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We study the problem modeling the flow of a Bingham fluid in contact with a
newtonian fluid, playing the role of lubricant. This is a free boundary problem
coupled by means of diffraction conditions with a boundary value problem of
parabolic type. We examine the steady state solutions, the evolutive case with
particular regard for the asymptotic behaviour of the solution, and a regularized
model related to the appearance of a new rigid zone. Q 1998 Academic Press
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INTRODUCTION

The lubrication of one fluid by another is a particularly important
branch of two-fluid dynamics: if one fluid has a large viscosity, it may be
lubricated by a less viscous fluid. A review of the most interesting models
and techniques in chemical engineering and in medicine can be found in
w x w x w x1 , 10 , and 12 .

In view of applications in lubricate transport, it can be interesting to
study the flow of a Bingham fluid in contact with a newtonian fluid. In fact
the Bingham fluid behaves like a viscous fluid if the shear stress exceeds a
yield value, and like a rigid body otherwise. During the motion the possible
formation of rigid zones inside the medium may cause a deceleration of
the medium.

Then, in order to avoid the consequent possible stopping of the flow, a
newtonian fluid with small viscosity playing the role of lubricant can be
placed between the Bingham fluid and the boundary.
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We recall that the one-dimensional flow of Bingham fluids has been
w xstudied both in planar and in cylindrical symmetry 2]4 : there the prob-

lem is formulated as a free boundary problem, where the surfaces dividing
fluid and rigid zones are the free boundaries.

Equations of motion are obtained from mass and momentum conserva-
tion, coupled with a constitutive law for the shear stress, expressed as a
linear function of the shear rate. The equation of fluid motion yields a
parabolic equation in the fluid zone, and the equation of motion of the

Ž w x.solid zone reduces to a free boundary condition see 2 .
w x w xIn particular, in 3 and 4 the behaviour of the solution has been

investigated, taking into account the possible formation of rigid zones
inside the fluid.

Here we propose a model for the flow of two immiscible fluids between
Ž .two parallel plates at a distance 2 L q l : the Bingham fluid flows between

two symmetric slabs, both occupied by the newtonian fluid.
Let y be the coordinate along the motion direction and let x be the

coordinate in the direction perpendicular to the plates.
< <We suppose that the Bingham fluid occupies the zone x - L, and the

< <newtonian fluid occupies the two symmetric zones, L - x - L q l.
Under the hypothesis of laminar flow, the velocity field at each point of

Ž Ž ..the representative xy plane is given by v s 0, ¨ x, t .
Let us denote by

< <h , L - x - L q l ,1
h s 0.1Ž .½ < <h , x - L,2

< <r , L - x - L q l ,1
r s 0.2Ž .½ < <r , x - L,2

respectively, the viscosity and the density of the two fluids.
< <In the zone x - L, occupied by the Bingham fluid, the only nonzero

element s of the stress tensor is given by the constitutive law

¨ x¡
h ¨ q t , ¨ / 0,2 x 0 x< <~ ¨ xs s 0.3Ž .¢w xyt , t , ¨ s 0,0 0 x

where t G 0 represents the yield stress of the Bingham fluid.0
< <In the zone L - x - L q l, occupied by the newtonian fluid, the stress

is defined by

s s h ¨ . 0.4Ž .1 x
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The equation of motion for the fluids reduces then to

< <r¨ s s q f , x F L q l , t ) 0, 0.5Ž .t x

where f represents the term y pr x, depending only on t, with p being
the pressure.

Ž .Note that Eq. 0.5 holds in the whole region occupied by both the
fluids. However, the stress, which is continuous at each point of the slab, is
not differentiable at the interfaces x s "L between the two fluids.

w xThen we cannot provide a global formulation of the problem as in 9 ,
but we have to split the problem into two coupled ones.

In the region occupied by the newtonian fluid, the governing equation
Ž . Ž .0.5 together with 0.4 gives

< <r ¨ y h ¨ s f , in L - x - L q l. 0.6Ž .1 t 1 x x

In the region occupied by the Bingham fluid, we define a free boundary
Ž . Ž .problem. Inserting 0.3 into 0.5 one obtains in the fluid zone the

equation

r ¨ y h ¨ s f , in yL - x - sy t j sq t - x - L 0.7� 4 � 4Ž . Ž . Ž .2 t 2 x x

"Ž .where we denote by x s s t the equations of the rigid boundaries,
where the stress assumes the yield value "t .0

Free boundary conditions are given by the condition of no deformation
Ž "Ž . .of the free boundary, i.e., ¨ s t , t s 0, corresponding to imposingx

s s "t , and by the equation of motion for the rigid core.0
ŽThe problem is completed assuming boundary conditions at x s " L q

.l , e.g., no-slip conditions, and initial conditions.
w xAs done in previous works 3, 4 , we have to point out the existence of a

unilateral constraint, related to the presence of rigid zones inside the
Bingham fluid. In fact, in the fluid zone occupied by the Bingham fluid,
the shear rate ¨ cannot change its sign, because of the constitutive lawx
Ž .0.3 . Then we have to impose that when ¨ vanishes somewhere in thex
Bingham zone, then at these points it must be s s "t .0

A detailed description of the problem will be given in next section. The
following two sections contain the study of how the steady state solutions
depend on the parameters characterizing the two fluids.

