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ABSTRACT. We prove an existence and uniqueness theorenr for the abstract
version of a semilinear integrodifferential inverse problem. We apply such result to
the Kermack-McKendrick model with diffusion. Our main tools are: the analytic
semigroups theory, optimal regularity results and fixed point arguments.

1 INTRODUCTION

We study an identification problem for a semilinear integrodifferential system arising
in the theory of the spread of infections. More precisely, we investigate the Kermack-
McKendrick model with diffusion. For more details about this model see [10].

In this section we state our problem then, we formulate it in an abstract setting

and finally we point out the novelty of our results.
We will use the spaces B([0,T}; D a(8, 0o)) of bounded functions with values in the
interpolation spaces D (6, 00). For precise definitions see the beginning of Section

2.
Let € be an open bounded set in R? and let T be a positive constant. If v and

v denote the susceptible and the infective populations densities, respectively their
evolution equations are .
ue(t, ) = Ky Ault, z) — arult, z)
) .
—blu(t,:n)fh(t ~ s)u(s,z)ds, (t,z) € (0,T] xQ,
4 }
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v (t, x) = KaAv(t,z) — agu(t, x)
i

+hou(t, z) / Wt - syuls,z)ds,  (6,2) € (0,T] x €, (12)

O

with the related mitial?boundary conditions
uw(0,z) = up(z), v(0,z) = w(z), =z e, (1.3)
Dyu(t,s) = Dyo(t,2) =0,  (t,z) € [0,7] x 89, (1.4)

where 1, denotes the external normal derivative, a; and b;, i = 1,2 are called the
constant rates, K; > 0 are the diffusion coefficients, ug, vp : {2 = R are given fune-
tions. The kernel A(t) is considered unknown. The addition of the terms K, Au
and K>Av to the original Kermack-McKendrick model allows the migration of both
infective and susceptible populations, and the integral term in (1.1) and (1.2) rep-
resents a transfer mechanism of infection.

Because of the interpretation of the model we assume a; < 0 and b; > 0 for
1=1,2. .

The fact that the kernel A is not directly measurable leads us to consider the
inverse problem, i.e. u, v-and A have to be determined simultaneously. To obtain our J
purpose wé need additional information on u, which can be analytically represented
in integral form as follows

[ @t ayas = 500, )
]

where ¢ : 2 —+ R and g : [0,7] =+ R are given functions whose regularity will
be specified in the sequel. More precisely, condition (1.5) represents additional
measurements on the susceptible population » in some parts of , so ¢ is a suitable
compact support function that depends on the type of device used for the measure,
while g stands for the results of the measurements on «.

We are in position to formulate our Inverse Problem (IP).
Determine three continuous functions: u: [0,T) x Q2 = R, v: [0,T]x Q = R and
h:[0,T] = R satisfying system (1.1)-(1.5).

We now formulate our problem in a more general setting relating it to a Banach
algebra X.

Let X be a Banach algebra and assume that A: D{4) C X — X and B: D(B) C
X — X are two linear and closed operators with domains D{4), and D(B), re-
spectively. We denote by D4(f,00) the interpolation spaces, for their definition
see Section 2, with the inclusions D(4) C D4(8,00) C X. Analogously we define
DB (6, OO)

Consider now three functions u : [0,T] - D4(8,00), v : [0,T] = Dg(6, cc) and
h:{0,T] — R satisfying the system

W'(t) = Aut) — arult) — bu(?) f h(t - s)uls) ds, (1.6)
1]
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V(#) = Bu(t) — agu(£) + byu(?) f h(t — s)u(s) ds, (1.7)
0 .

w(0) = uo, v(0) = vy, (1.8)

olu(t)] = g(8), tel0,T), (1.9)

where & is & given bounded linear functional on D4(8,c0), g: [0,T] = R, up : {1
R and v : @ — R are given functions and a; < 0 and b; > 0 for 1 = 1,2.

We can formulate our Abstract Inverse Problem (AIP).
Determine three functions u : [0,7] — Da(8,00), v : [0,7] — Dp(8,00) and b :
[0,T] — R satisfying (1.6)-(1.9). :

Optimal regularity results and the analytic semigroup theéory are fundamental tools
in the study of direct and inverse parabolic problems. Our strategy is to formulate
the abstract version of the inverse problem in terms of a system of equivalent fixed
point equations. Several optimal regularity results are at our disposal for such
equivalent formulation.

