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1 Introduction

Let Ω be an open set in RN and consider the quasilinear, parabolic, partial differential
equation of the second order

(1.1)p

{
u ∈ L∞loc

(
0, T ;W 1,p

loc (Ω)
)
, p > 1;

ut − div A(x, t, u,∇u) = B(x, t, u,∇u) weakly in ΩT .

Here T > 0 is given, ΩT = Ω × (0, T ) and ∇ denotes the gradient with respect to
the space variables x = (x1, . . . , xN ). The functions A = (A1, . . . , AN ) and B are
real valued, measurable with respect to their arguments, and satisfying the structure
conditions

(1.2)p

{
C0|∇u|p−2|∇u|2 − C ≤ A(x, t, u,∇u) · ∇u ;∣∣A(x, t, u,∇u)

∣∣+ ∣∣B(x, t, u,∇u)
∣∣ ≤ C

(
1 + |∇u|p−1

)
,

where C0 and C are given positive constants. The quantity C0|∇u|p−2 is the modulus
of ellipticity of the equation. If p > 2 it vanishes whenever |∇u| = 0 and the equation
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is said to be degenerate at those (x, t) ∈ ΩT where this occurs. If 1 < p < 2 the
modulus of ellipticity becomes infinity whenever |∇u| = 0 and the equation is said to
be singular at those (x, t) ∈ ΩT where |∇u| = 0.

Along with (1.1)p–(1.2)p, consider also the quasilinear equation,

(1.1)m

{
u ∈ L∞loc

(
0, T ;W 1,2

loc (Ω)
)

;

ut − div A(x, t, u,∇u) = B(x, t, u,∇u) weakly in ΩT ,

with structure conditions,

(1.2)m

{
C0|u|m−1|∇u|2 − C ≤ A(x, t, u,∇u) · ∇u ;∣∣A(x, t, u,∇u)

∣∣+ ∣∣B(x, t, u,∇u)
∣∣ ≤ C|u|m−1

(
1 + |∇u|

)
,

where m is a given positive number. The prototype example of (1.1)m–(1.2)m is

(1.3)m ut−∆|u|m−1u = 0 for somem > 0 ,

and a the prototype example of (1.1)p–(1.2)p is,

(1.3)p ut−div |∇u|p−2∇u = 0 for some p > 1 .

The first is called the porous medium equation. If m > 1 the modulus of ellipticity
vanishes for u = 0 and the equation is degenerate at those points of ΩT where the
solution u vanishes. If 0 < m < 1 the modulus of ellipticity is infinity whenever u = 0
and the equation is singular at those points of ΩT where u = 0. If m > 1 the equation
is referred to as the slow diffusion case of the porous medium equation. The case
0 < m < 1 is the fast diffusion.

The equation in (1.3)p is the p–Laplacian equation and its modulus of ellipticity
is |∇u|p−2. If p > 2 such a modulus vanishes whenever |∇u| = 0 and at such points
the equation is degenerate. If 1 < p < 2 the modulus of ellipticity becomes infinity
whenever |∇u| = 0 and the equation is singular at these points.

If m = 1 in (1.3)m or p = 2 in (1.3)p one recovers the classical heat equation for
which information are essentially encoded in the fundamental solution

(1.4) Γ(x, y; t, τ) =
1

(t− τ)N/2
exp

{
− |x− y|2

4(t− τ)

}
x, y ∈ RN , t > τ .

The porous medium equation in (1.3)m admits an explicit similarity solution that
“resembles” the fundamental solution of the heat equation. Such a solution is called
the Barenblatt similarity solution and it is given by ([17])

(1.4)m Γm(x, y; t, τ) =
1

(t− τ)N/λ

{
1− γm

[
|x− y|

(t− τ)1/λ

]2} 1
m−1

+

t > τ

where for a real number α, {α}+ = max{α; 0}, and

(1.4)′m λ = N(m−1)+2 , γm =
1
λ

m− 1
2

.
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An examination of this solution reveals that it is well defined for all positive values of
m for which λ > 0. One also verifies that Γm → Γ as m→ 1. In this sense Γm is the
fundamental solution of the porous medium equation.

Also the p–Laplacian equation (1.3)p admits explicit similarity solutions,

(1.4)p Γp(x, y; t, τ) =
1

(t− τ)N/κ

{
1− γp

[
|x− y|

(t− τ)1/κ

] p
p−1
} p−1

p−2

+

t > τ

where

(1.4)′p κ = N(p−2)+p , γp =
(

1
κ

) 1
p−1 p− 2

p
.

This is well defined for all p > 1 such that κ > 0 and Γp → Γ as p → 2. In this
sense Γp is the fundamental solution of the p–Laplacian equation.

• Issues of compact support and regularity

Assume firstm > 1 and p > 2. The first difference between these fundamental solutions
and the fundamental solution of the heat equation is in their support with respect to
the space variables. For fixed t > τ and y ∈ RN , the functions x 7→ Γm(x),Γp(x)
are compactly supported in RN , whereas x 7→ Γ(x) is positive in the whole RN .
The moving boundaries separating the regions where Γm and Γp are positive from the
regions where they vanish are,

(t− τ)2/λ = γm|x− y|2 for Γm
τ ∈ R, y ∈ RN fixed .

(t− τ)p/κ = γp−1
p |x− y|p for Γp

The second difference is in their degree of regularity. For fixed t > τ and y ∈ RN

the function x 7→ Γm(x) is Hölder continuous with Hölder exponent 1/(m − 1). The
function x 7→ Γp(x) is differentiable and its partial derivatives are Hölder continuous
with Hölder exponent 1/(p − 2). Such a modest degree of regularity is in contrast to
the fundamental solution of the heat equation which is analytic in the space variables.

Let now 0 < m < 1 by keeping λ > 0. Then Γm is positive and locally analytic in
the whole RN × {t > τ}. Thus Γm seems to share the same properties as Γ.

If 1 < p < 2 by keeping κ > 0 then Γp is positive in the whole RN × {t > τ} but
still it maintains a limited degree of regularity.

• Issues of Harnack inequalities

Non–negative, local solutions of the heat equation in ΩT satisfy the Harnack inequality.
This is a celebrated result of Hadamard [89] and Pini [144] and it takes the following
form. Fix (x0, t0) ∈ ΩT and for ρ > 0 consider the ball Bρ(x0) centered at x0 and with
radius ρ and the cylindrical domain

(1.5) Qρ(x0, t0) = Bρ(x0)×
(
t0 − ρ2 , t0 + ρ2

)
.

These are the parabolic cylinders associated with the heat equation and also to
(1.3)m since these equations remain unchanged under a similarity transformation of
the space–time variables that keeps constant the ratio |x|2/t.
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There exists a constant C depending only upon N and independent of (x0, t0) and
ρ, such that

(1.6) C u(x0, t0) ≥ sup
Bρ(x0)

u(x0, t0 − ρ2) provided Q2ρ(x0, t0) ⊂ ΩT .

The proof is based on local representations by means of the heat potentials (1.4). In
particular, for fixed τ ∈ R and y ∈ RN , the fundamental solution (x, t) 7→ Γ(x, t)
satisfies such a Harnack estimate. It is then natural to ask whether the fundamental
solution (1.4)m would satisfy a Harnack estimate. Take for example the Γm for τ = 0
and y the origin of RN . Assume first that m > 1 and fix (x0, t0) on the moving
boundary, so that Γm(x0, t0) = 0. If ρ and |x0| are sufficiently large, the ball Bρ(x0)
intersects the support of Γm at t = t0 − ρ2. Therefore for such choices the left hand
hand side of (1.6) is zero and the right hand side would be positive.

If 0 < m < 1 and λ > 0, take x0 = 0 and t0 > 4ρ2. Then a direct calculation shows
that (1.6) cannot be verified for a constant C independent of ρ and t0.

Consider now (1.3)p and the corresponding Γp. The similarity rescaling that keeps
(1.3)p invariant is |x|p/t = const. Therefore the natural parabolic cylinders associated
with (1.3)p are of the type

(1.5)p Qρ(x0, t0) = Bρ(x0)×
(
t0−ρp , t0+ρp

)
.

Similar arguments show that Γp does not satisfy the Harnack inequality for all p > 1
such that κ > 0, even in its own natural parabolic geometry (1.5)p.

• Local behavior of solutions

These issues suggest a unifying theory of the local behavior of weak solutions of degen-
erate or singular parabolic equations. A cornerstone of such a unifying theory would
be that weak solutions of (1.1)m,p–(1.2)m,p are Hölder continuous.

Another key component would be an understanding of the Harnack estimate in
the degenerate or singular setting of (1.1)m,p–(1.2)m,p. Whether for example there
is a form of such an estimate that replaces (1.6) and that would reduce to it when
either m→ 1 or p→ 2. The general structure in (1.1)m,p–(1.2)m,p is not an artificial
requirement. To illustrate this point we return briefly on the issue of regularity of
solutions of (1.3)p. We have observed that the space–gradient of the fundamental
solution Γp for p > 2 is locally Hölder continuous in RN × (τ,∞). It is then natural
to conjecture that the same would be true for local solutions u of (1.3)p. For such
solutions, it turns out that v = |∇u|2 formally satisfies ([55],[165])

vt −
(
aijv

p−2
2 vxi

)
xj

≤ 0 where aij = δij + (p− 2)
uxiuxj

|∇u|2
.

This is a quasilinear version of (1.3)m with m = p/2. Thus an investigation of the local
regularity of solutions of (1.3)p requires an understanding of degenerate or singular
equations with the general quasilinear structure (1.1)m-(1.2)m.

1.1 Historical background on regularity and Harnack estimates

Considerable progress was made in the early 1950s and mid 1960s in the theory of ellip-
tic equations, due to the discoveries of DeGiorgi [47] and Moser [132], [133]. Consider
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local weak solutions of

(1.7) (aijuxi
)xj

= 0 weakly in Ω ; u ∈W 1,2
loc (Ω)

where the coefficients x 7→ aij(x), i, j = 1, 2, . . . , N are only bounded and measurable
and satisfying the ellipticity condition

(1.8) ajiξiξj ≥ C0|ξ|2 a.e. in Ω , ∀ξ ∈ RN , for some C0 > 0 .

DeGiorgi established that local solutions are Hölder continuous and Moser proved that
non-negative solutions satisfy the Harnack inequality. Such inequality can be used, in
turn, to prove the Hölder continuity of solutions. Both authors worked with linear
p.d.e.’s. However the linearity has no bearing in the proofs. This permits an extension
of these results to elliptic quasilinear equations of the type

(1.9) div A(x, u,∇u) +B(x, u,∇u) = 0 weakly in Ω ; u ∈W 1,p
loc (Ω) ; p > 1

with structure conditions

(1.10)

{
C0|∇u|p − C ≤ A(x, u,∇u) · ∇u ;

|A(x, u,∇u)|+ |B(x, u,∇u)| ≤ C
(
1 + |∇u|p−1

)
,

for a given C0 > 0 and a given non–negative constant C. By using the methods of
DeGiorgi, Ladyzhenskaja and Ural’tzeva [120] established that weak solutions of (1.9)–
(1.10) are Hölder continuous, whereas Serrin [157] and Trudinger [163], following the
methods of Moser, proved that non-negative solutions satisfy a Harnack principle.
The generalisation is twofold i.e., the principal part A(x, u,∇u) is permitted to have
a non-linear dependence with respect to ∇u, and a non-linear growth with respect to
|∇u|. The latter is of particular interest since the equation in (1.9) might be either
degenerate or singular.

A striking result of Moser [134] is that the Harnack estimate (1.6) continues to
hold for non-negative, local, weak solutions of

(1.11)

{
u ∈ L∞

(
0, T ;L2(Ω)

)
∩ L2

(
0, T ;W 1,2(Ω)

)
;

ut − (aij(x, t)uxi
)xj

= 0 in ΩT ,

where aij ∈ L∞(ΩT ) satisfy the analog of the ellipticity condition (1.8). As before, it
can be used to prove that weak solutions are locally Hölder continuous in ΩT . Since
the linearity of (1.11) is immaterial to the proof, one might expect, as in the elliptic
case, an extension of these results to quasilinear equations of the type

(1.12) ut − div A(x, t, u,∇u) = B(x, t, u,∇u) in ΩT

where the structure condition is as in (1.10). Surprisingly however, Moser’s proof
could be extended only for the case p = 2, i.e., for equations whose principal part has
a linear growth with respect to |∇u|. This appears in the work of Aronson and Serrin
[16] and Trudinger [164]. The methods of DeGiorgi also could not be extended. La-
dyzenskaja et al. [121] proved that solutions of (1.12) are Hölder continuous, provided
the principal part has exactly a linear growth with respect to |∇u|. Analogous results
were established by Kruzkov [110], [111], [112] and by Nash [136] by entirely different

6



methods. Thus it appears that unlike the elliptic case, the degeneracy or singularity
of the principal part plays a peculiar role, and for example, for the p–Laplacian equa-
tion in (1.3)p one could not establish whether non-negative weak solutions satisfy the
Harnack estimate or whether a solution is locally Hölder continuous.

In the mid-1980, some progress was made in the theory of degenerate p.d.e.’s of the
type of (1.12), for p > 2. It was shown that the solutions are locally Hölder continuous
(see [51]). Surprisingly, the same techniques can be suitably modified to establish
the local Hölder continuity of any local solution of quasilinear porous medium-type
equations. These modified methods in turn, are crucial in proving that weak solutions
of the p–Laplacian equation (1.3)p are of class C1,α

loc (ΩT ).
Therefore understanding the local structure of the solutions of (1.12) has implica-

tions to the theory of equations with degeneracies quite different than (1.12).
In the early 1990s the theory was completed ([37]) by establishing that solutions

of (1.1)m,p–(1.2)m,p are Hölder continuous for all p > 1 and all m > 0. For a complete
account see [55].

1.2 A new approach to regularity

These results follow, one way or another, from a single unifying idea which we call
intrinsic rescaling. The diffusion processes in (1.3)m,p evolve in a time scale determined
instant by instant by the solution itself, so that, loosely speaking, they can be regarded
as the heat equation in their own intrinsic time-configuration. A precise description
of this fact as well as its effectiveness is linked to its technical implementations which
we will present in §2.

The indicated regularity results assume the solutions to be locally or globally
bounded. A theory of boundedness of weak solutions of (1.1)m,p–(1.2)m,p is quite
different from the linear theory and it is presented in §3. For example weak solutions
of (1.1)p–(1.2)p are locally bounded only if κ = N(p− 2) + p > 0 and weak solutions
of (1.1)m–(1.2)m are locally bounded only if λ = N(m − 1) + 2 > 0. It is shown by
counterexamples that these conditions are sharp.

The same notion of intrinsic rescaling is at the basis of a new notion of Harnack
inequality for non–negative solutions of (1.3)m,p established in the late 1980s and
early 1990s ([54], [66]). Consider non–negative weak solution of (1.3)m for m > 1.
The Harnack inequality (1.6) continues to hold for such solutions provided the time
is rescaled by the quantity um−1(x0, t0). Similar statements hold for (1.3)p in their
intrinsic parabolic geometry (1.5)p. In §4 we present these intrinsic versions of the
Harnack inequality and trace their connection to the Hölder continuity of solutions.

A major open problem is to establish the Harnack estimate for non–negative so-
lutions of (1.1)m,p with the full quasilinear structure (1.2)m,p. The proofs in ([54],
[66]) use in an essential way the structure of (1.3)m,p as well as their corresponding
fundamental solutions Γm,p. The leap forward of Moser’s Harnack inequality was in
bypassing the classical approaches based on heat potentials, by introducing new har-
monic analysis methods and techniques. It is our belief that a proof of the intrinsic
Harnack estimate for non–negative solutions of (1.1)m,p–(1.2)m,p that would bypass
the potentials Γm,p, would have the same impact.

The values of p > 1 for which non–negative solutions of (1.3)p satisfy Harnack’s
inequality are those for which κ = N(p − 2) + p > 0. Likewise the values of m > 0
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for which non–negative solutions of (1.3)m satisfy Harnack’s inequality are those for
which λ = N(m − 1) + 2 > 0. These limitations are sharp for a Harnack estimate to
hold (§4).

1.3 Limiting cases and miscellanea remarks

The cases κ, λ ≤ 0 are not well understood and form the object of current investiga-
tions. The case 1 < p ≤ 2N/(N + 1) seems to suggest questions similar to those of
the limiting Sobolev exponent for elliptic equations (see Brézis [30]) and questions in
differential geometry. As p ↘ 1, (1.3)p tends formally to a p.d.e. of the type of mo-
tion by mean curvature. Investigations in this directions are due to Evans and Spruck
([79]). As m→ 0 the porous medium equation (1.3)m for u ≥ 0 tends to the singular
equation

(1.13) ut −∆ lnu = 0 weakly in ΩT .

When N = 2 the Cauchy problem for this equation is related to the Ricci flow as-
sociated to a complete metric in R2 ([90], [182], [59], [60]). A characterization of
the initial data for which (1.13) is solvable has been identified and the theory seems
fairly complete ([59], [46], [78]). The case N ≥ 3 however is still not understood and
while solvability has been established for a rather large class of data ([59]), a precise
characterization of such a class still eludes the investigators.

Degenerate and singular elliptic and parabolic equations are one of the branches of
modern analysis both in view of the physical significance of the equations at hand ([8],
[10], [11], [91], [92], [113], [114], [119], [126], [127], [161], [183]) and the novel analytical
techniques that they generate ([55]).

The class of such equations is large, ranging from flows by mean curvature to
Monge–Ampére equations to infinity-Laplacian. These are implicitly degenerate or
singular equations in that the solution itself determines, implicitly, the regions of
degeneracy. Explicitly degenerate equations would be those for which the degeneracy
or singularity is a priori prescribed in the coefficients. For example if the modulus of
ellipticity C0 in (1.8) were a non–negative function of x vanishing at some specified
value x∗, such a point would be a point of explicit degeneracy. There is a vast literature
on all these aspects of degenerate equations. We have chosen to present a subsection of
the theory that has a unifying set of techniques, issues, physical relevance, and future
directions.

1.4 Singular equations of the Stefan–type

In this framework fall singular parabolic evolution equations where the singularity
occurs on the time–part of the operator. These take the form

(1.14)

{
u ∈ Cloc

(
0, T ;W 1,2

loc (ΩT )
)

;

β(u)t − div A(x, t, u,∇u) 3 B(x, t, u,∇u) in D′(ΩT ) ,

where A and B have the same structure conditions as (1.2)m for m = 1 and β(·) is a
coercive, maximal monotone graph in R×R. The prototype example is

(1.15) β(u)t −∆u 3 0 in D′(ΩT )
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for a β(·) given by

(1.16) β(s) =

 s for s < 0 ;
[0,1] for s = 0 ;
1 + s for s > 0 .

Graphs β(·) such as this one, i.e., exhibiting a single jump at the origin, arise from
a weak formulation of the classical Stefan problem modelling a solid/liquid phase
transition such as water–ice. In the latter case a natural question would be to ask
whether the transition of phase occurs with a continuous temperature across water/ice
interface. This issue, raised initially by Oleinik in the 1950s and reported in the
book [LSU] is at the origin of the modern and current theory of local regularity and
local behaviour of solutions of degenerate and/or singular evolution equations. The
coercivity of β(·) for a solution to be continuous is essential, as pointed out by examples
and counterexamples in [61].

It was established in [31], [48], [149], [150], [184] that for β(·) exhibiting a single
jump, the solutions of (1.14) are continuous with a given quantitative modulus of
continuity (not Hölder). This raises naturally the question of a graph β(·) exhibiting
multiple jumps and or singularities of other nature (§5). For these rather general
graphs, in the mid 1990s it was established in [72] that solutions of (1.14) are continuous
provided N = 2. For dimension N ≥ 3 the same conclusion holds provided the
principal part of the differential equation is exactly the Laplacian, as in the first of
(1.15). Several recent investigations have extended and improved these results for
specific graphs ([86], [87]). It is still an open question however, whether solutions of
(1.14) with its full quasilinear structure and for a general coercive maximal monotone
graph β(·) and for N ≥ 3, are continuous in their domain of definition.

1.5 Outline of these notes

The issues touched on here will be expanded in the next sections. We will provide
precise statements and self–sufficient structure of proofs.

In section 2 we deal with the question of the regularity of the weak solutions of
singular and degenerate quasilinear parabolic equations, proving their Hölder charac-
ter. We start with the precise definition of weak solution and the derivation of the
building blocks of the theory: the local energy and logarithmic estimates. In §2.2 we
briefly present the classical approach of De Giorgi to uniformly elliptic equations. We
introduce De Giorgi’s class and show that functions in De Giorgi’s class are Hölder
continuous. The two main sections §2.3 and §2.4 deal, respectively, with the degenerate
and the singular case. There we present in full detail the idea of intrinsic scaling and,
at least in the degenerate case, prove all the results leading to the Hölder continuity.
We have decided to present the theory for the model case of the p-Laplace equation to
bring to light what is really essential in the method, leaving aside technical refinements
needed to deal with more general equations. We close the section with remarks on the
possible generalisations, namely to porous medium type equations.

Section 3 addresses the boundedness of weak solutions. The theory discriminates
between the degenerate and the singular case. If p > 2, a local bound for the solution
is implicit in the notion of weak solution. If 1 < p < 2, local or global solutions need
not be bounded in general.
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In section 4, we first give a review about classical results concerning Harnack
inequalities. Then we consider the degenerate case and we point out the differences
with respect to the nondegenerate one. We sketch a proof of the Harnack inequality
both in the degenerate and singular case. We show that for positive solutions of the
singular p-Laplace equation an ”elliptic” Harnack inequality holds. We also analyze
the phenomenon of the extinction of the solution in finite time. Through a suitable
use of the Raleigh quotient, we are also able to give sharp estimates on the extinction
time and to describe the asymptotic profile of the extinction. In the whole section
we point out the major open questions about Harnack inequalities for singular and
degenerate parabolic equations.

In section 5 we give physical motivations concerning Stefan-like equations and
show, through the Kruzkov- Sukorjanski transformation, the deep links between de-
generate equations and Stefan-like equations. Then, we describe the approaches made
by Aronson, Caffarelli, DiBenedetto, Sachs and Ziemer in the 1980’s. Thanks to their
contributions the case of only one singularity was completely solved. Lastly we analyze
the new pioneering approach of [72] where, through a lemma of measure theory, the
case of multiple singularities was totally solved in the case N = 2. Moreover we show
that this approach also works in the case N ≥ 3 but only under strong assumptions.
In this section we also point out the major open questions.

We have chosen not to present existence theorems for boundary value problems
associated with these equations. Theorems of this kind are mostly based on Galerkin
approximations and appear in the literature in a variety of forms. We refer, for ex-
ample, to [121] or [123]. Given the a priori estimates presented here these can be
obtained alternatively by a limiting process in a family of approximating problems
and an application of Minty’s Lemma.

These notes can be ideally divided in three parts:

1. Hölder continuity and boundedness of solutions (§2-3)

2. Harnack type estimates (§4)

3. Stefan-like problems (§5)

These parts are technically linked but they are conceptually independent, in the
sense that they deal with issues that have developed in independent directions. We
have attempted to present them in such a way that they can be approached indepen-
dently.

Acknowledgements. The research of J.M. Urbano was supported by CMUC/FCT
and Project POCTI/34471/MAT/2000.

2 Regularity of weak solutions

We address the question of the regularity of weak solutions of singular and degenerate
parabolic equations by proving that they are Hölder continuous.

We will concentrate on quasilinear parabolic equations, with principal part in di-
vergence form, of the type

(2.1) ut − div |∇u|p−2∇u = 0 , p > 1 .

10



If p > 2, the equation is degenerate in the space part, due to the vanishing of its
modulus of ellipticity |∇u|p−2 at points where |∇u| = 0. The singular case corresponds
to 1 < p < 2: the modulus of ellipticity becomes infinity at points where |∇u| = 0.

The results in this section extend to a variety of equations and, in particular, to
equations with general principal parts satisfying appropriate structure assumptions
and with lower order terms. We have chosen to present the results and the proofs for
the particular model case (2.1) to bring to light what we feel are the essential features
of the theory. Remarks on generalisations, which in some way or another correspond to
more or less sophisticated technical improvements, are made at the end of the section.

Results on the continuity of solutions at a point consist basically in constructing
a sequence of nested and shrinking cylinders with vertex at that point, such that
the essential oscillation of the function in those cylinders converges to zero when the
cylinders shrink to zero. At the basis of the proof is an iteration technique, that is a
refinement of the technique by DeGiorgi and Moser (cf. [47], [132] and [121]), based
on energy (also known as Cacciopolli) and logarithmic estimates for the solution, that
we briefly review in §2.2. In the degenerate or singular cases these estimates are not
homogeneous in the sense that they involve integral norms corresponding to different
powers, namely the powers 2 and p. The key idea is then to look at the equation in its
own geometry, i.e., in a geometry dictated by its intrinsic structure. This amounts to
rescale the standard parabolic cylinders by a factor that depends on the oscillation of
the solution. This procedure, which can be called accommodation of the degeneracy,
allows one to recover the homogeneity in the energy estimates written over these
rescaled cylinders. We can say heuristically that the equation behaves in its own
geometry like the heat equation. In the sequel, we first treat the degenerate case in
§2.3 and then the more involved singular case in section §2.4. We conclude the section
with some remarks on generalisations, namely to porous medium type equations.

2.1 Weak solutions and local estimates

A local weak sub(super)-solution of (2.1) is a measurable function

u ∈ Cloc

(
0, T ;L2

loc(Ω)
)
∩ Lp

loc

(
0, T ;W 1,p

loc (Ω)
)

such that, for every compact K ⊂ Ω and for every subinterval [t1, t2] of (0, T ],

(2.2)
∫

K

uϕ dx
∣∣∣∣t2
t1

+
∫ t2

t1

∫
K

{
−uϕt + |∇u|p−2∇u · ∇ϕ

}
dxdt ≤ (≥) 0 ,

for all ϕ ∈ W 1,2
loc

(
0, T ;L2(K)

)
∩ Lp

loc

(
0, T ;W 1,p

0 (K)
)
, ϕ ≥ 0. A function that is both

a local subsolution and a local supersolution of (2.1) is a local solution of (2.1).
It would be technically convenient to have at hand a formulation of weak solution

involving the time derivative ut. Unfortunately, solutions of (2.1), whenever they exist,
possess a modest degree of time-regularity and in general ut has a meaning only in the
sense of distributions. To overcome this limitation we introduce the Steklov average
of a function v ∈ L1(ΩT ), defined for 0 < h < T by

vh =


1
h

∫ t+h

t
v(·, τ) dτ if t ∈ (0, T − h]

0 if t ∈ (T − h, T ] ,
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and observe that the notion (2.2) of solution is equivalent to:

for every compact K ⊂ Ω and for all 0 < t < T − h,

(2.3)
∫

K×{t}

{
(uh)t ϕ+

(
|∇u|p−2∇u

)
h
· ∇ϕ

}
dx ≤ (≥) 0 ,

for all ϕ ∈W 1,p
0 (K) ∩ L∞loc(Ω), ϕ ≥ 0.

We will show that locally bounded solutions of (2.1) are locally Hölder continuous
within their domain of definition. No specific boundary or initial values need to be
prescribed for u. Although the arguments below are of local nature, to simplify the
presentation we assume that u is a.e. defined and bounded in ΩT and set

M ≡ ‖u‖L∞(ΩT ) .

See section 3 for results on the boundedness of weak solutions.

2.1.1 Local energy and logarithmic estimates

Given a point x0 ∈ RN , denote by Kρ(x0) the N -dimensional cube with centre at x0

and wedge 2ρ:

Kρ(x0) :=
{
x ∈ RN : max

1≤i≤N
|xi − x0i| < ρ

}
;

given a point (x0, t0) ∈ RN+1, the cylinder of radius ρ and height τ > 0 is

(x0, t0) +Q(τ, ρ) := Kρ(x0)× (t0 − τ, t0) .

Consider a cylinder (x0, t0)+Q(τ, ρ) ⊂ ΩT and let 0 ≤ ζ ≤ 1 be a piecewise smooth
cutoff function in (x0, t0) +Q(τ, ρ) such that

(2.4) |∇ζ| <∞ and ζ(x, t) = 0 , x 6∈ Kρ(x0) .

We start with the energy estimates. Without loss of generality, we will state them
for cylinders with “vertex” at the origin (0, 0), the changes being obvious for cylinders
with “vertex” at a generic (x0, t0).

Proposition 1. Let u be a local weak solution of (2.1). There exists a constant
C ≡ C(p) > 0 such that for every cylinder Q(τ, ρ) ⊂ ΩT ,

sup
−τ<t<0

∫
Kρ×{t}

(u− k)2± ζ
p dx+

∫ 0

−τ

∫
Kρ

|∇(u− k)±ζ|p dxdt

≤
∫

Kρ×{−τ}
(u− k)2± ζ

p dx+ C

∫ 0

−τ

∫
Kρ

(u− k)p
± |∇ζ|p dxdt

(2.5) +p
∫ 0

−τ

∫
Kρ

(u− k)2± ζ
p−1 ∂tζ dxdt .
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Proof. Use ϕ = ±(uh − k)±ζp as a testing function in (2.3) and perform standard
energy estimates (cf. [55, pages 24–27]).

Given constants a, b, c, with 0 < c < a, define the nonnegative function

ψ±{a,b,c}(s) ≡
(

ln
{

a

(a+ c)− (s− b)±

})
+

=


ln
{

a
(a+c)±(b−s)

}
if b± c

<
> s

<
> b± (a+ c)

0 if s
≤
≥ b± c

whose first derivative is

(
ψ±{a,b,c}

)′
(s) =


1

(b−s)±(a+c) if b± c
<
> s

<
> b± (a+ c)

0 if s
<
> b± c

≥
≤ 0 ,

and second derivative, off s = b± c, is
(
ψ±{a,b,c}

)′′
=
{(

ψ±{a,b,c}

)′}2

≥ 0 .

Now, given a bounded function u in a cylinder (x0, t0) +Q(τ, ρ) and a number k,
define the constant

H±
u,k ≡ ess sup

(x0,t0)+Q(τ,ρ)

|(u− k)±| .

The following function was introduced in [48] and since then has been used as a recur-
rent tool in the proof of results concerning the local behaviour of solutions of degenerate
PDE’s:

Ψ±
(
H±

u,k, (u− k)±, c
)
≡ ψ±{H±

u,k,k,c}(u) , 0 < c < H±
u,k .

