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Abstract We consider a non–autonomous, degenerate parabolic problem
with Dirichlet boundary condition. We study the asymptotic behaviour of
solutions, extending an earlier result of the authors, where the forcing term
was taken zero.
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1 Introduction

Let u(x, t) be the weak solution of the following initial boundary value prob-
lem

(1.1) ut = div A(x, t, u,∇u) +B(x, t, u,∇u), (x, t) ∈ Ω× (t > 0),

(1.2) u(x, t) = 0, (x, t) ∈ ∂Ω× (t > 0),

(1.3) u(x, 0) = u0(x) ≥ 0, x ∈ Ω,

where Ω is a bounded domain in RN with C1 boundary, u0 ∈ L2(Ω) and∫
Ω
u0(x)dx > 0. B is called the forcing term. The functions A := (A1, ..., AN)
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and B(x, t, u,∇u) are assumed to be only measurable and to satisfy the
following structure conditions:

(1.4) A(x, t, u,∇u)∇u−B(x, t, u,∇u) u ≥ c0|∇u|p,

(1.5) |A(x, t, u,∇u)| ≤ c1|∇u|p−1,

and

(1.6) |B(x, t, u,∇u)| ≤ c2|∇u|p−1,

with p > 2 and c0, c1, c2 given positive constants.
A function u ∈ Cloc(R+;L2

loc(Ω)) ∩ Lploc(R+;W 1,p
loc (Ω)) is a weak solution of

(1.1)–(1.3), if ∀τ > 0

(1.7)

∫ τ

0

∫
Ω

ut φ dxdt+

∫ τ

0

∫
Ω

A(x, t, u,∇u)∇φ dxdt

+

∫ τ

0

∫
Ω

B(x, t, u,∇u)φ dx dt = 0,

for all bounded testing functions φ ∈ W 1,2
loc (R+;L2(Ω)) ∩ Lploc(R+;W 1,p

0 (Ω)).

In the last few years, several papers were devoted to the study of the asymp-
totic behaviour of solutions to the porous media and the p–Laplace equations.
We refer the reader to the recent monography by Vazquez ([11]) and to the
references therein. To our knowledge, in all these references the Authors use
elliptic results to study the asymptotic behaviour of the solutions. If, from
one side, this makes the proof simple and very elegant, on the other hand
it looks like this method cannot be applied in the case of time–dependent
coefficients. In a recent paper ([8]) the Authors followed an alternative ap-
proach introduced by Berryman-Holland ([1]) and used in the context of the
asymptotic behaviour of solutions to degenerate parabolic equations in [7]
and [9]. This approach is more parabolic of the previous one, namely, rely-
ing on the properties of the evolution equations, it is possible to study the
asymptotic behaviour of the solutions and derive the elliptic properties of the
asymptotic limit as a by-product. Using this alternative approach and under
the assumption B = 0, in [8] the Authors studied the asymptotic behaviour
of the solutions of a degenerate parabolic equations with time dependent co-
efficients. In this note we are able to remove the condition B 6= 0 even if we
are compelled to assume the condition u0 ∈ L2(Ω). We refer to [8] for more
details and references.
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2 Notations and preliminary results

We recall some Lemmata we will need to prove the main results.
Let A be a domain of RN and let |A| denote the Lebesgue measure of the set
A. If f is a function defined in Ω with values in R and c ∈ R, with |f(x) > c|,
we denote the measure of the set A = {x ∈ Ω such that f(x) > c}. For ρ > 0,
let Bρ(x) ⊂ Ω be the ball centered at x of radius ρ, and Bρ = Bρ(0).

Lemma 2.1 (A Measure Theory Lemma, [4]) Let u0 ∈ W 1,1(Bρ) sat-
isfy

||u0(x)||W 1,1(Bρ) ≤ γρN−1, |u0(x) > β| ≥ α|Bρ|,

for some γ ≥ 0 , β ∈ R and α ∈ (0, 1). Then ∀δ ∈ (0, 1) and λ < β,
∃x0 ∈ Bρ and η = η(α, β, γ, δ, λ,N) such that

(2.1) |Bρη(x0) ∩ {u0 ≥ λβ}| ≥ (1− δ)|Bρη(x0)|.

