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Abstract

We analyse a model for incompressible flows through a porous medium,
characterized by a mechanical interaction between the flow and the solid
matrix and by the presence of a wetting front penetrating in a dry medium.

1 Introduction

We study a one-dimensional filtration problem describing the flow of an incom-
pressible fluid injected in a dry solid, at a given pressure.

The model considers a porous medium occupying the region x > 0, where x
is the downward directed vertical coordinate. Capillarity is neglected. As a conse-
quence, the penetrating fluid creates a wetting front, denoted by x = s(t), which
separates the dry soil from the saturated medium.

In the wet zone the flow causes a deformation of the porous matrix, thus we
will assume that the porosity ε, which is a prescribed constant in the dry region,
is an unknown function of x and t.

The hydraulic conductivity k is taken as a function of ε and therefore is also
affected.

We neglect macroscopic deformations of the medium and we assume that no
chemical process takes place.

The equations governing the flux and the porosity in the saturated region
0 < x < s(t), are

q = −k(ε)
∂

∂x
(p− ρgx), (1.1)
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∂ε

∂t
= −G(q, ε)ξ[ε− ε∗(q)]. (1.2)

Equation (1.1) is the Darcy’s law: q is the volumetric velocity of the fluid,
p is the pressure (prescribed as a given function of t at x = 0, and zero at the
wetting front), ρ is the constant fluid density and g is the gravity acceleration.

Equation (1.2) expresses the decrease of porosity due to the flow-induced
compression. G is a positive function, ξ is nonnegative and vanishes when its
argument is non-positive. ε∗(q) is the lower limit porosity depending on the local
values of q.

In (1.2) we have assumed that the deformation process, due to the flow-
induced compression is irreversible.

This model can be generalized, with minor changes, considering in equation
(1.2) an adding term describing the mass release from the porous matrix (see [3]).

A further relationship between flux and porosity is obtained from

∂ε

∂t
+
∂q

∂x
= 0, (1.3)

expressing mass conservation and saturation.
Since the wetting front moves with the same velocity as the fluid particles,

we have
ṡ(t) =

1
ε0
q(s(t), t). (1.4)

The constant ε0 represents the value of the porosity at x = s(t), which is assumed
equal to the value in the dry medium.

The model is then completed by initial and boundary conditions

ε(s(t), t) = ε0, (1.5)
p(0, t) = p0(t) > 0, (1.6)
p(s(t), t) = 0, (1.7)
s(0) = 0. (1.8)

We assume that the function p0(t) is continuous and

π1t
n ≤ p0(t) ≤ π2t

n, (1.9)

in a bounded interval, for two positive constants π1, π2 and some real number
n ≥ 0.

We refer to [1], [6] for a review of the literature about non-standard filtration
problems of this kind.

In [3] the phenomenon of the flow-induced deformation of the porous matrix,
coupled with the mass losses, is considered in the case in which the fluid penetrates
through a layer of prescribed thickness, that is in the absence of the free boundary.

Concerning models presenting a wetting front and generalizing the classical
Green-Ampt problem ([5]), we quote [2], [4].
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In [2] the porosity is taken constant, but the dissolution of a substance takes
place in the wet region, influencing the hydraulic conductivity.

In [4] the physical parameters of the system k and ε depend on q in a pre-
scribed way.

The aim of this paper is to obtain the global existence and uniqueness of a
classical solution for the problem described above.

According to the behaviour of the pressure at x = 0, we distinguish two cases
(see (1.9)): 0 ≤ n < 1, in which the initial stage of the problem is driven by the
pressure gradient, and n ≥ 1, corresponding to a dominant influence of gravity.

2 Statement of the problem

The governing equations in dimensionless form are the following (Problem I)

∂ε(x, t)
∂t

= −G(q, ε)ξ(ε− ε∗(q)), 0 < x < s(t), t > 0, (2.1)

∂ε

∂t
+
∂q

∂x
= 0, 0 < x < s(t), t > 0, (2.2)

q(x, t) = −k(ε)
∂

∂x
(p− ρgx), 0 < x < s(t), t > 0, (2.3)

ṡ(t) =
1
ε0
q(s(t), t), t > 0, (2.4)

with initial and boundary conditions

ε(s(t), t) = ε0, t > 0, (2.5)
p(0, t) = p0(t), t > 0, (2.6)
p(s(t), t) = 0, t > 0, (2.7)

s(0) = 0. (2.8)

We take the following assumptions on the data

–G(η1, η2) ∈ C1, G ≥ 0,
∂G

∂η1
,
∂G

∂η2
positive bounded; (2.9)

– ε∗(η) ∈ C1,
dε∗
dη

< 0,

there exist two constants εm, εM such that
0 < εm ≤ ε∗(η) ≤ εM < 1, ∀ η, εm ≤ ε0 ≤ εM ;

(2.10)

– ξ(η) ∈ C1, 0 ≤ ξ ≤ ξ0, ξ(η) = 0 for η < 0,
0 ≤ ξ′ ≤ ξ′0, for some positive constants ξ0, ξ′0, and |η| < εM ;

(2.11)

– k(η) ∈ C1, 0 < km ≤ k(η) ≤ kM ,
|k′| ≤ k′0, ∀η, for some positive constants km, kM , k′0;

(2.12)

– p0(t) ∈ C1(0, T ), π1t
n ≤ p0(t) ≤ π2t

n, π1, π2 constants
and n ≥ 0 in some bounded interval [0,T].