Corsider the followmg optimal regularity results for the Cauchy Problem (CP):

{ u'(t) = Au(t) + f(), € [0,77,
U(O) = UgQ.

Let A: D(A) C X — X be the infinitesimal generator of the analytic semigroup
et4 and B € (0,1). In [9] [12] we can find the proofs of the following results:

THEOREM 1.1. (Strict solution in Hélder spaces C?([0,7}; X)) For any
F e C%[0,T); X), ug € D(A) with Aug + f(0) € D4(B,00) the Cauchy problem
(CP) admits a unique solution u € C1H8([0,7]; X) N CA([0,T]); D(4)).

THEOREM 1.2. (Strict solution in spaces B([0,T]; Da(8,00)}) For any f €
C(0,T); Xy N B([0,T]; Da(8,00)), ug € Da(f + 1,00} the Cauchy problem (CP)
admits o unique solution v € C*([0,T]; X)N C([0,T};

D(A) NB([0,T; Da(B +1,00))

What we prove in this paper is an existence and uniqueness theorem for the (AIP)
and we apply it to the (IP) in the case X is the space of continuous functions C{?).
Using the generation results in [6] we could also prove a similar result if we sef
X =C'(Q)) if A and B are second order differential operators.

On the optimal regularity Theorem 1.1 are based many results that we can find
in the recent literature also for the Phase-Field models; for the theory of materials
w1th memory and for the population dynamic models see [1] [4] [5). In [7], [2] and

n [3] the authors study the above model requiring a di_fferent set of conditions on
the data without investigating the B([0,TT; Da(f, oc)) regularity for some 6 € R,

The novelty of this paper is that we apply Theorem 1.2, (and not Theorem 1.1}
which is particularly suitable for the semilinear model introduced above.

We recall that in the paper {8], for the first time, the analytic semigroup the-
ory and Theorem 1.1 have been used to [ace integrodifferential parabolic inverse
problems for the heat equation with memory.

The plan of the paper is the following.
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In section 2 we define the function spaces and we introduce some preliminary ma-
terial related to the analytic semigroups theory.

In section 3 we state our main result for the abstract problem (1.6)-{1.9) (see The-
orem 3.1) and we give an application to a concrete case (see Theorem 3.2). -

In section 4 we prove, that under suitable conditions the integrodifferential system
(1.6)-(1.9) is equivalent to a fixed point system of three Volterra integral equations
of the second kind (see Theorem 4.1). ‘

Finally in section 5 we prove Theorem 3.1.

2 PRELIMINARY MATERIAL

The results that we are going to recall in this section hold in the case X is a Banach
space only. For our purpose, since we apply our results to the (IP) we consider X to
be a Banach algebra with norm ||-||. Let T' > 0, we denote by C{]0,T; X) the usual
space of continuous functions with values in X, while we denote by B{[0,77; X) the
space of bounded functions with values in X. Equipped both with the sup-norm:

”u”C(ﬁJ,T];lX) = ||ull s, 73;x) = oélzlgT“u(t)” (2.1)
they become Banach spaces. For 8 € (0,1) we define
CP([0,T]; X) = {u € C({0,T]; X) : [tlor(o,77.)
| ORI

= < o0 2.2
o<sct<t (E—8)f } o (2.2

and we endow it with the norm 7
lullcego,m.x = lulleqe,mix) + [wlea o, x)- - (23)

Let £ a bounded open set in R®, n € N, for 8 € (0,1) we define

CA() = {u € C(Q) : [ulge(n) = m’y:g’pzﬂ % < o0} (2.4)

and we endow if with the norm
llelloe ey = llullomy + vl (2.5)

where
llullegny = sup |u{z)|. ' (2.6)
e}

By E(X ) we denote the space of all bounded linear operators from X into itself
equipped with the sup—mnorm, while £(X;R) is the space of all bounded linear
functionals on X considered with the natural norm.

DEFINITION 2.1. Let A : D(4) C X — X, be a linear operator, possibly with
D(A) # X. A is said to be sectorial if it satisfies the following assumpticns:

(1) there exists § € {n/2,#) such that any A € C\{0} with |argh| <8
and A = 0 belong to the resolvent set of A;

(H2) there exists M > 0 such that [|JA(A — A)~lgxy < M for any
A € C\{0} with |argA] < 6.
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The fact that the resolvent set of A is not void implies that A is closed, so that
D(A) endowed with the graph norm becomes a Banach space.