We consider now a solution u(x, t) of (1.1)–(1.3). We introduce the set

Qρ,τ (x0, t0) := Bρ(x0)× (t0, t0 + τ),

with Qρ,τ ⊂ Ω×(t > 0) and a piecewise smooth cutoff function ζ, 0 ≤ ζ ≤ 1,
such that |∇ζ| < +∞ and ζ(x, t) = 0 if x /∈ Bρ(x0). We recall now the
energy estimate with (x0, t0) = (0, 0).
For the proof of the following result we refer the reader to the monograph [2]
pag.24.

Lemma 2.2 (Local energy estimates) Let u be a local weak solution of
(1.1)–(1.3) under the structure conditions (1.4)–(1.5). For all t ∈ (0, τ),
∃C = C(p) > 0 such that for all cylinders Qρ,τ (0, 0) ⊂ Ω× (0, τ) and ∀k ∈ R

sup
(0,τ)

∫
Bρ×{t}

(u− k)2
− ζ

pdx+

∫ τ

0

∫
Bρ

|∇(u− k)−|p ζpdxdt

(2.2) ≤
∫
Bρ×{0}

(u− k)2
− ζ

pdx+ C

∫ τ

0

∫
Bρ

(u− k)p− |∇ζ|pdxdt+

+p

∫ τ

0

∫
Bρ

(u− k)2
− ζ

p−1 ζt dxdt.
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Moreover we will use a variant of a DeGiorgi-like Lemma (see [5]). We have
assumed that u0 is non-negative. For a fixed cylinder

Q2ρ,θ(2ρ)p(x0, t0) := B2ρ(x0)× (t0, t0 + θ(2ρ)p) ⊂ Ω× (t > 0),

with θ > 0, let µ± and ω be two non negative numbers such that

µ+ ≥ ess sup
Q2ρ,θ(2ρ)p

u, µ− ≤ ess inf
Q2ρ,θ(2ρ)p

u, ω ≥ µ+ − µ−.

Denote by λ and a fixed numbers in (0,1) and by Qρ(θ) = Bρ × (0, θρp).

Lemma 2.3 ([5], see also [2] pag. 49) Let u be a local weak solution of
(1.1)–(1.3) under the structure conditions (1.4)–(1.5) and let 0 < a < 1.
There exists a number ν > 0 depending upon θ, λ, ω, and the data such that
if

|(u ≤ µ− + λω) ∩Q2ρ(θ)| ≤ ν |Q2ρ(θ)|,

then

(2.3) u ≥ µ− + a λ ω, a.e. in Qρ(θ).

We remark that in [5] the result of Lemma 2.3 is stated in a more general
form; here we simplify it, according to our hypotheses.
Under the same conditions of the previous Lemmata, we have this variant of
Lemma 2.3

Lemma 2.4 ([5]) Let u be a local weak solution of (1.1)–(1.3) under the
structure conditions (1.4)–(1.5) and let λ and β be two positive numbers,
with 0 < λ < 1 such that

u(x, t0) ≥ λ β, a.e. x ∈ B2ρ;

then ∀ a ∈ (0, 1)

(2.4) u(x, t) ≥ a λ β, a.e. in Bρ × (t0, t0 + θ(2ρ)p),

with θ =
δ

(λβ)p−2
, and δ ∈ (0, 1) is a quantity that depends only on a, and

the data.
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Lemma 2.5 ([5], sec.5) Let u be a local weak solution of (1.1)–(1.3) under
the structure conditions (1.4)–(1.5) and let λ and β be two positive numbers,
with 0 < λ < 1 such that

u(x, 0) ≥ λ β, a.e. x ∈ B2ρ;

then ∀t0 > 0 and ∀t ≥ t0 > 0

(2.5) u(x, t) ≥ γ0
λβ

(t)
1
p−2

, a.e. x ∈ Bρ,

where γ0 depends upon the data and t0.

3 Estimate from above and below.

We show in this section that the solution of (1.1)-(1.3) is bounded both from
above and from below under structure conditions (1.4)-(1.6).

Estimate from above.

Theorem 3.1 Let u be the solution of (1.1)–(1.6). Let t0 > 0. Then there
exists a constant C1 > 0 depending only upon the data and t0, such that for
any t > t0, and for any x ∈ Ω

(3.1) u(x, t) ≤ C1 t
− 1
p−2 .

Proof - Following the same pattern of [3], [6] and [7], we choose in (1.7),
φ = u. Integrating in the space variables and applying the structure condition
(1.4), it follows that

(3.2)
1

2

d

dt
||u||2L2 =

∫
Ω

(−A(x, t, u,∇u)∇u +Bu) dx ≤ −c0

∫
Ω

|∇u|pdx.