The study of the evolutive case is the object of Section 4, with particular
regard for the asymptotic behaviour of the solution. Finally, the possible
onset of further rigid zones is considered in the regularized model pre-
sented in Section 5.
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1. STATEMENT OF THE PROBLEM

Let t , r, h be fixed reference values.
Define the transformation

x h
˜x s , t s t .˜ 2L q l r L q lŽ .

Denoting by
s h t 0

s s , ¨ s ¨ , t s ,˜ ˜ ˜0t t L q l tŽ .
f h r li i

f̃ s L q l , h s , r s , l s ,Ž . ˜ ˜i it h r L

the nondimensional variables and constants involved in the problem, we
Ž . Ž .can rewrite equations 0.3 ] 0.5 . Dropping the tildes we obtain

1 1
< < < <r¨ s s q f , in x - j - x F 1 , t ) 0, 1.1Ž .t x ½ 5 ½ 51 q l 1 q l

with s defined by

1¡
< <h ¨ , F x F 1,1 x 1 q l

¨ 1x~ < <h ¨ q t , x - , ¨ / 0,s s 1.2Ž .2 x 0 x< <¨ 1 q lx

1
< <w xyt , t , x - , ¨ s 0,¢ 0 0 x1 q l

Ž . Ž .and r, h as in 0.1 and 0.2 .
< < Ž .In the region x - 1r 1 q l , the fluid zone of the Bingham fluid

Ž . Ž .where ¨ / 0 is separated from the rigid zone where ¨ s 0 by the freex x
"Ž .boundaries x s s t .

Ž . Ž .Inserting 1.2 into 1.1 , and writing
1

< <D s - x - 1, 0 - t - T ,1T ½ 51 q l

1
yD s y - x - s t , 0 - t - TŽ .2T ½ 51 q l

1
qj s t - x - , 0 - t - T ,Ž .½ 51 q l

¨ , in D ,1 1T¨ s ½ ¨ , in D ,2 2T
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we have

r ¨ y h ¨ s f , in D , i s 1, 2, 1.3Ž .i i t i i x x iT

¨ "1, t s 0, t ) 0, 1.4Ž . Ž .1

1 1
¨ " , t s ¨ " , t , t ) 0, 1.5Ž .1 2ž / ž /1 q l 1 q l

1
s " , t s 0, t ) 0, 1.6Ž .ž /1 q l

¨ s" t , t s 0, t ) 0, 1.7Ž . Ž .Ž .2 x

r ¨ s" t , t y f s" t s yt , t ) 0, 1.8Ž . Ž . Ž .Ž .Ž .2 2 t 0

¨ x , 0 s ¨ x , i s 1, 2, 0 - x - 1, s" 0 s s", 1.9Ž . Ž . Ž . Ž .i i0 0

< "< Ž . w x Ž .with s - 1r 1 q l and f being the jump of f. Equation 1.4 is a0
Ž . Ž .no-slip boundary condition; 1.5 and 1.6 express the continuity of veloc-

Ž .ity and stress at the surfaces x s "1r 1 q l separating the two fluids.
Ž .Equation 1.7 is the condition of no deformation of the free boundaries

"Ž .x s s t bounding the rigid core in the Bingham fluid, due to the
assumption that on the free boundary the strain rate is zero. The further

Ž .condition 1.8 on the free boundary can be derived directly from the
Ž w x.equation of motion of the solid zone see 13 .

For the sake of simplicity, we will suppose that f is a positive constant.
The methods used here can be extended, with minor changes, to the

Ž . Ž w x.general case f s f t see 2 .
We recall that we look for nonnegative solutions of our problem such

that ¨ / 0 inside the fluid region of the Bingham zone.x
We remark that in the theory of flow involving two fluids is proved the

w x w xnonuniqueness of the solution as discussed in 10 and 12 . However,
restricting ourselves to symmetric solution w.r.t. the axis x s 0 guarantees

Ž . Ž .that the solution of problem 1.3 ] 1.9 is unique. This will be the argu-
ment of Sections 3 and 4.

2. STEADY STATE SOLUTIONS

For the sake of simplicity, we will study the stationary problem only in
the half-plane x ) 0, remarking that the same method can be applied for
x - 0. Prescribing the value ¨ ) 0 of the velocity of the Bingham fluid on0
x s 0, we will look for all the solutions analyzing how they depend on the

Ž .parameters f , t , and s 1 .0
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Ž .Integrating Eq. 0.6 ,

s x s yf x y 1 q s , s s s 1 , 0 - x - 1. 2.1Ž . Ž . Ž . Ž .1 1

Ž . Ž .Figure 1 shows that in the plane s , x Eq. 2.1 gives, for any f and s 1 ,
the value of the stress at each point of the domain.

