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Lp-estimates for a class of elliptic operators
with unbounded coefficients in RN

Houston J. Math., 31 (2005), 605-620.

G. Metafune∗ D. Pallara∗ V. Vespri †

Abstract

We prove Lp-estimates for second order elliptic operator in RN with unbounded, glob-
ally Lipschitz coefficients.

Mathematics subject classification (2000): 35J70, 35K15, 35K65
Keywords: Lp estimates, elliptic operators with unbounded coefficients.

1 Introduction

In this paper we consider second-order elliptic operators in Lp(RN ) of the following type

A =
N∑

i,j=1

Di

(
qijDj

)
+

N∑
i=1

(bi + fi)Di. (1.1)

under the following assumptions on the coefficients.

(H1) Q = (qij) is a symmetric real matrix, qij ∈ C1
b (RN ) and there is ν > 0 such that

Q(x)ξ · ξ ≥ ν|ξ|2 x, ξ ∈ RN .

(H2) B = (b1, . . . , bN ) is a (globally) Lipschitz vector field on RN , F = (f1, . . . , fN ) ∈
Cb(RN ,RN ).

Observe that, since qij ∈ C1
b (RN ) and F is only supposed to be continuous and bounded,

the operator A can be written in the divergence form (1.1) or in the non-divergence form

A =
N∑

i,j=1

qijDij +
N∑

i=1

(
bi + fi +

N∑
j=1

Djqij

)
Di. (1.2)

When endowed with its maximal domain

Dp,max(A) :=
{

u ∈ Lp(RN ) ∩W 2,p
loc (RN ) : Au ∈ Lp(RN )

}
(1.3)
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the operator A is the generator of a strongly continuous semigroup (P (t))t≥0 in Lp(RN )
such that P (t)f solves the Cauchy problem{

Dtu = Au in (0,∞)×RN

u(0) = f in RN (1.4)

for f ∈ Lp(RN ). The main results of this paper are maximal regularity estimates for the
corresponding resolvent equation

λu−Au = f in RN , λ > 0, (1.5)

that yield a complete description of the domain. In fact, we prove the following result.

Theorem 1 Assume that (H1) and (H2) are satisfied, and, in addition, that

(H3) sup
x∈RN

|∇qij ·B| < ∞, for all i, j = 1, . . . , N .

Then, the domain Dp,max(A) of the generator of the semigroup (P (t))t≥0 coincides with

Dp := {u ∈ W 2,p(RN ) : B · ∇u ∈ Lp(RN )}.

The above result can be rephrased by saying that requiring that u ∈ Dp,max(A), i.e.
Au ∈ Lp(RN ), is equivalent to requiring that the two leading terms in Au, i.e., the diffusion
term

∑N
i,j=1 Di

(
qij(x)Dju

)
and the drift term B · ∇u separately belong to Lp(RN ).

We point out that in the special case of the Ornstein-Uhlenbeck operators, that is when
the matrix Q is constant and B(x) = Bx, where B is a non-zero N × N real matrix, the
above result has been proved in [15].

The approach presented in this paper is more geometric. In fact, it is based upon a
change of variables determined by the flow generated by the drift term (see Section 3). This
allows us to reduce problem (1.4) to a uniformly parabolic one, and also gives a better
understanding of the intrinsic geometry related to the operator A (see also [7], where this
point of view is deeply pursued).

The above characterisation of the domain of A follows from regularity results for the
solution of the more general problem{

Dtu−Au = g in (0, T )×RN

u(0) = f in RN .

As in [13], we use a suitable change of variables to transform this problem into a non
autonomous uniformly parabolic one (i.e., with regular bounded coefficients), so that the
well-known estimates available for the transformed problem can be recovered in the original
setting. Assumption (H3) is crucial for this approach as it guarantees that the coefficients of
the transformed operator are uniformly continuous. It could likely be relaxed by requiring
that the coefficients (qij) are only uniformly continuous, but have a small variation along
the characteristics anduced by B as in (3.3). Actually, in [7] a Harnack inequality is proved
with respect to a geometry determined by the operator. However, we do not know whether
Theorem 1 holds if condition (H3) is completely dropped.