(2.13)
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Definition 2.1 A solution of Problem I is (T, s, p, ε, q) such that

1) T > 0,

2) s(t) ∈ C1(0, T ) ∩ C([0, T ]),

p(x, t) ∈ C1,0(QT ),

ε(x, t) ∈ C1,1(QT ),

q(x, t) ∈ C1,0(QT ),

where QT = {(x, t) : 0 < x < s(t), 0 < t < T}.

3) The functions s, p, ε, q satisfy equations (2.1)-(2.4) in QT with (2.5)-(2.8).

Theorem 2.1 Suppose that assumptions (2.9)-(2.13) hold. Then

a) If 0 ≤ n < 1, Problem I admits one unique solution for any T > 0.

b) If n ≥ 1, Problem I admits at least one solution for any T > 0.

The proof of this theorem is based upon a fixed point argument and the
procedure goes through the following steps:
i) We introduce the set

Σ =
{
σ ∈ C1(0, T ) : σ(0) = 0; A1(t) ≤ σ(t) ≤ A2(t);

B1(t) ≤ σ̇(t) ≤ B2(t);
|σ̇(t1)− σ̇(t2)|
|t1 − t2|

≤ S(t1, t2)
}
,

where Ai(t), Bi(t), i = 1, 2, S(t1, t2) and T will be defined in the following sections.
ii) We take any σ ∈ Σ and we define s(t) =

√
σ(t). In order to obtain q(x, t) and

ε(x, t) corresponding to s(t) =
√
σ(t), we consider the following ODE’s system

with the appropriate initial conditions,

qx = Γ(q, ε), in QT , (2.14)

εt = −Γ(q, ε), in QT ,

q(s(t), t) = ε0ṡ, 0 < t < T,

ε(s(t), t) = ε0, 0 < t < T,

where we set
Γ(q, ε) = G(q, ε)ξ(ε − ε∗(q)).

System (2.14) cannot be reduced to a vectorial ODE for (q, ε).
A proof of existence and uniqueness of the solution of (2.14) will be obtained

by means of a fixed point argument.
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iii) We obtain p(x, t) by integrating

px = − q

k(ε)
+ ρg, (2.15)

p(0, t) = p0(t).

iv) The next step consists in determining a function σ̃(t) associated to σ(t), defined
by the operator T : Σ→ Σ, such that T σ = σ̃.

The operator T can be introduced in the following way (see [2]): from (2.15),
(2.7) we obtain

0 = p0(t)−

√
σ(t)∫

0

q(y, t)
k(ε(y, t))

dy + ρg
√
σ(t). (2.16)

From (2.14) we have

q(x, t) = q(
√
σ(t), t)−

x∫
√
σ(t)

Γ(q, ε)(y, t) dy. (2.17)

Inserting (2.17) in (2.16), we obtain an expression for σ̇ = 2sṡ that can be inte-
grated with the initial condition σ(0) = 0. Hence the operator T is defined by

σ̃(t) = 2
∫ t

0

p0(τ) + ρg
√
σ(τ) +

√
σ(τ)∫
0
R(ε(x, τ))× (2.18)

√
σ(τ)∫
x

Γ(q(y, τ), ε(y, τ)) dy dx

 dτ / ε0√
σ(t)

√
σ(τ)∫

0

R(ε(x, θ)) dθ

where

R(ε) =
1
k(ε)

.

Any fixed point σ = σ̃ of (2.18) with the corresponding s =
√
σ, q, ε, p, obtained

by (2.14), (2.15) gives a solution of Problem I.
We will show that once a fixed point has been found, global existence can be

proved extending the solution for any T > 0.
Next sections will be devoted to the proof of Theorem 2.1, in the case 0 ≤

n < 1 and n ≥ 1 respectively.
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3 Case 0 ≤ n < 1
Take Ai(t), Bi(t), i = 1, 2 in the definition of Σ in the following form:

A1(t) =
2kmπ1

ε0(n+ 1)
tn+1 ≡ α1t

n+1, (3.1)

A2(t) = α2t
n+1, (3.2)

where α2 is the unique positive root of

α2 =
2kM
ε0

[
π2

n+ 1
+ 2ρg

√
α2

n+ 3
T (1−n)/2 +

Γ0α2T

2km(n+ 2)

]
, (3.3)

B1(t) =
2kmπ1

ε0
tn ≡ β1t

n, (3.4)

B2(t) =
2kM
ε0

(
π2 + ρg

√
α2T

(1−n)/2 +
Γ0α2T

2km

)
tn ≡ β2t

n, (3.5)

for any t ∈ (0, T ), with T fixed. S(t1, t2) will be specified later.
Taken any σ ∈ Σ, we calculate s =

√
σ and solve system (2.14) using a fixed

point argument.