Ž . Ž . Ž .From 1.2 and 2.1 , we obtain ¨ , the stationary solution of 1.1`

integrating

¡s x 1Ž .
, - x - 1,

h 1 q l1

s x y t 1Ž . 0
0 - x - , s ) t ,0h 1 q l2X ~¨ x s 2.2Ž . Ž .`

s x q t 1Ž . 0
, 0 - x - , s - yt ,0h 1 q l2

1
w x0, 0 - x - , s g yt , t .¢ 0 01 q l

FIG. 1. Stationary stress.
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Ž . Ž . Ž .Imposing ¨ 0 s ¨ , ¨ 1 s 0 no-slip conditions , we have that the fol-` 0 `

lowing identity must hold:

1 X¨ q ¨ x dx s 0. 2.3Ž . Ž .H0 `
0

As we can observe in Fig. 1, different kinds of behaviour of the stationary
solution are allowed, with the possible presence of one or two boundaries
dividing the rigid zone from the fluid one in the Bingham fluid.

Let us denote by

1
x s min , max 0, sup s x ) t ,� 4Ž .½ 51 0½ 51 q l x

1
x s min , max 0, inf s x - yt ,� 4Ž .½ 52 0½ 51 q l x

Ž .with 0 F x F x F 1r 1 q l , the abscissae of the boundaries separating1 2
rigid and fluid zones in the region occupied by the Bingham fluid.

Ž .Integrating 2.3 in the zone occupied by the newtonian fluid and
Ž . Ž .recalling 2.1 and 2.2 ,

x yf x y 1 q s y t yf x y 1 q s q tŽ . Ž .Ž .1 1r 1ql1 0 1 0¨ q dx q dxH H0 h h0 x2 22

1 l f l
s y s q . 2.4Ž .1ž /h 1 q l 2 1 q l1

Ž Ž ..Imposing ¨ 1r 1 q l G 0, we obtain the condition`

f l
s F y . 2.5Ž .1 2 1 q l

Ž .In order to evaluate the left-hand side of 2.4 we have to distinguish many
Ž . Ž Ž ..cases according to the value of s 0 and s 1r 1 q l , taking into

account the possible presence of either one or two boundaries dividing the
rigid zone from the fluid one in the region occupied by the Bingham fluid.
For each case, we obtain a relationship between s , f , t , supposing the1 0
constants h , h , l fixed.1 2

We refer to the lines represented in Fig. 1 in order to describe all
possible stationary solutions, whose profiles are given in Fig. 3, at the end
of the present section.

Ž Ž ..Case 1. s 1r 1 q l ) t . The whole region is fluid, because the0
applied stress is greater than the threshold value everywhere. Writing
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Ž .h s h rh , Eq. 2.4 becomes2 1

2 2
1 q hl s y tŽ . 1 01 q l 1 q l

2l
q 1 y 1 y h f q 2h ¨ s 0. 2.6Ž . Ž .2 021 q lŽ .

Ž .Moreover s , t , f are subject to constraint 2.5 and, from the hypothesis1 0
Ž Ž ..s 1r 1 q l ) t ,0

l
s ) ya f q t , a s . 2.7Ž .1 0 1 q l

< Ž Ž .. <Case 2. s 1r 1 q l - t . Close to the newtonian fluid there is a0
layer in which the Bingham fluid is rigid. We have to distinguish two
possibilities:

Ž .Case 2.1. s 0 ) t . The zone close to x s 0 is fluid and is divided0
Ž .from the rigid zone by a boundary located at x s s y t rf.1 1 0

The constants s , f , t satisfy1 0

s 2 q 1 q ha 2 f 2 q 2 1 q ha s f y 2s t y 2t f q 2h ¨ f q t 2 s 0.Ž .Ž .1 1 1 0 0 2 0 0

2.8Ž .

Ž . Ž Ž ..Moreover because of the constraints for s 0 and s 1r 1 q l , besides
Ž .2.5 the following inequalities hold:

ya f y t - s - ya f q t , 2.9Ž .0 1 0

s ) yf q t . 2.10Ž .1 0

< Ž . <Case 2.2. s 0 - t . The whole region occupied by the Bingham fluid0
is rigid and the conditions are

2as q a 2 f q 2h ¨ s 0, 2.11Ž .1 1 0

Ž . Ž .together with 2.5 , 2.10 , and

yf y t - s - yf q t . 2.12Ž .0 1 0

Ž Ž ..Case 3. s 1r 1 q l - yt . The zone of Bingham fluid close to the0
newtonian one is fluid. In this case either one or two boundaries can exist.



