDV -quotients of Schützenberg
automata relative to〈X1 | R1〉 or 〈X2 | R2〉 and letv be an intersection vertex ofA for
which U1(e1(v)) = U2(e2(v)). Consider a wordu ∈ U such thatw1(u) labels av–v1 path
in ∆1(v) for some vertexv1. Thenw1(u) labels av∗–v∗

1 path in the maximum determiniz
ing Schützenberger automatonA(e1(v)) by Lemma 2. Hencew1(u)w1(u)−1 � e1(v),
whence this element belongs toU1(e1(v)) = U2(e2(v)). It follows thatw2(v) also labels a
v–v2 path in∆2 for some vertexv2. Following Bennett [1], we say that(v1, v2) is arelated
pair of the intersection vertexv. By a very minor modification of Bennett’s argument
the first part of Section 3 of his paper [1], we see that the relationR(v) consisting of all
pairs(v1, v2) such that(v1, v2) is a related pair ofv defines a partial one–one map fro
V (∆1(v)) to V (∆2(v)). The equivalence relation onΓ generated byR(v) thus identifies
the two coordinates of each related pair without identifying any two vertices from the
lobe.

Let A be a finite inverse automaton overX whose lobes are closedDV -quotients of
Schützenberger automata relative to〈X1 | R1〉 or 〈X2 | R2〉 and which satisfies the loo
equality property. We say thatA has therelated pair separation propertyif for any lobe∆

of A (with color 1 without loss of generality) and for any two intersection verticesv and
v′ of ∆ that are vertices of∆ but are not common to the samepair of lobes ofA, there is
no wordu ∈ U such thatw1(u) labels a path in∆ from v to v′.



A. Cherubini et al. / Journal of Algebra 285 (2005) 706–725 717

are

lor

l
n.

sed

er
p-
ill

ration

show

te the

7

h

Construction 3. Let A = (α,Γ,β) be a finite cactoid inverse automaton whose lobes
closedDV -quotients of some Schützenberger automata relative to either〈X1 | R1〉 or 〈X2 |
R2〉 and suppose thatA has the loop equality property. Letv0 and v1 be two different
intersection vertices of a lobe∆2 that is (without loss of generality) colored by the co
2 and suppose that there is a path labeled byw2(u) from v0 to v1 for someu ∈ U . Let
∆0 and ∆1 be the two lobes (colored by 1) adjacent to∆2 and intersecting∆2 in v0

andv1, respectively. SinceA has the loop equality property, there is a path in∆0 from
v0 to v′

0 labeled byw1(u) for some vertexv′
0. Form the graphΓ̃ by disconnectingΓ at

v0 and replacingv0 with v0(0) andv0(2) in ∆0 and∆2, respectively. Denote byT0 the
component ofΓ̃ that containsv0(0) and byT2 the component that containsv0(2). Now put
B = (v′

0, T0, v
′
0) × (v1, T2, v1). Clearly all lobes ofB except at most∆0 × ∆1 are closed

DV -quotients of Schützenberger automata relative to either〈X1 | R1〉 or 〈X2 | R2〉. By
Lemma 3,∆0 × ∆2 is a V -quotient of an approximate automaton relative to〈X1 | R1〉,
so we can apply Constructions 1, 2(a), and 2(b) to the automatonB. Denote the natura
images inB of α by α′ and ofβ by β ′ and letA′ = (α′,Γ ′, β ′) be the resulting automato
We say thatA′ is obtained fromA by an application of Construction 3.

Lemma 8. LetA = (α,Γ,β) be a finite cactoid inverse automaton whose lobes are clo
DV -quotients of Schützenberger automata relative to either〈X1 | R1〉 or 〈X2 | R2〉, that
approximatesA(X,R ∪ W,w) for some wordw and has the loop equality property. IfA′
is the automaton obtained fromA by an application of Construction3, thenA′ also is a
finite cactoid inverse automaton whose lobes are closedDV -quotients of Schützenberg
automata relative to〈X1 | R1〉 or 〈X2 | R2〉, that has the loop equality property and a
proximatesA(X,R ∪ W,w). Furthermore, repeated applications of this construction w
terminate in a finite number of steps in an automaton that has the related pair sepa
property.