Finally, leu us point out that there is a wide literature on domain characterisation of
operators with unbounded coefficients. However, in most cases, the operators contain an
unbounded potential whose growth is used to balance the growth of the drift term. Such
an approach is used e.g. in [1], [2], [16]. We also refer to [11] for the case of Hölder spaces.
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In Section 2 we construct the semigroup generated by (A,Dp,max(A)). In Section 3 we
prove, under slightly stronger hypotheses on the first-order coefficients B, the regularity
results for the above problem. Section 4 is devoted to the proof of Theorem 1.

Notation. For x ∈ RN , |x| denotes the euclidean norm, and B% = {x ∈ RN : |x| < %}
the open ball with radius % > 0. As regards function spaces, we write ‖ · ‖p for the norm
of Lp(RN ). We denote by Ck(RN ) (resp. Ck

b (RN )) the space of functions on RN with
continuous (resp. bounded and continuous) derivatives up to the order k, and write Cb(RN )
instead of C0

b (RN ). BUC(RN ) is the space of all bounded, uniformly continuous functions
on RN and C0(Ω) = {f ∈ C(Ω : f(x) = 0 ∀x ∈ ∂Ω}. W k,p(Ω) is the Sobolev spaces of the
measurable functions in the open set Ω ⊂ RN which have weak derivatives p-summable in
Ω up to order k, endowed with the usual norm ‖ · ‖W k,p(Ω). Finally, for T > 0, we define
QT := (0, T )×RN and the spaces W1,2

p (QT ) of the functions f : QT → C whose first-order
partial derivative with respect to t and partial derivatives with respect to x up to the second
order are p-summable in QT , endowed with the norm

‖f‖W1,2
p (QT ) :=

(∫
QT

|f |p + |Dtf |p +
N∑

i=1

|Dxi
f |p +

N∑
i,j=1

|Dxixj
f |p dxdt

)1/p

.

Acknowledgement. We are grateful to Abdelaziz Rhandi for his useful comments on this
paper.

2 Construction of the semigroup

In this section we construct the strongly continuous semigroup generated by (A,Dp,max(A))
in Lp. This fact is not completely new. In fact, the existence of a semigroup generated by
A is proved e.g. in [12] where the coefficients qij are only supposed to be in L∞ or can be
deduced from the more general results of [4, Theorem 2.3]. However, these results do not
show (directly) that the domain of the generator is Dp,max(A). For this reason and for the
sake of completeness, we give the construction below. In this section we denote by A0 the
operator

A0 =
N∑

i,j=1

Di(qijDj).

We need the following lemma.

Lemma 2.1 Let Ω be a bounded domain with a C2 boundary or Ω = RN and u ∈ W 2,p(Ω)∩
W 1,p

0 (Ω). Let, moreover, η ∈ C1
b (Ω) be nonnegative. Then for 1 < p < ∞

(p− 1)
∫

Ω

η
∑
i,j

qij |u|p−2DiuDjuχ{u 6=0} +
∫

Ω

∑
i,j

qij |u|p−2uDiuDjη ≤ −
∫

Ω

η(A0u)u|u|p−2.

(2.1)

Proof. Let us prove the result for a bounded Ω. The case Ω = RN is even simpler.
Observe that if p ≥ 2, then (2.1) holds with equality. This is readily seen since the function
u|u|p−2 belongs to W 1,p′

(Ω) and therefore integration by parts in the right hand side of
(2.1) is allowed.
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Let then be 1 < p < 2, and take first u ∈ C2(Ω) ∩ C0(Ω). For δ > 0 we have

−
∫

Ω

(A0u)ηu
(
u2 + δ

)p/2−1

=
∫

Ω

η
(
u2 + δ

)p/2−2(
(p− 1)u2 + δ

) ∑
i,j

qijDiuDju

+
∫

Ω

u
(
|u|2 + δ

)p/2−1 ∑
i,j

qijDiuDjη. (2.2)

Letting δ → 0 and recalling that ∇u = 0 a.e. on the set {u = 0}, from Fatou’s lemma we
obtain

(p− 1)
∫

Ω

η
∑
i,j

qijDiuDju|u|p−2χ{u 6=0} ≤ −
∫

Ω

(A0u)ηu|u|p−2 −
∫

Ω

u|u|p−2
∑
i,j

qijDiuDjη.