Moreover we estimate the Lp-norm of the gradient by using Hölder and
Sobolev inequalities to get

(3.3)

∫
Ω

|∇u|pdx ≥ C
(∫

Ω

u2dx
)p/2

,

C a positive constant depending on |Ω|, p and N .
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By (3.2) and (3.3), we have

(3.4)
1

2

d

dt
||u||2L2 ≤ −C

(∫
Ω

u2dx
)p/2

.

For any t > 0, the function ψ :=
∫

Ω
u2dx satisfies the ordinary differential

inequality

(3.5) ψ̇ + 2 C ψp/2 ≤ 0.

By integrating (3.5) we get that

(3.6) ‖u(t)||L2 ≤ C2t
− 1
p−2 .

Therefore by Theorem 4.3, pag 123 of [2] one gets (3.1) with the constant C1

depending upon the L2 norm of the initial datum (see [8] for more details).
We remark that in [8] the initial datum was assumed to belong only to L1

and in order to obtain the validity of Theorem 3.1 B in (1.1) was zero.

Estimate from below.

First we note that in [5], [6] and [7], in order to prove estimate from below,
the authors use inequalities coming from the Rayleigh quotient. Here we
assume the coefficients A and B to be time–dependent and therefore we
derive a new method mainly based on energy estimates (2.2).

Theorem 3.2 Let u be the solution of (1.1)–(1.6). There exist t1 > 0, two
constant C3 > 0 and r > 0, and a point x0 ∈ Ω depending only upon the data
and upon t1, such that for any t > t1, and for any x ∈ B(x0, r) ⊂ Ω

(3.7) u(x, t) ≥ C3 t
− 1
p−2

Proof - Since
∫

Ω
u0 > 0, we know that there exist ν, λ,R and x0 such that

|BR(x0) ∩ [u ≥ λ]| ≥ ν |BR(x0)|, BR(x0) ⊂ Ω.

Assume x0 = 0. Applying energy estimates in Lemma 2.2 in the time interval
(0, t̃) and following [8], we obtain

(3.8) |B(1−ε)R ∩ [u ≥ λβ]| ≥ ν |B(1−ε)R|, ∀t ∈ (0, t̃),
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with β a suitable positive constant.

Now we fix an interval [ t̃
2
, t̃] and in order to apply Lemma 2.1, for a time

t ∈ [ t̃
2
, t̃], we prove that u ∈ W 1,p

0 (Ω).
We have already pointed out that for each t, u(t) ∈ L2(Ω), since Ω is bounded.
To prove that there exists a t̃/2 < t < t̃, such that ∇u(t) ∈ Lp(Ω), we start
from (1.7) with φ = u, to derive

(3.9)

∫ t̃

t̃/2

∫
Ω

u ut dxdt =

∫ t̃

t̃/2

∫
Ω

u (div A +B) dx dt

=

∫ t̃

t̃/2

∫
Ω

(−A∇u+Bu)dxdt ≤ −c0

∫ t̃

t̃/2

∫
Ω

|∇u|p dxdt

where we have used the structure condition (1.4).
By integrating in time the left hand part of (1.7) and by (3.9), we deduce

(3.10)
1

2

∫
Ω

u2(t̃)dx− 1

2

∫
Ω

u2(t̃/2)dx ≤ −c0

∫ t̃

t̃/2

∫
Ω

|∇u|p dxdt,

which yields

c0

∫ t̃

t̃/2

∫
Ω

|∇u|pdxdt ≤
∫

Ω

u2(x, t̃/2)dx ≤
(∫

Ω

u2
0(x)dx

)
.

This means that there exists at least one level t̄ ∈ [ t̃
2
, t̃] where |∇u(t̄)| ∈

Lp(Ω). Then at t = t̄, u(·, t̄) ∈ W 1,p(Ω) and satisfies (3.8): consequently
u satisfies the Lemma 2.1 and this implies that there exists a ball Bρ′ ⊂
B(1−ε)R, such that ∀δ′ ∈ (0, 1)

(3.11) |{u ≥ λβ

2
} ∩Bρ′| ≥ (1− δ′)|Bρ′ |.

From (3.11) we have

(3.12) |{u ≤ λβ

2
} ∩Bρ′ | ≤ δ′|Bρ′ |.