Proof. The only thing that needs to be proved is that the automatonA′ approximates
A(X,R ∪ W,w): all other statements in the lemma are immediate. Thus we have to
thatL(A′) ⊆ L(A(X,R ∪ W,w)) and that inL(A′) there exists a wordτ -equivalent tow.
Let B be the automaton constructed in the description of Construction 3 and deno
natural image ofα (respectivelyβ) in B by α (respectivelyβ) again. LetA′′ = (α,Σ,β)

be the resulting automaton, whereΣ is the underlying graph ofB. By Lemmas 4, 5, and
it suffices to check thatA′′ is an approximate automaton forA(X,R ∪ W,w).

Let v′
0 = v1 be denoted byv in A′′. Now letz ∈ L(A′′). Then there exists inΣ anα–β

path labeled byz. Everyα–β path which belongs entirely to the same componentT0 or T2

(if any) was already anα–β path inΓ , whence its label belongs toL(A(X,R ∪ W,w)).
So consider anα–β pathλ in A′′ containingv and which can be split into parts whic
belong to different components. Considerλ = γ δ, wheret (δ) = β, i(δ) = v and if β = v

then λ = γ , elseδ belongs entirely to the same component as the vertexβ, and factor
γ = γ1γ2 · · ·γn where

• i(γ1) = α, t (γn) = v, i(γi+1) = t (γi) = v, i = 1, . . . , n − 1,
• each of the pathsγi belongs entirely to one of the componentsT0 or T2, i = 1, . . . , n,
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• γi+1 andγi belong to different componentsT0 andT2, for i = 1, . . . , n − 1; the same
holds forδ andγn if γ �= λ .

Let us prove by induction onn that if γn is a path inT0 (respectivelyT2), then there
exists anα–v′

0 (respectivelyα–v1) pathγ ∗ in the graphΓ which is labeled by a word
which is less than or equal tol(γ ) in S = (X ∪ X−1)+/τ . This will prove thatL(A′′) ⊆
L(A(X,R ∪W,w)), since this language consists of all words that are greater than or
to w in S.

Let n = 1. Thenγ = γ1 is anα–v′
0 path belonging to the componentT0, whence also i

is a path inΓ (similarly if γ1 belongs toT2).
Now let γ = γ1γ2 · · ·γn and suppose thatγn belongs toT0, so thatγn labels a loop

based atv′
0. Thus γn−1 belongs toT2 and there exists anα–v1 path γ ′ in the graph

Γ such thatl(γ ′) � l(γ1γ2 · · ·γn−1) in S. In addition, there exists av1–v0 path la-
beled byw2(u), a v0–v′

0 path labeled byw1(u
−1), and thus anα–v′

0 path labeled by
l(γ1γ2 · · ·γn−1)w2(u)w1(u)−1l(γn) in Γ . Also l(γ )τ � (l(γ1γ2 · · ·γn−1)w1(u)w1(u)−1 ·
l(γn))τ = (l(γ1γ2 · · ·γn−1)w2(u)w1(u)−1l(γn))τ .

The case whenγn is in T2 is symmetric.
Finally, note that inA = (α,Γ,β) there exists anα–β path labeled by a wordw′ such

thatw′τ = wτ . If this path has no vertex equal tov0 then its label also labels a path inA′′.
So, considerw′ = l(γ1)l(γ2) · · · l(γn), where

– i(γ1) = α, t (γn) = β, i(γi+1) = t (γi) = v0, i = 1, . . . , n − 1,
– each of the pathsγi belongs entirely to the same of the componentsT0 andT2, i =

1, . . . , n andγi+1 andγi belong to different componentsT0 andT2 for i = 1, . . . , n−1.

Suppose, without loss of generality, thatγi belongs toT0 for i even.
Certainly in the automatonA′′ there is anα–β path labeled by the wordw′′ =

l(γ1)w2(u
−1)w1(u)l(γ2)w1(u

−1)w2(u)l(γ3) · · · l(γn) and w′′τ = w′′′τ where w′′′ =
l(γ1)w2(u)−1w2(u)l(γ2)w1(u)−1w1(u) · · · l(γn).