From now on, when referring to this function we will write it as ψ±(u), omitting the
subscripts whose meaning will be clear from the context.

Let x 7→ ζ(x) be a time-independent cutoff function in Kρ(x0) satisfying (2.4). The
logarithmic estimates in cylinders Q(τ, ρ) with “vertex” at (0, 0), are

Proposition 2. Let u be a local weak solution of (2.1), k ∈ R and 0 < c < H±
u,k.

There exists a constant C > 0 such that for every cylinder Q(τ, ρ) ⊂ ΩT ,

sup
−τ<t<0

∫
Kρ×{t}

[
ψ±(u)

]2
ζp dx ≤

∫
Kρ×{−τ}

[
ψ±(u)

]2
ζp dx

(2.6) + C

∫ 0

−τ

∫
Kρ

ψ±(u)
∣∣∣(ψ±)′(u)

∣∣∣2−p

|∇ζ|p dxdt .

Proof. Take ϕ = 2ψ±(uh)
[
(ψ±)′(uh)

]
ζp as a testing function in (2.3) and integrate

in time over (−τ, t) for t ∈ (−τ, 0). Since ∂tζ ≡ 0,∫ t

−τ

∫
Kρ

∂tuh

{
2 ψ±(uh)

[
(ψ±)′(uh)

]
ζp
}

dxdt =
∫ t

−τ

∫
Kρ

∂t

{[
ψ±(uh)

]2}
ζp dxdt
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=
∫

Kρ×{t}

[
ψ±(uh)

]2
ζp dx−

∫
Kρ×{−τ}

[
ψ±(uh)

]2
ζp dx .

From this, letting h→ 0,∫ t

−τ

∫
Kρ

∂tuh

{
2 ψ±(uh)

[
(ψ±)′(uh)

]
ζp
}

dxdt −→
∫

Kρ×{t}

[
ψ±(u)

]2
ζp dx

−
∫

Kρ×{−τ}

[
ψ±(u)

]2
ζp dx .

As for the remaining term, we first let h→ 0, to obtain∫ t

−τ

∫
Kρ

|∇u|p−2∇u · ∇
{

2 ψ±(u)
[
(ψ±)′(u)

]
ζp
}

dxdt

=
∫ t

−τ

∫
Kρ

|∇u|p
{

2
(
1 + ψ±(u)

) [
(ψ±)′(u)

]2
ζp

}
dxdt

+ p

∫ t

−τ

∫
Kρ

|∇u|p−2∇u · ∇ζ
{

2 ψ±(u)
[
(ψ±)′(u)

]
ζp−1

}
dxdt

≥
∫ t

−τ

∫
Kρ

|∇u|p
{

2
(
1 + ψ±(u)− ψ±(u)

) [
(ψ±)′(u)

]2
ζp

}
dxdt

− 2(p− 1)p−1

∫ t

−τ

∫
Kρ

ψ±(u)
∣∣∣(ψ±)′(u)

∣∣∣2−p

|∇ζ|p dxdt

≥ − C

∫ t

−τ

∫
Kρ

ψ±(u)
∣∣∣(ψ±)′(u)

∣∣∣2−p

|∇ζ|p dxdt .

Since t ∈ (−τ, 0) is arbitrary, we can combine both estimates to obtain (2.6).

2.1.2 Some technical tools

We gather a few technical facts that, although marginal to the theory, are essential in
establishing its main results.

Given a continuous function v : Ω → R and two real numbers k < l, we define

[v > l] ≡ {x ∈ Ω : v(x) > l} ,

[v < k] ≡ {x ∈ Ω : v(x) < k} ,(2.7)
[k < v < l] ≡ {x ∈ Ω : k < v(x) < l} .

Lemma 1 (DeGiorgi, [47]). Let v ∈ W 1,1 (Bρ(x0)) ∩ C (Bρ(x0)), with ρ > 0 and
x0 ∈ RN and k < l ∈ R. There exists a constant C, depending only on N and p (so
independent of ρ, x0, v, k and l), such that

(l − k) |[v > l]| ≤ C
ρN+1

|[v < k]|

∫
[k<v<l]

|∇v|dx .
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Remark 1. The conclusion of the lemma remains valid, provided Ω is convex, for
functions v ∈ W 1,1(Ω) ∩ C(Ω). We will use it in the case Ω is a cube. In fact, the
continuity is not essential for the result to hold. For a function merely in v ∈W 1,1(Ω),
we define the sets (2.7) through any representative in the equivalence class. It can be
shown that the conclusion of the lemma is independent of that choice.

The following lemma concerns the geometric convergence of sequences.

Lemma 2. Let {Xn}, n = 0, 1, 2, . . ., be a sequence of positive real numbers satisfying
the recurrence relation

Xn+1 ≤ C bn X1+α
n

where C, b > 1 and α > 0 are given. If

X0 ≤ C−1/α b−1/α2

then Xn → 0 as n→∞.

Let V p
0 (ΩT ) denote the space

V p
0 (ΩT ) = L∞ (0, T ;Lp(Ω)) ∩ Lp

(
0, T ;W 1,p

0 (Ω)
)

endowed with the norm

‖u‖p
V p(ΩT ) = ess sup

0≤t≤T
‖u(·, t)‖p

p,Ω + ‖∇u‖p
p,ΩT

,

for which the following embedding theorem holds (cf. [55, page 9]):

Theorem 1. Let p > 1. There exists a constant γ, depending only upon N and p,
such that for every v ∈ V p

0 (ΩT ),

‖v‖p
p,ΩT

≤ γ
∣∣∣ |v| > 0

∣∣∣ p
N+p ‖v‖p

V p(ΩT ) .

With C or Cj we denote constants that depend only on N and p and that might
be different in different contexts.

2.2 The classical approach of De Giorgi

Results concerning the Hölder continuity of weak solutions u consist essentially in
showing that for every point (x0, t0) ∈ ΩT we can find a sequence of nested and
shrinking cylinders (x0, t0) +Q(τn, ρn) such that the essential oscillation of u in these
cylinders approaches zero as n→∞ in a way that can be quantified.

The approach to regularity introduced by De Giorgi is based on the following
embedding theorem (see [47] for the elliptic case and [121] for the parabolic case):

Proposition 3. Assume that u ∈ L2
loc(0, T ;W 1,2

loc (Ω)) ∩W 1,2
loc (0, T ;L2

loc(Ω)) is locally
bounded and satisfies the Caccioppoli inequalities (2.5) with p = 2. Then u is locally
Hölder continuous, with the modulus of continuity depending only upon the data.
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A solution of a non-degenerate parabolic equation with the full quasilinear struc-
ture satisfies these inequalities. One uses the structure of the equation to prove the
Caccioppoli estimates for a solution u and this is the only role of the equation. Once
such inequalities are derived, the Hölder continuity of u is solely a consequence of (2.5)
for p = 2.

Alternative approaches are in Kruzkov ([110], [111], [112]) and, through the use
of the Harnack inequality, in Moser ([132], [134]), Trudinger ([164]), Aronson-Serrin
([16]) and, for equations in non-divergence form, in Krylov-Safonov ([117]).

Set Qr = Q(r2, r), fix a point (x0, t0) ∈ ΩT , and let ρ0 be the largest radius so that
(x0, t0) + Qρ0 is contained in ΩT . For a constant δ ∈ (0, 1), consider the sequence of
decreasing radii,

(2.8) ρn = δnρ0 , n = 0, 1, 2, . . .

and the family of nested shrinking cylinders, with the same “vertex”

(2.9) (x0, t0) +Qρn , n = 0, 1, 2, . . .

Set

µ−n := ess inf
(x0,t0)+Qρn

u ; µ+
n := ess sup

(x0,t0)+Qρn

u ; ωn := ess osc
(x0,t0)+Qρn

u = µ+
n − µ−n .

Proposition 4. Let u satisfy the Caccioppoli inequalities (2.5) for p = 2. Then there
exist constants C > 1 and δ, η ∈ (0, 1

2 ), that can be determined a priori only in terms
of the data, such that for every (x0, t0) ∈ ΩT and every n ∈ N, at least one of the
following two inequalities holds

(2.10) ess sup
(x0,t0)+Qρn+1

u ≤ µ+
n − ηωn,

(2.11) ess inf
(x0,t0)+Qρn+1

u ≥ µ−n + ηωn.

A nontrivial proof can be found in [121]. This proposition can be interpreted as a
weak maximum principle. For example (2.10) asserts that the supremum of u over the
cylinder Qρn+1 is strictly less than the supremum of u over the larger coaxial cylinder
Qρn

. In other words, the supremum of u over Qρn
can only be achieved in the parabolic

shell Qρn
\Qρn+1 that can be considered as a sort of parabolic boundary of Qρn

.
A consequence of such a weak maximum principle is:

Proposition 5. Let u be as above. Then there exist constants C > 1 and δ, η ∈ (0, 1
2 ),

that can be determined a priori only in terms of the data, such that for every (x0, t0) ∈
ΩT and every n ∈ N,

(2.12) ωn+1 ≤ (1− η)ωn .

This in turn implies that u is locally Hölder continuous in ΩT .
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Proof. Fix (x0, t0) ∈ ΩT . Assume that (2.10) holds. By subtracting µ−n+1 from the
left hand side and µ−n from the right hand side,

ωn+1 = µ+
n+1 − µ−n+1 ≤ µ+

n − µ−n − ηωn = (1− η)ωn .

If (2.11) holds one can argue in a similar way. By iteration,

(2.13) ωn ≤ (1− η)nω0 , ∀n ∈ N .

The numbers η and δ are related by (1− η) = δα and α = ln(1−η)
ln δ ∈ (0, 1). Therefore,

(2.14) ωn ≤ ω0

(
ρn

ρ0

)α

, ∀n ∈ N .

Since (x0, t0) ∈ ΩT is arbitrary, we conclude that u is locally Hölder continuous in ΩT

with exponent α.

Remark 2. The cylinder (x0, t0)+Qρ0 must be contained in ΩT . Thus from (2.14) it
follows that the Hölder continuity can be claimed only within compact subsets of ΩT

and that the Hölder constant ω0ρ
−α
0 deteriorates as (x0, t0) approaches the parabolic

boundary of ΩT .

2.3 The degenerate case p > 2

We go back to equation (2.1) and focus on the degenerate case p > 2. The energy
and logarithmic estimates of §2.1 are not homogeneous in the space and time parts
due to the presence of the power p 6= 2. To go about this difficulty we will consider
the equation in a geometry dictated by its own structure, which is designed, roughly
speaking, to restore the homogeneity of the various parts of the Caccioppoli inequalities
(2.5). This means that, instead of the usual cylinders, we have to work in cylinders
whose dimensions take the degeneracy of the equation into account, in a process that
we call intrinsic rescaling. Let’s make this idea precise.

2.3.1 The geometric setting and the alternative

Consider R > 0 such that Q(R2, R) ⊂ ΩT , define

µ+ :=ess sup
Q(R2,R)

u ; µ− := ess inf
Q(R2,R)

u ; ω :=ess osc
Q(R2,R)

u = µ+ − µ−

and construct the cylinder

(2.15) Q(a0R
p, R) ≡ KR(0)× (−a0R

p, 0) with a0 =
( ω

2λ

)2−p

,

where λ > 1 is to be fixed later depending only on the data (see (2.55)). Note that
for p = 2, i.e., in the non-degenerate case, these are the standard parabolic cylinders
reflecting the natural homogeneity between the space and time variables.
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We will assume, without loss of generality, that

(2.16) R <
ω

2λ

because if this doesn’t hold there is nothing to prove since the oscillation is comparable
to the radius.

Now, (2.16) implies the inclusion

Q(a0R
p, R) ⊂ Q(R2, R)

and the relation

(2.17) ess osc
Q(a0Rp,R)

u ≤ ω

which will be the starting point of an iteration process that leads to our main results.
Note that we had to consider the cylinder Q(R2, R) and assume (2.16), so that (2.17)
would hold for the rescaled cylinder Q(a0R

p, R). This is in general not true for a given
cylinder since its dimensions would have to be intrinsically defined in terms of the
essential oscillation of the function within it - the stretching procedure is commonly
referred to as an accommodation of the degeneracy.

We now consider subcylinders of Q(a0R
p, R) of the form

(2.18) (0, t∗) +Q(dRp, R) , with d =
(ω

2

)2−p

that are contained in Q(a0R
p, R) if

(2.19)
(
2p−2 − 2λ(p−2)

) Rp

ωp−2
< t∗ < 0 .

The proof now follows from the analysis of two complementary cases. We briefly
describe them in the following way: in the first case we assume that there is a cylinder
of the type (0, t∗) +Q(dRp, R) where u is essentially away from its infimum. We show
that going down to a smaller cylinder the oscillation decreases by a small factor that
we can exhibit. If that cylinder can not be found then u is essentially away from its
supremum in all cylinders of that type and we can compound this information to reach
the same conclusion as in the previous case. We state this in a precise way.

For a constant ν0 ∈ (0, 1), that will be determined depending only on the data, we
will assume that either

The first alternative:

There is a cylinder of the type (0, t∗) +Q(dRp, R) for which

(2.20)

∣∣{(x, t) ∈ (0, t∗) +Q(dRp, R) : u(x, t) < µ− + ω
2

}∣∣
|Q(dRp, R)|

≤ ν0

or

The second alternative:

For every cylinder of the type (0, t∗) +Q(dRp, R)

(2.21)

∣∣{(x, t) ∈ (0, t∗) +Q(dRp, R) : u(x, t) > µ+ − ω
2

}∣∣
|Q(dRp, R)|

< 1− ν0
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2.3.2 Analysis of the first alternative

Lemma 3. Assume (2.20) holds for some t∗ as in (2.19) and that (2.16) is in force.
There exists a constant ν0 ∈ (0, 1), depending only on the data, such that

u(x, t) > µ− +
ω

4
a.e. (x, t) ∈ (0, t∗) +Q

(
d

(
R

2

)p

,
R

2

)
.

Proof. Take the cylinder for which (2.20) holds and assume, by translation, that
t∗ = 0. Let

Rn =
R

2
+

R

2n+1
, n = 0, 1, . . . ,

and construct the family of nested and shrinking cylinders Q(dRp
n, Rn). Consider

piecewise smooth cutoff functions 0 < ζn ≤ 1, defined in these cylinders, and satisfying
the following set of assumptions

ζn = 1 in Q
(
dRp

n+1, Rn+1

)
ζn = 0 on ∂pQ (dRp

n, Rn)

|∇ζn| ≤ 2n+1

R 0 ≤ ∂tζn ≤ 2p(n+1)

dRp .

Write the energy inequality (2.5) for the functions (u− kn)−, with

kn = µ− +
ω

4
+

ω

2n+2
, n = 0, 1, . . . ,

in the cylinders Q (dRp
n, Rn) and with ζ = ζn. They read

sup
−dRp

n<t<0

∫
KRn×{t}

(u− kn)2−ζ
p
n dx+

∫ 0

−dRp
n

∫
KRn

|∇(u− kn)−ζn|p dxdt

≤ C

∫ 0

−dRp
n

∫
KRn

(u− kn)p
−|∇ζn|p dxdt+ p

∫ 0

−dRp
n

∫
KRn

(u− kn)2−ζ
p−1
n ∂tζn dxdt

(2.22) ≤ C
2p(n+1)

Rp

{∫ 0

−dRp
n

∫
KRn

(u− kn)p
− dxdt+

1
d

∫ 0

−dRp
n

∫
KRn

(u− kn)2− dxdt

}
.

Next, observing that

(u− kn)− = (µ− − u) +
ω

4
+

ω

2n+2
≤ ω

2

and
(u− kn)2− = (u− kn)2−p

− (u− kn)p
− ≥

(ω
2

)2−p

(u− kn)p
− ,

we obtain from (2.22)(ω
2

)2−p

sup
−dRp

n<t<0

∫
KRn×{t}

(u− kn)p
−ζ

p
n dx+

∫ 0

−dRp
n

∫
KRn

|∇(u− kn)−ζn|p dxdt
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(2.23) ≤ C
2p(n+1)

Rp

{(ω
2

)p

+
1
d

(ω
2

)2
}∫ 0

−dRp
n

∫
KRn

χ{(u−kn)−>0} dxdt .

Recall that d =
(

ω
2

)2−p and divide (2.23) by d to get

sup
−dRp

n<t<0

∫
KRn×{t}

(u− kn)p
−ζ

p
n dx+

1
d

∫ 0

−dRp
n

∫
KRn

|∇(u− kn)−ζn|p dxdt

(2.24) ≤ C
2p(n+1)

Rp

(ω
2

)p 1
d

∫ 0

−dRp
n

∫
KRn

χ{(u−kn)−>0} dxdt .

Now we perform a change of the time variable in (2.24), putting t = t/d and defining

u(·, t) = u(·, t) and ζn(·, t) = ζn(·, t) ,

and obtain the simplified inequality

(2.25)
∥∥(u− kn)− ζn

∥∥p

V p
0 (Q(Rp

n,Rn))
≤ C

2pn

Rp

(ω
2

)p
∫ 0

−Rp
n

∫
KRn

χ{(u−kn)−>0} dxdt .

Define, for each n,

An =
∫ 0

−Rp
n

∫
KRn

χ{(u−kn)−>0} dx dt

and observe that

1
2p(n+2)

(ω
2

)p

An+1 ≤ |kn − kn+1|p An+1

≤ ‖(u− kn)−‖p
p,Q(Rp

n+1,Rn+1)

≤
∥∥(u− kn)−ζn

∥∥p

p,Q(Rp
n,Rn)

≤ C
∥∥(u− kn)− ζn

∥∥p

V p
0 (Q(Rp

n,Rn))
A

p
N+p
n

(2.26) ≤ C
2pn

Rp

(ω
2

)p

A
1+ p

N+p
n .

The first three of these inequalities follow from the definition of An and kn+1 < kn; the
fourth inequality is a consequence of Theorem 1 and the last one follows from (2.25).
Next, define the numbers

Xn =
An

|Q(Rp
n, Rn)|

,

divide (2.26) by
∣∣Q(Rp

n+1, Rn+1)
∣∣ and obtain the recursive relation

Xn+1 ≤ C 4pn X
1+ p

N+p
n ,

for a constant C depending only upon N and p. By Lemma 2 on fast geometric
convergence, if

(2.27) X0 ≤ C−
N+p

p 4−
(N+p)2

p ≡ ν0
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then

(2.28) Xn −→ 0 .

Therefore, ∣∣∣{(x, t) ∈ Q
(
d(R

2 )p, R
2

)
: u(x, t) ≤ µ− +

ω

4

}∣∣∣ = 0 .

Our next aim is to show that the conclusion of lemma 3 holds in a full cylinder
Q(τ, ρ). The idea is to use the fact that at the time level

(2.29) −t̂ := t∗ − d
(

R
2

)p
the function u(x,−t̂ ) is strictly above the level µ− + ω

4 in the cube KR
2
, and look at

this time level as an initial condition to make the conclusion hold up to t = 0. As an
intermediate step we need the following lemma.

Lemma 4. Assume (2.20) holds for some t∗ as in (2.19) and that (2.16) is in force.
Given ν∗ ∈ (0, 1), there exists s∗ ∈ N, depending only on the data, such that∣∣∣{x ∈ KR

4
: u(x, t) < µ− +

ω

2s∗

}∣∣∣ ≤ ν∗

∣∣∣KR
4

∣∣∣ , ∀t ∈ (−t̂, 0) .

Proof. We use the logarithmic estimate (2.6) applied to the function (u− k)− in the
cylinder Q(t̂, R

2 ), with the choices

k = µ− +
ω

4
and c =

ω

2n+2

where n ∈ N will be chosen later. We have

(2.30) k − u ≤ H−
u,k = ess sup

Q(t̂, R
2 )

∣∣∣∣(u− µ− −
ω

4

)
−

∣∣∣∣ ≤ ω

4
.

If H−
u,k ≤ ω

8
the result is trivial for the choice s∗ = 3. Assuming H−

u,k >
ω

8
the

logarithmic function is defined in the whole Q(t̂, R
2 ) and it is given by

Ψ− = ψ−{H−
u,k,k, ω

2n+2 }
(u) =


ln

{
H−

u,k

H−
u,k + u− k + ω

2n+2

}
if u < k − ω

2n+2

0 if u ≥ k − ω
2n+2

.

From (2.30), we estimate

(2.31) Ψ− ≤ n ln 2 since
H−

u,k

H−
u,k + u− k + ω

2n+2

≤
ω
4
ω

2n+2

= 2n

and

(2.32)
∣∣∣(ψ−)′ (u)∣∣∣2−p

=
(
H−

u,k + u− k + c
)p−2

≤
(ω

2

)p−2

.
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Now observe that as a consequence of Lemma 3, we have u(x,−t̂) > k in the cube
KR

2
, which implies that

Ψ−(x,−t̂) = 0 , x ∈ KR
2
.

Choosing a piecewise smooth cutoff function 0 < ζ(x) ≤ 1, defined in KR
2

and such
that

ζ = 1 in KR
4

and |∇ζ| ≤ 8
R ,

inequality (2.6) reads
(2.33)

sup
−t̂<t<0

∫
K R

2
×{t}

[
ψ−(u)

]2
ζp dx ≤ C

∫ 0

−t̂

∫
K R

2

ψ−(u)
∣∣∣(ψ−)′(u)

∣∣∣2−p

|∇ζ|p dxdt .

The right hand side is estimated above, using (2.31) and (2.32), by

C n(ln 2)
(ω

2

)p−2
(

8
R

)p

t̂
∣∣∣KR

2

∣∣∣ ≤ C n 2λ(p−2)
∣∣∣KR

4

∣∣∣ ,
since, by (2.29)

t̂ ≤ a0R
p =

( ω
2λ

)2−p

Rp .

We estimate below the left hand side of (2.33) by integrating over the smaller set

S(t) =
{
x ∈ KR

4
: u(x, t) < µ− +

ω

2n+2

}
⊂ KR

2

and observing that in S, ζ = 1 and

H−
u,k

H−
u,k + u− k + ω

2n+2

≥
ω
8(

H−
u,k −

ω
4

)
+ ω

2n+2

≥
ω
23

ω
2n+2

= 2n−1 ,

since
(
H−

u,k −
ω
4

)
≤ 0. Therefore,[

ψ−(u)
]2 ≥ [ln (2n−1

)]2
= (n− 1)2(ln 2)2 on S(t) .

Combining these estimates in (2.33) we get∣∣∣{x ∈ KR
4

: u(x, t) < µ− +
ω

2n+2

}∣∣∣ ≤ C
n

(n− 1)2
2λ(p−2)

∣∣∣KR
4

∣∣∣ ,
for all t ∈ (−t̂, 0) and to prove the lemma we choose

(2.34) s∗ = n+ 2 with n > 1 +
2C
ν∗

2λ(p−2) .

We now state the main result of this section.

Proposition 6. Assume (2.20) holds for some t∗ as in (2.19) and that (2.16) is in
force. There exist constants ν0 ∈ (0, 1), s1 ∈ N, depending only on the data, such that,

u(x, t) > µ− +
ω

2s1+1
, a.e. (x, t) ∈ Q

(
t̂,
R

8

)
.
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Proof. Consider the cylinder for which (2.20) holds, let

Rn =
R

8
+

R

2n+3
, n = 0, 1, . . .

and construct the family of nested and shrinking cylinders Q(t̂, Rn), where t̂ is given
by (2.29). Take piecewise smooth cutoff functions 0 < ζn(x) ≤ 1, independent of t,
defined in KRn

and satisfying

ζn = 1 in KRn+1 |∇ζn| ≤ 2n+4

R .

Write the local energy inequalities (2.5) for the functions (u − kn)− in the cylinders
Q
(
t̂, Rn

)
, with

kn = µ− +
ω

2s1+1
+

ω

2s1+1+n
, n = 0, 1, . . . ,

and ζ = ζn. Observing that, due to Lemma 3, we have u(x,−t̂) > µ− + ω
4 ≥ kn in the

cube KR
2
⊃ KRn

, which implies that

(u− kn)−(x,−t̂) = 0 , x ∈ KRn
, n = 0, 1, . . . ,

they read

sup
−t̂<t<0

∫
KRn×{t}

(u− kn)2−ζ
p
n dx+

∫ 0

−t̂

∫
KRn

|∇(u− kn)−ζn|p dxdt

(2.35) ≤ C

∫ 0

−t̂

∫
KRn

(u− kn)p
−|∇ζn|p dxdt ≤ C

2p(n+4)

Rp

∫ 0

−t̂

∫
KRn

(u− kn)p
− dxdt .

From (2.29) we estimate t̂ ≤ a0R
p =

(
ω
2λ

)2−p
Rp where a0 is defined in (2.15). From

this,

(u− kn)2− ≥
( ω

2s1

)2−p

(u− kn)p
− ≥

(
2s1

2λ

)p−2
t̂

Rp
(u− kn)p

−

≥ t̂

Rp
(u− kn)p

− ,

provided s1 > λ. Dividing now (2.35), by
t̂

(R
2 )p

gives

sup
−t̂<t<0

∫
KRn×{t}

(u− kn)p
−ζ

p
n dx+

Rp

t̂

∫ 0

−t̂

∫
KRn

|∇(u− kn)−ζn|p dxdt

≤ C
2pn

t̂

∫ 0

−t̂

∫
KRn

(u− kn)p
− dxdt .

The change of the time variable t = t
( R

2 )p

t̂
, along with the new function

u(·, t) = u(·, t) ,
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leads to the simplified inequality

‖(u− kn)− ζn‖p

V p
0 (Q(( R

2 )p,Rn)) ≤ C
2pn

(R
2 )p

( ω

2s1

)p
∫ 0

−( R
2 )p

∫
KRn

χ{(u−kn)−>0} dxdt .

Define, for each n,

An =
∫ 0

−( R
2 )p

∫
KRn

χ{(u−kn)−>0} dx dt .

By a reasoning similar to the one leading to (2.26):

1
2p(n+2)

( ω

2s1

)p

An+1 ≤ |kn − kn+1|p An+1

≤ ‖(u− kn)−‖p

p,Q(( R
2 )p,Rn+1)

≤ ‖(u− kn)−ζn‖p

p,Q(( R
2 )p,Rn) ≤ C ‖(u− kn)− ζn‖p

V p
0 (Q(( R

2 )p,Rn)) A
p

N+p
n

≤ C
2pn

(R
2 )p

( ω

2s1

)p

A
1+ p

N+p
n .

Next, define the numbers

Xn =
An∣∣Q ((R
2 )p, Rn

)∣∣ ,
divide the previous inequality by

∣∣Q ((R
2 )p, Rn+1

)∣∣ to obtain the recursive relations

Xn+1 ≤ C 4pn X
1+ p

N+p
n .

By Lemma 2 on fast geometric convergence, if

(2.36) X0 ≤ C−
N+p

p 4−
(N+p)2

p ≡ ν∗ ∈ (0, 1)

then

(2.37) Xn −→ 0 .

To verify (2.36), apply Lemma 4 with such a ν∗ and conclude that there exists s∗ ≡ s1,
depending only on the data, such that∣∣∣{x ∈ KR

4
: u(x, t) < µ− +

ω

2s1

}∣∣∣ ≤ ν∗

∣∣∣KR
4

∣∣∣ , ∀t ∈ (−t̂, 0) .

Since (2.37) implies that An → 0, we conclude that∣∣∣∣{(x, t) ∈ Q
((

R
2

)p
,
R

8

)
: u(x, t) ≤ µ− +

ω

2s1+1

}∣∣∣∣
=
∣∣∣∣{(x, t) ∈ Q

(
t̂,
R

8

)
: u(x, t) ≤ µ− +

ω

2s1+1

}∣∣∣∣ = 0 .
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Corollary 1. Assume (2.20) holds for some t∗ as in (2.19) and that (2.16) is in force.
There exist constants ν0, σ0 ∈ (0, 1), depending only on the data, such that

(2.38) ess osc
Q(d( R

8 )p, R
8 )
u ≤ σ0 ω .

Proof. By Proposition 6 there exists s1 ∈ N such that

ess inf
Q(t̂, R

8 )
u ≥ µ− +

ω

2s1+1
.

From this,

ess osc
Q(t̂, R

8 )
u ≤

(
1− 1

2s1+1

)
ω .

Since d
(

R
8

)p ≤ t̂ = −t∗ + d
(

R
2

)p
, t∗ < 0, we have

Q

(
d

(
R

8

)p

,
R

8

)
⊂ Q

(
t̂,
R

8

)
,

and the corollary follows with σ0 =
(
1− 1

2s1+1

)
.

2.3.3 Analysis of the second alternative

Assume now that the second alternative (2.21) holds true. We will show that a con-
clusion similar to (2.38) can be reached. Recall that the constant ν0 has already been
quantitatively determined by (2.27), and it is fixed. We continue to assume that (2.16)
is in force.

Lemma 5. Assume (2.21) holds and let (2.16) be in force. Fix a cylinder (0, t∗) +
Q(dRp, R) ⊂ Q(a0R

p, R) for which (2.21) holds. There exists a time level

t◦ ∈
[
t∗ − dRp, t∗ − ν0

2
dRp

]
such that ∣∣∣{x ∈ KR : u(x, t◦) > µ+ −

ω

2

}∣∣∣ ≤ ( 1− ν0
1− ν0/2

)
|KR| .

Proof. Suppose not. Then, for all t ∈
[
t∗ − dRp, t∗ − ν0

2 dR
p
]
,∣∣∣{(x, t) ∈ (0, t∗) +Q(dRp, R) : u(x, t) > µ+ −
ω

2

}∣∣∣
≥
∫ t∗− ν0

2 dRp

t∗−dRp

∣∣∣{x ∈ KR : u(x, τ) > µ+ −
ω

2

}∣∣∣ dτ > (1− ν0) |Q(dRp, R)| ,

which contradicts (2.21).

The next lemma asserts that the set where u(·, t) is close to its supremum is small,
not only at the specific time level t◦, but for all time levels near the top of the cylinder
(0, t∗) +Q(dRp, R).
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Lemma 6. Assume (2.21) holds and let (2.16) be in force. There exists 1 < s2 ∈ N,
depending only on the data, such that∣∣∣{x ∈ KR : u(x, t) > µ+ −

ω

2s2

}∣∣∣ ≤ (1−
(ν0

2

)2
)
|KR| ,

for all t ∈
[
t∗ − ν0

2 dR
p, t∗

]
.