FLOW OF TWO FLUIDS IN CONTACT 367

We have to impose

s - ya f y t . 2.13Ž .1 0

Ž .Case 3.1. s 0 - yt . Again the two regions are fluid. Because of the0
Ž . Ž .condition s 0 - yt , ¨ is decreasing everywhere and condition 2.40

gives the equation

22 2 l
1 q hl s q t q 1 y 1 y h f q 2h ¨ s 0Ž . Ž .1 0 2 021 q l 1 q l 1 q lŽ .

2.14Ž .

Ž . Ž .together with 2.5 , 2.13 , and

s - yt y f . 2.15Ž .1 0

< Ž . <Case 3.2. s 0 - t . Close to x s 0 there is a rigid layer divided from0
Ž .a fluid one by the boundary x s s q t rf q 1.2 1 0

Ž .Equation 2.4 becomes

2 2 2s q t q 2a 1 y h s f q 2at f q 1 y h a f y 2h ¨ f s 0Ž . Ž . Ž .1 0 1 0 2 0

2.16Ž .

Ž . Ž .and the s , f , t have to satisfy 2.5 , 2.13 , and1 0

yf y t - s - yf q t . 2.17Ž .0 1 0

Ž .Case 3.3. s 0 ) t . In this case there are two boundaries dividing a0
rigid zone from two fluid external ones. The equations of the boundaries
are

s y t s q t1 0 1 0
x s q 1, x s q 1.1 2f f

The equation for s , f , t is1 0

2 1
y4s t q 1 q hl fs q 2 y 2 ftŽ .1 0 1 0ž /1 q l 1 q l

2l
2y 1 y h y 1 f q 2h ¨ f s 0, 2.18Ž . Ž .2 021 q lŽ .

Ž . Ž .together with conditions 2.5 , 2.13 , and

s ) yf q t . 2.19Ž .1 0



COMPARINI AND MANNUCCI368

Ž .The study of the equations obtained from 2.4 in different cases can be
carried on fixing the values of one of the parameters. The representation

Ž .in the plane t , s , e.g. see Fig. 2 , has been obtained setting f s 1.0 1

Remark 2.1. The stationary flow of two newtonian fluids can be investi-
Ž w x.gated with same methods setting t s 0 see 12, Sect. 1.3 .0

We obtain three possible cases corresponding to Case 1, Case 3.1, and
Case 3.3, respectively. The velocity profiles are analogous to the ones in

ŽFig. 3, where the possible constant intervals are reduced to one point the
.rigid parts disappear .

Ž . Ž .In Case 1 Eq. 2.6 with constraint 2.7 gives
22hl y 1 f y 2h ¨ 1 q l ) 0. 2.20Ž . Ž .Ž . 2 0

Ž . 2We remark that this case cannot hold if h rh l - 1, that is, if the2 1
viscosity of fluid 1 is larger than the viscosity of fluid 2.

Ž . Ž .In Case 3.1 we have from 2.14 and 2.15
22hl q 2hl q 1 f y 2h ¨ 1 q l - 0. 2.21Ž . Ž .Ž . 2 0

Ž .FIG. 2. s 1 versus t .0
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FIG. 3. Velocity profiles.
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Case 3.3 holds if

hl2 y 1 f y 2h ¨ 1 q l2 ) 0,Ž .Ž . 2 0
2.22Ž .

22hl q 2hl q 1 f y 2h ¨ 1 q l - 0.Ž .Ž . 2 0

3. STEADY SYMMETRIC CASE

Ž .If we consider axisymmetrical solutions, the assumption s 0 s f q s1
s 0 gives a further relationship between the two parameters f and s .1
This guarantees for any f and t a unique stationary solution.0

Ž . Ž .For x ) 0, Eq. 2.1 reduces to s x s yfx.
Ž Ž ..Referring again to Fig. 1, in the case s 1r 1 q l G yt , we have that0

all the Bingham fluid is rigid. This case corresponds to previous Case 2.2,
Ž Ž ..with s 1r 1 q l - 0.

Ž .Hence from 2.11 we obtain the expression of ¨ as a function of f ,0

2f 1
¨ s 1 y , 3.1Ž .0 ž /2h 1 q l1

Ž Ž ..with the condition obtained imposing s 1r 1 q l G yt 0

f F t 1 q l . 3.2Ž . Ž .0

The expression for ¨ is then`

2¡ f 1 1
1 y , 0 F x F ,ž /2h 1 q l 1 q l1~¨ x s 3.3Ž . Ž .` f 1

21 y x , - x F 1.Ž .¢2h 1 q l1

Ž Ž ..If s 1r 1 q l - yt the Bingham fluid presents a rigid zone of width0
s s t rf , in contact with a fluid one close to the newtonian fluid, as in` 0
Case 3.2.