Clearly w′′′τ � w′τ in S. But w′′′ labels a path fromα to β in Γ , sow′′′ ∈ L(A) ⊆
L(A(X,R ∪ W,w)). Hencew′′′τ � w′τ in S. Thusw′′′τ = w′′τ = w′τ in S. This shows
thatA′′ is an approximate automaton forA(X,W ∪ R,w), as required. �

We now consider theadjacent lobe assimilationproperty of Bennett [1].

Construction 4. Let A = (α,Γ,β) be a finite inverse word graph, whose lobes are clo
DV -quotients of some Schützenberger automata relative to either〈X1 | R1〉 or 〈X2 | R2〉
and which has the loop equality property and the related pair separation property
for each intersection vertexv and for everyv–v1 path in∆1(v) labeled byw1(u) for some
u ∈ U there exists a uniquev–v2 path in∆2(v) labeled byw2(u), and conversely;v1 andv2
cannot be intersection vertices of our graph by the related pair separation property. I
v1 and v2, i.e., consider theV -quotient of the graphΓ with respect to the equivalenc
relationv1 = v2 and repeat this construction with respect to all related pairs in∆1(v) and
∆2(v). Since all lobes are finite, then we end after finitely many identifications: we sa
the two lobes∆1(v) and∆2(v) wereassimilated.
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Lemma 9. LetA = (α,Γ,β) be a finite cactoid inverse automaton, whose lobes are cl
DV -quotients of some Schützenberger automata relative to either〈X1 | R1〉 or 〈X2 | R2〉
and which has the loop equality property and the related pair separation property
suppose thatA approximatesA(X,R ∪ W,w). After finitely many applications of Con
struction 4, we get a finite inverse automaton whose lobes are closedDV -quotients of
some Schützenberger automata relative to either〈X1 | R1〉 or 〈X2 | R2〉, which approx-
imatesA(X,R ∪ W,w), has the loop equality property and the related pair separa
property and where all adjacent lobes are assimilated.

Proof. Denote byv′ the vertex of the graphΓ ′ obtained fromΓ by identifying v1 with
v2 in Construction 4. We first show thatU1(e1(v

′)) = U2(e2(v
′)) in Γ ′. Recall that there

exists av–v1 path in∆1(v) labeled byw1(u) for someu ∈ U and av–v2 path in∆2(v)

labeled byw2(u).
If u′ ∈ U1(e1(v

′)), thenu′ labels a loop based atv1 in ∆1(v) and souu′u−1 ∈ U1(e1(v)),
as it labels a loop based inv in ∆1(v); hence by the loop equality propertyuu′u−1 ∈
U2(e2(v)) and labels a loop based atv in ∆2(v). But u labels av–v2 path in∆2(v) so that
u′ also labels a loop based atv2 whenceu′ ∈ U2(e2(v

′)).
This enables us to repeat Construction 4 as many times as we need on each

lobes, obtaining an automaton that satisfies the loop equality property after each ste
related pair separation property still holds after every application of the construction,
all the vertices we are working on are connected by paths whose labels belong toU . By the
finiteness ofU and of the number of lobes of the automaton we finish after finitely m
applications of this construction.

Note that an application of Construction 4 may also be accomplished by sewing oA
a path labeled byw2(u) from v to v1 (in the notation of the construction) and then foldi
edges in the resulting automaton. It follows from Lemma 5.6 and Theorem 5.7 of [17
the resulting automaton is also an approximate automaton ofA(X,R ∪ W,w). �

Since assimilation does not affect adjacency of lobes, a lobe path is reduced inΓ if and
only if it is reduced in the assimilated form ofΓ . Following Bennett [1], we say that a
inverse automatonA whose lobes are closedDV -quotients of Schützenberger autom
relative to either〈X1 | R1〉 or 〈X2 | R2〉 is opuntoidif:

(i) it has the loop equality property;
(ii) it has the adjacent lobe assimilation property;

(iii) it has no nontrivial reduced lobe loops (i.e., its lobe graph is a tree).