Proof. The proof consists in using the logarithmic inequalities (2.6) applied to the
function (u− k)+ in the cylinder KR × (t◦, t∗), with the choices

k = µ+ −
ω

2
and c =

ω

2n+1

where n ∈ N will be chosen later. We have

(2.39) u− k ≤ H+
u,k = ess sup

KR×(t◦,t∗)

∣∣∣∣(u− µ+ +
ω

2

)
+

∣∣∣∣ ≤ ω

2
.

If H+
u,k ≤

ω
8 the result is trivial for the choice of s2 = 3. Assuming H+

u,k > ω
8 the

logarithmic function Ψ+ is defined in the whole KR × (t◦, t∗), and it is given by

Ψ+ = ψ+

{H+
u,k,k, ω

2n+1 }
(u) =


ln

{
H+

u,k

H+
u,k − u+ k + ω

2n+1

}
if u > k + ω

2n+1

0 if u ≤ k + ω
2n+1

From (2.39), estimate

(2.40) Ψ+ ≤ n ln 2 since
H+

u,k

H+
u,k − u+ k + ω

2n+1

≤
ω
2
ω

2n+1

= 2n ,

and,

(2.41)
∣∣∣(ψ+

)′ (u)∣∣∣2−p

=
(
H+

u,k − u+ k + c
)p−2

≤
(ω

2

)p−2

.

Choosing a piecewise smooth cutoff function 0 < ζ(x) ≤ 1, defined in KR and such
that, for some σ ∈ (0, 1),

ζ = 1 in K(1−σ)R and |∇ζ| ≤ (σR)−1 ,

inequality (2.6) reads

sup
t◦<t<t∗

∫
KR×{t}

[
ψ+(u)

]2
ζp dx ≤

∫
KR×{t◦}

[
ψ+(u)

]2
ζp dx

(2.42) + C

∫ t∗

t◦

∫
KR

ψ+(u)
∣∣∣(ψ+)′(u)

∣∣∣2−p

|∇ζ|p dxdt .
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The first integral on the right hand side can be bounded above using Lemma 5 and
taking into account that Ψ+ vanishes on the set {x ∈ KR : u(x, ·) < k}. This gives∫

KR×{t◦}

[
ψ+(u)

]2 dx ≤ n2(ln 2)2
(

1− ν0
1− ν0/2

)
|KR| .

To bound the second integral we use (2.40) and (2.41):

C

∫ t∗

t◦

∫
KR

ψ+(u)
∣∣∣(ψ+)′(u)

∣∣∣2−p

|∇ζ|p dxdt

≤ C n(ln 2)
(ω

2

)p−2

(σR)−p (t∗ − t◦) |KR|

≤ C n
(ω

2

)p−2
(

1
σR

)p

dRp |KR|

≤ C n
1
σp

|KR| ,

since t∗ − t◦ ≤ dRp. The left hand side is estimated below by integrating over the
smaller set

S =
{
x ∈ K(1−σ)R : u(x, t) > µ+ −

ω

2n+2

}
⊂ KR

and observing that in S, ζ = 1 and

H+
u,k

H+
u,k − u+ k + ω

2n+1

≥
ω
8(

H+
u,k −

ω
2

)
+ ω

2n+2

≥
ω
2
ω
2n

= 2n−1 ,

since
(
H+

u,k −
ω
2

)
≤ 0. Therefore

[
ψ+(u)

]2 ≥ [ln (2n−1
)]2

= (n− 1)2(ln 2)2 .

From this
sup

t◦<t<t∗

∫
KR×{t}

[
ψ+(u)

]2
ζp dx ≥ (n− 1)2(ln 2)2 |S| .

Combining these three estimates, we arrive at

|S| ≤
(

n

n− 1

)2 ( 1− ν0
1− ν0/2

)
|KR|+ C

n

(n− 1)2
1
σp

|KR|

≤
(

n

n− 1

)2 ( 1− ν0
1− ν0/2

)
|KR|+

C

nσp
|KR| .

On the other hand∣∣∣{x ∈ KR : u(x, t) > µ+ −
ω

2n+1

}∣∣∣
≤
∣∣∣{x ∈ K(1−σ)R : u(x, t) > µ+ −

ω

2n+1

}∣∣∣+ ∣∣KR \K(1−σ)R

∣∣
≤ |S|+Nσ |KR|
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thus ∣∣∣{x ∈ KR : u(x, t) > µ+ −
ω

2n+1

}∣∣∣
≤

{(
n

n− 1

)2 ( 1− ν0
1− ν0/2

)
+

C

nσp
+Nσ

}
|KR| ,

for all t ∈ (t◦, t∗). Choose σ so small that Nσ ≤ 3
8ν

2
0 and n so large that

(2.43)
(

n

n− 1

)2

≤
(
1− ν0

2

)
(1 + ν0) ≡ β and

C

nσp
≤ 3

8
ν2
0 .

Note that β > 1. With this choice of n, the lemma follows with s2 = n+ 1.

The same type of conclusion holds in an upper portion of the full cylinder Q(a0R
p, R),

say for all t ∈
(
−a0

2 R
p, 0
)
. Indeed, (2.21) holds for all cylinders of the type (0, t∗) +

Q(dRp, R) so that the conclusion of the previous lemma holds true for all time levels

t ≥ −(a0 − d)Rp − ν0
2
dRp .

So if we choose

(2.44) 2(λ−1)(p−2) ≥ 2

we get
a0

d
≥ 2− ν0, which is equivalent to

−(a0 − d)Rp − ν0
2
dRp ≤ −a0

2
Rp .

Corollary 2. Assume (2.21) holds and let (2.16) be in force. For all t ∈
(
−a0

2 R
p, 0
)
,∣∣∣{x ∈ KR : u(x, t) > µ+ −

ω

2s2

}∣∣∣ ≤ (1−
(ν0

2

)2
)
|KR| .

The main result of this section states that in fact u is strictly below its supremum
µ+ in a smaller cylinder with the same vertex and axis as Q

(
a0
2 R

p, R
)
.

Proposition 7. Assume (2.21) holds and let (2.16) be in force. The choice of λ can
be made so that

(2.45) u(x, t) ≤ µ+ −
ω

2λ+1
a.e. (x, t) ∈ Q

(
a0

2

(
R

2

)p

,
R

2

)
.

Proof. Define
Rn =

R

2
+

R

2n+1
, n = 0, 1, . . . ,

and construct the family of nested shrinking cylinders Q
(

a0
2 R

p
n, Rn

)
. Consider piece-

wise smooth cutoff functions 0 < ζn ≤ 1, defined in these cylinders and satisfying the
following set of assumptions:

ζn = 1 in Q
(

a0
2 R

p
n+1, Rn+1

)
ζn = 0 in ∂pQ

(
a0
2 R

p
n, Rn

)
|∇ζn| ≤ 2n+1

R 0 ≤ ∂tζn ≤
2p(n+1)

a0
2 R

p
.
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The energy inequality (2.5) for the functions (u− kn)+, with

kn = µ+ −
ω

2λ+1
− ω

2λ+1+n
, n = 0, 1, . . . ,

in the cylinders Q
(

a0
2 R

p
n, Rn

)
and with ζ = ζn, reads

sup
− a0

2 Rp
n<t<0

∫
KRn×{t}

(u− kn)2+ζ
p
n dx+

∫ 0

− a0
2 Rp

n

∫
KRn

|∇(u− kn)+ζn|p dxdt

≤ C

∫ 0

− a0
2 Rp

n

∫
KRn

(u− kn)p
+|∇ζn|p dxdt+ C

∫ 0

− a0
2 Rp

n

∫
KRn

(u− kn)2+ζ
p−1
n ∂tζn dxdt

(2.46)

≤ C
2p(n+1)

Rp

{∫ 0

− a0
2 Rp

n

∫
KRn

(u− kn)p
+ dxdt+

2
a0

∫ 0

− a0
2 Rp

n

∫
KRn

(u− kn)2+ dxdt

}
.

Observe that

(u− kn)2+ = (u− kn)2−p
+ (u− kn)p

+ ≥
( ω

2λ

)2−p

(u− kn)p
+ .

Therefore, from (2.46),( ω
2λ

)2−p

sup
− a0

2 Rp
n<t<0

∫
KRn×{t}

(u− kn)p
+ζ

p
n dx+

∫ 0

− a0
2 Rp

n

∫
KRn

|∇(u− kn)+ζn|p dxdt

(2.47) ≤ C
2p(n+1)

Rp

{( ω
2λ

)p

+
2
a0

( ω
2λ

)2
}∫ 0

− a0
2 Rp

n

∫
KRn

χ{(u−kn)+>0} dxdt .

Now recall that a0 =
(

ω
2λ

)2−p, and divide (2.47) by a0 to get

sup
− a0

2 Rp
n<t<0

∫
KRn×{t}

(u− kn)p
+ζ

p
n dx+

1
a0

∫ 0

− a0
2 Rp

n

∫
KRn

|∇(u− kn)+ζn|p dxdt

(2.48) ≤ C2pn

Rp

( ω
2λ

)p 1
a0

∫ 0

− a0
2 Rp

n

∫
KRn

χ{(u−kn)+>0} dxdt .

Next, perform a change in the time variable in (2.48), putting

t =
t

a0/2

and defining
u(·, t) = u(·, t) and ζn(·, t) = ζn(·, t) ,

and obtain the simplified inequality

(2.49)
∥∥(u− kn)+ ζn

∥∥p

Xp
0 (Q(Rp

n,Rn))
≤ C2pn

Rp

( ω
2λ

)p
∫ 0

−Rp
n

∫
KRn

χ{(u−kn)+>0} dxdt .
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Define, for each n,

An =
∫ 0

−Rp
n

∫
KRn

χ{(u−kn)+>0} dx dt

and estimate
1

2p(n+2)

( ω
2λ

)p

An+1 ≤ |kn+1 − kn|p An+1

≤ ‖(u− kn)+‖p
p,Q(Rp

n+1,Rn+1)

≤
∥∥(u− kn)+ζn

∥∥p

p,Q(Rp
n,Rn)

≤ C
∥∥(u− kn)+ ζn

∥∥p

Xp
0 (Q(Rp

n,Rn))
A

p
N+p
n

(2.50) ≤ C2pn

Rp

( ω
2λ

)p

A
1+ p

N+p
n .

The first three inequalities are obvious; and the last is a consequence of the imbedding
theorem 1. Define the numbers

Xn =
An

|Q(Rp
n, Rn)|

,

divide (2.50) by
∣∣Q(Rp

n+1, Rn+1)
∣∣, and obtain the recursive relation

Xn+1 ≤ C 4pn X
1+ p

N+p
n .

By Lemma 2 on fast geometric convergence, if

(2.51) X0 ≤ C−
N+p

p 4−
(N+p)2

p ≡ ν∗

then

(2.52) Xn −→ 0 .

Thus if (2.51) holds,∣∣∣∣{(x, t) ∈ Q
(
a0

2

(
R

2

)p

,
R

2

)
: u(x, t) > µ+ −

ω

2λ+1

}∣∣∣∣ = 0

and the result follows.
We are left to prove (2.51). To simplify the symbolism introduce the sets

Bσ(t) =
{
x ∈ KR : u(x, t) > µ+ − ω

2σ

}
and

Bσ =
{

(x, t) ∈ Q
(a0

2
Rp, R

)
: u(x, t) > µ+ −

ω

2σ

}
.

With this notation (2.51) reads

|Bλ| ≤ ν∗

∣∣∣Q(a0

2
Rp, R

)∣∣∣ .
We’ll use the information contained in Corollary 2 to show that this holds, i.e., that
the subset of the cylinder Q

(
a0
2 R

p, R
)

where u is close to its supremum µ+ can be
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made arbitrarily small. Consider the local energy inequalities (2.5) for the functions
(u− k)+ in the cylinders Q (a0R

p, 2R), with

k = µ+ −
ω

2s
,

where s will be chosen later satisfying s2 ≤ s ≤ λ (recall that s2 was chosen on Lemma
6). Take a piecewise smooth cutoff function 0 < ζ ≤ 1, defined in Q (a0R

p, 2R), and
such that

ζ = 1 in Q
(

a0
2 R

p, R
)

ζ = 0 in ∂pQ (a0R
p, 2R)

|∇ζ| ≤ 1
R 0 ≤ ∂tζ ≤ 2

a0Rp .

Neglecting the first term on the left hand side of the estimates, we obtain for the
indicated choices, ∫ 0

− a0
2 Rp

∫
KR

|∇(u− k)+|p dxdt

(2.53) ≤ C

Rp

∫ 0

−a0Rp

∫
K2R

(u− k)p
+ dxdt+

C

a0Rp

∫ 0

−a0Rp

∫
K2R

(u− k)2+ dxdt .

We estimate the two terms on the right hand side of this inequality as follows:

C

Rp

∫ 0

−a0Rp

∫
K2R

(u− k)p
+ dxdt ≤ C

Rp

( ω
2s

)p ∣∣∣Q(a0

2
Rp, R

)∣∣∣
and, recalling the definition of a0,

C

a0Rp

∫ 0

−a0Rp

∫
K2R

(u− k)2+ dxdt ≤ C

Rp

( ω
2λ

)p−2 ( ω
2s

)2 ∣∣∣Q(a0

2
Rp, R

)∣∣∣
≤ C

Rp

( ω
2s

)p ∣∣∣Q(a0

2
Rp, R

)∣∣∣ ,
since s ≤ λ. Putting this in (2.53) gives,

(2.54)
∫ ∫

Bs

|∇u|p dxdt ≤ C

Rp

( ω
2s

)p ∣∣∣Q(a0

2
Rp, R

)∣∣∣ .
We next apply Lemma 1 to the function u(·, t), for all −a0

2 R
p ≤ t ≤ 0, and with

k = µ+ −
ω

2s
, l = µ+ −

ω

2s+1
, l − k =

ω

2s+1
.

Observing that, owing to Corollary 2,∣∣∣{x ∈ KR : u(x, t) < µ+ −
ω

2s

}∣∣∣ ≡ |KR| − |Bs(t)| ≥
(ν0

2

)2

|KR| ,

we obtain
ω

2s+1
|Bs+1(t)| ≤

4C RN+1

ν2
0 |KR|

∫
Bs(t)\Bs+1(t)

|∇u|dxdt ,
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for t ∈
(
−a0

2 R
p, 0
)
. Integrating over this interval, we conclude that

ω

2s+1
|Bs+1| ≤

CR

ν2
0

∫ ∫
Bs\Bs+1

|∇u|dxdt ≤ CR

ν2
0

(∫ ∫
Bs

|∇u|p dxdt
) 1

p

|Bs \Bs+1|
p−1

p

≤ C

ν2
0

( ω
2s

) ∣∣∣Q(a0

2
Rp, R

)∣∣∣ 1p |Bs \Bs+1|
p−1

p ,

using also (2.54). Taking the p
p−1 power and dividing through by

(
ω

2s+1

) p
p−1 , we obtain

|Bs+1|
p

p−1 ≤ C (ν0)−
2p

p−1

∣∣∣Q(a0

2
Rp, R

)∣∣∣ 1
p−1 |Bs \Bs+1| .

Since these inequalities are valid for s2 ≤ s ≤ λ, we add them for

s = s2, s2 + 1, s2 + 2, . . . , λ− 1 ,

and since the sum on the right hand side can be bounded above by
∣∣Q (a0

2 R
p, R

)∣∣, we
obtain

(λ− s2) |Bλ|
p

p−1 ≤ C (ν0)−
2p

p−1

∣∣∣Q(a0

2
Rp, R

)∣∣∣ p
p−1

,

that is,

|Bλ| ≤
C

(λ− s2)
p−1

p

(ν0)−2
∣∣∣Q(a0

2
Rp, R

)∣∣∣ .
We obtain (2.51) if λ is chosen so large that

C

ν2
0 (λ− s2)

p−1
p

≤ ν∗ .

We finally make the choice

(2.55) λ = max

{
s2 +

(
C

ν2
0ν∗

) p
p−1

, 1 +
1

p− 2

}
(recall that s2 is given through (2.43), ν0 is given by (2.27), and ν∗ is given by (2.51))
thus concluding the proof of the proposition.

Remark 3. Observe that the choice of λ was made so that (2.44) holds, and a larger
λ is admissible. Choosing λ determines the length of the cylinder Q(a0R

p, R), since
a0 =

(
ω
2λ

)2−p. The proposition has a double scope: we determine a level µ+ − ω
2λ+1

and a cylinder (fixing λ and consequently a0) such that the conclusion holds in that
particular cylinder.

Corollary 3. Assume (2.21) holds and let (2.16) be in force. There exist constants
ν0, σ1 ∈ (0, 1), depending only on the data, such that if (2.21) holds then

ess osc
Q( a0

2 ( R
2 )p, R

2 )
u ≤ σ1 ω .

Proof. It is similar to the proof of Corollary 1 for the choice

σ1 =
(

1− 1
2λ+1

)
.
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2.3.4 The Hölder continuity

We finally prove the Hölder continuity of weak solutions. An immediate consequence
of Corollaries 1 and 3 is

Proposition 8. There exists a constant σ ∈ (0, 1), that depends only on the data,
such that

ess osc
Q(d( R

8 )p, R
8 )
u ≤ σ ω .

Proof. Assume (2.16) is in force. Then by Corollaries 1 and 3

(2.56) ess osc
Q(d( R

8 )p, R
8 )
u ≤ σ ω where σ = max{σ0, σ1} ,

since

d

(
R

8

)p

≤ a0

2

(
R

2

)p

.

We define now an iteration process that will lead to the Hölder continuity of u.

Proposition 9. There exists a positive constant C, depending only on the data, such
that defining the sequences

Rn = C−nR and ωn = σnω ,

for n = 0, 1, 2, . . ., where σ ∈ (0, 1) is given by (2.56), and constructing the family of
cylinders

Qn = Q(anR
p
n, Rn) , with an =

(ωn

2λ

)2−p

,

where λ > 1 is given by (2.55), we have

(2.57) Qn+1 ⊂ Qn and ess osc
Qn

u ≤ ωn ,

for all n = 0, 1, 2, . . .

Proof. Recall the definition of a0 =
(

ω
2λ

)2−p and the construction of the initial
cylinder so that the starting relation

(2.58) ess osc
Q0

u ≤ ω

holds. We find

d

(
R

8

)p

=
(ω

2

)2−p Rp

8p

=
(ω

2

)2−p
(

2λ

ω1

)2−p (ω1

2λ

)2−p Rp

8p

=
(
ω

ω1

)2−p (2λ

2

)2−p (ω1

2λ

)2−p Rp

8p

= σp−2 2(λ−1)(2−p)−3p a1R
p

= a1R
p
1 ,
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where R1 = C−1R, provided C is chosen from

C = σ
2−p

p 2
(λ−1)(p−2)

p +3 > 8 .

From Proposition 8, we conclude

ess osc
Q1

u ≤ ess osc
Q(d( R

8 )p, R
8 )
u ≤ σ ω = ω1

which puts us back to the setting of (2.58). The entire process can now be repeated
inductively starting from Q1.

Remark 4. The proof of Proposition 9 shows that it would have been sufficient to
work with a number ω and a cylinder Q(a0R

p, R) linked by (2.17). This relation is in
general not verifiable a priori for a given cylinder, since its dimensions would have to
be intrinsically defined in terms of the essential oscillation of u within it.

The role of having introduced the cylinder Q(R2, R) and having assumed (2.16) is
that (2.17) holds true for the constructed box Q(a0R

p, R). It is part of the proof of
proposition 9 to show that, at each step, the cylinders Qn and the essential oscillation
of u within them satisfy the intrinsic geometry dictated by (2.17).

Lemma 7. There exist constants γ > 1 and α ∈ (0, 1), that can be determined a priori
in terms of the data, such that for all the cylinders

Q(a0ρ
p, ρ) , with 0 < ρ ≤ R ,

ess osc
Q(a0ρp,ρ)

u ≤ γ ω
( ρ
R

)α

.

Proof. Let 0 < ρ ≤ R be fixed. There exists a non-negative integer n such that

C−(n+1)R ≤ ρ ≤ C−nR

so, putting α = − lnσ
lnC

, we deduce

C−(n+1) ≤ ρ

R
⇔ σ

n+1
α ≤ ρ

R
⇔ σn+1 ≤

( ρ
R

)α

.

Thus
ωn = σnω ≤ γ ω

( ρ
R

)α

, with γ = σ−1 .

To conclude the proof, observe that the cylinder Q(a0ρ
p, ρ) is contained in the cylinder

Qn ≡ Q(anR
p
n, Rn) since ωn ≤ ω and ρ ≤ C−nR ≡ Rn.

Let Γ = ∂pΩT be the parabolic boundary of ΩT . Introduce the degenerate intrinsic
parabolic p-distance from a compact set K ⊂ ΩT to Γ, by

p− dist(K; Γ) ≡ inf
(x,t)∈K
(y,s)∈Γ

(
|x− y| ∧M

p−2
p |t− s|

1
p

)
.
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Theorem 2. Let u be a bounded local weak solution of (2.1) in ΩT and M = ‖u‖∞,ΩT
.

Then u is locally Hölder continuous in ΩT , i.e., there exist constants γ > 1 and
α ∈ (0, 1), depending only upon the data, such that, for every compact subset K of ΩT ,

|u(x1, t1)− u(x2, t2)| ≤ γM

(
|x1 − x2|+M

p−2
p |t1 − t2|

1
p

p− dist(K; Γ)

)α

for every pair of points (xi, ti) ∈ K, i = 1, 2.

Proof. Fix (xi, ti) ∈ K, i = 1, 2, such that t2 > t1 and construct the cylinder
(x2, t2) +Q

(
M2−pRp, R

)
⊂ ΩT . This is realized if we choose

R ≤ inf
x∈K
y∈∂Ω

|x− y| , and M
2−p

p R ≤ inf
t∈K

t
1
p .

Thus in particular we may choose

2R = p− dist (K; Γ) .

To prove the Hölder continuity in the t–variable assume first that (t2− t1) < M2−pRp.
Then there exists ρ ∈ (0, R) such that (t2 − t1) = M2−pρp, i.e., ρ = M

p−2
p |t2 − t1|

1
p .

The oscillation inequality of Lemma 7, applied in the cylinder (x2, t2) + Q(a0ρ
p, ρ)

implies

|u(x2, t2)− u(x2, t1)| ≤ γM

(
M

p−2
p |t2 − t1|

1
p

p− dist(K; Γ)

)α

.

If (t2 − t1) ≥M2−pRp we have

|u(x2, t2)− u(x2, t1)| ≤ 2M ≤ 4M

(
M

p−2
p |t2 − t1|

1
p

p− dist(K; Γ)

)
.

The Hölder continuity in the space variables is proved analogously.

Remark 5. The theory extends to full quasilinear equations and includes statements
of regularity up to the parabolic boundary of ΩT (see [55]).

2.4 The singular case 1 < p < 2

We now turn to the singular case 1 < p < 2, still for the model equation

(2.59) ut − div |∇u|p−2∇u = 0 , 1 < p < 2 .

The analysis for this case is somehow more involved, but several of the previous tech-
niques apply. As before the Hölder continuity of u will be solely a consequence of
the Caccioppoli inequalities (2.5) and the logarithmic inequalities (2.6). Throughout
this section the function u is merely assumed to satisfy such inequalities. To avoid
repetition of arguments, we will outline the approach to regularity emphasizing the
main differences with respect to the degenerate situation.
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A key point is again the choice of the appropriate intrinsic geometry in which
to carry the iteration argument. Fix a point (x0, t0) ∈ ΩT and, as before, assume
(x0, t0) = (0, 0). Consider a cylinder

B
R

p
2
(0)× (−Rp, 0) ≡ Q(Rp, R

p
2 ) ⊂ ΩT

where R > 0 is taken such that the inclusion holds. Now, let

µ− := ess inf
Q(Rp,R

p
2 )

u ; µ+ := ess sup
Q(Rp,R

p
2 )

u ; ω := ess osc
Q(Rp,R

p
2 )

u = µ+ − µ−

and construct the cylinder

(2.60) Q(Rp, c0R) with c0 =
( ω

2λ

) p−2
p

where λ is to be determined only in terms of the data (we use the same letter as in
the case p > 2 but the λ’s are different in the two cases).

To start the iteration, we assume

(2.61)
( ω

2λ

) p−2
p

< R
p−2
2

(otherwise, ω ≤ 2λR
p
2 and there is nothing to prove) so that

Q(Rp, c0R) ⊂ Q(Rp, R
p
2 )

and

(2.62) ess osc
Q(Rp,c0R)

u ≤ ω.

Cylinders of the type (2.60) have the space variables stretched by a factor
(

ω
2λ

) p−2
p

which is intrinsically determined by the solution. Note that if p = 2 these are just the
standard parabolic cylinders. The geometry chosen is not the only possible. We could
have introduced, for example, a scaling with different parameters in the space and the
time variables. Another possibility would be to work with a scaling formally identical
to the one used in the degenerate case. Our option here was dictated only by a matter
of simplicity.

The main result leading to the Hölder continuity of solutions is

Proposition 10. There exist constants η ∈ (0, 1) and C, λ > 1, that can be determined
only in terms of the data, satisfying the following. Construct the sequences

Rn = C−nR
n = 0, 1, 2, . . .

ωn = ηnω

and the cylinders

Qn ≡ Q(Rp
n, cnRn) with cn =

(ωn

2λ

) p−2
p

, n = 0, 1, 2, . . .

Then, for all n = 0, 1, 2, . . .,

Qn+1 ⊂ Qn and ess osc
Qn

u ≤ ωn .
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This proposition implies an analogue to Lemma 7 from which the Hölder continuity
follows as in the proof of Theorem 2.

The proof of the proposition is, as in the degenerate case, based on the analysis of
an alternative. To begin, consider inside of Q(Rp, c0R) subcylinders of smaller size

(2.63) (x, 0) +Q(Rp, d0R) , d0 =
(ω

2

) p−2
p

.

These cylinders are contained in Q(Rp, c0R) if x ranges over the cube KR(ω) where

(2.64) R(ω) ≡
{(

2λ−1
) 2−p

p − 1
}(ω

2

) p−2
p

R = L0d0R ,

for L0 =
(
2λ−1

) 2−p
p − 1.

We can regard these cylinders as boxes moving inside Q(Rp, c0R) as the coordinates
x of their centres range over the cube KR(ω). We may arrange L0 to be an integer and
consider the cube Kc0R as the union, up to a set of measure zero, of LN

0 disjoint cubes
each of them congruent to Kd0R. Analogously, Q(Rp, c0R) is the disjoint union, up to
a set of measure zero, of LN

0 open boxes each congruent to Q(Rp, d0R). Then we can
view (x, 0) + Q(Rp, d0R) as the blocks of a partition of Q(Rp, c0R) (see [55, fig. 3.1,
page 82]).

Let ν0 ∈ (0, 1); then either

The first alternative:

There exists a cylinder of the type (x, 0) +Q(Rp, d0R) for which

(2.65)

∣∣{(x, t) ∈ (x, 0) +Q(Rp, d0R) : u(x, t) < µ− + ω
2

}∣∣
|Q(Rp, d0R)|

≤ ν0

or

The second alternative:

For every cylinder of the type (x, 0) +Q(Rp, d0R)

(2.66)

∣∣{(x, t) ∈ (x, 0) +Q(Rp, d0R) : u(x, t) < µ− + ω
2

}∣∣
|Q(Rp, d0R)|

> ν0

In both cases, we will conclude that the essential oscillation of u within a smaller
cylinder, centered at the origin, decreases in a way that can be quantitatively measured.

2.4.1 Rescaled iterations

The study of both alternatives makes crucial use of a rescaled iteration technique which
applies to any subcylinder of ΩT . Let m > 0 be given by

m = m1 +m2 , where m1 ≥ 1 , and m2 ≥ 0
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and consider the cube

Kd1R ≡
{
x ∈ RN : max

1≤i≤N
|xi| < d1R

}
, d1 =

( ω

2m1

) p−2
p

and the box

(2.67) QR(m1,m2) ≡ Kd1R ×
(
−2m2(p−2)Rp, 0

)
.

Fix (x, t) ∈ ΩT , and let R > 0 be so small that(
x, t
)

+QR(m1,m2) ⊂ ΩT .

Remark 6. Note that, for (x, t) = (0, 0), m1 = λ and m2 = 0, the cylinder (x, t) +
QR(m1,m2) coincides with the cylinder Q(Rp, c0R). Analogously, if m2 = 0, m1 = 1
and t = 0 then, for a suitable choice of x, the cylinder (x, t) +QR(m1,m2) coincides
with one of the boxes (x, 0) +Q(Rp, d0R) making up the partition of Q(Rp, c0R).

Lemma 8. There exists a number ν0 that can be determined a priori only in terms of
the data and independent of ω, R and m1, m2 such that:

• If u is a super-solution of (2.59) in (x, t) +QR(m1,m2) satisfying

ess osc
(x,t)+QR(m1,m2)

u ≤ ω

and ∣∣∣{(x, t) ∈ (x, t) +QR(m1,m2) : u(x, t) < µ− +
ω

2m

}∣∣∣ ≤ ν0 |QR(m1,m2)|

then
u(x, t) ≥ µ− +

ω

2m+1
, ∀ (x, t) ∈ (x, t) +QR

2
(m1,m2) .

Analogously,

• If u is a sub-solution of (2.59) in (x, t) +QR(m1,m2) satisfying

ess osc
(x,t)+QR(m1,m2)

u ≤ ω

and ∣∣∣{(x, t) ∈ (x, t) +QR(m1,m2) : u(x, t) > µ+ −
ω

2m

}∣∣∣ ≤ ν0 |QR(m1,m2)|

then
u(x, t) ≤ µ+ −

ω

2m+1
, ∀ (x, t) ∈ (x, t) +QR

2
(m1,m2) .

Proof. We only prove the statement concerning super-solutions (for sub-solutions the
proof is similar). For simplicity, assume (x, t) = (0, 0) and construct the decreasing
sequences of numbers

Rn =
R

2
+

R

2n+1
; kn = µ− +

ω

2m+1
+

ω

2m+1+n
; n = 0, 1, 2, . . . ,

38



and the families of nested cubes and cylinders

Kn ≡ Kd1Rn
, d1 =

( ω

2m1

) p−2
p

,

Qn ≡ QRn
(m1,m2) = Kn ×

(
−2(p−2)m2Rp

n, 0
)
.

