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Abstract

Intrinsic Harnack estimates for non–negative solutions of singular, quasi–
linear, parabolic equations, are established, including the prototype p–Laplacean
equation (1.4) below. For p in the super–critical range 2N

N+1
< p < 2, the

Harnack inequality is shown to hold in a parabolic form, both forward and
backward in time, and in a elliptic form at fixed time. These estimates fail for
the heat equation (p→ 2). It is shown by counterexamples, that they fail for
p in the sub–critical range 1 < p ≤ 2N

N+1
. Thus the indicated super–critical

range is optimal for a Harnack estimate to hold. The novel proofs are based
on measure theoretical arguments, as opposed to comparison principles and
are sufficiently flexible to hold for a large class of singular parabolic equation
including the porous medium equation and its quasi–linear versions.
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1 Main Result

Let E be an open set in RN and for T > 0 let ET = E × (0, T ]. Let u be a weak
solution

u ∈ Cloc

(
0, T ;L2

loc(E)
)
∩ Lp

loc

(
0, T ;W 1,p

loc (E)
)

1 < p < 2 (1.1)

of a quasi–linear, singular parabolic equation of the type

ut − div A(x, t, u,Du) = B(x, t, u,Du) weakly in ET (1.2)

where the functions A : ET × RN+1 → RN and B : ET × RN+1 → R are only
assumed to be measurable and subject to the structure conditions A(x, t, u,Du) ·Du ≥ Co|Du|p − Cp

|A(x, t, u,Du)| ≤ C1|Du|p−1 + Cp−1

|B(x, t, u,Du)| ≤ C|Du|p−1 + Cp
a.e. in ET (1.3)

where p ∈ (1, 2) and Co and C1 are given positive constants, and C is a given non–
negative constant. If u is a weak solution of (1.1)–(1.2), the quasilinear structure
conditions (1.3) are in addition required to preserve the property of sub(super)–
solutions of the truncations ±(u− k)±, for all k ∈ R. Namely

∂

∂t
(u− k)± − div A(x, t, (u− k)±, D(u− k)±)

≤ B(x, t, (u− k)±, D(u− k)±)
(1.2)±

weakly in ET against admissible non–negative test functions. The prototype ex-
ample is

ut − div |Du|p−2Du = 0, 1 < p < 2, weakly in ET . (1.4)

Equation (1.1)–(1.2) is singular, since its modulus of ellipticity goes to ∞ as
|Du| → 0: we show that its non–negative weak solutions satisfy an intrinsic form
of the Harnack inequality provided p is in the so called super–critical range

p∗ =
2N

N + 1
< p < 2. (1.5)

The parameters {N, p, Co, C1, C} are the data, and we say that a generic constant
γ = γ(N, p, Co, C1, C) depends upon the data, if it can be quantitatively deter-
mined a priori only in terms of the indicated parameters. For ρ > 0 let Kρ be the
cube of center the origin on RN and edge 2ρ and for y ∈ RN let Kρ(y) denote the
homothetic cube centered at y. Fix Po = (xo, to) ∈ ET , such that u(xo, to) > 0,
and consider cylinders of the type

Qρ(Po) = Kρ(xo)×
{

to −
(

u(Po)
c4

)2−p

ρp < t ≤ to +
(

u(Po)
c4

)2−p

ρp

}
, (1.6)

where c is the constant of Theorem 1.1. These cylinders are “intrinsic” to the
solution since their time length is determined by the value of u at (xo, to), and the
Harnack inequality holds in such an intrinsic geometry.
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Theorem 1.1 Let u be a non–negative, weak solution to (1.1)–(1.3) for p in the
super–critical range (1.5). There exist positive constants δ∗ and c, depending only
upon the data, such that for all Po ∈ ET and all cylinders of the type Q8ρ(Po) ⊂
ET , either u(Po) ≤ Cρ, or

c u(xo, to) ≤ inf
Kρ(xo)

u(·, t) (1.7)

for all times
to − δ∗[u(Po)]2−pρp ≤ t ≤ to + δ∗[u(Po)]2−pρp. (1.8)

The constants c and δ∗ tend to zero as either p → 2 or as p → p∗.

This inequality is simultaneously a “forward and backward in time” Harnack es-
timate as well as a Harnack estimate of elliptic type. Any of these three types of
inequalities would be false for non–negative solutions of the heat equation. This is
reflected in (1.7)–(1.8), as the constants c and δ∗ tend to zero as p → 2. It turns
out that these inequalities lose meaning also as p tends to the critical value p∗ in
(1.5). We comment on each these aspects separately.

2 The Forward in Time Harnack Inequality

A forward Harnack estimate can be established independently of Theorem 1.1 and
it takes the following form.

Theorem 2.1 Let u be a non–negative, weak solution to (1.1)–(1.3) for p in the
super–critical range (1.5). There exist positive constants c+, δ+ such that for all
cylinders

K8ρ(xo)×
{

to −
(

u(Po)
c4
+

)2−p

(8ρ)p < t ≤ to +
(

u(Po)
c4
+

)2−p

(8ρ)p

}
contained in ET , either u(Po) < Cρ, or

c+u(xo, to) ≤ inf
Kρ(xo)

u(x, to + δ+[u(Po)]2−pρp). (2.1)

The constants c+ and δ+ tend to zero as p → p∗ but they are “stable” as p → 2,
in the sense that there exist positive constants c+(2) and δ+(2), that can be
determined a priori only in terms of the data, such that c+(p), δ+(p) → c+(2), δ+(2)
as p → 2. Thus by formally letting p → 2 in (2.1) one recovers the classical Moser’s
Harnack inequality of [11].