From the discussions above, it is clear that the automaton that we obtain from the
automaton of a wordw ∈ (X ∪X−1)+ by closing under repeated applications of Constr
tions 1–4 above is a finite inverse opuntoid automaton that approximatesA(X,R ∪ W,w).
We refer to this automaton as thecore automatonof w and denote it by Core(w): this is
not the Schützenberger automaton ofw and it is also not the case that Core(w) = Core(w′)
if wτ = w′τ , but as we shall see below, the Schützenberger automatonA(X,R ∪ W,w)

is readily obtained from Core(w) by successive applications of Construction 5 below,
carries all of the essential information ofA(X,R ∪ W,w).
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Let Γ be an opuntoid graph and letv ∈ V (Γ ) be a vertex belonging to a lobe∆i colored
by i ∈ {1,2}. Then (again analogously to Bennett [1]), we say thatv is abud of Γ if it is
not an intersection vertex andUi(ei(v)) is not empty. This is equivalent to saying th
there is some path in∆i starting atv and labeled by an elementu ∈ U , because in tha
case,uu−1 ∈ Ui(ei(v)). (Clearly, no such path can end in an intersection vertex, by
adjacent lobe assimilation property.) The graphΓ is completeif it has no buds: an opuntoi
automaton is complete if its underlying graph is complete.

Construction 5. Let A = (α,Γ,β) be an opuntoid automaton, suppose thatA is not com-
plete and letv be a bud, sov is not an intersection, belonging to a lobe∆2 colored say by 2
with U2(e2(v)) �= ∅. Form the automatonB = (v∗,Γ ∗, v∗) = (v,Γ, v) × A(X1,R1, f ),
with f = w1(f (e2(v))). By Lemma 6, ifu ∈ U2(e2(v)), thenw1(u) labels a path start
ing at v and ending atv′, say, in the new adjoined lobeA(X1,R1, f ), but this path is
not necessarily a loop. Form a lobe∆1 by first identifying all such verticesv′ with v in
A(X1,R1, f ), then determinizing, and then closing with respect toR1. Finally, apply Con-
struction 4 at the vertexv to assimilate∆2 and the new lobe∆1, and denote the resultin
automaton byA∗.

Lemma 10. Let A = (α,Γ,β) be an opuntoid automaton whose lobes are closedDV -
quotients of some Schützenberger automata relative to either〈X1 | R1〉 or 〈X2 | R2〉
and suppose thatA approximatesA(X,R ∪ W,w). Then each application of Constru
tion 5 leads to an opuntoid automatonA∗ whose lobes are closedDV -quotients of some
Schützenberger automata relative to either〈X1 | R1〉 or 〈X2 | R2〉 and which approximate
A(X,R ∪ W,w). In particular, the new automatonA∗ has one more lobe thanA, and the
automatonA is unchanged by this process.

It is convenient to split the proof of this lemma into several parts.

Lemma 11. Fix the notation as in the statement of Construction5. Letu be an element o
U such thatw2(u) labels a loop based atv in ∆2 butu is not an idempotent ofU . Letn be
the smallest integer such thatun is an idempotent ofU . Thenw1(u)n labels a loop based a
v in A(X1,R1, f ). Denote byvi the vertex inA(X1,R1, f ) at the end of the path startin
at v and labeled byw1(u)i , for i = 1, . . . , n − 1. Then for alli, a words ∈ (X1 ∪ X−1

1 )+
labels a path inA(X1,R1, f ) starting atvi if and only ifs labels a word inA(X1,R1, f )

starting atv. Furthermore,s labels a loop based atv in A(X1,R1, f ) if and only if s
labels a loop based atvi in A(X1,R1, f ).

Proof. Suppose first thats labels a path inA(X1,R1, f ) starting atv. Then ss−1 la-
bels a loop inA(X1,R1, f ) based atv, so ss−1 � f . Henceuss−1u−1 � uf u−1 in U .
Sinceuf u−1 is an idempotent ofU that labels a path based atv in A(X1,R1, f ), we
haveuf u−1 � f , and henceuss−1u−1 � f , whences labels a path starting atv1 in
A(X1,R1, f ). If s labels a loop atv, sinceA(X1,R1, f ) is a Schützenberger autom
ton, thenusu−1 must label a loop atv also, sinceu labels a path fromv to v1, sos labels
a loop atv1. A similar argument applies to the verticesvi for i > 1.
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Conversely, ifs labels a path starting atv1 in A(X1,R1, f ), thenuss−1u−1 � f , so
unss−1u−n � un−1f u−(n−1) in U . This latter idempotent is greater than or equal tof ,
again by minimality off . Also, un is an idempotent ofU . Henceunss−1 � f , and it
follows thatss−1 � f , whences labels a path inA(X1,R1, f ), starting atv. If s labels a
loop atv1, then as above,unsu−n labels a loop atv, and sinceun labels a loop atv this
means thats labels a loop atv. A similar argument applies if we start at a vertexvi for
i > 1. This verifies the claim above.�
Lemma 12. Fix the notation as in the statement of Lemma11. Let∆ be theDV -quotient
ofA(X1,R1, f ) obtained by identifying all of the verticesv1, v2, . . . , vn−1 with v and then
determinizing. Then two verticesγ1 andγ2 ofA(X1,R1, f ) are identified in∆ if and only
if there is some wordw that labels a path inA(X1,R1, f ) from vi to γ1 and a path in
A(X1,R1, f ) from vj to γ2 for somei, j . Furthermore, a words ∈ (X1 ∪ X−1