Consider the energy estimate (2.5), written for the functions (u− kn)− over the boxes
Qn, taking as cutoff functions ξn

0 < ξn ≤ 1 in Qn and ξn ≡ 1 in Qn+1

ξn ≡ 0 on ∂pQn

|∇ξn| ≤
2n+2

R

( ω

2m1

) 2−p
p

, 0 ≤ ξn,t ≤ 2(2−p)m2
2p(n+2)

Rp
.

In this context, the energy inequalities read

sup
−2(p−2)m2Rp

n<t<0

∫
Kn

(u− kn)2−ξ
p
n dx+

∫ ∫
Qn

|∇(u− kn)−ξn|p dxdt

≤ C
2np

Rp

( ω

2m1

)2−p
∫ ∫

Qn

(u− kn)p
− dxdt+ C

2np

Rp
2(2−p)m2

∫ ∫
Qn

(u− kn)2− dxdt .

Since
(u− kn)− ≤ sup

Qn

(u− kn)− ≤
ω

2m+1
+

ω

2m+1+n
≤ ω

2m

and ( ω

2m1

)2−p ( ω

2m

)p

=
( ω

2m

)2

2(2−p)m2

the two terms on the right hand side of the inequality are estimated above by

C
2np

Rp
2(2−p)m2

( ω

2m

)2
∫ ∫

Qn

χ{(u−kn)−>0} dxdt .

To estimate below the two integrals on the left hand side, we introduce the level

kn ≡
kn + kn+1

2
∈ (kn+1, kn) .

Then, for all t ∈
(
−2(p−2)m2Rp

n, 0
)
,∫

Kn

(u− kn)2− ξ
p
n dx ≥

∫
Kn

(kn − kn)2−p(u− kn)p
− ξ

p
n dx

=
( ω

2m

)2−p

2(n+3)(p−2)

∫
Kn

(u− kn)p
− ξ

p
n dx ,

and, since kn > kn,∫ ∫
Qn

|∇(u− kn)−ξn|p dxdt ≥
∫ ∫

Qn

|∇(u− kn)−ξn|p dxdt .
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Combining these estimates and dividing through by( ω

2m

)2−p

2(n+3)(p−2)

we obtain

sup
−2(p−2)m2Rp

n<t<0

∫
Kn

(u−kn)p
−ξ

p
n dx+

( ω

2m

)p−2

2(n+3)(2−p)

∫ ∫
Qn

|∇(u−kn)−ξn|p dxdt

≤ C
22n

Rp
2(2−p)m2

( ω

2m

)p
∫ ∫

Qn

χ{(u−kn)−>0} dxdt

Next consider the change of variables

y = d−1
1 x , z = 2(2−p)m2t

which maps the cylinder Qn into the cylinder Qn ≡ KRn × (−Rp
n, 0), and define new

functions

v(y, z) = u
(
d1y, 2(p−2)m2z

)
, ξ̂n(y, z) = ξn

(
d1y, 2(p−2)m2z

)
and the sets

An(z) ≡ {y ∈ KRn
: v(y, z) < kn} , with |An| ≡

∫ 0

−Rp
n

|An(z)| dz .

Since 1 < p < 2 and ω < 1, the coefficient( ω

2m

)p−2

2(n+3)(2−p)+m2(p−2) = ωp−22(2−p)(m1+n+3) > 1,

and we obtain ∥∥∥(v − kn)−ξ̂n
∥∥∥p

V p(Qn)
≤ C

22n

Rp

( ω

2m

)p

|An| .

Noting that kn+1 < kn, by the imbedding theorem 1,

2−(n+3)p
( ω

2m

)p

|An+1| =
(
kn − kn+1

)p |An+1|

=
∫ ∫

Qn+1

(
kn − kn+1

)p
χ{v<kn+1} dy dz

≤
∫ ∫

Qn+1

(
v − kn

)p
− dy dz

≤
∥∥∥(v − kn

)
− ξ̂n

∥∥∥p

p,Qn

≤ C |An|
p

N+p

∥∥∥(v − kn

)
− ξ̂n

∥∥∥p

V p(Qn)

≤ C
22n

Rp

( ω

2m

)p

|An|1+
p

N+p .

Thus, setting

Yn =
|An|
|Qn|
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we obtain the recursive relation

Yn+1 ≤ C 4np Y
1+ p

N+p
n .

The result now follows from Lemma 2. In fact if

(2.68) Y0 =
|A0|
|Q0|

=
|v < k0|
|Q0|

=
|u < µ− + ω

2m |
|QR(m1,m2)|

≤ C
−1
α (4p)

−1
α2 ≡ ν0 ,

where α = p
N+p , the lemma guarantees that Yn → 0 when n→∞. But this is nothing

but the conclusion of the Lemma and (2.68) is precisely the hypothesis.

Remark 7. The proof shows that ν0 depends upon p, but it is stable as p↗ 2 in the
sense that ν0(p) → ν0(2) when p↗ 2.

Remark 8. The conclusion of Lemma 8 continues to hold for cylinders of the type

QR(m,β) ≡ Kr × (−βRp, 0) , r =
( ω

2m

) p−2
p

R , β > 0 ,

provided β is independent of ω and R. In such a case we take m1 = m and ν0 will
also depend upon β.

2.4.2 The first alternative

Assume that there exists a cylinder of the type (x, 0) + Q(Rp, d0R), making up the
partition of Q(Rp, c0R), for which (2.65) holds. Applying Lemma 8 with m1 = 1 and
m2 = 0 we conclude that

(2.69) u(x, t) ≥ µ− +
ω

4
, ∀ (x, t) ∈ (x, 0) +Q

((
R

2

)p

, d0
R

2

)
.

We view the box (x, 0) + Q((R
2 )p, d0

R
2 ) as a block inside Q(Rp, c0R). The location

of x in the cube KR(ω), where R(ω) is defined by (2.64), is only known qualitatively.
However, the positivity of u as stated in (2.69) spreads over the full cube KcoR, for all
times

−
(
R

8

)p

≤ t ≤ 0 .

More precisely, we will prove

Proposition 11. Assume that (2.69) holds for some x ∈ KR(ω). There exists a
positive number s1 that can be determined a priori only in terms of the data and the
number λ in the definition (2.60) of Q(Rp, c0R), such that

(2.70) u(x, t) ≥ µ− +
ω

2s1+1
, ∀ (x, t) ∈ Q

((
R

8

)p

, c0R

)
.

As a consequence we may rephrase the first alternative in the following way
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Corollary 4. Assume (2.65) holds for some cylinder of the type (x, 0) +Q(Rp, d0R)
making up the partition of Q(Rp, c0R). There exists a positive number s1 that can be
determined a priori only in terms of the data and the number λ in the definition (2.60)
of Q(Rp, c0R), such that

(2.71) ess osc
Q(ρp,c0ρ)

u ≤ η1ω , ∀ ρ ∈
(

0,
R

8

)

where η1 ≡ 1− 1
2s1+1

.

To prove Proposition 11 we regard x as the centre of a larger cube x+K8c0R which
we may assume to be contained in K

R
p
2
. Otherwise we would have

16 c0R ≥ R
p
2 ⇒ ω ≤ 16

p
2−p 2λR

p
2 .

We work within the box

(x, 0) +Q

((
R

2

)p

, 8c0R
)

and show that the conclusion of Proposition 11 holds within the cylinder

(x, 0) +Q

((
R

8

)p

, 2c0R
)
.

This contains Q
(
(R

8 )p, c0R
)
, regardless of the location of x in the cube KR(ω).

The proof begins by introducing of the change of variables

x 7→ x− x

2c0R
, t 7→ 4pt

(R
2 )p

,

which maps (x, 0) + Q
(
(R

2 )p, 8c0R
)

into Q4 ≡ K4 × (−4p, 0), and the new unknown
function

(2.72) v = (u− µ−)
2
ω
.

Denoting again with x and t the new variables, the function v satisfies the PDE

(2.73) vt − c div |∇v|p−2∇v = 0 in D′(Q4) ,

where

c =
1

24p

(
2
2λ

)2−p

= 2(λ−1)(p−2)−4p .

The information (2.69) now translates into

(2.74) v(x, t) ≥ 1
2

a.e. (x, t) ∈ Q(h0) ≡ {x : |x| < h0} × (−4p, 0)

where

(2.75) h0 =
d0

4c0
=

1
4

(
2
2λ

) 2−p
p

= 2
(λ−1)(p−2)

p −2 < 1.
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We regard Q(h0) as a thin cylinder sitting at the centre of Q4. We prove that the
relative largeness of v inQ(h0) spreads sidewise overQ2 ≡ K2×(−2p, 0), thus obtaining
the desired result. Indeed, we want to show that

u(x, t) ≥ µ− +
ω

21+s1
, (x, t) ∈ (x, 0) +Q

((
R

8

)p

, 2c0R
)

which, according to the change of variables and the new function, is the same as

v(x, t) ≥ 1
2s1

, (x, t) ∈ Q1 ≡ K1 × (−1, 0) ⊂ Q2 .

Proposition 11 will then be a consequence of the following

Lemma 9. For every ν ∈ (0, 1) there exists a positive number δ∗ ∈ (0, 1), that can be
determined a priori only in terms of ν, N , p and the data, such that

(2.76) |{x ∈ K2 : v(x, t) ≤ δ∗}| ≤ ν |K2| ,

for all time levels t ∈ [−2p, 0].

Remark 9. The key feature of the lemma is that the set where v is small can be made
arbitrarily small for every time level in [−2p, 0].

The proof of this lemma is rather technical, involving the manipulation of appro-
priate integral inequalities, and will be omitted; the interested reader is referred to the
book [55, Chap. IV – §6-9] for a detailed proof.

Proof of Proposition 11 assuming Lemma 9. Let ν0 be the number claimed by
Lemma 8, take ν = ν0 in Lemma 9 and determine the corresponding δ∗ = δ∗(ν0). Let
m2 be defined by

2−m2 = δ∗(ν0)

and apply lemma 8 with µ− = 0, ω = 1, m1 = 0, R = 2, over the boxes

(0, t) +K2 ×
(
−2m2(p−2)2p, 0

)
≡ (0, t) +Q2(0,m2)

as long as they are contained in Q2, i.e., for t satisfying

2m2(p−2)2p − 2p ≤ t ≤ 0 .

Since (2.76) holds true for all time levels in t ∈ [−2p, 0], each such box satisfies∣∣{(x, t) ∈ (0, t) +Q2(0,m2) : v(x, t) ≤ 2−m2
}∣∣ ≤ ν0 |Q2(0,m2)| .

Therefore, by Lemma 8,

v(x, t) ≥ 2−(m2+1) , ∀ (x, t) ∈ (0, t) +Q1(0,m2) ,

for all t ∈
(
2m2(p−2)2p − 2p, 0

)
. Since(

2m2(p−2)2p − 2p − 2m2(p−2), 0
)
⊃ (−1, 0)
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we conclude that
v(x, t) ≥ 2−(m2+1) , ∀ (x, t) ∈ Q1 .

Returning to the original coordinates and redefining the various constants accordingly,
we arrive at

u(x, t) ≥ µ− +
ω

2m2+2
, ∀ (x, t) ∈ (x, 0) +Q

((
R

8

)p

, 2c0R
)

and Proposition 11 follows with

s1 = m2 + 1 , m2 = − log2 (δ∗(ν0)) , ν0 =
(
C4N+p

)−N+p
p .

Remark 10. We comment further on the expansion of positivity of Proposition 11. A
crucial point in the proof of Lemma 9 (which was omitted) is the use of the information
contained in (2.74)–(2.75) to apply a Poincaré inequality. But for this it is not truly
necessary to know that the set {v ≥ 1

2} is concentrated in a cylinder centered at the
origin; it suffices to have the following information:

∃ α0, k0 > 0 : |{x ∈ K2 : v > k0}| ≥ α0 , ∀ t ∈ (−4p, 0) .

2.4.3 The second alternative

We will omit most of the proofs in this section; for the details see [55].
Assume that (2.66) holds for all cylinders (x, 0) + Q(Rp, d0R), making up the

partition of Q(Rp, c0R). Since

µ+ −
ω

2
= µ− +

ω

2
,

we can rephrase (2.66) as

(2.77)

∣∣{(x, t) ∈ (x, 0) +Q(Rp, d0R) : u(x, t) > µ+ − ω
2

}∣∣
|Q(Rp, d0R)|

≤ 1− ν0

for all boxes (x, 0) +Q(Rp, d0R) making up the partition of Q(Rp, c0R).
Let n be a positive number to be chosen and arrange that 2n 2−p

p is an integer.
Then we combine 2

n(2−p)
p N of these cylinders to form boxes congruent to

(2.78) Q(Rp, d∗R) ≡ Kd∗R × (−Rp, 0), d∗ =
( ω

2n+1

) p−2
p

= d0 (2n)
2−p

p .

We next consider cylinders of the type (x̃, 0) + Q(Rp, d∗R). These are contained in
Q(Rp, c0R) if the abscissa x̃ of their vertices ranges over the cube KR1(ω), where

R1(ω) =
{

2λ(2−p) − 2(n+1) 2−p
p

}
ω

p−2
p R

=
{(

2λ−(n+1)
) 2−p

p − 1
} ( ω

2n+1

) p−2
p

R

= L1 d∗R , where L1 ≡
(
2λ−(n+1)

) 2−p
p − 1 .
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We will take λ > n+ 1 and arrange that L1 is an integer. Then we regard Q(Rp, c0R)
as the union, up to a set of measure zero, of LN

1 pairwise disjoint boxes each congruent
to Q(Rp, d∗R). Since each box (x̃, 0) + Q(Rp, d∗R) is the pairwise disjoint union of
boxes (x, 0)+Q(Rp, d0R), each of them satisfying (2.77), we can rephrase again (2.66),
this time as

(2.79)

∣∣{(x, t) ∈ (x̃, 0) +Q(Rp, d∗R) : u(x, t) > µ+ − ω
2

}∣∣
|Q(Rp, d∗R)|

≤ 1− ν0

for all cylinders (x̃, 0) +Q(Rp, d∗R) making up the partition of Q(Rp, c0R).

Remark 11. The need of introducing a larger cylinder than the one involved in (2.66)
is justified by the appearance of the factor 2n(2−p) in the logarithmic estimates (2.6)
employed in the proofs. The use of a geometry in which the space dimensions are
stretched by this factor accommodates the singularity and restores the homogeneity
in (2.5)–(2.6).

Lemma 10. Let (x̃, 0)+Q(Rp, d∗R) be any box contained in Q(Rp, c0R) and satisfying
(2.79). There exists a time level

t∗ ∈
(
−Rp,−ν0

2
Rp
)
,

such that, for all s ≥ 2,

(2.80)
∣∣∣x ∈ x̃+Kd∗R : u(x, t∗) > µ+ −

ω

2s

∣∣∣ ≤ ( 1− ν0
1− ν0/2

)
|Kd∗ R| .

Proof. If not,∣∣∣x ∈ x̃+Kd∗R : u(x, t∗) > µ+ −
ω

2s

∣∣∣ > ( 1− ν0
1− ν0/2

)
|Kd∗ R|

for all t ∈
(
−Rp,−ν0

2 R
p
)
. Then∣∣∣(x, t) ∈ (x̃, 0) +Q(Rp, d∗R) : u(x, t) > µ+ −

ω

2

∣∣∣
=

∫ 0

−Rp

∣∣∣x ∈ x̃+Kd∗R : u(x, t) > µ+ −
ω

2

∣∣∣ dt

≥
∫ − ν0

2 Rp

−Rp

∣∣∣x ∈ x̃+Kd∗R : u(x, t) > µ+ −
ω

2s

∣∣∣ dt

>

∫ − ν0
2 Rp

−Rp

(
1− ν0

1− ν0/2

)
|Kd∗ R| dt

= (1− ν0) |Q(Rp, d∗R)|

which contradicts (2.79).

The next lemma asserts that a property similar to (2.80) still holds for all time
levels from t∗ up to 0. The proof of the lemma, that we omit, will also determine the
number n.

45



Lemma 11. There exists a positive integer n such that for all t∗ < t < 0,

(2.81)
∣∣∣x ∈ x̃+Kd∗R : u(x, t) > µ+ −

ω

2n+1

∣∣∣ ≤ (1−
(ν0

2

)2
)
|Kd∗R| .

The information of Lemma 11 will be exploited to show that in a small cylinder
about (0, 0), the solution u is strictly bounded above by

µ+ −
ω

2m
, for some m > n+ 1 .

The process also determines the number λ which defines the size of Q(Rp, c0R). To
make this quantitative consider the box

Q(βRp, c0R) , β =
ν0
2
, c0 =

( ω
2λ

) p−2
p

.

We view Q(βRp, c0R) as being partitioned into sub-boxes (x̃, 0)+Q(βRp, d∗R) where x̃
takes finitely many points within the cube KR1(ω). For each of these cylinders Lemma
11 holds.

Lemma 12. For every ν ∈ (0, 1) there exists a number m depending only on the data
and independent of ω and R such that, for all cylinders (x̃, 0) +Q(βRp, d∗R) making
up the partition of Q(βRp, c0R),

(2.82)
∣∣∣(x, t) ∈ (x̃, 0) +Q(βRp, d∗R) : u(x, t) > µ+ −

ω

2m

∣∣∣ ≤ ν |Q(βRp, d∗R)| .

Remark 12. The proof shows that m must be chosen so that

m ≥ n+ 1 +
C

ν
p

p−1
.

This estimate deteriorates as p↘ 1, i.e, m↗∞ as p↘ 1. Nevertheless the choice of
m is stable as p↗ 2.

To proceed we return to the box Q(βRp, c0R) and recall that it is the finite union,
up to a set of measure zero, of pairwise disjoint boxes (x̃, 0)+Q(βRp, d∗R). Therefore
lemma 12 implies

Corollary 5. For every ν ∈ (0, 1) there exists a number m depending only upon the
data and independent of ω and R such that

(2.83)
∣∣∣(x, t) ∈ Q(βRp, c0R) : u(x, t) > µ+ −

ω

2m

∣∣∣ ≤ ν |Q(βRp, c0R)| .

We finally determine the size of the cylinder Q(βRp, c0R) and consequently the
number λ. First, in Corollary 5, take ν = ν0 and determine m accordingly. Then let
m2 be given by

(2.84) β =
ν0
2

= 2m2(p−2)

46



and assume that m ≥ m2 (if necessary take m even larger). Determine λ from

(2.85) λ = m1 and m = m1 +m2 .

With these choices, the cylinder Q(βRp, c0R) coincides with the cylinder QR(m1,m2)
introduced in (2.67). By Corollary 5, we have∣∣∣(x, t) ∈ QR(m1,m2) : u(x, t) > µ+ −

ω

2m

∣∣∣ ≤ ν0 |QR(m1,m2)|

which implies, using Lemma 8,

u(x, t) ≤ µ+ −
ω

2m+1
, ∀ (x, t) ∈ QR

2
(m1,m2) .

We summarize:

Proposition 12. Assume that (2.66) holds for all cylinders (x, 0)+Q(Rp, d0R) making
up the partition of Q(Rp, c0R). Then, for all 0 < ρ < R

2

(2.86) ess osc
Q(βρp,c0ρ)

u ≤ η0 ω , where η0 ≡ 1− 1
2m+1

.

2.4.4 Proof of the main proposition

The proof of Proposition 10 follows by combining the two alternatives. The conclusion
of the first alternative is that

(2.87) ess osc
Q(ρp,c0ρ)

u ≤ η1 ω , ∀ ρ ∈
(

0,
R

8

)
,

where η1 = 1− 1
2m2+2 . The conclusion of the second alternative is that

(2.88) ess osc
Q(βρp,c0ρ)

u ≤ η0 ω , ∀ ρ ∈
(

0,
R

2

)
,

where η0 = 1− 1
2m+1 .

Set

η = max{η0, η1} and C =
β

1
p

4
=
( ν0

22p+1

) 1
p

.

Observe that, assuming ν0 ≤ 1
2 ,

C ≤ 1

22+ 2
p

<
1
8
<

1
2

and C <
β

1
p

2
.

Define
R1 = C R ; ω1 = η ω

and the cylinder

Q1 = Q(Rp
1, c1R1) , c1 =

(ω1

2λ

) p−2
p

.
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Since η < 1,

c1R1 =
(ω1

2λ

) p−2
p

R1 =
( ω

2λ

) p−2
p

η
p−2

p R1 ≤ c0R1 .

Therefore, combining both alternatives,

ess osc
Q1

u ≤ ω1 .

The process can now be repeated inductively starting from such relation. This yields
the Hölder continuity of u as in the degenerate case p > 2.

2.5 The porous medium equation and other generalisations

As indicated earlier, the Hölder continuity of u is solely a consequence of the Cac-
cioppoli inequalities (2.5) and the logarithmic inequalities (2.6). For this reason the
techniques just presented are rather flexible and adjust to a variety of singular and
degenerate parabolic partial differential equations. The first generalisation we want to
mention is to equations with the full p-Laplacian type quasilinear structure

(2.89) ut − div a(x, t, u,∇u) = b(x, t, u,∇u) in D′(ΩT ) ,

where a : ΩT ×RN+1 → RN and b : ΩT ×RN+1 → R are measurable and satisfy the
structure assumptions

(A1) a(x, t, u,∇u) · ∇u ≥ C0|∇u|p − ϕ0(x, t);

(A2) |a(x, t, u,∇u)| ≤ C1|∇u|p−1 + ϕ1(x, t);

(A3) |b(x, t, u,∇u)| ≤ C2|∇u|p + ϕ2(x, t),

for p > 1 and a.e. (x, t) ∈ ΩT . The Ci, i = 0, 1, 2, are given positive constants and
the ϕi, i = 0, 1, 2, are given non-negative functions, defined in ΩT and subject to the
integrability conditions

ϕ0 , ϕ
p

p−1
1 , ϕ2 ∈ Lq,r(ΩT )

with q, r ≥ 1 satisfying

1
r

+
N

pq
∈ (0, 1) (1 < p ≤ N) .

See [55] for the details.
Another family of equations to which the theory applies are degenerate or singular

equations of porous medium type that can be cast in the form (2.89), for the structure
assumptions

(B1) a(x, t, u,∇u) · ∇u ≥ C0|u|m−1|∇u|2 − ϕ0(x, t), m > 0;

(B2) |a(x, t, u,∇u)| ≤ C1|u|m−1|∇u|+ ϕ1(x, t);

(B3) |b(x, t, u,∇u)| ≤ C2 |∇|u|m|2 + ϕ2(x, t),
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and the functions ϕi, i = 0, 1, 2, satisfy the same conditions as before with p = 2. We
require

u ∈ L∞loc

(
0, T ;L2

loc(Ω)
)

and |u|m ∈ L2
loc

(
0, T ;W 1,2

loc (Ω)
)
.

There is a wide literature concerning this problem. We refer the reader to the Pro-
ceedings [12], [29], [82], [94], as well as the references therein.

Further generalisations can be obtained by replacing sm−1, s > 0 with a function
that blows up like a power when s ↘ 0 and is regular otherwise. To be specific,
consider doubly degenerate equations of the form (2.89) with structure assumptions

(C1) a(x, t, u,∇u) · ∇u ≥ C0Φ(|u|)|∇u|p − ϕ0(x, t);

(C2) |a(x, t, u,∇u)| ≤ C1Φ(|u|)|∇u|p−1 + Φ
1
p (u)ϕ1(x, t);

(C3) |b(x, t, u,∇u)| ≤ C2Φ(|u|)|∇u|p + ϕ2(x, t).

Here ϕi, i = 0, 1, 2, satisfy the same conditions as before and the function Φ(·) is
degenerate near the origin in the sense that

∃ σ > 0 : γ1s
β1 ≤ Φ(s) ≤ γ2s

β2 , ∀ s ∈ (0, σ) ,

for given constants 0 < γ1 ≤ γ2 and 0 ≤ β2 ≤ β1. For s > σ, i.e., away from zero it is
assumed that Φ is bounded above and below by given positive constants. We require
that

u ∈ Cloc

(
0, T ;L2

loc(Ω)
)

and Φ
1

p−1 (u)|∇u| ∈ Lp
loc(ΩT )

and, denoting with F (·) the primitive of Φ
1

p−1 (·), that

F (u) ∈ Lp
loc

(
0, T ;W 1,p

loc (Ω)
)
,

which allows for an interpretation of the equation in the weak sense. One recognizes
that if Φ(s) ≡ 1 the equation is of p-Laplacian type and if Φ(s) = sm−1 and p = 2 the
equation is of porous medium type. The Hölder continuity of solutions was obtained
independently in [147] and [96].

3 Boundedness of weak solutions

The regularity theorems of the previous section apply to bounded weak solutions of
(2.1). The theory of local boundedness discriminates between the degenerate case
p > 2 and the singular case 1 < p < 2. If p > 2, a local bound for the solution is
implicit in the notion of weak solution. If 1 < p < 2, local or global solutions need not
be bounded in general. Another substantial difference between the two cases surfaces
when studying the Dirichlet problem

(3.1)



u ∈ C
(
0, T ;L2(Ω)

)
∩ L2

(
0, T ;W 1,p(Ω)

)
≡ V 2,p (ΩT )

ut − div |∇u|p−2∇u = 0 in ΩT

u(·, t)
∣∣
∂Ω

= g(·, t) traces of functions in V 2,p (ΩT )

u(·, 0) = u0 in the sense of L2(Ω) ,
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or the Cauchy problem

(3.2)


u ∈ C

(
0, T ;L1

loc(R
N )
)
∩ L2

(
0, T ;W 1,p

loc (RN )
)

ut − div |∇u|p−2∇u = 0 in ΣT ≡ RN × (0, T )

u(·, 0) = uo in the sense of L1
loc(R

N ) .

The following weak maximum principle is common to both cases.

Theorem 3. Let p > 1 and let u be a weak solution of (3.1) and assume that g ∈
L∞ (∂Ω× (0, T )) and u0 ∈ L∞(Ω). Then

ess sup
ΩT

|u| ≤ max

{
ess sup

Ω
|u0| ; ess sup

∂Ω×(0,T )

|g|

}
.

Theorem 4. Let p > 1 and let u be a weak solution of (3.2). Then if u0 ∈ L∞(RN ),

ess sup
ΣT

|u| ≤ ess sup
RN

|u0| .

In the next sections we let u be a non–negative weak subsolution of (2.1) and
will state several upper bounds for it. The assumption that u is non–negative is not
essential and is used here only to deduce that u is locally or globally bounded. If u
is a subsolution, not necessarily bounded below, our results supply a priori bounds
above for u. Analogous statements hold for non–positive local supersolutions and in
particular for solutions.

3.1 The degenerate case p > 2

Theorem 5. Let p > 2. Every non–negative, local weak subsolution u of (2.1) in
ΩT is locally bounded in ΩT . Moreover for all ε ∈ (0, 2], there exists a constant γ
depending only upon N, p,Λ and ε, such that ∀ (x0, t0)+Q(τ, ρ) ⊂ ΩT and ∀σ ∈ (0, 1),

sup
(x0,t0)+Q(στ,σρ)

u ≤ γ (τ/ρp)1/ε

(1− σ)
N+p

ε

(∫∫
(x0,t0)+Q(τ,ρ)

up−2+εdxdt

)1/ε

∧
(
ρp

τ

) 1
p−2

.

Remark 13. In the linear case p = 2 and τ = ρ2 such an estimate holds for any
positive number ε (see [134]). In our case ε is restricted in the range (0, 2].

It is of interest to have sup–estimates that involve “low” integral norms of the
solution. The next theorem is a result in this direction.

Theorem 6. Let p > 2 and let u be a non–negative, local subsolution of (2.1) in
ΩT . There exists a constant γ = γ(data), such that ∀ (x0, t0) + Q(τ, ρ) ⊂ ΩT and
∀σ ∈ (0, 1),

sup
(x0,t0)+Q(στ,σρ)

u ≤
γ
√
τ/ρp

(1− σ)
N(p+1)+p

2

(
sup

t0−τ<t<t0

∫
Bρ(x0)

u(x, t) dx

)p/2

∧
(
ρp

τ

) 1
p−2

.
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3.1.1 Global estimates for solutions of the Dirichlet problem

Consider a non–negative weak subsolution of the Dirichlet problem (3.1) and let p > 2.
If the boundary data are bounded then the weak maximum principle of Theorem 3
holds true. If however u+

0 is not bounded, it is of interest to investigate how the
supremum of u behaves when t→ 0.

Theorem 7. Let u be a non–negative weak subsolution of the Dirichlet problem (3.1).
There exists a constant γ = γ(data), such that ∀t ∈ (0, T ),

sup
Ω
u(·, t) ≤ sup

ST

g +
γ

tN/λ

(∫ t

0

∫
Ω

u dxds
)p/λ

, λ = N(p− 2) + p .

Results of this kind could be used to construct solutions of the Dirichlet problem
with initial data in L1(Ω) or even finite measures. Indeed the regularity results of the
previous section supply the necessary compactness to pass to the limit in a sequence
of approximating problems.

3.1.2 Estimates in ΣT

Consider a non–negative weak subsolution u of the Cauchy problem (3.2) in the whole
strip ΣT . By this we mean that u is a local weak subsolution of the p.d.e. in (3.2)
in ΩT for every bounded domain Ω ⊂ RN . To derive global sup–estimates, we must
impose some control on the behaviour of u as |x| → ∞. We assume that the quantity

(3.3) |||u|||{r,t} ≡ sup
0<s<t

sup
ρ≥r

∫
Bρ

u(x, s)
ρλ/(p−2)

dx , λ = N(p− 2) + p ,

is finite for some r > 0 and for all t ∈ (0, T ). This assumption is not restrictive. It is
shown in [64] that it is necessary and sufficient for a non–negative solution of (3.2) to
exist in ΣT .

The subsolution u at hand, is not necessarily bounded. However it is locally
bounded and as |x| → ∞ grows no faster that |x|

p
p−2 . This is the content of the

next Theorem.

Theorem 8. Let u be a non–negative subsolution of (3.2) in ΣT , and assume (3.3)
holds. There exist constants γ∗ and γ, depending only upon N, p and Λ, such that

‖u(·, t)‖∞,Bρ
≤ γ

ρp/(p−2)

tN/λ
|||u|||p/λ

{r,t} , λ = N(p− 2) + p ,

for all 0 < t < γ∗ |||u|||2−p
{r,t} and all ρ ≥ r.