Therefore, the function η
∑

i,j qijDiuDju|u|p−2χ{u 6=0} belongs to L1(Ω) and one obtains
(2.1) with equality, letting δ → 0 in (2.2) and using dominated convergence.

In the general case u ∈ W 2,p(Ω) ∩ W 1,p
0 (Ω) we find a sequence (un) ∈ C2(Ω) ∩ C0(Ω)

such that un → u in W 2,p(Ω) and a.e., ∇un → ∇u a.e. and obtain (2.1) (with inequality)
from the previous case, using again Fatou’s lemma.

Let us define

λp =
K2

4ν(p− 1)
− 1

p
inf

x∈Rn
div B(x), K = ‖F‖∞. (2.3)

Theorem 2.2 Suppose that (H1) and (H2) hold. Then the operator (A,Dp,max(A)) gener-
ates a semigroup (P (t))t≥0 in Lp(RN ) which satisfies the estimate

‖P (t)f‖p ≤ eλpt‖f‖p (2.4)

for every f ∈ Lp(RN ).

Proof. First of all, notice that the operator (A,Dp,max(A)) is closed, by local Lp regularity.
In order to apply Hille-Yosida’s theorem, let us prove that for every λ > λp the operator
(λ−A) is bijective on Lp(RN ) and the resolvent estimate

‖u‖p ≤
‖f‖p

λ− λp
(2.5)

holds.
Let then f ∈ Lp(RN ) be given, and consider the Dirichlet problem{

λu−Au = f in B%

u = 0 on ∂B%.
(2.6)

in Lp(B%). According to [6, Theorem 9.15], a unique solution u% exists in W 2,p(B%) ∩
W 1,p

0 (B%) for large λ. Observe that the dissipativity estimate

(λ− λp)‖u%‖p ≤ ‖f‖p (2.7)
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holds. To show this, we multiply the equation λu− Au = f by u∗ = u|u|p−2 and integrate
over B%. Then we have, using Lemma 2.1 with Ω = B% and η = 1,

−
∫

B%

u∗A0u ≥ (p− 1)
∫

B%

|u|p−2
∑
i,j

qijDiuDju,∫
B%

u∗B · ∇u = −1
p

∫
B%

|u|pdiv B.

It follows that∫
B%

(
λ +

1
p
div B

)
|u|p + ν(p− 1)

∫
B%

|∇u|2|u|p−2 ≤ ‖f‖p‖u‖p−1
p + K

∫
B%

|∇u||u|p−1

≤ ‖f‖p‖u‖p−1
p + K

(∫
B%

|∇u|2|u|p−2
)1/2(∫

B%

|u|p
)1/2

(2.8)

≤ ‖f‖p‖u‖p−1
p + Kσ

∫
B%

|∇u|2|u|p−2 +
K

4σ

∫
B%

|u|p.

Choosing σ = ν(p−1)/K, (2.7) follows and therefore (2.6) has a (unique) solution satisfying
(2.7) for every λ > λp.

Let us fix %1 < %2. Then, for % > %2, u% belongs to W 2,p(B%2) and combining estimate
(2.7) with [6, Theorem 9.11] we obtain

‖u%‖W 2,p(B%1 ) ≤ C1

(
‖λu% −Au%‖Lp(B%2 ) + ‖u%‖Lp(B%2 )

)
≤ C‖f‖p (2.9)

for a constant C := C(p, %1, %2, λ, A) > 0. From (2.9) it follows that the u% are bounded in
W 2,p

loc (RN ), hence there is a sequence (u%n
) weakly converging to u ∈ W 2,p

loc (RN ) which solves
λu−Au = f . Moreover, u ∈ Lp(RN ) and (2.5) holds. Finally, by difference, Au ∈ Lp(RN )
and then u ∈ Dp,max(A).