1 )+ labels a
path inA(X1,R1, f ) starting atγ1 if and only ifs labels a path inA(X1,R1, f ) starting
at γ2.

Proof. Defineγ1 ∼ γ2 if and only if there exists a wordw labeling a path fromvi to γ1

and fromvj to γ2 for somei, j . We claim that∼ coincides with the equivalence relatio
≡ of Lemma 1. Clearly∼ is included in≡. We show that∼ is an equivalence relation.

Suppose thatγ1 ∼ γ2 and γ2 ∼ γ3. Then there exist wordsw and s and vertices
vi, vj , vk, vl such thatw labels a path fromvi to γ1 and a path fromvj to γ2 and s la-
bels a path fromvk to γ2 and a path fromvl to γ3. There is a path labeled byut from vj

to vk for somet . Henceut sw−1 labels a loop inA(X1,R1, f ) based atvj . By Lemma 11,
ut sw−1 also labels a loop inA(X1,R1, f ) based atvi . This loop must go fromvi to some
vertexvh (via the path labeled byut ), then fromvh to some vertexβ (via a path labeled
by s), and then back tovi (via a path labeled byw−1). But sincew labels a path fromvi

to γ1, we must havew−1 labels a path fromγ1 to vi , and soβ = γ1. Hence there is a pat
labeled bys from vh to γ1, and also a path labeled bys from vl to γ3, soγ1 ∼ γ3.

It is also clear from Lemma 11 that ifγ1 ∼ γ2 ands is a word in(X ∪ X−1)+, thens

labels a path inA(X1,R1, f ) starting fromγ1 if and only if s labels a path inA(X1,R1, f )

starting fromγ2 (just extend the path labeled by some wordw from vi to γ1 and fromvj

to γ2: ws labels a path starting atvi if and only if it also labels a path starting atvj ,
by Lemma 11). Hence∼ satisfies the two properties defining the equivalence relatio≡,
and so∼ is equal to≡. The last statement in the lemma also follows from the ab
argument. �
Lemma 13. In the notation of Lemma12, the lobe∆ is closed with respect to the rela
tionsR1.

Proof. Suppose thatγ1 andγ2 are two vertices of∆ and that there is a path in∆ labeled
by a words from γ1 to γ2 and thats = t is a relation inR1. We must show thatt also labels
a path in∆ from γ1 to γ2. Assume first that neitherγ1 nor γ2 is equal to the image ofv in
the natural morphism fromA(X1,R1, f ) to ∆. Thus we may regardγ1 andγ2 as vertices
of A(X1,R1, f ).
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By construction of∆ from A(X1,R1, f ), and by Lemma 12, there must be a fact
ization of the words as a products = s1s2 . . . sk and verticesδi, βi, i = 1, . . . , k, where
δ1 = γ1, βk = γ2, si labels a path fromδi to βi , for i = 1, . . . , k and βi ∼ δi+1 for
i = 1, . . . , k − 1.