Using again the energy estimates Lemma 2.2, we can expand (3.12) in time
and reach a level t̄′ ≥ t̄ such that for any t ∈ [t̄, t̄′]
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|{u ≥ λββ′

2
} ∩B(1−ε)ρ′ | ≥ (1− 2δ′)|B(1−ε)ρ′ |.

and

(3.13) |{u ≤ λββ′

2
} ∩B(1−ε)ρ′| ≤ (2δ′)|B(1−ε)ρ′|.

Arguing as in [8] (to which we refer the reader for more details) we get (3.7),
using the results in [2], pag 49 and in [3].

4 Large time behaviour.

In this section we investigate the behavior of the solution of (1.1)-(1.3) for
large times. We work as in [5] and we set

(4.1) w(x, t) = u(x, t) t
1
p−2

and with t = eτ , w(x, τ) is a solution of the equation

(4.2) wτ = div Ã(x, τ, w,∇w) + B̃(x, τ, w,∇w) +
1

p− 2
w,

with
w(x, 0) = u0(x).

In (4.2)

(4.3) Ã = Aeτ( p−1
p−2

), B̃ = Beτ( p−1
p−2

).

Starting from estimates (3.1) and (3.7) and arguing as in [8] (to which we
refer for more details), we are able to prove the following results:

Theorem 4.1 For any compact K ⊂⊂ Ω, there exist a time t1 and positive
constants C4−C6, depending only upon the data, t1 and the compact K such
that

• for each x ∈ K, and for each t ≥ t1

(4.4) C4 ≤ w(x, t) = u(x, t) t
1
p−2 ≤ C5;
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• w is uniformly α–Hölder continuous with the Hölder continuity constant
that depends only upon the data and

||w||
C
α,αp (Ω,[t1,∞])

≤ C6.

Denote with d(x) the distance from the point x to the boundary ∂Ω.

Theorem 4.2 There exist two constants β ∈ (0, 1) and γ9 > 0, such that
for each positive number d there exists a time td such that for each x ∈ Ω
with d(x) ≥ d , and for each t ≥ td we have

(4.5) γ9 d(x)β ≤ w(x, t) = u(x, t) t
1
p−2 .

By Theorem 4.1, w(t) is equiHölder continuous, therefore, up to a subse-
quence, there is a function v ∈ Cα(Ω) such that w → v in Cα.
If we want the function v to be the solution of a suitable partial differential
equation, we have to assume some hypotheses on the coefficients Ã and B̃ in
(4.3).

∃ lim
τ→+∞

Ã(x, τ, w, p) = A∞(x,w, p),(4.6)

∃ lim
τ→+∞

B̃(x, τ, w, p) = B∞(x,w, p),(4.7)

∃ a function H(x, τ, w, p) such that
∂H

∂pi
= Ãi,

∂H

∂w
= − B̃,(4.8)

and
∂H

∂τ
≤ 0,(4.9) ∫

Ω

H(x, τ, w,∇w) dx ≥ C1.(4.10)

Theorem 4.3 Assume that hypotheses (3.5)-(3.9) hold. Then the function
v belongs to W 1,p

0 ∩ L2(Ω) and it is a non trivial solution of

(4.11) div(A∞(x, v,∇v)) +B∞(x, v,∇v) =
1

p− 2
v.

Proof - The functional

F (x, τ, w(x, τ),∇w(x, τ)) =

∫
Ω

H(x, τ, w,∇w) dx− 1

2(p− 2)

∫
Ω

w2(x, τ) dx
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is monotone decreasing in time. In fact

d

dτ

∫
Ω

H dx =

∫
Ω

[
∂H

∂pi
∇iwτ +

∂H

∂w
wτ +

∂H

∂τ

]
dx

≤
∫

Ω

∂H

∂pi
∇iwτ dx+

∂H

∂w
wτ = −

∫
Ω

(div Ã + B̃) wτ dx

= −
∫

Ω

(wτ )
2 dx+

1

p− 2

∫
Ω

wwτ dx.

Then
dF

dτ
≤ −

∫
Ω

(wτ )
2 ≤ 0.

As the functional F is bounded from below, this implies that, up to a subse-
quence, Fτ (and therefore

∫
Ω
w2
τ (x)dx) converges to zero.

Then w converges to its limit v ∈ W 1,p
0 ∩L2(Ω) and v is the solution of (4.11).
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