It remains to show that this solution is unique in Dp,max(A). Assume that u ∈ Dp,max(A)
satisfies λu − Au = 0. We multiply the equation by u|u|p−2η2

n, where ηn(x) = η(x/n),
η ∈ C∞

0 and η(x) = 1 for |x| ≤ 1, η(x) = 0 for |x| ≥ 2, and integrate over RN . Integrating
by parts and using Lemma 2.1 with Ω = RN we obtain∫

RN

(
λ +

1
p
div B

)
η2

n|u|p + (p− 1)
∫
RN

η2
n|u|p−2

∑
i,j

qijDiuDju (2.10)

≤ −2
∫
RN

ηnu|u|p−2
∑
i,j

qijDjuDiηn −
2
p

∫
RN

ηn|u|pB · ∇ηn +
∫
RN

η2
nu|u|p−2F · ∇u.

Since ‖qij‖∞ ≤ C, |∇ηn| ≤ C/n and |B||∇ηn| ≤ C, for some C > 0, we deduce∫
RN

(
λ +

1
p
div B

)
η2

n|u|p + ν(p− 1)
∫
RN

η2
n|u|p−2|∇u|2

≤ (K + C/n)
∫
RN

ηn|u|p−1|∇u|+ 2
p

∫
RN

ηn|u|p|B||∇ηn|

≤ (K + C/n)
(∫

RN

η2
n|u|p−2|∇u|2

)1/2(∫
RN

|u|p
)1/2

+
2
p

∫
RN

ηn|u|p|B||∇ηn|

≤ (Kσ + C/n)
∫
RN

η2
n|∇u|2|u|p−2 + (K/(4σ) + C/n)

∫
RN

|u|p +
2
p

∫
RN

ηn|u|p|B||∇ηn|.
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Setting σ = ν(p−1)
(1+ε)K , αε = εK

4ν(p−1) , βε = εν(p−1)
1+ε (with ε > 0 to be chosen), we obtain∫

RN

(λ− λp−αε)η2
n|u|p + (βε−C/n)

∫
RN

η2
n|u|p−2|∇u|2 ≤ C

n

∫
RN

|u|p +
2C

p

∫
n≤|x|≤2n

|u|p.

Choosing ε such that λ− λp − αε > 0 and letting n →∞ it follows that u = 0.

Notice that for the existence of a C0-semigroup generated by A the much weaker hy-
pothesis div B ≥ K for some K ∈ R suffices, by the proof of the above theorem. The linear
growth of B has been used only to prove that the domain of the generator is Dp,max(A).

Remark 2.3 Notice that for 1 < p ≤ 2, besides (2.5), the gradient estimate

‖∇u‖p ≤ C‖f‖p

follows from Theorem 2.2. In fact, choosing σ < ν(p− 1)/K in (2.8) and letting % →∞, we
have ∫

RN

|u|p−2|∇u|2 ≤ C‖f‖p
p

and then using Hölder inequality, we obtain∫
RN

|∇u|p ≤
(∫

RN

|u|p−2|∇u|2
)p/2(∫

RN

|u|p
)1−p/2

.

3 A special case

In this section we assume that A is given in the non-divergence form

A =
N∑

i,j=1

qijDij +
N∑

i=1

biDi = Tr
[
QD2

]
+ B · ∇. (3.1)

We assume that (H1), (H2) hold with F = 0, ∇B ∈ C2
b (RN ) and that the coefficients qij

and (bi) satisfy (H3).
We fix T > 0 and consider the parabolic problem{

Dtu−Au = g in QT

u(0) = f in RN .
(3.2)