By Lemma 12,s2 labels a path fromβ1 to some vertexµ2 such thatµ2 ∼ β2 ∼ δ3, and
thens3 labels a path fromµ2 to some vertexµ3 with µ3 ∼ β3 ∼ δ4, and so on. Thus w
eventually produce a path labeled bys = s1s2 . . . sk in A(X1,R1, f ) starting atδ1 = γ1
and ending at a vertexµk ∼ γ2. SinceA(X1,R1, f ) is closed with respect to the presen
tion R1, it follows that there is a path inA(X1,R1, f ) from γ1 to µk labeled by the wordt .
Sinceµk ∼ γ2, we see that there is a path fromγ1 to γ2 labeled byt in ∆. Hence∆ is
closed with respect to the relationsR1, as required. A similar argument applies if one
both of the verticesγi is equal to the image ofv in the natural map fromA(X1,R1, f )

to ∆. �
Proof of Lemma 10. We first need to prove that when Construction 5 is applied, we h
U1(e1(v)) = U2(e2(v)) at the new intersection pointv (in the notation of Construction 5
By construction, we clearly haveU2(e2(v)) ⊆ U1(e1(v)). To prove the converse, we ne
to show that every loop based atv in ∆1 labeled by an element ofU , also labels a loop
based atv in ∆2. Now the lobe∆1 of Construction 5 is obtained by identifying all vertic
vi(u) of A(X1,R1, f ), as described above, for all wordsu that label loops atv in ∆2, then
determinizing, and then closing with respect toR1. But by Lemma 13, theDV -quotient of
A(X1,R1, f ) obtained by performing the identifications and the determinizing is alre
closed with respect toR1. Thus we need only to consider loops in thisDV -quotient∆1 of
A(X1,R1, f ).

So let u′ be an element ofU such thatw1(u
′) labels a loop based atv in ∆1. By

factoring the wordu′ as a productu′ = u1u2 . . . uk where eachui labels an appropriat
path inA(X1,R1, f ) and by applying an argument very similar to the argument use
the proof of Lemma 13, we see thatu′ labels a path inA(X1,R1, f ) from vi(u) to vj (ū)

for someu, ū ∈ U such thatw2(u) andw2(ū) label loops in∆2 based atv, and somei, j .
Thenw1(u)iw1(u

′)w1(ū)−j labels a loop based atv in A(X1,R1, f ).
It follows that uiu′ū−j �1 f . Also, uiu′ū−j ∈ U of course. Now by the remark afte

Lemma 2,∆2 is a DV -quotient ofA(X2,R2, e2(v)) anduiu′ū−j �2 f �2 e2(v). It fol-
lows thatw2(u

i)w2(u
′)w2(ū

−j ) labels a loop based atv in A(X2,R2, e2(v)), and hence
in ∆2. Sincew2(u) andw2(ū) label loops in∆2 based atv, we see thatw2(u

′) also labels
a loop in∆2 based atv. HenceU1(e1(v)) = U2(e2(v)) at the new intersection pointv (in
the notation of Construction 5).

It is now clear that after we apply Construction 4, the resulting automatonA∗
is opuntoid. We need only verify thatA∗ is an approximate automaton forA(w) =
(α,SΓ (wτ),β). It suffices to prove that the automatonA′ obtained fromA by adding
the lobe∆1 at v is an approximate automaton forA(w) = (α,SΓ (wτ),β).

In factL(A) ⊆ L(A′), so that inL(A′) there is a wordw′ such thatw′τ = wτ . Consider
a words which labels inA′ anα–β path inA′. If this path does not contain any edges in∆1,
then clearlys ∈ L = L(A(w)) = {z ∈ (X ∪ X−1)+ | zτ � wτ }. In addition, if s = s1s2
wheres1 labels a path fromα to v in A ands2 labels a path fromv to β in A, and if u
is an element ofU such thatw2(u) labels a loop in∆2 based atv, then we also see tha
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s1w2(f )w2(u)s2 ∈ L. So assume thats factors ass = s1t1s2t2 . . . tksk+1 wheres1 labels
a α–v path inA, ti labels a loop in∆1 based atv, si labels a loop inA based atv for
i = 1, . . . , k, andsk+1 labels a path fromv to β in A.

Proceed by induction onk, the above casek = 0, where no edges of theα–β path
labeled bys are in ∆1, being the basis for the induction. So we may assume
s1t1 . . . sk−1tk−1skw2(f )w2(u)−1sk+1 ∈ L for each elementu ∈ U such thatw2(u) la-
bels a loop in∆2 based atv. By Lemma 2,tk labels a path fromv to some vertexβ in
A(X1,R1, f ), whereβ is identified withv in the DV -quotient∆1 of A(X1,R1, f ), as
constructed in Lemma 12. By the construction of thisDV -quotient, there is some wor
u ∈ U such thatw2(u) labels a loop in∆2 andw1(u) labels a path fromβ to v in ∆1. Thus
tkw1(u) labels a loop based atv in A(X1,R1, f ), whencetkw1(u) �1 w1(f ).