According to assumptions Hi1, H2, it is possible to define the semigroup {e*4}s>0,
of bounded linear operators in £{X), so that £ — et is an analytic function from
(0, 00) to L£(X) satisfying for & € N the relations

L .
;%&A = ARetA >0, (2.7)

and AefAz = ¢4 Az, for all z € D(A4) and ¢ > 0. Moreover there exist positive
constants My, for k € Ny such that

”tkAketA{lﬁ(X) < My, t>0. (2.8)

For more details see for example [9] [11]. Let us define the family of interpolation
spaces ( [11] or [13]) D4 (8, 00), B € (0,1), between D{A) and X by

Da(B,o0) = {z € X ¢ [plpuoce 1= up 0]l Az <o} (29)
t>0

with the norm {2.11) for j = 0 only. We also set

Da(l+ 3, x) =1{z € D(A): Az € DA(ﬂ,_OO)}, o (2.10)

Da(l+ B, 00) turn out to be Banach spaces when equipped with the norms

1

12l pa+p.00) = Z |47z + |A2|D 4 (8,00)- (2.11)
j=o0

We reconsider Theorem 1.1 with the related fundamental estimates, related to the
Cauchy problem

W' () = Au(t) + F(), te[0,7], (2.12)
u(0) = up. (2.13)

THEOREM 2.2. Let A : D(A) C X — X be the generator of the analytic semi-
groups e*?. Then for eny f € C([0,7]; X)NB([0,T]; Da(B, 00)}), 1o € Da(B8+1,00)
problem (2.12)-(2.18) admits o unique solution u € cH{[0,T]; X)NC{[0, T]; D(A)N
B([0,T); Da(B + 1,00)) represented by the formula

u(t) = etug + f ft=e)4 F(s)ds = etug + (e x F)(1), . (é.14)
J .

and w', Au € C([0,T]; X)NB([0,T]; Da(B,c0)) and Au € CP([0,T); X). Moreover,
the following estimate holds ‘

(2.15)

liet * Fllco.r:x)nB(0.0:Da(8.00) < TMollfllo(o, 110800, T D800

lle* o]l oy x9nB(07% D4 Br0e)) S Clluollpa(aires- = (2:16)
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Proof. One can argue as in Corollary 4.3.9 iii) of [9]. To prove estimate (2.15) we

note that
(2.17)

(2.18)

16 * Flleomxy <€ TMollflego,aix):
lle 5 Fllaqo,mhpa@.cop < TMollFilseto, 11048000
Adding (2.17) and {2.18) we get (2.15). Asin Corollary 4.3.9 iit) [9] we get estimate
(2.16). =

THEOREM 2.3. Let h € C([0, T, R) and u € C([0, T X) N B{[0,T; D a(8,00)).
Define the convolution operator :

h*ult) = /h(t — s)ufs)ds. {2.19)

Then + maps C([0,T]; R) x [C(10,T}; X) N B([0,T]; Da(8,00))] into C([0,T5; X)
NB([0, T]; D a(B,00)) and the following estimate holds:

| * ulloqo,Tix)nB(0. 71 Da(B.00)) S Tllhllc([o,ﬁ;n)|IUI|C([o',T];x)ns({o,T];DA(ﬁ,c_Eo))-
’ 2.

20)

Proof, Consider the estimates

| ulleo.mx) < TiRleqo,mmllullegorix (2:21)

and

t
[h * ult)| pa(8,00) = 5UP Tl—BHAe'TA / h(t — s)v(s)ds||
>0 .
0

t
< sup / h(t — s)r Pl de” u(s)llds < Tlikllogerimllvlsoripae . (2.22)
0

so that 4
1k * ull B0, 10D a(B,00) S Thllcgo,mmllulisioripats.con- (2.23)

From (2.21) and (2.23) we get the statement. -

3 THE MAIN RESULTS

Tn this section we state our main abstract result and then we apply it to the case

of the continuous functions space.
Suppose X be a Banach algebra, 8 € (0,1). Let us introduce the following

conditions
Regularity Conditions
R; wup € D(A), v € D(B); :
Ra Aug —aiupg € DA(,B + 1,00}, Bug —a2u € Dg(8 -+ 1,00);
Ry g€ C*([0,T])
R; @€ L{Da(f+1,00%R); _
R; ®[Au] = ¥u], with W€ L{D a(B,00); R).
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Compatibility Conditions
Cr ®{up) = g(0);
Co ®[Aug — aruo] = g'(0);
03 @[’UQ‘&Q] ?é 0 and. b]_ # 0.