Ž .Equation 2.16 becomes

2 2f 1 t 10¨ s y q h 1 y , 3.4Ž .0 ž /ž / ž /2h 1 q l f 1 q l2

Ž .which holds, recalling 2.13 , if

f ) t 1 q l . 3.5Ž . Ž .0
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The explicit expression for ¨ in this case is the following:`

2 2¡ f 1 t 1 t0 0y q h 1 y , 0 F x F ,ž /ž / ž /2h 1 q l f 1 q l f2

2f 1 2t 102y x y y xž / ž /½2h 1 q l f 1 q l2~¨ x sŽ .` 21 t 10qh 1 y , - x - ,ž / 5ž /1 q l f 1 q l

f 1
21 y x , - x - 1.Ž .¢2h 1 q l1

3.6Ž .

4. TIME DEPENDENT SOLUTIONS

Let us consider the evolution problem defined in Section 1, looking for
symmetric solutions.

For x ) 0 we have

r ¨ y h ¨ s f , in D , i s 1, 2, 4.1Ž .i i t i i x x iT

1 1
¨ , t s ¨ , t , t ) 0, 4.2Ž .1 2ž / ž /1 q l 1 q l

1 1
h ¨ , t s h ¨ , t y t , t ) 0, 4.3Ž .1 1 x 2 2 x 0ž / ž /1 q l 1 q l

¨ s t , t s 0, t ) 0, 4.4Ž . Ž .Ž .2 x

r ¨ s t , t y f s t s yt , t ) 0, 4.5Ž . Ž . Ž .Ž .Ž .2 2 t 0

s 0 s s , ¨ x , 0 s ¨ x , i s 1, 2, s F x F 1, 4.6Ž . Ž . Ž . Ž .0 i i0 0

Ž .with 0 - s - 1r 1 q l .0
Ž . Ž .Equation 4.3 expresses the continuity of the stress at x s 1r 1 q l if

Ž . Ž .s t - 1r 1 q l .
Ž . Ž .The functions ¨ x in 4.6 satisfy the following assumptions:i0

¨ g C 3 , ¨ G 0, ¨ X F 0, ¨Y F 0, 4.7Ž .i0 i0 i0 i0

and the second-order compatibility conditions.
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We recall that we are looking for nonnegative classical solutions such
that ¨ - 0 in D .2 x 2T

Concerning local existence and uniqueness of the solution of problem
Ž . Ž . w x w x4.1 ] 4.6 we refer to 6 and 11 .

In particular we note that classical methods can be applied to the
problem satisfied by the function z s ¨ ,t

r z y h z s 0, in D , i s 1, 2, 4.8Ž .i i t i i x x iT

1 1
z 1, t s 0, z , t s z , t , t ) 0, 4.9Ž . Ž .1 1 2ž / ž /1 q l 1 q l

1 1
h z , t s h z , t , t ) 0, 4.10Ž .1 1 x 2 2 xž / ž /1 q l 1 q l

1 t 0
z s t , t s f y , t ) 0, 4.11Ž . Ž .Ž .2 ž /r s tŽ .2

1 t 0
z s t , t s s t , t ) 0, 4.12Ž . Ž . Ž .Ž . ˙2 x h s tŽ .2

1
Yz x , 0 s h ¨ q f , 0 F x F 1. 4.13Ž . Ž . Ž .i i iri

This is a Stefan problem in D coupled by means of diffraction condi-2T
Ž .tions on x s 1r 1 q l with a standard parabolic problem in D . To1T

Ž . Ž .prove regularity for the solution of problem 4.8 ] 4.13 , we need hypothe-
Ž Ž ..ses on the second derivative of the initial data see 4.7 .

In order to study the continuation of the solution, and its behaviour, we
w x Ž . Ž .can follow the methods of 4 , noting that problem 4.1 ] 4.6 can be

transformed into a free boundary problem with Cauchy data prescribed in
Ž .s t in the zone occupied by the Bingham fluid for the function defined as

follows:

xr fj2
C x , t s y dj z z , t y dz . 4.14Ž . Ž . Ž .H H2 2ž /h rŽ . Ž .s t s t2 2

The function C satisfies a problem like the reaction diffusion problem for2
Ž w x w x.the concentration of oxygen in a living tissue see 5 and 7 .

We remark that

C x , t s ¨ s t , t y ¨ x , t . 4.15Ž . Ž . Ž . Ž .Ž .2 2 2



FLOW OF TWO FLUIDS IN CONTACT 373

w xRecalling the results of 7 we have that the solution could either exist for
any T or become extinct or blow up. Note that it could happen also that
the model loses its sense because the constraint ¨ - 0 is violated at2 x
some time.

Ž . ŽMoreover we have to exclude that s t vanishes at some time i.e., the
.extinction of the rigid zone , because at that time we would have a

maximum for ¨ , where the stress would be zero, inside the fluid domain.
We can state that only one of the following cases can happen:

Ž .a there exists a global solution;
Ž .b ' t such that the whole region occupied by the Bingham fluid is
Ž .rigid extinction of the solution in D ;2 t

Ž . Ž .c ' t such that the constraint ¨ - 0 is violated on x s 1r 1 q l0 2 x
at t s t .0

Ž . Ž .In order to characterize cases a ] c , we have first to exclude the
occurrence of blow-up and the disappearance of the rigid zone. This will
be done by means of the following estimates and by means of a compari-
son with suitable supersolutions.