Information of this kind are of interest in investigating the behaviour of the solu-
tions for t near zero and in studying the structure of the non–negative solutions in
ΣT . In this estimate, the functional dependence as t↘ 0 is sharp as it can be verified
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from the explicit Barenblatt solution (recall (1.4)p in the introduction). The functional
dependence as |x| → ∞ is also optimal as it follows from the explicit solution

(3.4) D(x, t) =

A
(

T

T − t

)N(p−2)
λ(p−1)

+
(
p− 2
p

)
λ−

1
p−1

(
|x|p

T − t

) 1
p−1


p−1
p−2

,

where A and T are two positive parameters.

3.2 The singular case 1 < p < 2

We will give below an example of a solution with p = 2N
N+1 , that is unbounded. Thus

in the singular range 1 < p < 2, the boundedness of a weak solutions is not a purely
local fact and, if at all true, it must be deduced from some global information. One of
them is the weak maximum principle of Theorems 3 and 4. Another is a sufficiently
high order of integrability. A sharp sufficient condition can be given in terms of the
numbers

λr = N(p− 2) + rp , r ≥ 1 .

We assume that u satisfies

(3.5) u ∈ Lr
loc(ΩT ) , for some r ≥ 1 such that λr > 0 .

The global information needed here is

(3.6)
{
u can be constructed as the weak limit in Lr

loc(ΩT ) of a
sequence of non–negative bounded subsolutions of (2.1) .

The notion of weak subsolution requires u to be in the class u ∈ V 2,p
loc (ΩT ). This

space is embedded into Lq
loc(ΩT ), where q = pN+2

N . Therefore if p is so close to one that
λq ≤ 0, the order of integrability in (3.5) is not implicit in the notion of subsolution
and must be imposed.

Theorem 9. Let u be a non–negative local weak subsolution of (2.1) in ΩT and assume
that (3.5) and (3.6) hold. There exists a constant γ = γ(data, r), such that ∀ (x0, t0)+
Q(τ, ρ) ⊂ ΩT and ∀σ ∈ (0, 1),

(3.7) sup
(x0,t0)+Q(στ,σρ)

u ≤ γ (ρp/τ)N/λr

(1− σ)
p

λr
(N+p)

(∫∫
(x0,t0)+Q(τ,ρ)

urdxdt

)p/λr

∧
(
τ

ρp

) 1
2−p

.

3.2.1 Estimates near t = 0

Fix t ∈ (0, T ) and let us rewrite (3.7) for the pair of boxes

Bσρ × (σt, t) , Bρ × (0, t) .
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Corollary 6. Let u be a non–negative local weak subsolution of (2.1) in ΩT and let
(3.5)–(3.6) hold. There exists a constant γ = γ(data, r) such that for all 0 < t ≤ T
and for all σ ∈ (0, 1),

(3.8) sup
Bσρ

u(·, t) ≤ γt−N/λr

(1− σ)
N+p
λr

(∫ t

0

∫
Bσ

urdxds
)p/λr

∧
(
t

ρp

) 1
2−p

.

Remark 14. Assume that (3.5) holds with r = 1, i.e.,

p >
2N
N + 1

.

Then the behaviour of the supremum of u as t ↘ 0 is formally the same as that of
solutions of the Dirichlet problem (3.1) for degenerate equations as in Theorem 7.

3.2.2 Global estimates: Dirichlet data

A peculiar phenomenon of these equations is that, unlike their degenerate counterparts,
local and global estimates take essentially the same form. This appears for example
by comparing (3.8) with the next global estimate.

Theorem 10. Let u be a non–negative weak subsolution of the Dirichlet problem (3.1)
and let (3.5)–(3.6) hold. There exists a constant γ = γ(data, r) such that ∀ t ∈ (0, T ),

sup
Ω
u(·, t) ≤ sup

ST

g +
γ

tN/λr

(∫ t

0

∫
Ω

urdxds
)p/λr

.

3.2.3 A counterexample

Let a ∈ (0, 1) be a positive constant and let Ba denote the ball of radius a in RN

centered at the origin. Consider the functions

z =

(
a2 − |x|2

)2
+

|x|N |ln |x|2|β
and v = (1− ht)+ z ,

where β, h > 1 are parameters to be chosen. One verifies that

z ∈ L1(Ba) , and z /∈ L1+ε(Ba) , ∀ ε > 0 .

Consider also the Cauchy problem

(3.9)
{
ut − div |∇u|p−2∇u = 0 in Σ1

u(·, 0) = z .

Lemma 13. Assume that N(p−2)+p = 0. The constants a ∈ (0, 1) and β, h > 1 can
be determined a priori so that v is a non–negative, weak subsolution of (3.9) in Σ1.

Next we return to (3.9) and observe that by the comparison principle u ≥ v and
therefore u is not bounded.
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4 Intrinsic Harnack Estimates

In this section we present some results about Harnack inequalities. More precisely we
consider nonnegative weak solutions of the type:

(4.1)


u ∈ Cloc

(
0, T ;L2

loc(Ω)
)
∩ Lp

loc

(
0, T ;W 1,p

loc (Ω)
)
, p > 1

ut − div|∇u|p−2∇u = 0 , in ΩT

The first parabolic version of the Harnack inequality is due to Hadamard ([89]) and
Pini ([144]). Their result is the following:

Let u be a non-negative solution of the heat equation in ΩT . Let (x0, t0) ∈ ΩT and
assume that the cylinder (x0, t0) +Q2ρ ⊂ ΩT where Qρ ≡ Bρ × (−ρ2, 0). Then there
exists a constant γ, depending only upon N , such that

(4.2) u(x0, t0) ≥ γ sup
Bρ(x0)

u(x, t0 − ρ2) .

The proof is based on local representations by means of heat potentials. A break-
through in the theory is due to Moser, who in his celebrated paper [134] proved that
(4.2) continues to hold for nonnegative weak solution of the type

(4.3)


u ∈ Cloc

(
0, T ;L2

loc(Ω)
)
∩ L2

loc

(
0, T ;W 1,2

loc (Ω)
)

ut −
N∑

i,j=1

Di(aij(x, t)Dju) = 0 , in ΩT

where aij ∈ L∞(ΩT ) and satisfy the ellipticity condition

(4.4)
N∑

i,j=1

aijξiξj ≥ ν|ξ|2 , ∀ξ ∈ RN

with ν a positive constant. The result of Moser can be extended (see [16], [164] and
[163]) to nonnegative weak solutions of the quasilinear parabolic equation

(4.5) ut − diva(x, t, u,∇u) + b(x, t, u,∇u) = 0 , in ΩT ,

where the diffusion field a and the forcing term b are real valued and measurable over
ΩT ×R×RN and satisfy the structure conditions considered in Section 2.4 for m = 1
or for p = 2.

The proof of Moser’s result is based on suitable integral estimates for powers and
logarithm of the solution u; the general structure follows the same one Moser used in
his earlier work on Harnack’s inequality in the elliptic case ([133]) and it is basically
articulated in three steps.

First Step: Estimates on positive powers of u - Let u be a nonnegative solution; then
for all ε > 0 there exists a positive constant γ, depending only upon N and ε, such
that for every cylinder Qρ(x0, t0) ⊂ ΩT and for every σ ∈ (0, 1)

(4.6) sup
Qσρ(x0,t0)

u ≤ γ

(1− σ)
N+2
2ε

(
1

|Qρ(x0, t0)|

∫ ∫
Qρ(x0,t0)

uε dxdτ

) 1
ε

.
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Let us remark that this estimate holds also for nonnegative subsolutions.

Second Step: Estimates on negative powers of u - Let u be a positive solution; then
for all ε > 0 there exists a positive constant γ, depending only upon N and ε, such
that for every cylinder Qρ(x0, t0) ⊂ ΩT and for every σ ∈ (0, 1)

(4.7) sup
Qσρ(x0,t0)

1
u
≤ γ

(1− σ)
N+2
2ε

(
1

|Qρ(x0, t0)|

∫ ∫
Qρ(x0,t0)

1
uε

dxdτ

) 1
ε

.

Quite analogously to what happened in the first step, this estimate holds also for
positive supersolutions.

If we consider the mean values

M(p,D) =
(

1
|D|

∫ ∫
D

up dxdτ
) 1

p

,

it is obvious that (4.6) and (4.7) can be rewritten as

M(+∞, Qσρ) ≤ γ1M(ε,Qρ), M(−ε,Qρ) ≤ γ2M(−∞, Qσρ).

The main point is then to establish a so - called ”crossover inequality”, namely

M(p,D−) ≤ γ3M(−p,D+)

for sufficiently small p > 0 and appropriate domains D−,D+. Indeed this is the result
of the

Third Step: Crossover Lemma - Let u be a positive solution, D+ = {|x| < 1, 1
2 < t <

1} and D+ = {|x| < 1, −1 < t < − 1
2}. Then there exist constants δ > 0 and C > 0,

depending only on N such that

(4.8)

(∫ ∫
D−

uδdxdτ

)(∫ ∫
D+

u−δdxdτ

)
≤ C.

We stated (4.8) in a normalized form just for the sake of simplicity.

It is worth saying that the third step is the most difficult part of Moser’s proof.
Inequality (4.8) is a straightforward consequence of an adaptation to the parabolic case
of the well - known lemma of F. John and L. Nirenberg, which concerns the exponential
decay of the distribution function of a function with bounded mean oscillation. Going
from the elliptic to the parabolic situation the difficulty lies in the special role played
by the time variable. In fact as clearly stated in (4.2), Harnack inequality for a
nonnegative solution of a parabolic equation is an inf-bound on the value of such a
solution at a given time in terms of its value at a previous time and this necessary
time lag has to be reflected in a proper parabolic John-Nirenberg Lemma. This is
precisely what Moser did in his Main Lemma in [134]. Indeed Moser’s proof is hard
to follow and the need for a possible simplification was immediately felt.

Moser himself published a new proof of Harnack inequality in 1971 (see [135]),
with the expressed purpose to avoid the use of his parabolic John-Nirenberg Lemma;
through estimates on the logarithm of the solution and via a measure lemma based
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on a result of Bombieri ([27], [28]), he showed that it is possible to estimate in a
quantitative way the supremum of u. Repeating the same argument for u−1 one
gets the quantitative estimates for the infimum of u. By combining these results the
Harnack estimates are proved.

A few years later Fabes and Garofalo ([80]) came back to Moser’s Main Lemma and
gave a simplified proof, using Calderon’s proof of the original John-Nirenberg lemma,
see also ([81]).

In Moser’s approach the main feature that makes the method work is the homo-
geneity of the time and space terms of the equation; in fact Trudinger ([164] - Section
5) shows that things run in the same way in the proof of Harnack inequality for doubly
nonlinear equations of the type

(4.9) (up−1)t − div(|∇u|p−2∇u) = 0 , in ΩT

which is p-homogeneous, exactly as (4.3) is 2-homogeneous.
On the other hand, coming back to equation (4.1), quite surprisingly Moser’s

method does not work when p 6= 2 and this is not simply a matter of technique.
As already discussed in the Introduction, as (4.1) is invariant by the scaling x → hx
and t → hpt, one would guess that Harnack estimates would hold in the cylinder
[(x0, t0) +Bρ× (−ρp, 0)], but this is not the case. Let us consider the explicit solution
of (4.1) introduced by Barenblatt in [17]:

(4.10) B(x, t) = t−
N
λ

{
1− γp

(
|x|
t1/λ

) p
p−1
} p−1

p−2

+

, t > 0, p > 2 ,

where γp = λ
1

1−p (p − 2)/p and λ = N(p − 2) + p. Let (x0, t0) be a point of the free
boundary {t = |x|λ}. If t0 is large enough, the ball Bρ(x0) taken at the time level
t0 − ρp intersects the support of x→ B(x, t0 − ρp) in an open set. Hence

sup
Bρ(x0)

B(x, t0 − ρp) > 0 and B(x0, t0) = 0

which contradicts (4.2) and we conclude that things must be more complicated.
However a comparison between (4.4) and (4.1) suggests that one may heuristically

regard (4.1) as if it were written in a time scale intrinsic to the solution itself and,
loosely speaking, of the order of t[u(x, t)]2−p. Indeed if one looks at the Barenblatt
solutions once more, one realizes that for such specific functions a Harnack estimate
holds with an intrinsic time scale exactly of the order u(x0, t0)2−p.

A general result of this kind for (4.1) is proved in [54], [40] and [66]:

Theorem 11. Let u be a nonnegative weak solution of (4.1) and let p > 2N
N+1 . Fix

(x0, t0) ∈ ΩT and assume that u(x0, t0) > 0. There exists constants γ > 1 and C > 0,
depending only upon N and p, such that

(4.11) u(x0, t0) ≤ γ inf
Bρ(x0)

u(·, t0 + θ) ,

where

(4.12) θ ≡ Cρp

[u(x0, t0)]p−2

provided that the cylinder (x0, t0) +B4ρ × (−4θ, 4θ) is contained in ΩT .
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In the next sections we will give a sketch of the proof both for the degenerate and
singular cases. For the moment let us make some general remarks and point out some
open questions.

Remark 15. There is a big difference between the degenerate case (p > 2) and the
singular case (p < 2) and this is due to the different behaviour of the modulus of
ellipticity |Du|p−2. In the degenerate situation the modulus vanishes when Du is zero;
hence the evolution phenomenon dominates over the diffusion process and this holds
more and more as p grows to infinity. We have a direct consequence in (4.11), as the
constant C is larger than one when p > 2; moreover C → ∞ as p → ∞. Roughly
speaking Harnack inequality states that the original positivity of u at (x0, t0) is spread
over the full ball Bρ(x0) and is preserved for a large time. On the other hand, when
p → 2+, γ(N, p), C(N, p) → γ(N, 2), C(N, 2) so that, at least formally, we recover
the classical Harnack inequality for nonnegative solutions of the heat equation. On the
contrary, in the singular case the modulus blows up when Du vanishes, so that now the
previous situation is reversed, the diffusion dominates over the evolution phenomenon
and this is felt more and more as p → 2N

N+1 . Once more we can see this clearly
expressed in (4.11), since C ∈ (0, 1) and C → 0+ as p → 2N

N+1 : under a geometrical
point of view, we can say that the original positivity of u at (x0, t0) spreads over the
full ball Bρ(x0) but is now preserved only for a relatively small time. Exactly as in the
degenerate case, when p→ 2− we have that γ(N, p), C(N, p) → γ(N, 2), C(N, 2), so
that once again we recover the classical results in the limit situation. Finally one may
naturally ask about the lower bound for p: why p > 2N

N+1 and not just p > 1? Indeed
p > 2N

N+1 is optimal for Harnack inequality to hold, as we will see in the next sections,
discussing the phenomenon of extinction in finite time.

Remark 16. Let apart the intrinsic height of the cylinder, inequality (4.11) is obvi-
ously equivalent to (4.2). Let us just remark that in the case of parabolic equations
in non-divergence form, Krylov and Safonov gave to Harnack inequality exactly the
same formulation as in (4.11).

In Theorem 11 the level θ is defined in terms of u(x0, t0) by (4.12). Notwithstanding
the previous discussion about the intrinsic scaling, it is natural to ask if an estimate
holds where the geometry can be a priori prescribed independent of the solution. In
[54] a positive answer is given when p > 2 by the following

Theorem 12. Let u be a nonnegative weak solution of (4.1) and let p > 2. There
exists a constant B = B(N, p) > 1 such that

∀(x0, t0) ∈ ΩT , ∀ρ, θ > 0 s.t. (x0, t0) +B4ρ × (−4θ, 4θ) ⊂ ΩT

we have

(4.13) u(x0, t0) ≤ B

{(
ρp

θ

) 1
p−2

+
(
θ

ρp

)N
p
[

inf
Bρ(x0)

u(·, t)
]λ

p

}
,

where λ = N(p− 2) + p.

At a first glance Theorem 11 and Theorem 12 could look markedly different, as in
the second one the positivity of u(x0, t0) is not required and θ > 0 can be assumed
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arbitrarily. Indeed (4.13) holds trivially when u(x0, t0) = 0 and both statements are
equivalent when u(x0, t0) > 0 in the sense that (4.11) ⇒ (4.13) in any case and (4.13)
⇒ (4.11) with a constant γ(N, p) which may not be stable as p→ 2+.

Assuming u(x0, t0) > 0, let us prove the second implication. Under the hypothesis
that (4.13) is valid for all θ > 0 s. t. (x0, t0) +B4ρ × (−4θ, 4θ) ⊂ ΩT , if we choose

θ =
(2B)p−2ρp

[u(x0, t0)]p−2

we immediately conclude that

u(x0, t0) ≤ γ inf
Bρ(x0)

u(·, t0 + θ) with γ = 2BN(p−2)+λ.

We postpone the proof of the opposite implication to the next section.

A consequence of Theorem 12 is

Corollary 7. Let u be a nonnegative weak solution of (4.1) and let p > 2. There
exists a constant B = B(N, p) > 1 such that

∀(x0, t0) ∈ ΩT , ∀ρ, θ > 0 s.t. (x0, t0) +B4ρ × (−4θ, 4θ) ⊂ ΩT

we have

(4.14)
1
ρN

∫
Bρ(x0)

u(x,t0)dt ≤ γ

{(
ρp

θ

) 1
p−2

+
(
θ

ρp

)N
p

[u(x0, t)]
λ
p

}
.

Harnack inequalities like the ones stated in Theorems 11 and 12 hold for nonneg-
ative solutions of the porous medium equation

(4.15)


u ∈ Cloc

(
0, T ;L2

loc(Ω)
)
, um ∈ L2

loc

(
0, T ;W 1,2

loc (Ω)
)
,

ut −4um = 0 , in ΩT , m > 1.

In particular Theorem 11 becomes

Theorem 13. Let u be a nonnegative weak solution of (4.15) and let m > (N−2)+
N+2 .

Fix (x0, t0) ∈ ΩT and assume that u(x0, t0) > 0. There exists constants γ > 1 and
C > 0, depending only upon N and m, such that

(4.16) u(x0, t0) ≤ γ inf
Bρ(x0)

u(·, t0 + θ) ,

where

(4.17) θ ≡ Cρ2

[u(x0, t0)]m−1

provided that the cylinder (x0, t0) +B4ρ × (−4θ, 4θ) is contained in ΩT .

The different behaviour of the constant C dependent upon p > 2 or 2N
N+1 < p < 2

discussed in Remark 15 comes up in this context too, where the degenerate case is
given by m > 1 and the singular case by (N−2)+

N+2 < m < 1.
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Remark 17. Similar estimates have been proved also for the solutions of doubly
nonlinear parabolic equations of the type

ut = div(|∇u|p−2|u|m−1∇u)

(see [176]). Equations of this type are classified as doubly nonlinear ([123]) or with
implicit nonlinearity ([103]). This class of equations have their own mathematical
interest (the porous medium equation and the p-Laplacian equations belong to this
larger class) and physical interest (see the review paper [103]). Also for this larger
class, local Hölder continuity results hold (see [96], [97], [147] and [177]).

Remark 18. The theory of Harnack estimates is fragmented and incomplete. The
estimates for p 6= 2 hold only for homogeneous pdes and this strongly depends on the
method we will present in the following, which basically relies on the construction of
special solutions and subsolutions. The shortcoming of such a technique is evident
even in the framework of homogeneous equations since a Harnack-type estimate is not
known to hold for nonnegative weak solutions of (see [123])

ut =
N∑

i=1

Di(|Diu|p−2Diu) .

The open question is if it is possible to extend the Harnack estimates to the case of
parabolic equations with the full quasilinear structure, as it happens when p = 2. Re-
sults of this kind would probably require a new method independent of local represen-
tations and local subsolutions. Whenever developed, such a technique would parallel
the discovery of the Moser estimates [134], based on real and harmonic analysis tools,
versus the estimates by Hadamard [89] and Pini [144], based on local representations.

4.1 Harnack estimates: the degenerate case

First of all, let us briefly comment upon the assumption that the cylinder (x0, t0) +
B4ρ × (−4θ, 4θ) is contained in ΩT . Under a geometrical point of view, this means
that t0 should be of the order of θ and this is essential. In fact if we consider the
Barenblatt solution given in (4.10) with x0 = 0 and t0 arbitrarily close to the origin,
it is evident that it cannot satisfy (4.13). One might think that this is due to the
pointwise nature of (4.12) and (4.13), but this is not the case and the reason actually
lies in the local character of the solutions we are considering. Indeed quite surprisingly
also the averaged form of the Harnack inequality (4.14) does not hold without the
assumption that the cylinder (x0, t0)+B4ρ× (−4θ, 4θ) is contained in ΩT . To see this,
let u be the unique weak solution of the boundary value problem

(4.18)



ut − (|ux|p−2ux)x = 0 in Q ≡ (0, 1)× (0,∞),

u(0, t) = u(1, t) = 0 for all t ≥ 0

u(x, 0) = u0(x) ∈ C∞0 (0, 1)

u0(x) ∈ [0, 1], ∀x ∈ (0, 1) and u0(x) = 1 for x ∈ ( 1
4 ,

3
4 ).
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Thanks to the results of [20], we can say that

ut ≥ −
1

p− 2
u

t
in D′(Q).

Since 0 ≤ u ≤ 1, by the comparison principle we have

−(|ux|p−2ux)x ≤
1

(p− 2)t
, t > 0.

At any fixed level t, the function x→ u(x, t) is majorised by

v(x, t) =
γxδ

t
1

p−1
, δ ∈

(
p− 1
p

, 1
)
, (γδ)p−1(1− δ)(p− 1) ≥ 1

p− 2
,

as
−(|vx|p−2vx)x ≥

1
(p− 2)t

and v(0, t) = 0, v(1, t) > 0.

Therefore for every δ ∈
(

p−1
p , 1

)
there exists a constant C = C(δ), such that

u(
1
2
, t) ≤ C(δ)

t
1

p−1
.

Now if (4.14) held for t0 = 0, x0 = 1
2 and ρ = 1

4 , for t > 1 we would have

1 ≤ const
(
t−

1
p−2 + t−

1
p

)
→ 0 as t→ +∞.

In the sequel we will see that the limitation on t0 in (4.14) can be dropped when
(4.1) is considered in the whole RN .

We can now finally come to the proof of Theorem 11 when p > 2. The technical
tools used in the proof are only two: the Hölder continuity of solutions as proved in
Section 2 and the comparison principle. This point of view is somehow reversed with
respect to Moser’s approach where the Hölder continuity is implied by the Harnack
estimate. Even though not so explicitly stated, a method similar to ours is already
present in the work of Krylov and Safonov [117].

We can basically recognize four steps.

First Step: Renormalization of the solution - Let (x0, t0) ∈ ΩT and ρ > 0 be fixed,
assume u(x0, t0) > 0 and consider the box

Q4ρ = {|x− x0| < 4ρ} × {t0 −
4Cρp

[u(x0, t0)]p−2
, t0 +

4Cρp

[u(x0, t0)]p−2
}

where C is a positive constant to be determined later. We render the equation dimen-
sionless by the change of variables

ξ =
x− x0

ρ
, τ =

(t− t0)[u(x0, t0)]p−2

ρp
, v =

u

u(x0, t0)
.

This maps Q4ρ into Q = Q+∪Q− where Q+ ≡ B(4)× [0, 4C) , Q− ≡ B(4)× (−4C, 0].
We denote again the new variables with x and t and observe that the rescaled function
v is a bounded nonnegative solution of the equation

vt − div|∇v|p−2∇v = 0 in Q

60



with v(0, 0) = 1. To prove the Harnack inequality it is enough to find constants
0 < γ0 < 1 and C > 1, depending only upon N and p, such that for each x ∈ B(1) we
have

(4.19) v(x,C) ≥ γ0 .

As a matter of fact if u(x0, t0) = 0, no rescaling is possible and we are led to consider
Theorem 12, which is trivially satisfied in this case as already remarked.

Second Step: Determination of the largest value of v in Q− - Construct the family of
nested boxesQτ ≡ Bτ×(−τp, 0]. Define the numbersMτ = supQτ

v andNτ = (1−τ)−β

where β > 1 will be chosen later. Let 0 ≤ τ0 < 1 be the largest root of the equation
Mτ = Nτ . Such a root is well defined, since M0 = N0 and as τ → 1− Mτ remain
bounded and Nτ blow up. By construction supQτ

v ≤ Nτ for all τ > τ0 Moreover,
from the continuity of v in Q, there exists at least a point (x1, t1) ∈ Nτ0 where
v(x1, t1) = (1− τ0)−β .

Third Step: Lower bound on v at the same time - level t1 - Relying on the Hölder
continuity of v ([51]), we can determine a small ball of radius r0 about (x1, t1) where
v ≥ (1−τ0)

−β

2 . Roughly speaking, we have found a small ball Br0(x1) at time t1, close to
(0, 0), where the largeness of v(·, t1) is qualitatively determined. The proof is concluded
once we choose the constant β > 1 and C > 1 in such a way that we come up with a
quantitative lower bound on v over the full ball B1 at a later time C: otherwise stated,
we have to spread the positivity of v and this is the crucial step in the proof of the
Harnack inequality.

Fourth Step: Expansion of the positivity set - The spread of positivity is achieved by
means of a proper comparison function. For t ≥ t1 consider the function

Bk,ρ(x, t;x1, t1) ≡
kρn

SN/λ(t)

[
1−

(
|x− x1|
S1/λ(t)

) p
p−1
] p−1

p−2

+

where as usual λ = N(p − 2) + p, S(t) = B(N, p)kp−2ρN(p−2)(t − t1) + ρλ, b(N, p) =
λ( p

p−2 )p−1 and choose k = (1−τ0)
−β

2 and ρ = r0. By direct calculation one verifies that
Bk,ρ(x, t;x1, t1) is a weak solution of (4.1) in RN × {t1, t}. This comparison function
was introduced in [17], [143] and [54].

By a proper choice of β and C, the support of Bk,ρ(·, C;x1, t1) contains B2 and by
the comparison principle

inf
B1
v(x,C) ≥ inf

B1
Bk,ρ(x,C;x1, t1) ≥ γ0

for a suitable value of γ0 and we are finished.

Remark 19. The constant γ0 tends to 0 as p → 2+. Therefore in order to have
the constants under control as p approaches the non - degenerate case, a comparison
function other than Bk,ρ is used for p close to 2.

Once we have proved Theorem 11, we can show how it implies Theorem 12 and
therefore conclude about the equivalence between the two different Harnack estimates.
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Let (x0, t0) ∈ ΩT , ρ > 0 and θ > 0 be fixed in such a way that the cylinder (x0, t0) +
B4ρ × (−4θ, 4θ) is contained in ΩT . Without loss of generality we can assume that
(x0, t0) ≡ (0, 0) and set u∗ = u(0, 0). With C and γ as determined in Theorem 11, we
can assume that

t∗ ≡ Cρp

up−2
∗

≤ θ

2

otherwise there is nothing to prove. Relying on this and using the comparison principle
with the function Bk,ρ(x, t; 0, t∗) and k = γ−1u∗, we can prove that

u(x, θ) ≥ γ1 u
p/λ
∗

(
ρp

θ

)N/λ

with γ1 ≡ γ1(N, p).

We have finished once we set B = max{γ−λ/p
1 ; (2C)

1
p−2 }.

The assumption that the cylinder Q4ρ(θ) be contained in the domain of definition
of the solution is essential for the Harnack estimates of Theorems 11 and 12 to hold.
When the solution is defined in RN any restriction on t0 can be avoided because we
do not need to impose any restriction on ρ to have that the cylinder Q4ρ(θ) belongs
to the domain if definition. More precisely, if we consider nonnegative weak solutions
of the type

(4.20)


u ∈ Cloc

(
0, T ;L2

loc(R
N )
)
∩ Lp

loc

(
0, T ;W 1,p

loc (RN )
)
, p > 2

ut − div|∇u|p−2∇u = 0 , in ΣT ,

where ΣT ≡ RN × (0, T ], we have

Theorem 14. Let u be a nonnegative weak solution of (4.20). Let (x0, t0) ∈ ΣT ,
ρ > 0 and t > t0. Then

(4.21)
1
ρN

∫
Bρ(x0)

u(x,t0)dt ≤ γ

{(
ρp

t− t0

) 1
p−2

+
(
t− t0
ρp

)N
p
[

inf
Bρ(x0)

u(·, t)
]λ

p

}
,

where γ > 1 is depending only upon N , p and λ = N(p− 2) + p.

Remark 20. Even if we are still dealing with local estimates as with the previous
Harnack inequalities, it is the switch from ΩT to ΣT that gives us a useful piece of
global information and allows us to get arbitrarily close to 0 with t0. Estimate (4.21)
contains information on the initial data of (4.20). Let x0 ∈ RN , r > 0 and ε > 0.
Apply (4.21) with (t − t0) = T − ε, divide by ρ

p
p−2 and take the supremum of both

sides for ρ > r and τ ∈ (0, T − ε). In this way one obtains that

(4.22) sup
0<τ≤T−ε

sup
ρ>r

∫
Bρ(x0)

u(x, τ)

ρ
λ
p

dx ≤ γ

ε
1

p−2

[
1 +

(
T

rp

) 1
p−2

u(x0, T − ε)

]λ
p

.

The previous estimate implies that the nonnegative solutions of (4.21) are locally
bounded and, as |x| → +∞ they cannot grow faster than |x|

p
p−2 .
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4.2 Harnack estimates: the singular case

The proof of the singular case is quite similar to the degenerate case, except for the
last part, relative to the spread of positivity. For the sake of completeness we recall
all the steps.

First Step: Renormalization of the solution - Let (x0, t0) ∈ ΩT and ρ > 0 be fixed,
assume u(x0, t0) > 0 and consider the box

Q4ρ = {|x− x0| < 4ρ} × {t0 − [u(x0, t0)]2−p(4ρ)p, t0 + [u(x0, t0)]2−p(4ρ)p}.

We render the equation dimensionless by the change of variables

ξ =
x− x0

ρ
, τ =

(t− t0)[u(x0, t0)]p−2

ρp
, v =

u

u(x0, t0)
.

This maps Q4ρ into Q = Q+ ∪Q− where Q+ ≡ B(4)× [0, 4p) , Q− ≡ B(4)× (−4p, 0].
We denote again the new variables with x and t and observe that the rescaled function
v is a bounded nonnegative solution of the equation

vt − div|∇v|p−2∇v = 0 in Q

with v(0, 0) = 1. To prove the Harnack inequality it is enough to find constants
0 < γ0 < 1 and 0 < C < 1, depending only upon N and p, such that for each x ∈ B(1)
we have

(4.23) v(x,C) ≥ γ0 .