Qur main abstract result is:

THEOREM 3.1. Let A and B be sectorial operators (see Definition 2.1). Under
assumptions Ry -Rs and C;-Cy there exists T* € (0,77} such that for any 7 € (0,7}
problem (1.6)-(1.9) has a unique solution (u,v, h) € [C*([0,7]; XINC([0, 7]; D(4A))N
B({0,7]; D4{B + 1, 00)] x [C* ([0, 7]; X) n C([0, 7]; D(B)) N B([0, 7}; Dp(B + 1, 0)] x
oo, 7 B). f | ' |

Proof. Tt is in Section 5. =

We are now in the position to apply Theorem 3.1 when we choose as reéference space:

X = C(f). (3.1)

We suppose that D(A) = D(B) with the Neumann homogeneous boundary condi-
tions, where

D{Ay={ue C(): Aue C), D,u=0 on dQ}, (3.2)

and

A= KiA, B:=EKA. _ (3.3)

Moreover, in [9] it is proved that the operators defined in (3.3) whose domains are -
defined in (3.2) are sectorial in C(£2). Then we recall the following characterizations
concerning the interpolation spaces related to A (see [9]), for 8 # 1/2:

Da(B,00) = C*B@), if Be(0,1/2), (3.4)
Da{f,00) =CP(Q), if Be(1/2,1), (3.5)

where l : ) .
CH ={ueC®): D,u=0 on 8Q}. (3.6)

Finally, we can define the set of admissible data consisting of all those functions ug,
vo, ¢, g, satisfying the following assumptions, for 8 € (0,1)/{1/2}:
Regularity Conditions

Ry ug,v0 € D(A);

Rg K]_AUQ — &1y, KQA’UO — Qatg € 02('6+1)(ﬁ}, If ﬁ € (0, 1/2);

R, KiAug — ayug, Kahue - agup € C2PTN®@), if B (1/2,1);

Rs g€ C*[0,T]); _

Ry & € L(CHATD@KR), if B€(0,1/2);

Ry ® e L(CIPYIEyR), if Be(1/2,1);

Ry [qod(2)KiAu{t,z)de = Y[u(t,)] with D,¢=0 on 9

Re TeL{C¥(O)R) if Be(0,1/2);
we LCH@LR) if Be(1/2,);
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vl ) = [w@sta)dn () = Kiog) (37)
, Q
Compatibility Conditions

&y ol@) dz = g(0);

Co Jo[K1Aug(z) dz — aruo(z)] dz = g'(0);

Cs fovo(zius(z)dz #0 and by #0;
THEOREM 3.2. Let A and B be sectorial operators (see Definition 2.1). - Un-
der assumptions R,-Rs and C1-C3 there exists T* € (0, T] such thot for any 7 €
(0, T*) problem (1.6)-(1.9) has a unigue solution (u,v,h) € [C{0, 7L C(O) N
B([0, 7}; CHAHI(@)] X [C([0, 7§ C(2)) n B, 7 C2E I (D] x C([0,7]; R) when
8 ¢ (0,1/2) and (u,v,h) € [C1([0,7]; C(2)) N B(o, GV @)] % (1 (0,715
C()) N B(o, 7} C2A D @)] x ([0, 75 R) when § € (1/2,1).
Moreover u,v € C([0, 7]; D(A}).