Ž .PROPOSITION 4.1. Under assumption 4.7 we ha¨e

¨ G 0, in D , 4.16Ž .i iT

1
¨ - 0, in D j x s , 0 - t - T , 4.17Ž .i x iT ½ 51 q l

f f
¨ - max , , in D . 4.18Ž .i t iT½ 5r r1 2

Moreo¨er, in the case r - r , if we assume also1 2

r f1¨ x , 0 - y 1 - 0, 4.19Ž . Ž .1 x x ž /r h2 1

we ha¨e

f
¨ - , in D . 4.20Ž .i t iTr2

Proof. The estimates can be easily obtained from the maximum princi-
ple. Here we have denoted by T the maximum existence time of the
solution, both in the case of global solution and in the case of existence up

Ž Ž . Ž ..to a finite time either T s t for case b or T s t for case c .0
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Ž . Ž .Remark 4.1. Inequalities 4.18 and 4.20 provide estimates of ¨ i x x
depending on the density of the two fluids. Then

if r G r , ¨ - 0 in D ,1 2 2 x x 2T
4.21Ž .

if r - r , ¨ - 0 in D .1 2 1 x x 1T

Ž .If r - r and 4.19 holds1 2

¨ - 0, in D . 4.22Ž .i x x iT

Ž .COROLLARY 4.1. Under hypotheses 4.7 , blow-up of the solution cannot
happen.

w xProof. Recalling 8 , the occurrence of blow-up is related to the onset
Ž .of a negative set for the function C defined in 4.14 ; however, in this case2

Ž .estimate 4.17 implies C ) 0 in D .2 2T

Now we will construct supersolutions and subsolutions in order to
Ž . Ž .characterize cases a ] c . The existence of supersolutions will enable us

also to exclude the extinction of the rigid zone.
Ž . Ž . Ž . Ž .Let ¨ , s, T and ¨ , s, T be the solutions of problem 4.1 ] 4.6 corre-i

Ž Ž . Ž . . Ž Ž . Ž . .sponding to the data ¨ x, 0 , s 0 , f and ¨ x, 0 , s 0 , f , respectively.i i

PROPOSITION 4.2. Suppose that

s 0 ) s 0 , ¨ x , 0 ) ¨ x , 0 , 4.23Ž . Ž . Ž . Ž . Ž .i x i x

and either

Ž .i r G r , f F f1 2

or
Ž .ii r - r , f s f.1 2

Then

s t ) s t , 0 - t - min T , T s T , 4.24Ž . Ž . Ž . Ž .1 2

˜¨ x , t F ¨ x , t , in D , 4.25Ž . Ž . Ž .i i iT

˜¨ x , t G ¨ x , t , in D , 4.26Ž . Ž . Ž .i x i x iT

where

1
D̃ s - x - 1, 0 - t - T ,1T ½ 51 q l

1
D̃ s s t - x - , 0 - t - T .Ž .2T ½ 51 q l
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w xProof. The result follows using the methods of 2 applying the maxi-
˜mum principle to the functions Dw s ¨ y ¨ in D , taking into accounti i x i x iT

Ž .the conditions satisfied on x s 1r 1 q l :

1 1
h Dw , t s h Dw , t ,1 1 2 2ž / ž /1 q l 1 q l

1 r 1 r1 1
h Dw , t s h Dw , t q f y f y 1 .ž /1 1 x 2 2 xž / ž / ž /1 q l r 1 q l r2 2

Ž . Ž .The proposition above enables us to compare the solution of 4.1 ] 4.6
with suitable stationary solutions.

Ž . Ž . Ž .Let ¨ , s and ¨ , s be the stationary solutions defined in 3.6` ` ` `

corresponding to f and f , respectively, with f - f.
Ž . Ž . Ž .Let ¨ , s, T the solution of 4.1 ] 4.6 .

Ž .PROPOSITION 4.3. Suppose that r G r . Suppose that 4.7 holds and1 2

X Xs - s 0 - s , ¨ x - ¨ x , 0 - ¨ x , f F f F f . 4.27Ž . Ž . Ž . Ž . Ž .` ` i` i x i`

Then

s - s t - s , ¨ x - ¨ x , t - ¨ x ,Ž . Ž . Ž . Ž .` ` i` i i` 4.28Ž .
X X¨ x - ¨ x , t - ¨ x .Ž . Ž . Ž .i` i x i`

Proof. Follows immediately from the previous proposition.