As a matter of fact if u(x0, t0) = 0, no rescaling is possible and we are led to consider
the Elliptic - type Harnack inequality, we will discuss in the next Section.

Second Step: Determination of the largest value of v in Q− - Construct the family
of nested boxes Qτ ≡ Bτ × (−δτ, 0]. Define the numbers Mτ = supQτ

v and Nτ =
(1− τ)−

p
2−p where 0 < δ < 1 will be chosen later and has the effect of making flat the

boxes Qτ . If we compare the situation with the analogous one for p > 2, we notice
that the cylinders Qτ are rather thin in the t-variable and the exponent for Nτ is fixed
and depends only on the singularity of the equation. Let 0 ≤ τ0 < 1 be the largest
root of the equation Mτ = Nτ . Such a root is well defined, since M0 = N0 and as
τ → 1− Mτ remain bounded and Nτ blow up. By construction

Mτ0 = (1− τ0)−
p

2−p , M 1−τ0
2

≤ 2
p

2−p (1− τ0)−
p

2−p .

Moreover, from the continuity of v in Q, there exists at least a point (x1, t1) ∈ Qτ0

where v(x1, t1) = (1− τ0)−
p

2−p and

sup
|x−x̄|< 1−τ0

2

v(x, t1) ≤ 2
p

2−p (1− τ0)−
p

2−p .

Third Step: Lower bound on v at the same time - level t1 - Relying on the Hölder
continuity of v, we can determine a small ball of radius r0 = ε(1 − τ0) about (x1, t1)

where v ≥ (1−τ0)
p

p−2

2 . ε is a small constant that tends to 0 as p→ 2−.
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Fourth Step: Time - expansion of positivity - All the previous arguments are indepen-
dent of the quantity δ and now it is fixed. By means of a proper comparison function,
the positivity of v is spread over a small time interval without modifying the space
size of the box we are working in. More precisely it is proved that there exist small
positive numbers c0 and δ that can be determined a priori only in terms of N and p
such that

v(x, t) ≥ c0(1− τ0)
p

p−2 , ∀|x− x̄| < ε(1− τ0), ∀ δ ≤ t ≤ 2δ.

This step (and the next one, too) is the main difference with respect to the degen-
erate case when p > 2. Roughly speaking, in that case the positivity is spread over
time and space in one stroke. Here we need to proceed one step at a time.

Fifth Step: Sidewise expansion of positivity - Using a new comparison function the
positivity of v is spread over the full ball {|x| < 1} at the time level t = 2δ. This is
done by showing that there exists a constant γ0 = γ0(N, p) such that

v(x, 2δ) ≥ γ0, ∀|x− x̄| < 2

and with this we are finished.

Remark 21. The comparison functions used in the proof were introduced in [5] and
[66]. We also point out that the comparison principle is a consequence of L1-techniques
if ut ∈ L1

loc(ΩT ). If ut does not belong to L1
loc(ΩT ) the comparison principle can be

proved adapting a technique introduced by Kalashnikov, Oleinik, Yui-Lin and Chzhou
[104] (see also Appendix 9 of [66]).

Remark 22. Exactly as in the degenerate case when p > 2, the constant γ0 tends to
0 as p→ 2−. Therefore in order to have the constants under control as p approaches
the non-singular case, a different comparison function is used for p close to 2.

Remark 23. In the singular case too, it is possible to state an integral Harnack
inequality that holds for all 1 < p < 2: Let u be a nonnegative weak solution of
(4.1). Then there exists a constant γ, depending only upon N and p, such that for all
(x0, t0) ∈ ΩT , for all ρ > 0 such that B4ρ(x0) ⊂ Ω and for all t > t0,

(4.24) sup
t0<τ≤t

∫
Bρ(x0)

u(x, τ)dx ≤ γ inf
t0<τ≤t

∫
B2ρ(x0)

u(x, τ)dx+ γ

(
t− t0
ρλ

) 1
2−p

with λ = N(p−2)+p. Note that λ might be of either sign. Moreover, a very important
difference with respect to the degenerate case is that in the singular case the L1 norm
of u(·, t) over a ball bounds the L1 norm of u(·, τ) over a smaller ball for any previous
or later time. We stress out that in the nonsingular case it is only possible a control
for later times and NOT for previous times. Accordingly the constant γ deteriorates
when p→ 2−.

4.3 Elliptic-type Harnack estimates and extinction time

In this subsection we focus our attention on what is peculiar of the case p < 2. As
discussed before, in the singular case, at the points where |∇u| = 0, the modulus of
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ellipticity becomes infinite. Hence, roughly speaking, the elliptic nature of the diffusion
dominates the time-evolution of the process itself and this implies that the positivity
of u at some point (x0, t0) spreads at the same time level. We have already seen a
hint of this property in the fifth step of the proof of Theorem 11 but such a feature
can be made quantitatively precise and assumes the form of an elliptic - type Harnack
inequality, where the infimum of u over the ball Bρ(x0) is bound by the supremum
over the same ball at the same time level:

Theorem 15. Let u be a nonnegative weak solution of (4.1) and let 2N
N+1 < p < 2.

Let (x0, t0) ∈ ΩT , ρ > 0 and t0 > 0. Let θ = C[u(x0, t0)]2−pρp where the constant
C is defined in (4.12). Assume that the cylinder (x0, t0) + B4ρ × (t0 − 4θ, t0 + 4θ) is
contained in ΩT . Then

(4.25) γ−1 sup
Bρ(x0)

u(·, t) ≤ u(x0, t0) ≤ γ inf
Bρ(x0)

u(·, t) ,

where γ > 1 depends only upon N and p and γ → ∞ when either p → ( 2N
N+1 )+ or

p→ 2−.

This result is proved in [67]. See also [176] for the extension of such a result to more
general operators.

Remark 24. Estimate (4.25) fails in the case of nonnegative solutions of the heat
equation and also for nonnegative solutions of the p-Laplacian when p > 2. To verify
this in the case of the heat equation, consider the fundamental solution in 1-space
dimension

Γ(x, t) =
1

(4πt)
1
2
e−

x2
4t .

If Theorem 15 were to hold, we would have for some ρ > 0 that Γ(n, 1) ≤ Γ(n+ ρ, 1).
Letting n → ∞ we obtain a contradiction. That is the reason why the constants in
(4.25) deteriorate when p goes to 2.

The elliptic-like Harnack inequality holds also for the nonnegative solutions of the
porous medium equation. In such a case we get sharp estimates on the solution

Theorem 16. Let u be a nonnegative weak solution of

(4.26) ut −∆(um) = 0 , in ΩT ,

and let (N−2)+
N+2 < m < 1. Let θ = C[u(x0, t0)]1−mρ2 where the constant C is defined

in (4.12). Assume that the cylinder (x0, t0) + B4ρ × (t0 − 4θ, t0 + 4θ) is contained in
ΩT . Then for each multiindex α

(4.27) |Dαu(x0, t0)| ≤
C |α|+1|α|!

ρα
u(x0, t0)

and for every nonnegative integer k

(4.28)
∣∣∣∣ ∂k

∂tk
u(x0, t0)

∣∣∣∣ ≤ C2k+1(k!)2

ρ2k
u(x0, t0)1−(1−m)k

where C > 1 depends only upon N and m.
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Proof. We render the equation dimensionless by the change of variables

ξ =
x− x0

ρ
, τ =

(t− t0)[u(x0, t0)]m−1

ρ2
, v =

u

u(x0, t0)
.

This maps Q4ρ into Q = Q+∪Q− where Q+ ≡ B(4)× [0, 4C) , Q− ≡ B(4)× (−4C, 0].
We denote again the new variables with x and t and observe that the rescaled function
v is a bounded nonnegative solution of the equation

(4.29) vt −∆(vm) = 0 in Q

with v(0, 0) = 1. By the integral Harnack inequality (4.24) and the elliptic-like Harnack
inequality (4.25) we have that there exist positive constants r0 and γ > 1, depending
only upon N and m, such that γ−1 ≤ v(x, t) ≤ γ for each (x, t) ∈ Q(r20, r0). Using
this new piece of information, we have that in such a cylinder we can apply classical
results due to Friedman [83] and Kinderleher-Nirenberg [106] to the equation (4.29) to
obtain the analyticity of the solution. More precisely we get that for each multiindex
α

|Dαv(0, 0)| ≤ C |α|+1

|α|!
and for every nonnegative integer k∣∣∣∣ ∂k

∂tk
v(0, 0)

∣∣∣∣ ≤ C2k+1

(k!)2

where C > 1 depends only upon N and m.
By the reverse change of variables we deduce (4.27) and (4.28).

Remark 25. Estimate (4.27) not only implies the analyticity of the solution in the
space variables but it also says that when the solution vanishes at a point then all
the derivatives vanish at the same point. Therefore, for the analyticity, the solution
vanishes in all the domain Ω whenever vanishes at a point of Ω. Estimate (4.27)
fails in the case of nonnegative solutions of the heat equation. Indeed, consider the
fundamental solution in 1-space dimension

Γ(x, t) =
1

(4πt)
1
2
e−

x2
4t .

If (4.27) were to hold, we would have for some C > 0

| d
dx

Γ(n, 1)| = 1
2
nΓ(n, 1) ≤ CΓ(n, 1).

Letting n→∞ we obtain a contradiction.

Remark 26. The previous estimates say that a bounded nonnegative solution of
the singular porous medium equation is analytic in the space variables and at least
Lipschitz continuous in the time variable. We stress that these estimates are optimal.
Indeed let z be the nonnegative and non trivial solution of the problem zxx = 1

1−mz
1
m

in the interval (0, 1), with boundary conditions z(0) = z(1) = 0. Then u(x, t) =

z
1
m (T−t)

1
1−m

+ solves the equation ut = ∆(um) and satisfies the above estimates sharply.
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Remark 27. These estimates hold also in the case of a class of quasilinear parabolic
equations. More precisely for nonnegative, local weak solutions of

ut = ∆(um) + f(x, t, u,∇u),

with (N−2)+
N+2 < m < 1, and f locally analytic and such that 0 ≤ f(x, t, u,∇u) ≤ Fum

for some positive constant F (see [67]).

Another peculiarity of the case p < 2 is that the solution can become extinct in
a finite time. The extinction profile is defined as the set ∂[u > 0] ∩ [Ω × (0,∞)]. By
the elliptic-like Harnack principle the extinction profile is a portion of the hyperplane
Ω× {t = T ∗}.

Let us first consider the case of a bounded domain.

Theorem 17. Let Ω be a bounded domain of RN . Let u be the unique nonnegative
weak solution of

(4.30)


u ∈ C

(
R+;L2(Ω)

)
∩ Lp

(
R+;W 1,p

0 (Ω)
)
, 1 < p < 2

ut − div|∇u|p−2∇u = 0 , in Ω×R+

u(·, 0) = u0(x) ∈ L∞(Ω) and u0 ≥ 0 .

Then there is a finite time T ∗, depending only upon N , p and u0, such that u(·, t) ≡ 0
for all t ≥ T ∗.

Moreover, if max(1, 2N
N+2 ) < p < 2 then

(4.31) 0 < T ∗ ≤ γ∗‖u0‖2−p
2,Ω |Ω|

N(p−2)+2p
2N

with γ∗ depending only upon N and p.
If 1 < p ≤ 2N

N+1 and N ≥ 2 then

(4.32) 0 < T ∗ ≤ γ∗‖u0‖2−p
s,Ω

with γ∗ depending only upon N , p and s = N(2−p)
p .

Remark 28. Note that there is an overlap in the range of p in the previous estimates.
We stress that for 1 < p < 2N

N+1 , the upper estimate of T ∗ does not depend upon the
measure of Ω.

Proof. Consider first the case max(1, 2N
N+2 ) < p < 2. Take u as a test function in the

weak formulation of the equation (4.30) to get

d

dt
‖u(t)‖22,Ω + 2‖∇u(t)‖p

p,Ω = 0.

By Hölder’s inequality and Sobolev embedding theorem

‖u(t)‖2,Ω ≤ |Ω|
N(p−2)+2p

2Np ‖u(t)‖ Np
N−p ,Ω ≤ γ|Ω|

N(p−2)+2p
2Np ‖∇u(t)‖p,Ω.
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In a straightforward way one may deduce that ‖u(t)‖2,Ω satisfies the following differ-
ential inequality

d

dt
‖u(t)‖2,Ω + γ1‖u(t)‖p−1

2,Ω ≤ 0 ,

where γ1 = γ−p|Ω|−
N(p−2)+2p

2N . Solving the ordinary differential equation one obtains

(4.33) ‖u(t)‖2,Ω ≤ ‖u0‖2,Ω

{
1− (2− p)γ1t

‖u0‖2−p
2,Ω

} 1
2−p

+

and
0 < T ∗ ≤ 1

2− p
γp|Ω|

N(p−2)+2p
2N ‖u0‖2−p

2,Ω .

Consider now the case 1 < p ≤ 2N
N+1 and N ≥ 2. Let s = N(2−p)

p and take us−1 as
a test function in the weak formulation of the equation (4.30) to get

1
s

d

dt
‖u(t)‖s

s,Ω + γ2‖∇u
s+(p−2)

p (t)‖p
p,Ω = 0 ,

where γ2 = (s− 1)( p
s+(p−2) )

p. By Sobolev embedding theorem

‖u(t)‖s
s,Ω ≤ γ‖∇u

s+(p−2)
p (t)‖

Np
N−p

p,Ω .

In a straightforward way one may deduce that ‖u(t)‖s,Ω satisfies the following differ-
ential inequality

d

dt
‖u(t)‖s,Ω + γ3‖u(t)‖p−1

s,Ω ≤ 0 ,

where γ3 = γ−pγ2. Solving the ordinary differential equation one obtains

(4.34) ‖u(t)‖s,Ω ≤ ‖u0‖s,Ω

{
1− (2− p)γ3t

‖u0‖2−p
s,Ω

} 1
2−p

+

and
0 < T ∗ ≤ 1

(2− p)γ2
γp|‖u0‖2−p

s,Ω .

Remark 29. The estimate (4.33) is stable as p→ ( 2N
N+1 )+. As p→ 2− the boundary

value problem (4.30) tends to the corresponding boundary value problem for the heat
equation, for which the extinction in finite time does not occur. Accordingly, if p→ 2−,
the estimate (4.33) becomes

‖u(t)‖2,Ω ≤ ‖u0‖2,Ωe
− t|Ω|

2
N

γ2

where γ is the best constant of the Sobolev embedding of W 1,2 in L
2N

N−2 .
The estimate (4.34) deteriorates as p→ ( 2N

N+1 )− and is stable as p→ 1+. However,
as the regularity results of the previous sections deteriorate as p→ 1+, we cannot infer
the convergence of (4.30) to a boundary value problem in some reasonable topology.
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Remark 30. Theorem 17 holds for solutions of variable sign. The only modification
occurs in the case 1 < p < 2N

N+1 , N ≥ 2. For this it is enough to work with the testing
functions |u|s−2u.

The Harnack principle gives also an estimate on the way the solution approaches
the extinction. Let M = ‖u‖∞,Ω∞ , where Ω∞ ≡ Ω× (0,∞).

Theorem 18. Let Ω be a bounded domain of RN . Let u be the unique nonnegative
weak solution of (4.30) and let 2N

N+1 < p < 2. Then there exists a constant γ, depending
only upon N and p, such that for all (x, t) ∈ Ω× (T∗

2 , T
∗)

u(x, t) ≤ γmax
{
M2−p;

T ∗

[dist{x, ∂Ω}]p

} 1
2−p

(
T ∗ − t

T ∗

) 1
2−p

.

Proof. Fix x ∈ Ω and T∗

2 ≤ t ≤ T ∗. Assume that u(x, t) > 0 and set

(4.35) 4ρ ≡ min

{
dist {x, ∂Ω} ;

(
T ∗

2M2−p

) 1
p

}
.

Consider the cylinder Q4ρ(x, t) = B4ρ(x)×{t− [u(x, t)]2−p(4ρ)p, t+[u(x, t)]2−p(4ρ)p}.
By the choice (4.35 the cylinder is contained in Ω∞. Apply Harnack inequality (4.11)
over the ball Bρ(x) and the cylinder Q4ρ(x, t). We must have

T ∗ − t ≥ C[u(x, t)]2−pρp

otherwise, by Harnack estimate, u(x, t) = 0 against the assumption.

Consider now the case of the extinction in RN .

Theorem 19. Let u be the unique nonnegative weak solution of

(4.36)


u ∈ C

(
R+;L2(RN )

)
∩ Lp

(
R+;W 1,p(RN )

)
, 1 < p < 2

ut − div|∇u|p−2∇u = 0 , in RN ×R+

u(·, 0) = u0(x) ≥ 0 .

Assume that u0 is continuous in a ball B(2R) and vanishes outside B(R). Assume
1 < p ≤ 2N

N+1 and N ≥ 2, and let s = N(2−p)
p . Then there is a positive number T ∗,

depending only upon N , p and u0, such that u(x, t) = 0 for each t ≥ T ∗. Moreover,
0 < T ∗ ≤ γ∗‖u0‖2−p

s,Ω , with γ∗ depending only upon N and p.

Proof. The solution of (4.36) can be constructed as the uniform limit of a sequence
un of solutions in bounded domains where n is a natural number and n ≥ R. More
precisely,

(4.37)


un ∈ C

(
R+;L2(B(n))

)
∩ Lp

(
R+;W 1,p

0 (B(n))
)

(un)t − div|∇un|p−2∇un = 0 , in B(n)×R+

un(·, 0) = u0(x) .
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By Theorem 17, the extinction time T ∗n is independent of B(n). Moreover, as un ≤
un+1, we have that un converges to the solution u and T ∗n converges to T ∗.

Remark 31. Theorem 19 holds for solutions of variable sign and for data in Ls(RN )
with s = N 2−p

p . The only modification in the proof occurs in making precise in what
sense the solutions of the approximated problems converge to the solution of (4.36).

Remark 32. Theorem 19 implies that the range 2N
N+1 < p < 2 is optimal for a Harnack

estimate to hold. Let Σ∞ ≡ RN × R+. Fix (x0, t0) ∈ RN × (0, T ∗), where t0 is so
close to T ∗ as to satisfy

(4.38) T ∗ − t0 ≤
C

4p
t0 ,

where C is the constant appearing in (4.12). Now let ρ > 0 be so large that

(4.39) C[u(x0, t0)]2−pρp = T ∗ − t0 .

By the choice (4.38) the cylinder

Q4ρ(t, x) = B4ρ(x)× {t0 − [u(x0, t0)]2−p(4ρ)p, t0 + [u(x0, t0)]2−p(4ρ)p}

is contained in Σ∞. If the Harnack inequality (4.11) were to hold for 1 < p < 2N
N+1 ,

N ≥ 2, for some constants C and γ independent of ρ, it would give 0 < u(x0, t0) ≤
γ inf

x∈Bρ(x0)
u(x, T ∗) = 0. We stress that the choice (4.39) is possible in the whole Σ∞.

The same argument implies that no extinction in finite time can occur for solutions
of (4.36) if 2N

N+1 < p < 2. In such a range the Harnack estimate (4.11) holds and if
a finite extinction time T ∗ were to exists, the choices (4.38) and (4.39) would give
u(x, T ∗) > 0.

4.4 Raleigh quotient and extinction profile

The Harnack estimates play a fundamental role in analyzing the asymptotic behaviour
of solutions of singular equations. The physical motivation of such an analysis comes
from the modelling of plasma assuming the Okuda-Dawson diffusion model (see [74]
and [139], see also [22] and [23]). In [118] and [67] this analysis was carried out through
Sobolev embedding Theorem, Harnack estimates and Raleigh quotient (see also [155],
where general singular operators and general boundary conditions are considered). In
this subsection this application of Harnack inequalities is described.

Let Ω be a bounded set of RN . Consider the Cauchy-Dirichlet problem:

(4.40)



u ∈ C
(
R+;L2(Ω)

)
∩ Lp

(
R+;W 1,p(Ω)

)
, 2N

N+1 < p < 2

ut − div|∇u|p−2∇u = 0 , in Ω×R+

u(·, 0) = u0(x) ∈ L2(Ω) and u0 ≥ 0

u(x, t) = 0 ∀x ∈ ∂Ω and ∀ t > 0 .

The main result of this section is the following:
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Theorem 20. Let u be the unique nonnegative weak solution of (4.40) and let T ∗ > 0
be the extinction time. Let u∗(x, t) = u(x, t)(T ∗ − t)

1
p−2 . Then there is a sequence

tn → T ∗ such that u∗(x, t) → v(x), where v is a nontrivial solution of the equation

(4.41) div|∇v|p−2∇v =
1

2− p
v , in Ω

satisfying homogeneous Dirichlet boundary conditions.

Remark 33. The proof of Theorem 20 is heavily based upon the Sobolev embedding
of W 1,p into L2. For this reason we assume Ω bounded and 2N

N+1 < p < 2. If p ≤ 2N
N+1

the result is false. Indeed if the Theorem were to hold for such a range of p, it would
give the existence of a nontrivial solution of (4.41) in contradiction with known results
of the elliptic theory (see [145]). We recall that the existence of a nonzero solution of
(4.41) when p ≤ 2N

N+1 is not true in general, but depends on topological properties of
the set Ω (see, for instance, [30]).

Before coming to the actual proof of Theorem 20, we consider some auxiliary
results. First of all let us introduce the Raleigh quotient

E [u](t) =
(
‖∇u‖p,Ω

‖u‖2,Ω

)p

.

Proposition 13. The quantity E [u](t) is not increasing in time.

Proof. Choose u as a test function in the weak form of (4.40) to get

(4.42)
1
2
d

dt
‖u(t)‖22,Ω + ‖∇u(t)‖p

p,Ω = 0 .

Setting ∆p(u)(t) = div|∇u(t)|p−2∇u(t), we obtain

(4.43)
∫

Ω

|∇u(t)|pdx = −
∫

Ω

u(t)∆p(u)(t)dx ≤ ‖u(t)‖2,Ω

(∫
Ω

|∆p(u)(t)|2dx
) 1

2

.

On the other hand,

(4.44)
d

dt

∫
Ω

|∇u(t)|pdx = p

∫
Ω

|∇u(t)|p−2∇u(t)∇ut(t)dx = −p
∫

Ω

ut(t)∆p(u)(t)dx .

Hence

(4.45)
d

dt

∫
Ω

|∇u(t)|pdx = −p
∫

Ω

|∆p(u)(t)|2dx ,

which gives, together with (4.43),

(4.46)
d

dt
‖∇u(t)‖p

p,Ω ≤ −p
‖∇u(t)‖2p

p,Ω

‖u(t)‖22,Ω

.

Directly from the equation one gets

1
p

d
dt‖∇u(t)‖

p
p,Ω

‖∇u(t)‖p
p,Ω

≤ 1
2

d
dt‖u(t)‖

2
2,Ω

‖u(t)‖22,Ω

and this implies that E [u](t) is not increasing in time.

Let Bp,Ω be the best Sobolev constant of the embedding of W 1,p(Ω) in L2(Ω).
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Proposition 14. The inequalities

Bp,Ω ≤ E [u](t) ≤ E [u](0) ,

hold.

Proof. It is a straightforward consequence of Proposition 13 and the definition of the
Raleigh quotient.

The following Proposition gives a sharp estimate on the decay of the solution at
the extinction time.

Proposition 15. Let u be the unique nonnegative weak solution of (4.40) and let
T ∗ > 0 be the extinction time. Then

[(2− p)Bp,Ω(T ∗ − t)]
1

2−p ≤ ‖u(t)‖2,Ω ≤ [(2− p)E [u](0)(T ∗ − t)]
1

2−p

and

Bp,Ω [(2− p)Bp,Ω(T ∗ − t)]
1

2−p ≤ ‖∇u(t)‖p,Ω

≤ E [u](0) [(2− p)E [u](0)(T ∗ − t)]
1

2−p

Proof. It is sufficient to note that ‖u(t)‖2,Ω solves the O.D.E.

d

dt
‖u(t)‖2−p

2,Ω = −(2− p)E [u](t) .

Hence

0 = ‖u(T ∗)‖2−p
2,Ω = ‖u(t)‖2−p

2,Ω − (2− p)
∫ T∗

t

E [u](s)ds .

Now the statement follows from Proposition 14 and the definition of the Raleigh quo-
tient.

Using the previous results we can now conclude with

Proof of Theorem 20. Consider the change of variables: t = T ∗ − T ∗e−τ . Let

w(·, τ) =
u(·, T ∗ − T ∗e−τ )

(T ∗e−τ )
1

2−p

.

The function w is a nonnegative bounded weak solution of

(4.47)

{
wt = div|∇w|p−2∇w − 1

2−pw , in Ω×R+

w(·, 0) = u0(x)T ∗
1

p−2

Consider the functional

F (h) =
∫

Ω

(
1
p
|∇h|p − 1

2(2− p)
|h|2)dx

and the function
g(τ) = F (w(τ)).
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The function g(τ) is a nonincreasing function. Indeed, by using (4.44) and (4.47), we
have

1
p

d

dt

∫
Ω

|Dw|pdx = −
∫

Ω

w2
t dx+

1
2− p

∫
Ω

wtwdx =
∫

Ω

w2
t dx+

1
2(2− p)

d

dt

∫
Ω

w2dx.

Moreover, by Proposition 13 γ(τ) is bounded from below. Therefore there exists a
sequence τnn→∞ such that

lim
n→∞

d

dt
F (w(τn)) = 0.

From the previous calculations, this implies that wt(τn) → 0 in Lp(Ω). Hence we get
that there is a sequence tn → T ∗ such that

u(·, tn)
(T ∗ − tn)

→ v

where v is the solution of (4.41). On the other hand, by Proposition 15, there are two
positive constants c1 and c2, such that, for each tn

0 < c1 ≤ ‖
∇u(·, tn)
(T ∗ − tn)

‖p,Ω ≤ c2.

Therefore
u(·, tn)

(T ∗ − tn)
→ v

in W 1,p(Ω). Applying the regularity results of the previous sections, it is easy to
show that this convergence holds also in Cα(Ω̄). Applying the results of the previous
subsection, we have that v satisfies (4.25).

Remark 34. If the asymptotic profile of the singular porous medium equation is
considered, arguing as before one can prove that the limiting solution v satisfies the
sharpest estimates (4.27) and (4.28).

The approach through the Raleigh quotient can be applied also in the case of degen-
erate parabolic equations using similar arguments (see [125]).

Theorem 21. Let p > 2 and let u be the unique nonnegative weak solution of (4.40).
Let u∗(x, t) = u(x, t)t

1
2−p . Then there is a sequence tn →∞ such that u∗(x, t) → w(x),

where w is a nontrivial solution of the equation (4.41), satisfying Dirichlet boundary
conditions.

Remark 35. In the literature there are several papers devoted to the study of the
asymptotic behaviour of the solutions of the porous medium equation and the p-
Laplacian equation. Among them we quote [15], [14], [24], [25] and [174]. In these
papers the approach is different from what we followed here. Indeed they first study
the elliptic equation (4.41), then using some comparison principles they analyze the
asymptotic behaviour of the evolution equation. With this approach things are some-
how reversed: the basic properties of the evolution equation allow for the study of the
asymptotic behaviour and the elliptic result follows as a consequence.

Remark 36. The proof of Theorems 20 and 21 is based on Sobolev embedding and
weak convergence arguments. For this reason one can apply this approach also in the
case of initial data with variable sign and in the case of Neumann or mixed boundary
conditions ([155]).
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5 Stefan-like problems

In this section we present some results about the local and global behaviour of weak
solution of singular parabolic equations which model physical phenomena like transi-
tions of phase and/or the flow of immiscible fluids in a porous medium. More precisely
let us consider parabolic inclusions of the type

(5.1)
∂

∂t
β(u)− div A(x, t, u,∇u) +B(x, t, u,∇u) 3 0 , in ΩT ,

where β is a maximal monotone graph in R×R. We assume the coerciveness of the
graph β(·), i.e., there exists a positive constant γ0 such that

(5.2) β(s1)− β(s2) ≥ γo(s1 − s2) , ∀si ∈ R .

We also assume that

(5.3) ∀ M > 0 , sup
−M≤s≤M

|β(s)| ≡ γ1 <∞ .

We stress that we do not assume any further assumptions on the behaviour of β(·).
In particular, in any finite interval, the graph might exhibit infinitely many jumps or
become vertical infinitely many times with any possible growth (exponentially fast or
faster). Examples of such β(·) are

(5.4) β(s) =

 s if s < 0
[0, 1] if s = 0
1 + s if 0 < s < 1

;

(5.5) β(s) =


s if s < 0

[0, 1] if s = 0
1 + s if 0 < s < 1
[2, 3] if s = 1
2 + s if s > 1

;

(5.6) β(s) = |s| 1
m sign s , m > 1 ;

or

(5.7) β(s) = 1 + sα1 − (1− s)α2 ,

where s ∈ [0, 1] and αi ∈ [0, 1].
Equation (5.4) describes the enthalpy function in the weak formulation of a Stefan-

like problem modelling a transition of phase, while (5.5) could be a good prototype to
model the behaviour of the enthalphy in a double transition of phase. There is a wide
literature concerning the classical Stefan problem. For a summary of the main results
we refer the reader to the Monographs of Meirmanov [129] and Visintin [178], the
review papers by Danilyuk [45], DiBenedetto [57] and by Visintin, Fasano, Magenes
and Verdi [179], the Proceedings [29], [82], [94], as well as the references therein.
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Here, we consider only the aspects related to the local continuity of a weak solution.
Equation (5.6) is the classical porous medium equation, describing the flow of a single
fluid in a porous matrix, that was already mentioned in §2.5. Equation (5.7) is a first
approximation of the flows of two immiscible fluids in a porous matrix. Once more this
is a widely studied problem. For instance, Van Duijn and Zhang [173] considered a
1-dimensional model in hydrology (see also [93] for an investigation from a numerical
point of view). For multidimensional multiphase models we refer the reader to the
Monographs [18], [19], [34], [44], [156] and to the references therein.

The diffusion field A and the forcing term B in (5.1) are real valued and measurable
over ΩT ×R×RN and satisfy the structure conditions:

(5.8) |A(x, t, v, p̄)| ≥ µ0(|v|)|p̄|2 − φ0(x, t) ;

(5.9) |A(x, t, v, p̄)| ≤ µ1(|v|)|p̄| − φ1(x, t) ;

(5.10) |B(x, t, v, p̄)| ≤ µ2(|v|)|p̄|2 − φ2(x, t) ,

where µ0 : R+ → R+ is a continuous and decreasing function, µ1, µ2(·) : R+ → R+

are continuous and increasing functions and φi (i = 0, 1, 2) are non-negative and satisfy

(5.11) ‖φ0, φ2‖q̂,r̂,ΩT
, ‖φ1‖2q̂,2r̂,ΩT

≤ µ3 .