Proof. Tt is an application of the Theorem 3.1, while condition (3.7) follows from the
Green formulae for the Laplace operator and the homogeneous Neumann boundary

conditions. [

4 AN EQUIVALENT FIXED POINT SYSTEM

In this section we formulate the abstract inverse problem (1.6)-(1.9) in terms of
an equivalent non-linear fixed point system. The main result of this section is the
equivalence Theorem 4.1, which can be considered the heart of the paper since the
inverse problem (1.6)-(1.9), without additional conditions on the data is, in general,
not well posed. The equivalence theorem gives aset of hypotheses on the data such
that the inverse problem becomes well posed, and starting from the equivalence
fixed point system we can obtain existence and uniqueness results for system (1.6)-
(1.9). A theorem of continuous dependence on the data can also be proved starting
from Theorem 4.1. We omit the statement and the proof for the sake of brevity.
Here we prove: '

THEOREM 4.1. Let A and B be sectorial operators. Let us assume the data g, ug,
v, ® and U satisfy the regularity conditions RBi-Rs and the compatibility conditions
C\-Cs. Suppose B € (0,1) and let {u,v,h) € [C*([0,T}; X)n C([0,

T); D(A)) N B((0,T}; Da(B +1,00))] x [CH([0,T]; X) n €((0,T]; D(B)) n B,

T); DB +1,00))] x C([0,T]; R) be a solution of the problem (1.6)--(1.9). Then the
triplet (w, 2, h), where w = ', z = ', belongs to

([0, T); X)nB((0, T}; D (B, 00))]x (C([0, T]; X)NB([0, T} D (8, )| x (10, TTR)

and solves problem (4.15)(defined in the sequel). Conversely, if (w,2,h) € [C([0,TY;
X) N B0, T); Da(B,00))] x[C([0, T} X) N B([0,7}; Dp(B,00))] x C([0,T]; R} is a
solution of the problem (4.15), then the iriplet {u,v,h), where u = ug + 1w,
v = vp+ 1z, belongs to [C{[0,TT; X)NC([0,T]; D(A)) NB([0, T); Da(B+1,00))] x
[ ([0, T}; X) N C([0, T]; D(B)) N B([0, T]; Dp(B +1,00})] x C([0,T}; R) and solves
problem (1.6)—(1.9).
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Proof. Let (u,v,h) € [C([0,T]; X) N C([0,T}; D(A)) N B{[0,T]; Da(B8 + 1,00})] x
[CH{[0,T]; X)NC ([0, T); D(B))nB([0, T); Dp(f+1,00))] x C([0, T7]; R) be a solution
of the problem {1.6)—(1.9). Wlth (u,v, h) we associate the triplet (w,v, h} where
the first two components are defined by

wty =u'(t), u{t) =uo +1=w(l), (4.1)

2(t) =v'{t),  vt) =uo +1x2(t). (4.2)
Differentiating with respect to the time (1.6) and (1.7) we get

u”(t) = Au'() — arv! (£) — b [u' (£)[R * v(2)]

+u(t)h(tyvo — u(t)[h = v ()],

v(t) = Bv'(t) — agv’ (t) + bo[u! (B)[h + v(2)] (4.3)
Fu()h(E)oo + u)l + o' (1)) :
w'(0) = Aup — ajug, v'(0) = Bug — aavo,

Blu'(t)] =g'(t), te€l0,T}

and thanks to positions (4.1} and {4.2) we obtain

w'(t) = Aw(t) — a1w(t) — by[w(t)[h = [up + 1 * z(8)]]

Fup + 1 w(E)[A{thvo + A * z(B)]],

Z'{t) = Bz(t) — agz(t) + bolz(O)[h = [ug + 1% 2(s)]] - (4.4)
+[ug + 1 # w(t)][R{tyuo + A * z(1)]], :
w(0) = Aup — ayug,  2{0) = Bug — a0,

()] =¢'(), te 0Tl

thanks to the regularity conditions R;-R3 and compatibility condition ¢ and s
we have that the (AIP) is equivalent to (4.4). Apply the functional € to both hands
sides of the first equation of system {4.4) we get

(W' (t) = Aw(t) — aaw(t) — by{w(t)[h * [up + 1+ 2(¢}]
o+ 1+ w(t)][A(E)o + h x 2(2)],
7'(t) = Bz(t) — ag2{t) + ba[z(t)[h * [uo + 1 % 2(s}]]
o + 1+ (@[ + b+ (O],
$ w(0) = Aug ~ azue, 2(0) = Bvp — aave, {4.5)
g"(t) = ®[Aw](t) — arg'(£) - L h(t)@[uovo]
—MQ(W@Mh*Wo+1*z@m

auglh * 2(8)] + [L# w(B][a(E)oo + b 2(8)]),

~

where we have taken into account the regularity conditions Ry. Set
x = 0 Bluowe] # 0 (4.8)

and supposed Cs holds. Thanks to the fundamental condition R, that is B[Aw] =
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T[w!, we obtain the system