Ž . Ž .PROPOSITION 4.4. Suppose that r - r . Suppose that 4.7 and 4.271 2
hold and

r r f r1 1 1Y Y¨ x - ¨ x , 0 - y 1 q ¨ x , 4.29Ž . Ž . Ž . Ž .1` 1 x x 1`ž /r r h r2 2 1 2

Y Y¨ x - ¨ x , 0 - ¨ x . 4.30Ž . Ž . Ž . Ž .2` 2 x x 2`

Then

Xs - s t - s , ¨ x - ¨ x , t - ¨ x - ¨ x , t - ¨ x .Ž . Ž . Ž . Ž . Ž . Ž .` ` i` i i` i x i`

4.31Ž .

Ž .Proof. Let us first consider the comparison with ¨ , s .` `

Ž . Ž .Noting that s 0 ) s , then s t ) s at least up to a time t s t .` ` 0
Ž .Suppose that s t s s . Then the function z s ¨ satisfies problem0 ` i i t

Ž . Ž .4.8 ] 4.13 in D .i t0



COMPARINI AND MANNUCCI376

Ž .Ž .Set M s 1rr f y f ) 0. Then, using maximum principle, from as-2
Ž . Ž Ž . .sumptions on the data we get z x, t ) yM for t - t , and z s t , ti 0 2 0 0

Ž .would be a minimum; hence, noting that s t - 0 we get a contradiction˙ 0
Ž .with 4.12 . Hence s ) s and the lower estimates for ¨ . The reverse` i x x

inequalities can be proved in a similar manner.
Ž .Other estimates in 4.31 follow as consequences.

Ž .PROPOSITION 4.5. Suppose that assumptions 4.7 hold. Then

t 0
s t ) ) 0 4.32Ž . Ž .

F1

with

t 0
5 5F ) max , h ¨ x , 0 . 4.33Ž . Ž .1 i i x x½ 5s0

Ž .Proof. The stationary solution 3.6 corresponding to f s F satisfies1
the hypotheses of Propositions 4.3 and 4.4.

Looking for a possible upper bound for s we need more hypotheses on
the data

Ž . Ž .PROPOSITION 4.6. Suppose 4.7 holds, f ) t 1 q l , and0

max h ¨ x , 0 ' ya F yt 1 q l . 4.34� 4Ž . Ž . Ž .i i x x i 0
x

Then

t 10
s t - F , 4.35Ž . Ž .

F 1 q l2

with

t 0
t 1 q l F F F min , a . 4.36Ž . Ž .0 2 i½ 5s0

Ž .Proof. If r G r , then for any a G t 1 q l we can choose F as in1 2 i 0 2
Ž .4.34 and consider the stationary solution corresponding to F . Then the2

Ž .hypotheses of Proposition 4.3 are verified and 4.35 holds.
If r - r , in order to verify the hypotheses of Proposition 4.4, we have1 2

to suppose

r r1 1
a G y y 1 f q t 1 q l , a G t 1 q l .Ž . Ž .1 0 2 0ž /r r2 2
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The previous results guarantee that the following theorem holds.

Ž . Ž .THEOREM 4.1. Suppose that 4.7 and 4.34 hold. Suppose that f G
Ž .t 1 q l . Then there exists a unique solution for any t.0

In the case of global existence we can give a further estimate:

PROPOSITION 4.7. Under the hypotheses of Theorem 4.1 we ha¨e

` t 0 y f dt - q`. 4.37Ž .H ž /s tŽ .0

Ž .Proof. Inequality 4.37 can be obtained from the Green’s identity

r u ¨ dx q h u ¨ y u ¨ dt s 0,Ž .H i i i i x i x
 DiT

setting u s z and ¨ s x.i i
Ž . Ž . Ž .Noting that, from 4.32 and 4.35 , s ' lim s t exists and that` t ª`

Ž .z x,t tends to 0 uniformly as t ª `, we obtain

`f h t t2 0 021 y s s y f dt y y h ¨ s , 0 q fŽ .Ž . H` 2 2 0ž /2 r s 1 q l02

2f 1
q h y h 1 y .Ž .2 1 ž /2h 1 q l1

Ž .Recall that, if f - t 1 q l , the corresponding stationary solution is0
Ž . Ž . Ž .given by 3.3 and s ' 1r 1 q l . Then 4.37 cannot be satisfied.`

Therefore we have

Ž . Ž .PROPOSITION 4.8. Suppose that 4.7 holds and that, if r - r , 4.191 2
Ž .holds. Suppose that f - t 1 q l . Then there exists a time t such that0 0

Ž . Ž .s t s 1r 1 q l .0

Ž . Ž . Ž .Proof. If f - t 1 q l then case a cannot hold. Moreover case c is0
Ž .excluded because ¨ stays negative see Remark 4.2 .2 x x

Under the hypotheses of the previous proposition, the solution exists
again for any t, with the whole region occupied by the Bingham fluid that
stays rigid. In fact if we consider the problem for t G t , it is always0

Ž .possible to find a stationary solution defined by 3.3 , such that ¨ ) ¨1 1`

in D .1 t T0

Assuming further hypotheses on the data, we can give some monotonic-
ity results.
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PROPOSITION 4.9. Suppose that the assumptions of Proposition 4.3 or 4.4
are satisfied. we ha¨e that