Here µ3 is a given constant and q̂, r̂ are positive numbers linked by

(5.12)
1
r̂

+
N

2q̂
= 1− κ1 , 0 < κ1 < 1

with

(5.13) q̂ ∈
[

N

2(1− κ1)
,∞
]
, r̂ ∈

[
1

1− κ1
,∞
]
, if N ≥ 2

(5.14) q̂ ∈ (1,∞) , r̂ ∈
[

1
1− κ1

,
1

1− 2κ1

]
, 0 < κ1 <

1
2
, if N = 1 .

The inclusion (5.1) is in the sense of the graphs and in the weak sense. More
precisely a function

(5.15) u ∈ L2
loc

(
0, T ;W 1,2

loc (Ω)
)

is a weak solution of (5.1) if there exists a measurable selection w ⊆ β(u), such that

t→ w(·, t) is weakly continuous in L2
loc(Ω)

and

(5.16)
∫

Ω

w(x, τ) φ(x, τ) dx
∣∣∣t2
t1

+
∫ t2

t1

∫
Ω

[
−w(x, τ)

∂

∂τ
φ(x, τ)

]
dx dτ
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+
∫ t2

t1

∫
Ω

{A(x, τ, u,∇u) · ∇φ+B(x, τ, u,∇u) φ } dx dτ = 0 ,

for all φ ∈W 1,2
loc

(
0, T ;L2

loc(Ω)
)
∩L2

loc

(
0, T ;W 1,2

0 (Ω)
)

and all intervals [t1, t2] ⊂ (0, T ].
In the sequel, when possible and for the sake of simplicity, we will work with the

simplest example of (5.1), i.e.,

(5.17)
∂

∂t
β(u)−∆u 3 0 , in ΩT .

We will obviously point out the situations in which the claimed results hold only for
this simplest inclusion.

5.1 The continuity of weak solutions

It is quite natural to investigate if locally bounded weak solutions of (5.2) are contin-
uous and if their modulus of continuity can be estimated quantitatively. Let us state
this more precisely. For the sake of simplicity, assume that u is a solution of (5.2) and
that it is bounded in ΩT . Set

(5.18) ‖u‖∞,ΩT
= M .

We recall that this assumption is not restrictive if we define ΩT as the domain of
definition of u. In a similar way, we assume the following integrability assumption

(5.19) ‖φ0 + φ2
1 + φ2‖q̄,r̄,ΩT

= Φ .

We set the numbers

N , γi , M , Φ , µi (i = 0, 1, 2)

as the data. Consequently, we say that a constant C = C(data) or a continuous
function ω(·) = ωdata(·) if they can be determined a priori only in term of the above
parameters. Let Θ ⊂⊂ ΩT be an arbitrary subset. In the sequel we investigate the
problem of the continuity of u in Θ with a modulus of continuity ωdata(·) depending
only upon the data and the distance from Θ and the parabolic boundary of ΩT .

Remark 37. If β(·) is the identity, we are in DeGiorgi’s setting so any locally bounded
weak solution is Hölder continuous in ΩT . The assumptions (5.11) - (5.14) are optimal
for this result to hold (see for instance the Monograph by Ladyzhenskaja, Solonnikov,
and Ural’tzeva [121], Chapters 1,2 and 5). In this section we want to study how the
singularity of β affects the regularity of u.

Remark 38. The assumption that u is bounded is essential. Even in the most
favourable case when β(·) is the identity, weak solutions need not to be bounded
(even in the elliptic case; see a counterexample by Stampacchia [159]). This is due to
the critical growth of the forcing term B(x, t, u,∇u) with respect to ∇u. We recall
that in the nonsingular case, if we assume that

B(x, t, u,∇u) ≤ µ2|∇u|q + φ2(x, t) ,
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where 0 ≤ q < N+4
N+2 , instead of (5.10), then any weak solution is locally bounded. This

statement follows by means of a simple adaptation of the method of [121] (see also [47]
and [132]). Even when the solution is not necessarily locally bounded, if one has some
a priori qualitative knowledge of the boundedness of the solution such a qualitative
information can, in many cases, be turned into a quantitative one (see, for instance,
[141], [26], [175] and the references therein).

In the sequel we assume in addition that the solutions of (5.1) can be constructed as
the limit in the topology of (5.15) of a sequence of smooth local solutions of (5.1) with
smooth β(·). This assumption is made in order to justify some of the calculations and
to deal with equations instead of inclusions. We stress that the modulus of continuity
of u must be independent of any approximating procedure and must depend only upon
the data. Such a result gives us some compactness that, in many cases, is fundamental
to obtain existence of a solution. Actually if one approximates the equation with a
sequence of regular ones, through the estimate of the modulus of continuity, one obtains
that the approximating solutions are uniformly continuous. Then, via the Ascoli-
Arzelá Theorem one gets the convergence in the uniform norm of a subsequence of
approximating functions to a continuous function v. Thus, in many cases, by applying
the method exploited by Kinderlehrer and Stampacchia [107] and based on Minty’s
lemma [130], it is possible to prove that v is a weak solution of the original equation.

Lastly we recall that if

B(x, t, u,∇u) ≤ µ2|∇u|q + φ2(x, t) ,

where 0 ≤ q < N+4
N+2 , the questions of existence and uniqueness are well understood.

We refer the readers to the Monographs [84], [121], [123], to the Proceedings [29], [82],
[94] and to the references therein.

5.2 A bridge between singular and degenerate equations

The understanding of the physical model requires the analysis of the equation (5.1)
in its full generality. For instance, the flow of two immiscible fluids is described by a
system of two parabolic equations, written in terms of the saturations and pressures
of the two fluids (see, for instance, Chap. 9 of [18], Chap. 6 of [19], Chap. 6 of
[44], Chap. 10 of [156] and the article by Leverett [122]). The transformation by
Kruzkov-Sukorjanski [115] reduces the above system of two equations to a system of
a degenerate-elliptic equation in terms of the mean pressure and a parabolic equation
of the type

(5.20) vt − div a(x, t, v,∇v) + b(x, t, v,∇v) = 0 , in ΩT

in terms of the saturation v of only one of the two fluids. In equation (5.20), the
forcing term b(x, t, v,∇v) depends essentially on the mean pressure.

The diffusion field a and the forcing term b in (5.20) are real valued and measurable
over ΩT ×R×RN and satisfy the structure conditions:

(5.21) |a(x, t, v, v̄)| ≥ φ(|v|)|v̄|2 − φ0(x, t) ;

(5.22) |a(x, t, v, v̄)| ≤ φ(|v|)|v̄| − φ1(x, t) ;
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(5.23) |b(x, t, v, v̄)| ≤ φ(|v|)|v̄|2 − φ2(x, t),

where φ : R+ → R+ is a continuous function and φi (i = 0, 1, 2) are non-negative and
satisfy assumptions (5.11)- (5.12).

As the function (x, t) → v(x, t) represents the local relative saturation of one of the
two fluids (see, for instance, [5], [18], [19], [44], [115], [156]), it is natural to assume it
is bounded, for example v ∈ [0, 1]. The equation is degenerate because φ(·) is allowed
to vanish. More precisely we assume that

(5.24) φ(v) > 0 , ∀ v ∈ [0, 1] ; φ(0) = φ(1) = 0 .

Obviously v satisfies (5.20) in the weak sense defined previously and we require that

(5.25) ∇(φ(v)) ∈ L2
loc(ΩT ) .

The problem of proving the local continuity of the saturations was studied in [5], [53]
and [170], for example. The continuity of the saturations comes from the continuity
of the solution of (5.20) arguing as in [5] and [53]. Proving the continuity of the
solution is difficult, non only for the double degeneracy of φ(·), but also because
of the lack of a precise quantitative and qualitative information on its modulus of
continuity. Actually the function φ is related to the permeability of both fluids and
the permeability vanishes as one fluid is totally replaced by the other one (that is, when
v = 0 or v = 1); this is the physical origin of the degeneracy of φ(·). The information on
the rate of vanishing is limited because it is derived only from hydrostatic experiments
(see [18], [19], [44], [156]), dimensional analysis (see [122]) and heuristic arguments.
As a matter of fact, such a limited information on the nature of the degeneracy is
typical of models of flows of a mixture of fluids in a porous medium. Hence φ(·) could
degenerate at v = 0 and v = 1 at different rates (exponentially fast or faster). By
the phenomenon of connate water it might be even completely flat in a small right
neighborhood of 0 or in a small left neighborhood of 1 (see Chap. 9 of [18], Chap. 2 of
[44], Chaps. 3 and 10 of [156]). So the problem of the continuity of weak solutions of
(5.20) consists in showing that v is continuous whatever the nature of the degeneracy
of φ(·) is.

Let u ∈ [0, 1] be a solution of (5.1) with β(·) ∈ C1(0, 1) and singular in 0 and 1.
For example assume

lim
u→0+

β′(u) = lim
u→1−

β′(u) = +∞ .

Then, by setting v = β(u) and φ(·) = β−1′(·), the singular equation (5.1) in terms
of u is recasted as the degenerate equation (5.20) in terms of v. Moreover, all the
assumptions on a and b are satisfied. Viceversa, putting

u =
∫ v

0

φ(s) ds , β(u) = v ,

one gets the singular equation from the degenerate one. In this case, however, while
the assumptions on A are verified, the assumption on the free term B can not be
verified in the case of a superlinear growth with respect to ∇v. We refer the reader to
[5] for a detailed technical analysis of this case.
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5.3 Parabolic equations with one-point singularity

Let us consider the case where β(·) is singular at only one point (the prototype cases
are given by the examples (5.4) and (5.6)). The local continuity of the solutions was
proved in the papers [31], [48], [50], [52], [149], [150] and [184]. However the situations
of (5.4) and (5.6) are very different; actually, for β(·) of the type (5.6) it is possible
to repeat De Giorgi’s argument (i.e. to find suitable Caccioppoli and logarithmic
estimates such that an embedding in the space of Hölder continuous functions holds)
while that procedure is impossible in the case of (5.4). In this case, the Caccioppoli
and logarithmic estimates are more complicated than in the nonsingular case:

there exists a constant γ, only depending upon the data, such that for each

(y, s) +Q(σθρ2, σρ) ⊂ (y, s) +Q(θρ2, ρ) , σ ∈ (0, 1)

(5.26)

sup
s−θρ2≤t≤s

∫
y+Kσρ

(u− k)2±(x, t) +
∫ ∫

(y,s)+Q(σθρ2,σρ)

|∇(u− k)±|2

≤ γ

(1− σ)2ρ2

∫ ∫
(y,s)+Q(θρ2,ρ)

(u− k)2±

+
γ

(1− σ)θρ2

∫ ∫
(y,s)+Q(θρ2,ρ)

(u− k)± ;

(5.27)

sup
s−θρ2≤t≤s

∫
y+Kσρ

(u− k)2±(x, t) +
∫ ∫

(y,s)+Q(σθρ2,σρ)

|∇(u− k)±|2

≤ γ

(1− σ)2ρ2

∫ ∫
(y,s)+Q(θρ2,ρ)

(u− k)2±

+γ
∫

y+Kρ

(u− k)±(x, s− θρ2) ;

(5.28)

sup
s−θρ2≤t≤s

∫
y+Kσρ

Ψ2(H±k , (u− k)±, c)(x, t)

≤ γ

(1− σ2)ρ2

∫ ∫
(y,s)+Q(θρ2,ρ)

Ψ(H±k , (u− k)±, c)

+
γ

c

∫
y+Kρ

Ψ2(H±k , (u− k)±, c)(x, s− θρ2) .

Note that, for the sake of simplicity, we have written the above estimates only in
the case of the prototype equation (5.17).

If N = 2, the existence of the modulus of continuity can be derived from the above
estimates (see [72]). If N ≥ 3 there are bounded discontinuous functions satisfying
the previous estimates (see [158]). So in order to prove the local continuity of the
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solutions one has to use the structure of the parabolic equation. In [31], [48], [50],
[52], [149], [150] and [184] the proof of continuity has this common point: assume that
β(·) is singular only at a point, say, for example, at 0. Fix a cylinder (y, s) + Qρ.
There are two possibilities: (i) either the singularity occupies a small portion of such
a cylinder (and in such a case it plays a negligible role); or (ii) the singularity occupies
a large portion. In such a situation, outside the singular set, the evolution equation
is uniformly parabolic so the solution remains close to 0 because it cannot grow too
fast due to the classical regularity properties of non singular parabolic equations. This
gives us a control on the oscillation of the solution and allows us to obtain some
recursive inequalities that will imply the local continuity. As it is absolutely evident,
the whole argument is based on the fact that β(·) has only a singularity. The proofs of
these recursive inequalities differ in [31], [48], [50], [149], [150] and [184]. In [31], the
authors use the local representation in terms of heat potentials (for this reason their
approach works only in the case of the prototype equation (5.17)). In [48] and [50],
De Giorgi’s iterations are used following the setting of [121]. The shrinking technique
introduced by Krylov and Safonov ([117]) is applied in [149] and [150]. As this method
is genuinely based on the nondivergence structure of the operator, also in this case the
approach works only for the prototype equation (5.17). Lastly in [184] the Harnack-
type techniques of Moser are applied, following the setting of [16], [132], [134] and
[164].

The singularity of β(·) changes the iterative procedure of the nonsingular case.
Actually the singularity affects the sequence of the radii of the nested cylinders and
the reduction of the oscillation. More precisely, let

(5.29) η , δ : (0, 2M ] → (0, 1) ; η(0), δ(0) = 0

and define

(5.30)

ω0 = max
{
2M ;Cρλ

0

}
;

ρn+1 = δ(ωn)ρn ;

ωn+1 = max
{
(1− η(ωn))ωn;Cρλ

n

}
,

where C > 1 and λ ∈ (0, 1) are two given constants. Define also the corresponding
family of shrinking nested cylinders (x0, t0) +Qρn

.

Proposition 16. Let u be a weak solution of (5.1) with β(·) a graph of Stefan type
(5.4). Then there exist constants C > 1 and λ ∈ (0, 1), and two continuous functions
δ(·), η(·) as in (5.29), that can be determined a priori only in terms of data, such that
for every (x0, t0) ∈ ΩT and every n ∈ N,

(5.31) ess osc
(x0,t0)+Qρn

u ≤ ωn ,

where λ is a number determined only in terms of the integrability conditions (5.8)-
(5.13) and is independent of δ and η. As a consequence u is locally continuous in
ΩT .

Proof. For a detailed proof we refer the reader to [48]. Here we assume that (5.31)
holds so that to prove the proposition it is sufficient to show that {ωn} → 0 when
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n → ∞. From the definition, the sequences {ωn} and {ρn} are non-increasing, so
their limits exist when n → ∞. It is clear that lim

n→∞
ρn = 0 because the function

δ(·) ∈ (0, 1).
Now, assume that lim

n→∞
ωn = ω∞ > 0. Then

ωn+1 = max
{
(1− η(ω∞))ωn;Cδ(ωλn

∞ ρλ)
}

and hence we get that limn→∞ ωn = 0, which contradicts the assumption.

Remark 39. The constants C and λ appearing in (5.30) are due only to the func-
tions φi appearing in the structure conditions (5.8)-(5.10), and they are zero for the
prototype equation (5.17).

Remark 40. With respect to the case of a uniformly parabolic equation, here the
modulus of continuity is not explicit but it can be derived quantitatively from (5.30).
More precisely, in [48], it is proved that δ(s), η(s) have the form K−h

s with K and h
large constants, but it is not obtained an explicit modulus of continuity for u in terms
of K and h.

5.4 Parabolic equations with multiple singularities

Graphs β(·) that are singular at multiple points, besides their intrinsic mathematical
interest, arise naturally in phenomena of multiple transitions of phase. An example is
a water-ice-vapour triple point and another one is the Buckley-Leverett model of two
immiscible fluids in a porous medium (see the previous sections for more details about
these models).

The first attempt to prove continuity results in such a setting was made in [5], where
some restrictions were made on the singularities. Actually, the authors considered the
case of the Buckley-Leverett model, i.e., the case of only two singularities. They
assumed that β(·) could be singular at any rate in one point, while in the second point
the singularity allowed was only of logarithmic type. This result was improved in [53],
by allowing the second singularity to have a power-like behaviour, and in [170] where
Hölder continuity was proved assuming that both degeneracies are power-like. The
alternative argument is quite similar to the one of only one singularity. Let Qρ be the
cylinder where we want to reduce the oscillation of the solution. If the non restricted
singularity occupies a small portion of such a cylinder it means that it plays a negligible
role and the continuity results for porous medium equation hold. If the singularity
occupies a large portion, outside the singular set, the solution cannot grow too fast
due to the regularity properties of porous medium equations. This gives a control on
the oscillation of the solution and allows one to obtain some recursive inequalities that
imply the local continuity. It is clear, however, that any parabolic approach cannot face
the case of two unrestricted singularities. In the pioneering paper [72], the approach
is based on the energy estimates and on some measure-theoretical results. The results
obtained in [72] are optimal in the case N = 2 and hold for the prototype equation
(5.17).
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Theorem 22. Let N = 2. Let u be a locally bounded weak solution of (5.1), where
β(·) is any maximal monotone graph satisfying conditions (5.2) and (5.3), and let the
structure conditions (5.8)–(5.14) be satisfied. Then u is continuous in ΩT . Moreover,
for every compact subset K ⊂ ΩT , there exists a continuous, nonnegative, increasing
function

s 7→ ωdata,K(s) ; ωdata,K(0) = 0

that can be determined a priori only in terms of the data and the distance from K to
the parabolic boundary of ΩT , such that

|u(x1, t1)− u(x2, t2)| ≤ ωdata,K(|x1 − x2|+ |t1 − t2|
1
2 ) ,

for every pair of points (xi, ti) ∈ K, i = 1, 2.

In the case N ≥ 3, it is necessary to assume some conditions either on the maximal
graph β(·) or on the structure of the elliptic operator. In [72] the following result is
proved.

Theorem 23. Let N ≥ 3. Let u be a locally bounded weak solution of the prototype
equation (5.17), where β(·) is any maximal monotone graph satisfying conditions (5.2)
and (5.3). Then u is continuous in ΩT . Moreover, for every compact subset K ⊂ ΩT ,
there exists a continuous, nonnegative, increasing function

s 7→ ωdata,K(s) ; ωdata,K(0) = 0

that can be determined a priori only in terms of the data and the distance from K to
the parabolic boundary of ΩT , such that

|u(x1, t1)− u(x2, t2)| ≤ ωdata,K(|x1 − x2|+ |t1 − t2|
1
2 ) ,

for every pair of points (xi, ti) ∈ K, i = 1, 2.

5.4.1 The statement of the alternative

For the moment we consider the general equation (5.1) in any number of dimensions.
We assume that β(·) is any maximal monotone graph satisfying conditions (5.2) and
(5.3) and that the structure conditions (5.8)–(5.14) hold. Only later we will point the
differences between N = 2 and N ≥ 3. Without loss of generality, we assume that the
generic point (x0, t0) is equal to (0, 0).

Consider the following coaxial cylinders with vertex in (0, t̃) and congruent to Q4δρ

(0, t̃) +Q4δρ = K4δρ × (t̃− (4δρ)2, t̃) ,

where

(5.32) t̃ ∈ (−(1− 16δ2)ρ2, 0)

and δ ∈ (0, 1
4 ) is a positive number to be chosen.

By moving the time, one seeks to find a cylinder where one can apply the techniques
developed in the previous sections. More precisely, we look for t̃ such that the subset
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of (0, t̃) + Q4δρ where u is close to µ+ or to µ− is small. Denote by ω the oscillation
of u in Qρ. Then, one of these two possible alternatives takes place:

there exists a t̃ ∈ (−(1− 16δ2)ρ2, 0) and a positive δ such that either

(5.33) Meas
{

(x, t) ∈ (0, t̃) +Q4δρ : u(x, t) ≥ µ+ − 1
6
ω

}
≤ ν|Q4δρ|

or

(5.34) Meas
{

(x, t) ∈ (0, t̃) +Q4δρ : u(x, t) ≤ µ− +
1
6
ω

}
≤ ν|Q4δρ| .

Otherwise,

(5.35) both (5.33) and (5.34) are violated ∀t̃ ∈ (−(1− 16δ2)ρ2, 0) ,

where ν ∈ (0, 1) is a number that will be determined a priori only in terms of the data.
Assume for the moment that one of (5.33) and (5.34) holds. By using an iterative

argument based on the energy estimates, we can show that it is possible to reduce the
oscillation of u in the smaller cylinder (0, t̃) + Q2δρ if one chooses ν very small and
depending upon ω (see Proposition 2.5± of [72]):

Proposition 17. There exists a number ν ∈ (0, 1), that can be determined a priori
only in terms of the data and ω, such that, if (5.33) holds for some t̃ ∈ (−(1 −
16δ2)ρ2, 0), then either ω ≤ Cρλ or

(5.36) u(x, t) ≤ µ+ − 1
16
ω , (x, t) ∈ (0, t̃) +Q2δρ .

Analogously, if (5.34) holds for some t̃ ∈ (−(1− 16δ2)ρ2, 0), then either ω ≤ Cρλ or

(5.37) u(x, t) ≥ µ− +
1
16
ω , (x, t) ∈ (0, t̃) +Q2δρ .

We recall to the reader that C is a constant depending upon the structure conditions
of equation (5.1).

By using the logarithmic estimates (see Proposition 3.2± of [72]) it is possible to
bring the information of the reduction of the oscillation of the solution up to the level
t = 0. More precisely:

Proposition 18. Assume that there is t̃ ∈ (−(1− 16δ2)ρ2,−4δ2ρ2) such that

(5.38) u(x, t̃) ≤ µ+ − 1
16
ω , ∀x ∈ K2δρ .

Then there are constants η, λ ∈ (0, 1) and C > 1, depending upon the data and δ, but
independent of ω and ρ, such that either ω ≤ Cρλ or

(5.39) u(x, t) ≤ µ+ − ηω , (x, t) ∈ (0, 0) +Qδρ .

Analogously, if there is t̃ ∈ (−(1− 16δ2)ρ2,−4δ2ρ2) such that

(5.40) u(x, t̃) ≤ µ− +
1
16
ω , ∀x ∈ K2δρ

then either ω ≤ Cρλ or

(5.41) u(x, t) ≥ µ− + ηω , (x, t) ∈ (0, 0) +Qδρ .
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Summarizing, if the alternatives (5.33) and (5.34) are satisfied, then respectively
(5.38) and (5.40) hold. Therefore the oscillation of u is reduced in the smaller cylinder
(0, 0) +Qδρ. If we are able to prove that even when (5.35) holds we have a reduction
of the oscillation of u in a smaller cylinder, by repeating the arguments of the previous
sections, one can deduce the local continuity of the solution. Therefore, in the sequel,
we assume that for each small δ and for each t̃ ∈ (−(1− 16δ2)ρ2, 0)

Meas
{

(x, t) ∈ (0, t̃) +Q4δρ : u(x, t) ≥ µ+ − 1
8
ω

}
≥ ν|Q4δρ|

and

Meas
{

(x, t) ∈ (0, t̃) +Q4δρ : u(x, t) ≥ µ− +
1
8
ω

}
≥ ν|Q4δρ| .

By using a lemma of measure theory, the above inequalities will imply regions where
the energy is concentrated. From this fact, we are able to find a contradiction in
assuming (5.35) and hence to prove the regularity of the solutions. In the next section
we state and prove the lemma of measure theory. We feel that it is of intrinsic interest
and that it can be applied in different fields.

5.4.2 A lemma of measure theory

Lemma 14. Let v be a function in W 1,p(Kρ), p > 1, satisfying

(5.42)
∫

Kρ

|∇v|p dx ≤ γpρN−p ,

for a given positive constant γ, and let

(5.43) Meas {x ∈ Kρ : v(x) < 1} > α|Kρ| ,

for a given α ∈ (0, 1). Then, for every η ∈ (0, 1) and λ > 1, there exists x∗ ∈ Kρ and
a number δ ∈ (0, 1), that can be determined a priori only in terms of N, p, γ, α, λ, η,
such that within the cube Kδρ(x∗) centered at x∗ with wedge 2δρ, there holds

(5.44) Meas {x ∈ Kδρ(x∗) : v(x) < λ} > (1− η)|Kδρ(x∗)| .

If v were continuous, this lemma would be an easy consequence of the permanence
of positivity. For the sake of simplicity, we prove this lemma assuming N = 2 (the case
N ≥ 3 can be proved using an inductive procedure) and v ∈ C1(Kρ). Obviously we
establish (5.44) with δ independent of the modulus of continuity of v. The assumption
v ∈ C1(Kρ) is made only to justify some calculations and can be removed via a limiting
procedure. For more details on this proof, we refer the reader to Proposition A.1 of
[72]. Before proving the lemma we stress that δ goes to 0 when either η goes to 0 or
λ goes to 1.
Proof. Let (x, y) be the coordinates in R2. Denote by Y (x) the cross section of the
set [v < 1] ∩Kρ with lines parallel to the y-axis, i.e.,

Y (x) = {y ∈ (−ρ, ρ) : v(x, y) < 1} .
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Hence
|[v < 1] ∩Kρ| =

∫ ρ

−ρ

|Y (x)| dx .

As |[v < 1] ∩Kρ| ≥ 2αρ, there exists some x0 ∈ (−ρ, ρ) such that

(5.45) |Y (x0)| ≥ 2αρ .

For each y ∈ Y (x0), consider the segment

Iδ0ρ(y) = [x0 − δ0ρ, x0 + δ0ρ]× {y} ,

where δ0 will be chosen later. Denote with Yδ0(x0) the set of Y (x0) such that, in the
corresponding intervals Iδ0ρ(y), the function v(·, y) is less than 1

2 (1 + λ), i.e.,

Yδ0(x0) =
{
y ∈ Y (x0) : v(x, y) <

1
2
(1 + λ) , ∀x ∈ Iδ0ρ(y)

}
.

Now, we want to prove that that, for each η0 < 1 there exists a small δ0 such that

|Yδ0(x0)| ≥ (1− η0)|Y (x0)| .

Let Y C
δ0

(x0) be the complement of Yδ0(x0). Fix y ∈ Y C
δ0

(x0) and some x ∈ Iδ0ρ(y) such
that v(x, y) ≥ 1

2 (1 + λ). Then

1
2
(λ− 1) ≤ v(x, y)− v(x0, y) =

∫ x

x0

vx(s, y) ds .

By integrating over Y C
δ0

(x0) and majorising the obtained result via Hölder’s inequality,
we get

1
2
(λ− 1)|Y C

δ0
(x0)| ≤

∫
Y (x0)

∫ δ0ρ

−δ0ρ

|∇v| dx dy ≤ (|Yδ0(x0)|2δ0ρ)1−
1
p ‖∇v‖p,Kρ

.

Therefore, using (5.42) and (5.45) one gets:

|Y C
δ0

(x0)| <
4γδ

1− 1
p

0

(λ− 1)(4α)
1
p

|Y (x0)| .

So we have that
|Yδ0(x0)| ≥ (1− η0)|Y (x0)| ,

choosing δ0 such that 4γδ
1− 1

p
0

(λ−1)(4α)
1
p
≤ η0.

Next, fix y∗ ∈ Yδ0(x0). We recall that v(x, y∗) ≤ (1+λ)
2 for each x ∈ Iδ0ρ(y∗).

Consider the vertical segment

Jδρ(x) = {x} × [y∗ − δρ, y∗ + δρ] ,

where δ will be chosen later. Denote with Hδ(y∗) the set of Iδ0ρ(y∗)) such that, in the
corresponding intervals Jδρ(x), the function v(x, ·) is less than λ, i.e.,

Hδ(y∗) = {x ∈ Iδ0ρ(y∗) : v(x, y) < λ , ∀y ∈ Jδρ(x)} .
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Now, we want to prove that, for each η < 1, there exists a small δ such that

|Hδ(y∗)| ≥ (1− η)|Iδ0ρ(y∗)| .

Let HC
δ (y∗) be the complement of Hδ(y∗). Fix x ∈ HC

δ (y∗) and some y ∈ Jδρ(x) such
that v(x, y) ≥ λ. Then

1
2
(λ− 1) ≤ v(x, y)− v(x, y∗) =

∫ y

y∗
vy(x, s) ds .

By integrating over HC
δ (y∗) and majorising the obtained result via Hölder’s inequality,

we get

1
2
(λ− 1)|HC

δ (y∗)| ≤
∫

Iδ0ρ(y∗)

∫ δρ

−δρ

|∇v| dy dx ≤ (4δ0δρ2)1−
1
p ‖∇v‖p,Kρ

.

Therefore, using (5.42), one obtains

|HC
δ (y∗)| < 8γδ1−

1
p

(λ− 1)(4δ0)
1
p

|Iδ0ρ(y∗)| .

So we have that
|Hδ(y∗)| ≥ (1− η)|Iδ0ρ(y∗)|

choosing δ such that δ0 ≤ 8γδ
1− 1

p

(λ−1)(4δ0)
1
p
≤ η.

Without loss of generality (assuming δ smaller) we may assume that δ0
δ is a positive

integer. Consider the interval Iδ0ρ(y∗) and a partition of it with δ0
δ intervals with length

2δρ. Let (xi, y
∗) be the centres of such intervals. Let x∗ be one of such indices such

that
Meas {(x∗ − δρ, x∗ + δρ) ∩Hδ(y∗)} > (1− η)(2δρ) .

Then, from the definition of Hδ(y∗), the cube Kδρ(x∗, y∗) satisfies the assumption of
the lemma.