Now by induction hypotheses,s1t1 . . . sk−1tk−1(sksk+1) �S w, and by tkw1(u) �S

w1(f ), we gets1t1 . . . sktkw1(u)sk+1 �S s1t1 . . . skw1(f )sk+1 �S w, sos = s1t1 . . . sktksk+1
�S s1t1 . . . sktkw1(u)w1(u)−1sk+1 �S s1t1 . . . skw1(f )w1(u)−1sk+1 =S s1t1 . . . skw2(f ) ·
w2(u)−1sk+1 �S w. Hences ∈ L, as required. �

We are now in a position to prove the main theorem of the paper.

Theorem 2. LetS = S1 ∗U S2 be an amalgamated free product of finite inverse semigro
S1 andS2 amalgamating a common inverse subsemigroupU , whereSi = Inv〈Xi | Ri〉 are
given finite presentations ofSi for i = 1,2. Then the word problem forS is decidable.

Proof. Let w1 andw2 be two words in(X ∪ X−1)+. We need a decision procedure
show whetherw2 ∈ L(A(X,R ∪ W,w1)) or not. Suppose that|w2| = n. Iteratively apply
Constructions 1, 2(a), 2(b), 3, and 4 to the wordw1 to obtain an automatonA that is an
approximate automaton forA(X,R ∪ W,w1). Applications of Construction 5 to this an
subsequent automata leaveA unchanged. By Lemma 10, the opuntoid nature of all su
quent automata means that the lobe graph of each of these automata is obtained f
previous lobe graph (tree) by adding one more vertex and edge, and that the only
that results by applying Construction 5 is to add one more lobe to the original au
ton. Apply Construction 5 toA and subsequent automata enough times so that eith
further application of Construction 5 is possible, or we build all automata whose
graphs contain all possible paths of lengthn starting from the initial lobe (the lobe con
taining the initial vertex) of the automatonA. The wordw2 is accepted by the automato
A(X,R ∪ W,w1) if and only if it is accepted by one of the automata iteratively obtai
from A by application of Construction 5. Thus we have a finite decision procedure t
whetherw2 ∈ L(A(X,R ∪W,w1)). By the results of Stephen [17], this provides a solut
to the word problem forS. �

Recalling our definition of opuntoid automaton (slightly different from Bennett’s),
can use arguments very similar to [1] Lemma 5.4 to show that:

Theorem 3. LetS = S1 ∗U S2 be an amalgamated free product of finite inverse semigro
S1 andS2 amalgamating a common inverse subsemigroupU , whereSi = Inv〈Xi | Ri〉 are
given finite presentations ofSi for i = 1,2. Let X = X1 ∪ X2, R = R1 ∪ R2 and W be
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the set of all pairs(w1(u),w2(u)) for u ∈ U . Then Schützenberger automata relative
〈X | R ∪ W 〉 are complete opuntoid automata.

Proof. Note first that a complete opuntoid automaton which approximates the Schü
berger automatonA(X,R ∪ W,w) for some wordw ∈ X+ is isomorphic to the Schützen
berger automaton. In fact its lobes are closed with respect to the presentation〈Xi | Ri〉,
whence it is closed with respect to〈X | R〉. But it is complete, whence it is also clos
with respect to〈X | W 〉.

Now, let us start from a core automaton Core(w). If it is complete, it is the Schützen
berger automaton ofw relative to〈X | R ∪ W 〉. Otherwise repeated applications of Co
struction 5 give a sequence of opuntoid automataA ⊂ A′ ⊂ A′′ ⊂ · · · which approximate
the Schützenberger automaton ofw. This sequence forms a direct systemA in the category
of inverse automata over X, whose direct limit

lim A =
⋃

k=1,...,∞
Ak

also approximates the Schützenberger automaton whence, being complete, it
Schützenberger automatonA(X,R ∪ W,w). �
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