Ž . Ž .i if ¨ x, 0 - 0 theni x x x

a t - s t - 0, for any t ) 0, 4.38Ž . Ž . Ž .˙

¨ x , t - 0, in D , 4.39Ž . Ž .i x x x iT

Ž .where a t is a negatï e function which is bounded for any t;

Ž . Ž . Ž .ii if ¨ x, 0 ) 0 and ¨ x, 0 - yt rh x theni x x x i x x 0 i

h2
0 - s t - , t ) 0, 4.40Ž . Ž .˙

r s2

t 0¨ x , t - y , ¨ x , t ) 0, in D . 4.41Ž . Ž . Ž .i x x i x x x iTh xi

Ž . Ž . w xProof. We obtain estimates 4.38 and 4.39 as done in 2 . Concern-
Ž .ing case ii we apply the maximum principle to the function ¨ s z yi i

Ž .Ž .1rr f y t rx .i 0

Ž .Let us now investigate case c .
Ž .If r - r , for suitable initial data not satisfying condition 4.19 , then1 2

Ž Ž . .¨ can vanish at 1r 1 q l , t . Then at time t s t , our model loses its2 x 0 0
validity and we need regularization in order to study the behaviour of the
solution after t .0

5. REGULARIZATION PROBLEM

Ž ŽSuppose that r - r and that there exists a time t such that ¨ 1r 11 2 0 2 x
. . Ž .q l , t s 0, then at this time the stress at x s 1r 1 q l reaches the0

threshold value.
We formulate a regularized free boundary problem with a new free

Ž . Ž .boundary x s S t appearing at 1r 1 q l , at time t . Then an internal0
rigid zone appears: it is separated from the fluid zone by this new free

w xboundary and it is in contact with the newtonian fluid 4 .
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For the sake of simplicity we shift the time origin to t s t . Let0

1
D s x , t : 0 - s t - x - S t - , 0 - t - T ,Ž . Ž . Ž .2T ½ 51 q l

1
D s x , t - x - 1, 0 - t - T ,Ž .1T ½ 51 q l

r ¨ s h ¨ q f , in D , 5.1Ž .i i t i i x x iT

¨ 1, t s 0, t ) 0, 5.2Ž . Ž .1

1
¨ S t , t s ¨ , t , t ) 0, 5.3Ž . Ž .Ž .2 1 ž /1 q l

1 f 1 1
y S t ¨ S t , t y s t q h ¨ , t ,Ž . Ž .Ž .2 t 0 1 1 xž / ž /1 q l r r 1 q l2 2

5.4Ž .

¨ S t , t s 0, t ) 0, 5.5Ž . Ž .Ž .2 x

¨ s t , t s 0, t ) 0, 5.6Ž . Ž .Ž .2 x

1 t 0¨ s t , t s f y , t ) 0, 5.7Ž . Ž .Ž .2 t ž /r s tŽ .2

1
¨ x , 0 s ¨ x , 0 F x F 1, s 0 s s , S 0 s .Ž . Ž . Ž . Ž .i i0 1 1 q l

5.8Ž .
Ž .Equation 5.4 is the rigid motion equation for the zone between S and

Ž .1r 1 q l , where we took into account the continuity of the stress on
Ž .x s 1r 1 q l .

Ž . Ž .Existence and uniqueness of the solution of problem 5.1 ] 5.8 can be
proved again by means of classical methods, studying the problem satisfied
by z s ¨ .i i t

According to the results of the previous section, the assumptions on the
data are

1
0 - s - ,1 1 q l

f
¨ x , 0 ) 0, ¨ x , 0 - 0, 0 - ¨ x , 0 - ,Ž . Ž . Ž .i i x i t r1 5.9Ž .

' x : ¨ x , 0 - 0, for s - x - x ,Ž .2 x x 1

1
¨ x , 0 ) 0, for x - x - .Ž .2 x x 1 q l
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˙ Ž .Moreover, in order to obtain S 0 - 0, we need also

1 1
z x , 0 ) 0, in d y - x - , 5.10Ž . Ž .2 x 1 q l 1 q l

Ž .for some 0 - d - 1r 1 q l .
Ž .In fact, assuming z continuous at x s 1r 1 q l , we get, at least for a2 x

˙ Ž .small time t, S t - 0, recalling

Ṡ
z S t , t s y r z S t , t y f .Ž . Ž .Ž . Ž .Ž .2 x 2 2h2

We conclude by giving some estimates following from the maximum
principle that hold in D :iT

1
¨ x , t ) 0, ¨ x , t ) ¨ , 0 ) 0, 5.11Ž . Ž . Ž .1 2 2 ž /1 q l

¨ x , t - 0, 5.12Ž . Ž .i x

f
0 - ¨ x , t - , 5.13Ž . Ž .i t r1

s t ) 0. 5.14Ž . Ž .

A detailed analysis of this case could be performed using the methods
w xof 3 .
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