We prove that a suitable change of variables allows us to find a parabolic problem
equivalent to (3.2), but with (regular and) bounded coefficients. Let us consider the ordinary
Cauchy problem in RN : 

dξ

dt
= B(ξ) t ∈ R,

ξ(0) = x

(3.3)

and denote by ξ(t, x) its solution. We shall look at the equation solved by v(t, x) :=
u(t, ξ(−t, x)). The relevant properties of ξ(t, x) are collected in the following lemma, whose
proof is in [13, Section 2]. In order to shorten the notation, we shall denote by ξx the
Jacobian matrix (∂ξi/∂xj) of the derivatives of ξ with respect to x and by ξ∗x its transpose
matrix.
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Lemma 3.1 If B is Lipschitz continuous and ∇B belongs to C2
b , there is a unique global

solution ξ(t, x) of (3.3) and the relationship x = ξ
(
t, ξ(−t, x)

)
holds. Moreover, all the

following derivatives are bounded in every strip [−T, T ]×RN :

ξx, ξtx,
∂

∂t
ξx

(
t, ξ(−t, x)

)
,

∂

∂xi
ξx

(
t, ξ(−t, x)

)
,

∂

∂t
ξxx

(
t, ξ(−t, x)

)
,

∂

∂xi
ξxx

(
t, ξ(−t, x)

)
and the matrix ξx is invertible, with determinant bounded away from zero in every strip
[−T, T ]×RN .

We are now in a position to write the equivalent Cauchy problem. Setting v(t, y) =
u
(
t, ξ(−t, y)

)
, by a direct computation we deduce

Dtv(t, y) = Dtu
(
t, ξ(−t, y)

)
−

N∑
i=1

bi

(
ξ(−t, y)

)
Dxiu

(
t, ξ(−t, y)

)
(3.4)

and also

Dxi
u(t, x) =

N∑
h=1

Dxi
ξh(t, x)Dyh

v
(
t, ξ(t, x)

)
(3.5)

Dxixj
u(t, x) =

N∑
h,k=1

Dxi
ξh(t, x)Dyhyk

v
(
t, ξ(t, x)

)
Dxj

ξk(t, x) (3.6)

+
N∑

h=1

Dxixj ξh(t, x)Dyh
v
(
t, ξ(t, x)

)
.

Let us further set f̃(t, y) = f
(
t, ξ(−t, y)

)
, Q̃ = (q̃ij), B̃ = (b̃i), with

Q̃(t, y) = ξ∗x
(
t, ξ(−t, y)

)
Q

(
ξ(−t, y)

)
ξx

(
t, ξ(−t, y)

)
B̃(t, y) =

(
Tr

[
D2ξ1(t, ξ(−t, y))Q(ξ(−t, y))

]
, . . . ,Tr

[
D2ξN (t, ξ(−t, y))Q(ξ(−t, y))

])
,

or, more explicitly,

q̃ij(t, y) =
N∑

h,k=1

Dxh
ξi(t, ξ(−t, y))qhk(ξ(−t, y))Dxk

ξj(t, ξ(−t, y)), (3.7)

b̃i(t, y) =
N∑

h,k=1

Dxhxk
ξi(t, ξ(−t, y))qhk(ξ(−t, y)) (3.8)

and finally

Ã =
N∑

i,j=1

q̃ij(t, y)Dyiyj
+

N∑
i=1

b̃i(t, y)Dyi
(3.9)

The above computations show that u solves (3.2) if only if v solves the Cauchy problem{
Dtv(t, y) = Ãv(t, y) + g(t, ξ(−t, y)) in QT

v(0) = f in RN .
(3.10)
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Notice that from Lemma 3.1 it follows that the coefficients q̃ij , b̃i are in C1
b (QT ). More-

over, the inequality
N∑

i,j=1

q̃ij(t, y)ηiηj ≥ ν̃|η|2

holds for every y, η ∈ RN , with a suitable ν̃ > 0 (see also [13] for further details). We may
therefore apply the standard theory of nonautonomous parabolic problems to infer that the
operators Ã(t) generate a parabolic evolution family G(t, s) in Lp(RN ), see e.g. [9, Corollary
6.1.6].

Finally, for t ≥ 0 we define maps S(t) : W k,p(RN ) → W k,p(RN ), for k = 0, 1, 2 by(
S(t)f

)
(x) = f(ξ(t, x)).