5.4.3 The geometric approach.

In this section, we will apply the previous lemma to get some geometric information
about the localization of the energy of the solution. This is, in essence, the novelty of
the approach in [72]. We recall that we assumed that for each small δ and for each
t̃ ∈ (−(1− 16δ2)ρ2, 0)

Meas
{

(x, t) ∈ (0, t̃) +Q4δρ : u(x, t) ≥ µ+ − 1
8
ω

}
≥ ν|Q4δρ|

and

Meas
{

(x, t) ∈ (0, t̃) +Q4δρ : u(x, t) ≥ µ− +
1
8
ω

}
≥ ν|Q4δρ| .
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Roughly speaking (for more details see sections 5-8 of [72]) it means that the
region where the function u is close to µ+ (respectively to µ−) is relatively large. By
applying the lemma of the previous section (together with energy and logarithmic
estimates) one can get that the set where u is close to µ+ (respectively, to µ−) must
have a concentration region, even though it might be scattered in the whole cylinder.
Moreover, it is possible to prove that these two concentration regions are localized at
the same time levels. More precisely it is possible to prove:

Proposition 19. Let u be a locally bounded weak solution of (5.1) where β(·) is
any maximal monotone graph satisfying conditions (5.2) and (5.3)and suppose that
the structure conditions (5.8)–(5.14) are satisfied. Assume that the alternative (5.35)
holds. Then there exists a time t̃ ∈ (−(1 − 16δ2)ρ2, 0), and two points x1, x2 ∈ K4δρ

such that [xi+Kδ2ρ], i = 1, 2, have their cross sections mutually separated by a distance
of at least δ2ρ, and

(5.46) u(x1, t̃) ≥ µ+ − 1
8
ω , ∀(x, t) ∈ (x1, t̃) +Qδ2ρ

and

(5.47) u(x2, t̃) ≤ µ− +
1
8
ω , ∀(x, t) ∈ (x2, t̃) +Qδ2ρ .

Sketch of the proof. Suppose that (5.34) is violated. Then for some time levels
t ∈ (t̃− 16δ2ρ2) we have

Meas
{
x ∈ Kδ2ρ2 : u(x, t) ≤ µ− +

1
16
ω

}
≥ ν|Kδ2ρ2 | .

By setting

v(x, t) =
16
ω

(u(x, t)− µ−)

we have

(5.48) Meas
{
x ∈ Kδ2ρ2 : v(x, t) ≤ 1

}
≥ ν|Kδ2ρ2 | .

Changing the constant ν into a smaller positive constant α, it is possible to find a time
τ such that the following inequalities hold:

Meas
{
x ∈ Kδ2ρ2 : v(x, t) ≤ 1

}
≥ α|Kδ2ρ2 | ;∫

Kδ2ρ2

|∇v(x, τ)|2 dx ≤ γdata(ω)(ρδ)2N−4 ,

where γdata is independent of τ . Therefore by the lemma of measure theory, there
exists ηδ0 ∈ (0, 1) and a cube [x∗ +Kδ2ρ2δ0 ] ⊂ Kδ2ρ2 , such that

Meas
{
x ∈ [x∗ +Kδ2ρ2δ0 ] : v(x, τ) ≤ 2

}
≥ (1− η)|Kδ2ρ2δ0 | .

It means that u(x, τ) ≤ µ− + 1
16ω except, at most, at a set of measure less than

η|Kδ2ρ2δ0 |. The information at the time τ is almost complete (with the exception of
an arbitrarily small set). Removing this set of small measure through the energy and
logarithmic estimates, it is possible to get (5.47).
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Summarizing, if the alternative (5.35) holds, then (5.46) and (5.47) are verified.
Therefore

(5.49)
1
4
ω ≤ u(y1, t)− u(y2, t) ∀yi ∈ [xi +Kδ2ρ] , i = 1, 2

for all time levels

(5.50) t ∈ (t̃− δ4ρ2, t̃) .

In such temporal range, integrate (5.49) over a path, piecewise parallel to the coordi-
nates axes and joining y1 ∈ [x1 +Kδ2ρ] and y2 ∈ [x2 +Kδ2ρ]. Integrate the resulting
segment-integrals over the remaining N − 1 variables, and then over the time in the
range (5.50). Therefore

(5.51) γ(ω)(δρ)N ≤
∫ t̃

t̃−δ4ρ2

∫
Kδρ\Kδ2ρ2

|∇u|2 dx dτ .

This inequality has been derived for all t̃ for which (5.33) and (5.34) are both violated.
Noting that, in the temporal range, the number of cylinders of the type (0, t̃) +Q4δρ

is of order δ−2, we add (5.51) over the corresponding boxes to get

(5.52) γ(ω)δN−2ρN ≤
∫ 0

−ρ2

∫
Kδρ\Kδ2ρ2

|∇u|2 dx dτ .

We may repeat the argument replacing δ2 with δ. Iterating this procedure, we have
that for each n ∈ N

(5.53) γ(ω)δn(N−2)ρN ≤
∫ 0

−ρ2

∫
Kδnρ\Kδn+1ρ2

|∇u|2 dx dτ .

For more details about the estimates of this section, we refer the reader to Sections
9-12 of [72].

5.4.4 The case N = 2.

Adding (5.53) for n = 1, . . . , n0 one obtains

(5.54) γ(ω)n0ρ
N ≤

∫ ∫
Qρ

|∇u|2 dx dτ .

On the other hand, via a standard energy estimate, we have

(5.55)
∫ ∫

Qρ

|∇u|2 dx dτ ≤ CρN ,

where C is a constant only depending on the data. Therefore, combining (5.54) and
(5.55), one gets

γ(ω)n0 ≤ C .
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This is a contradiction if n0 is sufficiently large depending on the data and ω. It follows
that at least one of the alternatives (5.33) or (5.34) holds in the range (5.50) and for
some radius ρ0 ∈ [ρ, δn0ρ]. But we have already shown that if one of the alternatives
(5.33) or (5.34) holds, then the oscillation of u is reduced in the cylinder Q ρ0

2
. Hence,

the local continuity of the solution is proved in the case N = 2.

Remark 41. The same argument works in the case in which one has information that
essentially reduces the space dimension N to 1 or 2.

Remark 42. In the case N = 2 the previous argument works for a more general
maximal monotone graph β = βAC +βs of bounded variation, with βAC an absolutely
continuous and strictly increasing function, and βs ≥ 0 a nondecreasing function where,
roughly speaking, the jumps occur (for more details, see [77]). This method works also
for more general (other than second order) operators (see [154], [152] and [153]).

5.4.5 The geometric approach continued

In order to face the case N ≥ 3, the geometric approach needs to be improved. We
stress, that all the results of this section hold under the most general assumptions.

To prove the continuity of u at a point (x, t) ∈ ΩT we assume that such a point
coincides with the origin up to a translation. The novelty of this improved approach
is that we work with a longer cylinder Q(θρ2, ρ), where θ is a positive integer number
to be chosen. The idea is to find a “long” cylinder where u is away from µ− (and
µ+) and this property should allow a space extension of positivity of the solution. It
is clear that the structure itself of these singular parabolic equations forces us to deal
with “long” cylinders. Actually, if one tries to repeat the argument of intrinsically
rescaled cylinders (used in the case of the porous medium equation) for graphs of the
Stefan type, one realizes that β′(·) is the Dirac mass at the origin. As a consequence
the time should be intrinsically rescaled into another one that would remain constant
on the transition set u = 0. In other words, one has to work with cylinders whose
length depends upon the singularity of β(·). We recall that a similar approach was
used for the first time in [52] in the context of the boundary regularity in the case of
a single singularity.

Consider the cylinders

(5.56) (0, ti) +Q(ρ2, ρ) , ti = −iρ2 , i = 0, 1, . . . , θ − 1

that make a partition of the cylinder Q(θρ2, ρ). Analogously to what was made in the
previous sections we can state an alternative:

there exists i = 0, 1, . . . , θ − 1 such that either

(5.57) Meas
{

(x, t) ∈ (0, ti) +Q(ρ2, ρ) : u(x, t) ≥ µ+ − 1
6
ω

}
≤ ν|Q(ρ2, ρ)|

or

(5.58) Meas
{

(x, t) ∈ (0, ti) +Q(ρ2, ρ) : u(x, t) ≤ µ− +
1
6
ω

}
≤ ν|Q(ρ2, ρ)| .

Otherwise

(5.59) both (5.57) and (5.58) are violated ∀i = 0, 1, . . . , θ − 1 .
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If (5.57) and (5.58) hold then, as shown in the previous sections, one can deduce the
reduction of the oscillation of the solution. So we assume that (5.59) holds. Analo-
gously this assumption implies that the solution has regions of concentration in any
of the cylinders (0, ti) +Q(ρ2, ρ).

Let us state this result in a different way. Let m be an integer and define δ =
(4m)−1. Consider a partition of the original cube Kρ into mN pairwise disjoint sub-
cubes of wedge 8δρ and centered at points xl ∈ Kρ. That is

[xl +K4δρ] ⊂ Kρ , ∀ l = 1, . . . ,mN

[xl +K4δρ] ∩ [xj +K4δρ] = ∅ , if j 6= l

Kρ =
mN⋃
l=1

[xl +K4δρ] .

Partition any cylinder (0, ti) +Q(ρ2, ρ) into 16mN+2 subcylinders

(xl, ti + jδ2ρ2) +Q4δρ , ∀l = 1, . . . ,mN ∀j = 1, . . . , 16m2

(xl, ti + jδ2ρ2) +Q4δρ ∩ (xr, ti + sδ2ρ2) +Q4δρ = ∅ , if r 6= l, or j 6= s

Qρ =
mN⋃
l=1

16m2⋃
j=1

(xl, ti + jδ2ρ2) +Q4δρ .

If (5.59) holds then, for m large enough it is possible to show (see Proposition 23.1 of
[72]) that for each i = 0, 1, . . . , θ− 1 there are 1 ≤ l, r ≤ mN and 1 ≤ j, s ≤ 16m2 such
that

(5.60) u(x, t) ≥ µ+ − 1
8
ω , ∀(x, t) ∈ (xl, ti + jδ2ρ2) +Q4δρ

and

(5.61) u(x, t) ≤ µ− +
1
8
ω , ∀(x, t) ∈ (xr, ti + sδ2ρ2) +Q4δρ .

Using the logarithmic estimates one can bring this kind of information up to the level
zero (see sections 22–29 of [72]). Let m0 be an integer and define δ0 = (4m0)−1.
Consider the thin cylinder

(0, 0) +Q(ρ2, δ0ρ) ⊂ (0, 0) +Q(ρ2, ρ)

and consider a partition

(0, ti) +Q(ρ2, δ0ρ) , ti = −iδ20ρ2 , i = 0, 1, . . . , 16m2
0 − 1 .

Proposition 20. Let u be a locally bounded weak solution of (5.1), with β(·) any
maximal monotone graph satisfying conditions (5.2) and (5.3), and assume that the
structure conditions (5.8)–(5.14) are satisfied. Then either the oscillation of u is
reduced (in a way that can be quantitatively determined) in Q(δ20ρ

2, δ0ρ) or there exist
ε > 0, depending only upon the data, ω and δ0, and xl, xj ∈ Kδ0ρ such that

(5.62) u(x, t) ≥ µ− + εω , ∀(x, t) ∈ (xl, 0) +Q((1− δ20)ρ2, δ0ρ)

and

(5.63) u(x, t) ≤ µ+ − εω , ∀(x, t) ∈ (xj , 0) +Q((1− δ20)ρ2, δ0ρ) .
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Sketch of the proof. If in some of the subcylinders

(0, ti) +Q(ρ2, δ0ρ) , ti = −iδ20ρ2 , i = 0, 1, . . . , 16m2
0 − 1

(5.57) or (5.58) holds, then, as shown in the previous sections, one can deduce the
reduction of the oscillation of the solution in Q(δ0ρ, δ20ρ

2). So we assume that (5.59)
holds. Under such an assumption, (5.60) and (5.61) hold. Therefore, there are 1 ≤
l, r ≤ mN and 1 ≤ j, s ≤ 16m2 such that

u(x, t) ≥ µ+ − 1
8
ω , ∀(x, t) ∈ (xl,−(1− jδ2δ20)ρ2) +Qδ0δρ

and
u(x, t) ≤ µ− +

1
8
ω , ∀(x, t) ∈ (xr,−(1− sδ2δ20)ρ2) +Qδ0δρ .

Applying the logarithmic estimates from this box up to level zero, one gets the state-
ment.

If one is only interested in having, at any time level, a set where the solution is
away from µ+ and µ− (thus losing the geometrical information that this set has the
shape of a very long and thin cylinder) one can prove that the constant ε does not
depend on δ0. More precisely

Proposition 21. Let u be a locally bounded weak solution of (5.1), with β(·) any
maximal monotone graph satisfying conditions (5.2) and (5.3), and assume that the
structure conditions (5.8)–(5.14) are satisfied. Then either the oscillation of u is
reduced (in a way that can be quantitatively determined) in Q(δ20ρ

2, δ0ρ) or there exist
ε, η > 0, depending only upon the data and ω, and xl, xj ∈ Kδ0ρ such that, for each
time τ ∈ [0, (1− δ20)ρ2],

(5.64) Meas
{
x ∈ Kδ0ρ : u(x, τ) ≥ µ− + εω

}
≥ η|Kδ0ρ|

and

(5.65) Meas
{
x ∈ Kδ0ρ : u(x, τ) ≤ µ+ − εω

}
≥ η|Kδ0ρ| .

Sketch of the proof. Reasoning as in the previous proposition, we may assume that
(5.60) and (5.61) hold. Therefore, for each i = 0, . . . , 16m2

0−1, there are 1 ≤ l, r ≤ mN

and 1 ≤ j, s ≤ 16m2 such that

u(x, t) ≥ µ+ − 1
8
ω , ∀(x, t) ∈ (xl,−(i− jδ2)δ20ρ

2) +Qδ0δρ

and
u(x, t) ≤ µ− +

1
8
ω , ∀(x, t) ∈ (xr,−(i− sδ2)δ20ρ

2) +Qδ0δρ .

Applying the logarithmic estimates from this box up to t = −(i− 2)δ20ρ
2 one gets the

statement.

Remark 43. The real open question is to prove under general assumptions that
(5.62), (5.63), (5.64) and (5.65) imply a space extension of positivity. What seems to
be missing is some sort of weak form of the Harnack inequality for solutions of singular
parabolic equations.
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Remark 44. The estimates (5.64) and (5.65) give us the same piece of information
in the interior of ΩT that a suitable Dirichlet condition gives on the boundary in
[52]. This allows to extend the techniques introduced in [52] to the case of multiple
singularities (see [87]).

If one accepts to work with cylinders whose base is very small with respect to the
length, the previous results can be improved. The next Proposition is proved in [72]
(see Proposition 24.1, page 291) and it is based on a tricky combinatorial argument.

Proposition 22. Let u be a locally bounded weak solution of (5.1), with β(·) any
maximal monotone graph satisfying conditions (5.2) and (5.3), and assume that the
structure conditions (5.8)–(5.14) are satisfied. Then there exists ε ∈ (0, 1), depending
only upon the data and ω, such that for each θ > 0 there exists a δ0 > 0 such that
either the oscillation of u is reduced (in a way that can be quantitatively determined)
in Q(δ20ρ

2, δ0ρ) or there exists (xi, ti) ∈ Q(ρ2,δ0ρ), with i = 1, 2 such that the cylinders
(xi, ti) +Q(θδ2

0ρ2,δ0ρ) are contained in the cylinder Q(ρ2,δ0ρ) and

(5.66) u(x, t) ≥ µ− + εω , ∀(x, t) ∈ (x1, t1) +Q(θδ2
0ρ2,δ0ρ)

and

(5.67) u(x, t) ≤ µ+ − εω , ∀(x, t) ∈ (x2, t2) +Q(θδ2
0ρ2,δ0ρ) .

Summarizing, the previous proposition says that if one wants that the concentration
of the solution still has the shape of a long cylinder and does not want to pay the price
of having ε depending upon the length of the cylinders, then one looses the information
about the precise localization of such a cylinder.

The next proposition is based on energy estimates, a De Giorgi lemma (see Lemma
2.2 of [55]) and estimates (5.64) and (5.65). For a detailed proof see Lemma 4.10 of
[87].

Proposition 23. Let u be a locally bounded weak solution of (5.1), with β(·) any
maximal monotone graph satisfying conditions (5.2) and (5.3), and assume that the
structure conditions (5.8)–(5.14) are satisfied. Then there exist two continuous strictly
increasing functions δ(·), η(·), δ(0) = η(0) = 0, that can be determined a priori only
in terms of the data and ω, such that either the oscillation of u is reduced (in a way
that can be quantitatively determined) in Q(δ2(s)ρ2, δ(s)ρ) or

(5.68) Meas
{
(x, t) ∈ Q(ρ2,δ(s)ρ) : u(x, t) ≤ µ− + sω

}
≥ η(s)|Q(ρ2,δ(s)ρ)|

and

(5.69) Meas
{
(x, t) ∈ Q(ρ2,δ(s)ρ) : u(x, t) ≥ µ+ − sω

}
≥ η(s)|Q(ρ2,δ(s)ρ)| .

Summarizing, one is able to estimate the sets where the solution is close to µ+ and
µ− paying the price of considering “thin” cylinders.

5.4.6 The case N ≥ 3

As already stressed, we are not able to prove the regularity in the general case. We
follow the approach of [72] (see also [86] and [160]) and we prove continuity results
using a suitable comparison function.
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In [72], the local continuity for weak solutions of the prototype equation (5.17) is
proved. The key point in the proof of the continuity theorem are some estimates on a
proper function v, which is then compared with the solution u of the original singular
parabolic equation. In these estimates the radial symmetry of the problem is heavily
used, but a careful examination of the whole procedure shows that this assumption
can be done away with, provided the maximum principle and a Harnack inequality
for the corresponding elliptic operator hold for all time levels (see [86]). Let us just
remark that the basic reason to use the comparison function is to mimic a parabolic
Harnack inequality, whose validity is not known in this context. For a detailed proof
of the results of this section we refer the reader to [72], [86] and [160]).

Consider the singular parabolic equation

(5.70) β(u)t = Lu

where L is an elliptic operator with principal part in divergence form. We assume

(5.71) Lu =
∑
ij

Di(aij(x, t)Dju+ ai(x, t)u) + bi(x, t)Diu+ e(x, t)u ,

where aij(x, t), ai(x, t), bi(x, t), e(x, t) are continuous functions with respect to the
time variable and are measurable functions with respect to the spatial variables, and
satisfy

(5.72)
1
µ1
|ξ|2 ≤

∑
ij

aij(x, t)ξiξj ≤ µ1|ξ|2

(5.73)
∥∥∥∑ a2

i ,
∑

b2i , e
∥∥∥

q,r,ΩT

≤ µ2 ,

with q and r such that
1
r

+
N

2q
= 1− κ1

and q ∈
[

N

2(1− κ1)
,∞
]
, r ∈

[
1

1− κ1
,∞
]
, 0 < κ1 < 1, N ≥ 2.

Moreover, we suppose that

(5.74) ∀ 0 < t < s < T ,

∫ s

t

∫
Ω

(
ev −

∑
i

aiDiv

)
dxdt ≤ 0 ,

for all v ∈ C1
0 (Ω × (t, s)), v ≥ 0. Assumptions (5.72) and (5.73) mean that the

structure conditions (5.8)–(5.14) are satisfied, while (5.74) is assumed in order to have
the maximum principle in any parabolic cylinder contained in ΩT . Before giving a
sketch of the proof, we stress that the only properties of L(x, t, u,Du) on which we
will rely are the following:

1. L satisfies the maximum principle;

2. the coefficients of L are continuous in t;
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3. in the case of time–dependent coefficients, the elliptic operator L satisfies a
uniform Harnack inequality t by t.

The most important of the three assumptions is the last one and this shows once more
how the Harnack inequality is crucial when proving regularity results for solution of
partial differential equations.

For the sake of simplicity we consider only the case of time independent coefficients
(the reader finds a detailed proof of the general case in [86] and [160]). Without loss
of generality, assume that (5.66) holds, i.e.,

u(x, t) ≥ µ− + εω , ∀(x, t) ∈ (x1, t1) +Q(θδ2
0ρ2,δ0ρ)

(if not, it means that the oscillation of the solution is automatically reduced in a
smaller cylinder). As in [72], apply the change of variables

x −→ 4(x− x1)
|x1|

; t −→ t− t1
δ20ρ

2

and introduce the function

ũ ≡ u− µ−

εω
.

We have that ũ solves the differential equation

(β̃(ũ))t = L̃(ũ) ,

where β̃ and L̃ satisfy the same structural conditions of the operator (5.71) (for more
details see [72]). Moreover, ũ(x, t) ≥ 1 in Kε0 × (0, θ). Without loss of generality,
we may assume that ε0 ≤ 1

2 . Define A(d1,d2) × (t1, t2) as the annulus {d1 < |x| <
d2}× (t1, t2). Finally, we are interested in the behaviour of ũ in an annulus contained
in A(ε0,4d)×(0, θ) where we may assume d ≥ 4 (see [72]). For this reason we introduce a
proper comparison function. Namely, let v solve the following boundary value problem

(5.75)


(β̃(v))t = L̃v in A(ε0,4d) × (0, θ)
v(x, t) = 0 on |x| = 4d
v(x, t) = 1 on |x| = ε0
v(x, 0) = 0

By the maximum principle, ũ ≥ v. Hence if we are able to prove that there is a level
t0 ∈ (0, θ) such that there is a σ0 > 0, depending only upon the data, such that

(5.76) v(x, t0) ≥ σ0 , ∀1 ≤ |x| ≤ 2d ,

we have that a similar bound works for ũ. By returning to the original coordinates,
we conclude that there exists a time level t1 such that

u(x, t1) > µ− + σ0εω , ∀x ∈ Kδ∗ρ ,

with δ∗ a positive constant that can be determined a priori only in terms of the data.
As in [72] (sections 24 and 25), by using the logarithmic estimates, one can bring this
piece of information up to level zero and in this way reduce the oscillation of u in the
small cylinder Q(δ∗ρ).
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In order to prove (5.76), let ζ be the solution of the elliptic problem Lζ = 0 in Aε0,4d

ζ(x) = 0 on |x| = 4d
ζ(x) = 1 on |x| = ε0

(5.77)

By well-known classical results, there is a unique solution ζ satisfying (5.77) (see [88],
Theorems 8.1 and 8.3). Moreover, ζ is Hölder continuous (see [121]). Finally, the
hypotheses on the coefficients ensure that w belongs to an elliptic De Giorgi’s class,
which in turn guarantees that w satisfies a Harnack inequality (under this point of
view, see for example [124], Chapter 3). Therefore we may assume that there is σ0

such that

(5.78) ζ(x) ≥ 2σ0 , ∀1 ≤ |x| ≤ 2d .

The aim now is to transfer this information to v. With this purpose, put z = v − ζ
and set Γ(x, ·) = β̃(· − ζ(x)). It is easy to see that z satisfies

(Γ(z))t = Lz in Aε0,4d × (0, k)
z(x, t) = 0 on |x| = 4d
z(x, t) = 0 on |x| = ε0
z(x, 0) = −ζ(x) on x ∈ Aε0,4d

(5.79)

By the energy estimates, one gets that

(5.80)
∫ k

0

∫
Aε0,4d

|∇z|2 dxdt ≤ C .

There must exist a time level t∗ such that

(5.81)
∫
Aε0,4d

|∇z|2 dx ≤ δ0 ,

with τ0 a proper small quantity. In fact, if it were not so, integrating on (0, k) we
obtain ∫ k

0

∫
Aε0,4d

|∇z|2 dx ≥ kδ0

and it suffices to choose k large enough to get a contradiction.
Now we claim that, if we choose δ0 small enough, a consequence of (5.81) is that

(5.82) ∀x ∈ Aε0,2d , (ζ − v)(x, t∗) ≤ σ0 .

In fact, if it were not true, reproducing the same argument of [72, §6–8], and using
the measure lemma, we conclude that there exist a y∗ ∈ Aε0,4d and a small cube
Kρ(y∗) ⊂ Aε0,4d such that

∀x ∈ Kρ(y∗) , (ζ − v)(x, t∗) >
σ0

2
.

Connecting, through a path, the boundary Kρ(y∗) with the boundary of Aε0,4d, i.e.,
with a portion of the boundary where |x| = 4d, and working as in section 9 of [72] we
get a lower bound for

∫
Aε0,4d

|∇z(x, t∗)|2 dx, thus obtaining a contradiction by choosing
δ0 small enough. Therefore (5.82) holds.

The proof of the local continuity of a bounded solution of (5.70) follows from the
remark that estimate (5.76) is a direct consequence of (5.78) and (5.82).
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Remark 45. The boundary regularity for singular equations like the ones we are
dealing with here still presents several open questions. In the case of β with a single
jump, interior regularity is again a matter of energy and logarithmic inequalities and
this allows for a complete solution of boundary regularity for variational data, as in
[48].

In the case of a general β it remains an open problem to devise a technique of proof
only based on energy and logarithmic estimates. Therefore, for the moment, it is only
possible to consider homogeneous Dirichlet boundary conditions under mild assump-
tions on ∂Ω, without taking into account initial conditions. Assume, for instance, the
compactness and the Lipschitz continuity of the boundary. By the compactness of the
the boundary of Ω, we can cover ∂Ω with a finite number of neighborhoods centered at
points of ∂Ω. The Lipschitz continuity of the boundary allows us to find a map from
every neighborhood into a half ball of RN . The transformed equation via this map
has coefficients which are still measurable with respect to x, properly summable with
respect to the pair (x, t), and continuous with respect to t. Now we reflect the operator
through the entire ball and notice that this reflection does not affect the (β(u))t term,
since it is done only with respect to the x variable. We have therefore reduced the
study to a problem in the interior and we can apply the previous results to prove the
boundary regularity.

5.4.7 The case N ≥ 3 continued.

In this section, we prove the regularity for particular cases of equation (5.1). Here we
permit the maximal generality allowed from conditions (5.8)–(5.14), but we consider
a very special β of the type

β(s) =


−s− ν1 if s < 0
[−ν1, 0] if s = 0

s if 0 < s < 1
[1, 1 + ν2] if s = 1
s+ ν2 if s > 1

.

This special β allows us to write explicitly the logarithmic and energy estimates.
The use of the estimates, together with the geometrical constructions of the previous
sections, will allow to prove the local continuity of the solutions. This approach is
developed in a very detailed way in [87]. A similar approach can be found in [52]
in a different context. We feel that the right approach to the local continuity is this
one, that is, it must be based only on logarithmic and energy estimates and geometric
constructions.

We only give a sketch of the ideas on which the proof is based. Without loss of
generality, we may assume that µ+ = 1+ ε0 and µ− = −ε0, with ε0 very “small”. The
idea is to reduce the oscillation of u such that either u > 0 or u < 1. In this way, the
problem has been reduced to the case of only a singularity. Without loss of generality,
we can focus our attention to find a subcylinder where u > 0. Apply proposition 23.
Choose s0 > ε0 such that either the oscillation of u is so reduced in Q(δ2(s0)ρ2, δ(s0)ρ)
that u > 0 in such a cylinder or

(5.83) Meas
{
(x, t) ∈ Q(ρ2,δ(s0)ρ) : u(x, t) ≤ µ− + sω

}
≥ η(s0)|Q(ρ2,δ(s0)ρ)| .
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Note that η(s0) is very small (in a quantitatively way that will be clear in the sequel)
if ε0 is chosen really small.

Partition the cylinder Q(ρ2,δ(s0)ρ) in subcylinders Q(δ2(s0)ρ2,δ(s0)ρ). Apply the it-
eration method based on energy and logarithmic estimates, choosing as test function
(u− 1

4 )−. There are two possibilities:
either in one of the subcylinders the set where u is less than or equal to zero is

negligible; then the iteration method works as in the nonsingular case. So one can find
a small cylinder where u ≥ 1

8 . Then, via the logarithmic estimates, one can bring this
positivity up to the level zero if ε0 is chosen small enough;

or, in each of the subcylinders, the set where u is less or equal to zero is not
negligible. Then by (5.83) one can deduce that there exists a subcylinder where the
measure of the set where u is less than 1

8 is a function of η0. So if we choose η0 small
enough, the alternative (5.34) holds. So one can find a small cylinder where u ≥ 1

16 .
Then, via the logarithmic estimates, one can bring this positivity up to the level zero
if ε0 is chosen small enough.

Remark 46. The fact that β(·) has only two jumps is not essential. Any finite number
of jumps would be acceptable.

Remark 47. This approach seems to work not only with jumps but also with singular-
ities that grow in a very fast way. It could be of some interest to start an investigation
on such a direction.
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[39] Y.Z. Chen - E. DiBenedetto, Hölder estimates of solutions of singular
parabolic equations with measurable coefficients, Arch. Rat. Mech. Anal. 118
(1992), pp. 257-271.

[40] Y.Z. Chen - E. DiBenedetto, On the Harnack inequality for nonnegative
solutions of singular parabolic equations, in: Degenerate diffusions (Minneapolis,
1991), pp. 61-69, IMA Vol. Math. Appl. 47, Springer, New York, 1993.

[41] K.S. Cheng - W.M. Ni, On the structure of the conformal Gaussian curvature
equation on R2, Duke Math. J. 62 (1991), pp. 721-727.

99
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[170] J.M. Urbano, Hölder continuity of local weak solutions for parabolic equations
exhibiting two degeneracies, Adv. Differ. Equ. 6 (3) (2001), pp. 327-358.

[171] J.M. Urbano, A free boundary problem: contributions from modern analysis,
in: European Congress of Mathematics, pp. 319-329, Progress in Mathematics
202, Birkhäuser, 2001.

[172] J.M. Urbano, Regularity for partial differential equations: from De Giorgi-
Nash-Moser theory to intrinsic scaling, in: CIM Bulletin 12, June 2002, pp.
8-14.

[173] J. Van Duijn - Zhang Hongfei, Regularity properties of a doubly degenerate
equation in hydrology, Comm. Part. Diff. Equs. 13 (1988), pp. 261-319.

[174] J.L. Vázquez, Asymptotic behaviour and propagation properties of one dimen-
sional flow of gas in a porous medium, Transactions of the A.M.S. 277 (1983),
pp. 507-527.

[175] V. Vespri, L∞ estimates for nonlinear parabolic equations with natural growth
conditions, Rend. Sem. Mat. Univ. Padova 90 (1993), pp. 1-8.

[176] V. Vespri, Harnack type inequality for solutions of certain doubly nonlinear
parabolic equations, J. Math. Anal. Appl. 181 (1994), pp. 104-131.

[177] V. Vespri, On the local behaviour of a certain class of doubly nonlinear parabolic
equations, Manuscripta Math. 75 (1992), pp. 65-80.

[178] A. Visintin, Models of Phase Transitions, in: Progress in Nonlinear Differential
Equations and their Applications 28, Birkhäuser Boston Inc., Boston, MA, 1996.
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