(W) = Aw(t) — ayw(t) — bi[w()[h * fuo + 1= z(t)]

+lug + 1% w()][h{t)ve + A= z‘(t)]l,

2(t) = Bz(t) — aza(t) + bo[v' (B)[h % [up + 1 % 2(s)]}

+ug + 1% w{t)|[h(f)ve + h* z(1)], ' @7)
w(0) = Aup — aitto; z(0) = Bug — azvo, :
(o) = x{ ¥wl() — ag'(®) — ¢"(2) = 1 ([w @A x loo + 1+ 2(0)]

+uglh = z(t)] + [1 = w(D)][h{t)vo + h * z(t)]]) }

\

Using the constant variation formula (see (2.14)), we represent in integral form the
first two equations in (4.7) and we get the equivalent system

’

w(t) = etA[Aug — arup) + e * [— arw(t) — bl[w(t)[h * [vg + 1% 2(£)]]
ug + 15 w([h(Evo + R 28], |

2(#) = e'B[Buo — aguo] + &7 x | = asz(8) + balz(t)[fx [uo + 1+ 2]
) o + 1+ w@IAE0 + A 2], | .

(0 = x{ Tl(0) - g’ @) - ¢"(0) ~ @ (W@ foo + 1+ (0]
gl 2(8)] + 11+ w(BRE0 + hx 2(00) },

\

(4.8)
replacing the first equation into the term T[w] in the last equation in system (4.8),
which is the only term which is not contractive, and define the nonlinear operators

Dy (w,2,h) = €4 # [~ au®) = iw(lh o + 1 2(0)]

o + 1= w(®i[A(E)vo + hx 2] (4.9)
Ly(w,z, k) = et « [— tio2(t) + bo[z(t)[h % [uo + 1 % z(8)]]

Aup + 1+ wB)][A(thvo + B + z(t)]]} , (4.10)

we get
w(t) = et [Aup — aruo] + T (w, z, h},
z(t) = e!¥[Bup — azvo] + Iz (w, z,h},

h(t) = x{‘I’ [etA[Aug — auo)] — 02g' (1) — g () (4.11)
O (w, 2, B)] () ~ b@([w(t)[h x v + 1% 2(2)]]
fualhx 2]+ [Lx w(Dl[b(ve +hx #(0)]) }

\

with the positions

Wo (t) = E‘tA[A?L{) - a]_’h"g}., Zn (t) = gt? [B"UQ - ag'vo], (4.12)

holt) = X{xp[e*A[Auo -~ ayuo]] — g () — ¢ (t)}, (4.13)
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Ta(w,2,h) = x{ T2, 2,1)] (1) ~ @ (@A [oo + 1 i« 2(0)]

uglh+ (1)) + [1x w(@[AE)v0 + b 2(8)]) |, (4.14)
we finally get the system (for ¢ € [0,77)):
{ w(t) = wo(t) + T'i{w, 2, R)(t),

z(t) = ZQ(t) +1I ('HJ,Z, h)(t): (4'15)
h‘(t) = hO(t) + Fg(w,z,h)(t),

and this completes the proof. : a

5 PROOF OF THEOREM 3.1

In order to apply the Contraction Principle to system (4.15} we begin by defining
the complete metric space

Y (B) = {(w.2,h) €Y :|[(w,2,h)|ly <2m}, meRy, fec(0,1)  (.1)

where
= [C(f0, T]; X) N B{[0, T} Da(8, 00))]

x[C([0,T]; X) N B([0,TF; D(B, 00))] x C({0, T} R). - (52

Y is a Banach space when endowed with the norm

i(w, z, M)|ly = llwllaqo,r);x)nB(0,T5D4(8,00))

+lzlleo,11:x)n8(00,T1:D8(8,00)) F+ 1Bllc(0,T1iRy- (5.3)

Morecver, we choose m to satisfy the inequality

lwoll o, 7y;3x)nB(0, 71,04 (8,00)) F HZallo(to,73:x)nB(0., 1% D5 (8.000)