Lemma 3.2 Let S be as above, let G be the evolution family generated by Ã(t) and let us
define Γ(t) = S(t)G(t, 0). Then, (Γ(t))t≥0 is a strongly continuous semigroup in Lp(RN ).

Proof. We first check that the semigroup law Γ(t + s) = Γ(t)Γ(s) holds. For, let us
compute

Γ(t + s) = S(t + s)G(t + s, 0) = S(t)S(s)G(t + s, s)G(s, 0),
Γ(t)Γ(s) = S(t)G(t, 0)S(s)G(s, 0),

hence it suffices to show that G(t, 0)S(s) = S(s)G(t + s, s). This can be done by proving
that, as functions of t, both sides solve the same Cauchy problem for every s ≥ 0. We then
compute the derivatives

d

dt

(
G(t, 0)S(s)

)
= Ã(t)G(t, 0)S(s)

d

dt

(
S(s)G(t + s, s)

)
= S(s)Ã(t + s)G(t + s, s)

and notice that the thesis follows from the equality

S(s)Ã(t + s) = Ã(t)S(s). (3.11)

Let us write, for a smooth function u,(
S(s)Ã(t + s)u

)
(x) = Tr

[
P D2u(ξ(s, x))

]
+ C · ∇u(ξ(s, x)),

with the matrix R and the vector field C = (ci) given by

R(t, s, x) = ξ∗x
(
t + s, ξ(s, ξ(−t− s, x))

)
Q

(
ξ(s, ξ(−t, x))

)
ξx

(
t + s, ξ(s, ξ(−t− s, x))

)
ci(t, s, x) = Tr

[
D2ξi(t + s, ξ(s, ξ(−t− s, x)))Q(ξ(s, ξ(−t− s, x)))

]
.

From the semigroup property of the flow ξ and the equalities

ξx(t + s, x) = ξx

(
s, ξ(t, x)

)
ξx(t, x),

D2
xhxk

ξi(t + s, x) =
N∑

j,`=1

D2
xjx`

ξi

(
s, ξ(t, x)

)
Dxh

ξj(t, x))Dxk
ξ`(t, x))

+
N∑

j=1

Dxj
ξi

(
s, ξ(t, x)

)
Dxhxk

ξi(t, x))
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we deduce

ξ
(
s, ξ(−t− s, x)

)
= ξ(−t, x),

Dxh
ξi

(
t + s, ξ(−t, x)

)
=

N∑
k=1

Dxk
ξi

(
t, ξ(−t, x)

)
Dxh

ξk(s, x)),

D2
xhxk

ξi

(
t + s, ξ(−t, x)

)
=

N∑
j,`=1

D2
xjx`

ξi(s, x)Dxh
ξj

(
t, ξ(−t, x)

)
Dxk

ξ`

(
t, ξ(−t, x)

)
+

N∑
j=1

Dxj
ξi(s, x)D2

xhxk
ξj

(
t, ξ(−t, x)

)
.

Therefore, we have

R(t, s, x) = ξ∗x
(
t + s, ξ(−t, x)

)
Q

(
ξ(−t, x)

)
ξx

(
t + s, ξ(−t, x)

)
= ξ∗x

(
t, ξ(−t, x)

)
ξ∗x(s, x)Q

(
ξ(−t, x)

)
ξx(s, x)ξx

(
t, ξ(−t, x)

)
ci(t, s, x) = Tr

[
ξ∗x

(
t, ξ(−t, x)

)
D2ξi(s, x)ξx

(
t, ξ(−t, x)

)
Q

(
ξ(−t, x)

)]
+

N∑
j,h,k=1

Dxj ξi(s, x)D2
xhxk

ξj

(
t, ξ(−t, x)

)
qkh

(
ξ(−t, x)

)
= Tr

[
ξ∗x

(
t, ξ(−t, x)

)
D2ξi(s, x)ξx

(
t, ξ(−t, x)

)
Q

(
ξ(−t, x)

)]
+

N∑
j=1

Dxj
ξi(s, x)Tr

[
D2ξj

(
t, ξ(−t, x)

)
Q

(
ξ(−t, x)

)]
.