A positive waiting time is needed, for a Harnack estimate to hold even for
non–negative solutions of the heat equation, as pointed out by a counterexample
of Moser ([11]). The novelty of (2.1) is in that such a waiting time is intrinsic
to the solution itself. No forward in time Harnack estimate would be possible
for non–negative solutions of (1.1)–(1.3) unless the waiting time is driven by the

3



solution itself. Indeed, weak non–negative solutions of (1.4) in bounded domains,
with homogeneous Dirichlet data on ∂E and non–negative initial data uo, become
extinct, abruptly, in finite time. That is, there exists a time T that can be deter-
mined a priori in terms of the data and uo, such that for all x ∈ E ([5], Chap. VII,
§ 2)

u(x, t) > 0 for t < T and u(x, t) = 0 for t > T. (2.2)

For such a solution, a Harnack estimate with waiting time independent of u would
not hold.

3 The Elliptic Harnack Inequality

A consequence of (1.7)–(1.8) is the following elliptic form of the Harnack inequality.

Corollary 3.1 Let u be a non–negative, weak solution to (1.1)–(1.3) for p in the
super–critical range (1.5). There exists a positive constant c, depending only upon
the data, such that for all Po ∈ ET and all cylinders of the type Q8ρ(Po) ⊂ ET ,
either u(Po) ≤ Cρ, or

c u(xo, to) ≤ inf
Kρ(xo)

u(·, to) (3.1)

The constant c tends to zero as either p → 2 or as p → p∗.

While unusual, such inequality can be understood by examining the nature of
(1.4). As |Du| ≈ 0, the modulus of ellipticity becomes large and the p.d.e. tends
to favour its elliptic component. The inequality (3.1) makes this heuristic argument
quantitatively precise. The parabolic component enters in that u is required to
exist for a sufficiently large time interval about to.

4 The Backward in Time Harnack Inequality

Another consequence of (1.7)–(1.8) is a backward Harnack estimate in the following
form.

Corollary 4.1 Let u be a non–negative, weak solution to (1.1)–(1.3) for p in the
super–critical range (1.5). There exist positive constants δ∗ and c, depending only
upon the data, such that for all Po ∈ ET and all cylinders of the type Q8ρ(Po) ⊂
ET , either u(Po) ≤ Cρ, or

c u(xo, to) ≤ inf
Kρ(xo)

u(·, to − δ∗[u(Po)]2−pρp). (4.1)

The constants c and δ∗ tend to zero as either p → 2 or as p → p∗.

While unexpected, this occurrence reflects the tendency of the solution to become
extinct in finite time, as indicated in (2.2). Notice that we have a backward
inequality, but the time is not reversed. Indeed for (4.1) to hold, the solution u is
required to exists in a large time–interval about to. Nevertheless this remains the
most intriguing aspect of these inequalities.
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5 Novelty and significance

In [8] a detailed discussion will be given, to show that the range of p in (1.5) is
optimal for the Harnack estimate (1.7)–(1.8) to hold. Indeed for p in the sub–
critical range 1 < p ≤ p∗, explicit counterexamples are provided, which fail to
satisfy the Harnack inequality in any one of the forward, backward, or elliptic
form. This raises the question of what form, if any, the Harnack estimate might
take for p in such a range.

For non–negative solutions of the prototype, homogeneous equation (1.4), in-
trinsic Harnack inequalities in the forward form (2.1) and the elliptic form (3.1),
were established in a series of contributions ([3, 4]), collected and re-organized in
[5]. These proofs, one way or another had at their root the application of the
maximum principle by comparing, locally, the solutions of (1.4) with either the
explicit Barenblatt solutions ([5]), or some suitably constructed sub–solution ([3]).

The original proofs of the parabolic Harnack inequality for non–negative solu-
tions of the heat equation, due independently to Hadamard [9] and Pini [13], were
based on local comparisons with caloric potentials. The leap forward achieved
by Moser ([10, 11, 12]) consists in replacing comparison methods by measure–
theoretical arguments. This is precisely one of the key novel points of this con-
tribution, that is, the Harnack inequalities (1.7)–(2.1) are established by entirely
measure–theoretical arguments, thereby bypassing any form of comparison princi-
ple. These methods are rather different than the classical techniques of DeGiorgi
[2] and Moser [11], and are based on two technical tools, namely

• L1
loc–L∞loc Harnack–Type estimates for p in the super–critical range;

• A proper expansion of positivity based on an iteration argument originally
introduced in [1].

For degenerate equations (1.1)–(1.3) with p ≥ 2 a reasonably complete theory of
the intrinsic forward Harnack inequality has been recently established in [6, 7], to
which we refer for further comments.

A second key novel point is the backward inequality in the form (4.1). The
latter has never been observed before, not even for the prototype equation (1.4)
and it opens intriguing issue on the local behavior of solutions of such singular
equations.

The approach is sufficiently general as to apply, by minor modifications, to
non–negative weak solutions of a class of singular parabolic equations, including
quasi–linear versions of the singular porous–medium equations. We refer to [8] for
full details and complete proofs.
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