+Hlholloqo,mmy <™y (5.4)

where w9, %0, ho are defined in (4.12), (4.13). By virtue of Theorems 2.2 and 2.3 and:
the regularity conditions the vector function (wy, 2o, ho) belongs to Y. We consider
the nonlinear vector aperator :

I-‘(w,z, R) = (wo + Ty (w, 2; h), 20 + La(w, 2, h), ho + T's{w, 2, h)), (5.5)
I': Yau(B) - Ym(B). (5.5)

Then we proceed to estimate the nonlinear operators I'; (¢ = 1,2, 3) defined in (4.9},
(4.10) and (4.14), respectively. In the following we denote by Ci(m,T), i = 1,...,6
positive constants continuously depending on the arguments pomted out. We ﬁrst
c0n51der the estimates

1 (w, 2, h)llc o, 71:)nB(10,71:Da(8,00))

< arlle™ * wllogo, 7y x)B(0, T DA (B.00))

+h1let * [wlh * [vo + 1 % 2lill o1 x)nB(10. T D.A(8.00))




Colombo and Vespri

+by|let * ([ug + 1% w][hwo + b * 2])|lo((0,77, X)nBU0TEDAB00))

< TCi(m,T), (5.6)
IT2(w, 2, B) loo.r1x)nB(0,T)Da (8,00))
< aslle’® * zlloqoa1x)n8((0, 1D (8,00))
by * [2h * [ug + 1 2]]lllc(jo,77,5)nB((0, 71 D5 (8,00))

et « ([u + 1+ w(@®]B@)vo + h* 2O e rixnB0.1:088,0))
' < TCy(m, T (5.7)

and finally :
”I‘3(w=z1h)“0([0!ﬂ§ﬁ_) <

X max { 1%l c(paig.00nR); [|Blle(Da(a+1,000R) }
X {”FI (w, z, W)l qo,71:x)nB([0. T A8.00))

+ba[lw(®)[h * [vo + 1 * 2(&)]]lloqe, 710080, 7): DA (B.00))
+b1|uo[h + 2(E)llc (0,17, x)0 80,71 D a(B.00))

Fhal|[1 * (@0 +hx 2E]logomxnBoTDAG.) |
<TC3(m,T). (5.8}
Adding (5.6)-(5.8) we have | ' )
_ , o,

IT(w, z, Wy, <T Y Cy(m,T)
=1

= T8y (m, T), (5.9)
for a suitable T such that
operator I'(w, z, h) maps Y, into itself. Analogously, by Theorems 2.2 and 2.3, we

can prove the estimates

Ty (ws, 22, k) — F1{w, 21, h)llogo 2 xyns(o,11Da B,y S TCu(m, T)
% {sz — wille(o, 11, X)rB([0,T1: D4 (8,00))

2o — 21|l o o,7) 0050, TP s (B.00)) + [Pz — hlllcao,mn)} , (5.11)

(P2 (w2, 22, ha) — Ta(wn, 21, )l ogo.ryx0ons(o.21ps(8.00) < TCs(m, T}

x [||w2 — w1 |le((e, 27X N8B0, 7). Pa (8,00))

+llz2 — 21l xnB(0. TR B0y T 1R — hl“C([O,T];R)] ) (5.12)

T8 (m, T*) <m (5.10)

SRS
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and therefore
|ITs(wg, 22, he) — Ta{wr, 210, ha)lleqomymy < TCs(m, T)
x [HM — w l|o(o, 1) X)NB(0,TTiD.A(8.00})

+lz2 = z1lloqo. im0, 71D 8,000 + P2 = hlf\cuo,ﬂ;m}- (5.13)
Lastly adding (5.11)-(5.13) we get |

|T{(wa, 22, Bz} — Tlwn, _Zz,hl)!!Ym < Téa(m,T)

x [H’wz — w1l o, 1 X)INB0. TN DA8,00))

+llzz — z1llogo mix)nB(0.TEDE (800 T 2 — hl”G([O.T];R)] (5.14)
where we have set .
da(m, T) =Y Cj(m, T). (5.15)
— _
If we now choose T'F such that T is a contraction operator in ¥y,
(T+)é2(m, TH <1, - (5.16)
for
Ty := min{T*,T%} (5.17)

we have that T, has a unique fixed poirit in Yy,. Hence we get the statement thanks
to the equivalence Theorem 4.1 and the existence of a unique fixed point of ' . =
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