On the other hand, using (3.6), (3.7) and (3.7), (3.8), we have(
Ã(t)S(s)u

)
(x) = Tr

[
ξ∗x

(
t, ξ(−t, x)

)
Q

(
ξ(−t, x)

)
ξx

(
t, ξ(−t, x)ξ∗x(s, x)D2u(ξ(s, x))ξx(s, x)

]
+

N∑
i=1

Diu
(
ξ(s, x)

)
·
{ N∑

j,k=1

D2
xjxk

ξi(s, x)q̃jk(t, x)

+
N∑

j=1

Dxj
ξj(s, x)Tr

[
D2ξi

(
t, ξ(−t, x)

)
Q

(
ξ(−t, x)

)]}
= Tr

[
R D2u

(
ξ(s, x)

)]
+ C · ∇u(ξ(s, x)).

Since the strong continuity of Γ(t) follows easily from the strong continuity of S(t) and
G(t, 0), the proof is complete.

Theorem 3.3 Assume that A, given by (3.1) satisfies (H1), (H2) and (H3) and also
that ∇B ∈ C2

b (RN ). For every f ∈ Lp(RN ) and T > 0, the function P (·)f belongs to
C

(
]0, T ];W 2,p(RN )

)
∩ C1

(
]0, T ];Lp

loc(R
N )

)
and satisfies the estimates

‖D2P (t)f‖p ≤
CT

t
‖f‖p, ‖∇P (t)f‖p ≤

CT√
t
‖f‖p. (3.12)
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Proof. Let v(t) = G(t, 0)f be the solution of the problem{
Dtv(t) = Ã(t)v(t) in QT

v(0) = f in RN .
(3.13)

From [9, Corollary 6.1.6], it follows that v ∈ C
(
]0, T ];W 2

p (RN )
)
∩ C

(
[0, T ];Lp(RN )

)
∩

C1
(
]0, T ];Lp(RN )

)
and that

‖D2v(t, ·)‖p ≤
CT

t
‖f‖p, ‖∇v(t, ·)‖p ≤

CT√
t
‖f‖p.

for 0 < t ≤ T . The function u(t, x) := v
(
t, ξ(−t, x)

)
then belongs to C

(
]0, T ];W 2

p (RN )
)
∩

C
(
[0, T ];Lp(RN )

)
∩ C1

(
]0, T ];Lp

loc(R
N )

)
, and satisfies a similar estimate for 0 < t ≤ T :

‖D2u(t, ·)‖p ≤
C ′

T

t
‖f‖p, ‖∇u(t, ·)‖p ≤

C ′
T√
t
‖f‖p.

We have only to show that u(t, ·) = P (t)f .
Since u(t, ·) is nothing but Γ(t)f , we have to show that the semigroups (Γ(t))t≥0 and

(P (t))t≥0 coincide. Let (C,D(C)) be the generator of (Γ(t))t≥0 in Lp(RN ) and observe that
u = Γ(·)f belongs to C1

(
]0, T ];Lp

loc(R
N )

)
and satisfies ut = Au in ]0, T ] × RN . There-

fore, if f ∈ D(C), then Cf = Af ∈ Lp(RN ). This shows that (C,D(C)) is a restriction
of (A,Dp,max(A)), hence coincides with this last since both operators are generators of
semigroups. Therefore, P (t) = Γ(t) and this concludes the proof.

We study now the regularity of the mild solution of problem (3.2) with f = 0 and
g ∈ Lp(QT ). Defining gs(x) = g(s, x), we may identify Lp(QT ) with Lp((0, T );Lp(RN )).
The mild solution is then given by u(t) =

∫ t

0
P (t− s)gs ds.

Theorem 3.4 Assume that A, given by (3.1) satisfies (H1), (H2) and (H3) and that ∇B ∈
C1

b (RN ). Let T > 0 and g ∈ Lp(QT ) be given, and consider the mild solution u of the
Cauchy problem (3.2) with f = 0. Then, u belongs to W1,2

p,loc(QT ) and satisfies

u, Dtu−B · ∇u, Dxiu, Dxixj u ∈ Lp(QT ). (3.14)

Proof. Since P (t) = S(t) ◦G(t, 0) and G(t− s, 0)S(s) = S(s)G(t, s), u is given by

u(t) =
∫ t

0

S(t− s) ◦G(t− s, 0)gs ds = S(t)
∫ t

0

G(t, s)S(−s)gs ds.

Let hs = S(−s)gs ∈ Lp((0, T );Lp(RN )) and v(t) =
∫ t

0
G(t, s)hs ds. Then u(t) = S(t)v(t),

i.e. u(t, x) = v(
(
t, ξ(t, x)

)
and conditions u ∈ W1,2

p,loc(QT ) and (3.14) translate into v ∈
W1,2

p,loc(QT ) (see (3.4), (3.6), (3.7)). Let us show that v belongs to W1,2
p (QT ).

Let (h(n)) ∈ C∞
0 (QT ) be convergent to h in Lp(QT ) and define vn(t) =

∫ t

0
G(t, s)h(n)

s ds.
Using [9, Proposition 6.1.3] we deduce that vn ∈ C([0, T ];W 2,p(RN )) ∩ C1([0, T ];Lp(RN ))
is a classical solution of the problem{

Dtw − Ã(t)w(t) = h(n)(t) in QT

w(0) = 0 in RN .

Theorem IV.9.1 of [8] yields

‖vn‖W1,2
p (QT ) ≤ CT ‖h(n)‖Lp(QT ),

for a suitable constant CT , and the thesis follows letting n →∞.
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Remark 3.5 Notice that the above Theorem does not say that the time derivative of the
solution u of (3.2) belongs to Lp(QT ): only the derivative along the characteristic curves
defined by system (3.3), namely Dtu−B · ∇u, is p-summable on the whole of QT .

4 Proof of Theorem 1

The inclusion Dp ⊂ Dp,max(A) being trivial, we have only to prove the opposite one, i.e.,
the following implication:

u ∈ Lp(RN ), Au ∈ Lp(RN ) =⇒ u ∈ W 2,p(RN ). (4.1)

For clarity reasons, we split the proof in two steps.
Step 1. Assume ∇B ∈ C2

b , F = 0. Let u ∈ Dp,max(A) be given and set f = Au. Then

u = P (t)u−
∫ t

0

P (t− s)f ds

and Theorem 3.3 shows that, for any t > 0, P (t)u ∈ W 2,p(RN ). Moreover, Theorem 3.4 im-
plies that the function w defined by w(t) =

∫ t

0
P (t−s)f ds belongs to Lp((0, T );W 2,p(RN )),

hence w(t) ∈ W 2,p(RN ) for almost every t. Considering such a t̄ we deduce that u =
P (t̄)u− w(t̄) ∈ W 2,p(RN ).

Step 2. The general case Let 0 ≤ η ∈ C∞
0 (RN ),

∫
RN η = 1 and define B̂ = B ∗ η.

Set moreover

Â =
N∑

i,j=1

Di

(
qijDj

)
+ B̂ · ∇.

From Step 1, we know that Dp,max(Â) = Dp := {u ∈ W 2,p(RN ) : B̂ · ∇u ∈ Lp(RN )}.
Since B is globally Lipschitz continuous, B − B̂ is bounded and therefore

‖Au− Âu‖p = ‖(B − B̂ + F ) · ∇u‖p ≤ C‖u‖W 1,p(RN )

for u ∈ Dp. Moreover Dp = {u ∈ W 2,p(RN ) : B · ∇u ∈ Lp(RN )}. Let (P̂ (t)t≥0 be the
semigroup generated by (Â,Dp). Combining the above estimate with (3.12) it follows that

‖(A− Â)P̂ (t)f‖p ≤
C√
t
‖f‖p

for every f ∈ Dp and the Miyadera-Voigt perturbation Theorem (see e.g. [5, Corollary
3.16]) shows that (A,Dp) is a generator. Since Dp ⊂ Dp,max(A) and (A,Dp,max(A)) is also
a generator by Theorem 2.2 we conclude that Dp = Dp,max(A).
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