Lemma 3.1 Under assumptions (2.9)-(2.10), problem (2.14) has a unique solu-
tion (q, ε) where q(x, t) ∈ C1,0(QT ), ε(x, t) ∈ C1,1(QT ) for any prescribed σ ∈ Σ.

Proof. We define the set

Θ = { q(x, t) ∈ C0(QT ), q(s(t), t) = ε0ṡ(t),
0 < qm(t) ≤ q(x, t) ≤ qM (t), 0 < t < T},

with qm, qM , T to be determined later, in dependence on Ai, Bi.
For any q ∈ Θ we compute

ε(x, t) = ε0 −
t∫

s−1(x)

Γ(q, ε)(x, τ) dτ, (3.6)

then we define the operator

Φ : Θ −→ C0, Φq = q̃,

where

q̃(x, t) = ε0ṡ(t)−
s(t)∫
x

Γ(q, ε)(y, t) dy. (3.7)
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First let us prove some a priori estimates. We have√
A1(t) ≤ s(t) ≤

√
A2(t), t ≥ 0, (3.8)

B1(t)
2
√
A2(t)

≤ ṡ(t) ≤ B2(t)
2
√
A1(t)

, t > 0. (3.9)

Recalling (3.1)-(3.5), the above estimates can be expressed in the form
√
α1t

(n+1)/2 ≤ s(t) ≤ √α2t
(n+1)/2, t ≥ 0, (3.10)

β1

2
√
α2
t(n−1)/2 ≤ ṡ(t) ≤ β2

2
√
α1
t(n−1)/2, t > 0. (3.11)

Note that, because of assumptions (2.9)-(2.10), and recalling that εt < 0 we have

εm ≤ ε(x, t) ≤ ε0, ∀ (x, t) ∈ QT , (3.12)

where εm is defined by (2.10).
From (3.7), we get

qm(t) ≤ q̃(x, t) ≤ qM (t), (3.13)

where

qm(t) =
ε0β1

2
√
α2
t(n−1)/2 − Γ0

√
α2t

(n+1)/2, (3.14)

qM (t) =
ε0β2

2
√
α1
t(n−1)/2, (3.15)

with Γ0 = sup
q∈Θ
ε∈(0,1)

|Γ(q, ε)|.

Note that qm(t) > 0 for

t <
ε0β1

2α2Γ0
. (3.16)

Hence Φ(Θ) ⊂ Θ.
Now we show that Φ is contractive. Let q1, q2 ∈ Θ and ε1, ε2 be the corre-

sponding functions defined by (3.6). Denoted by E(x, t) the difference ε1(x, t) −
ε2(x, t), E satisfies

Et = Γε|ε=εE + Γq|q=q(q1 − q2), (3.17)
E(s(t), t) = 0,

with ε, q suitable functions.
Hence

‖ε1 − ε2‖T ≤ C1(T )‖q1 − q2‖T ,
where, recalling assumptions on Γε and Γq, C1(t) is a nondecreasing function of t,
and

‖q̃1 − q̃2‖T ≤ C2(T )‖q1 − q2‖T , (3.18)
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where
C2(t) = (Γq + C1(T ))

√
A2(t). (3.19)

Here and in the following we will define:

‖f‖T = sup
0<x<s(t)
0<t<T

|f(x, t)|, Γq =
∥∥∥∥∂Γ
∂q

∥∥∥∥
T

, Γε =
∥∥∥∥∂Γ
∂ε

∥∥∥∥
T

,

while Ci(t), ci(t) will denote suitable sufficiently regular nondecreasing functions
which can be expressed in terms of the data.

Recalling (3.2) we have that C2(t) < 1 for

t <

(
1

√
α2(Γq + C1(T ))

)2/(n+1)

. (3.20)

Then Φ is a contraction map for T sufficiently small.
Further regularity on q(x, t) and ε(x, t) can be obtained in the following way:

from (2.14) we have

0 ≤ qx(x, t) ≤ Γ0,

−Γ0 ≤ εt(x, t) ≤ 0;

moreover the estimate

|εx(x, t)| ≤ C3(T ) + C4(T )t(1−n)/2, (3.21)

for any x ∈ (0, s(t)), is obtained noting that εx satisfies

(εx)t + Γε(εx) + ΓΓq = 0,

εx(s(t), t) =
Γ(s(t), t)
ṡ(t)

.

Set now Q(x) ≡ q(x, t1) − q(x, t2), 0 < t1 < t2 < T , Q(x) satisfies the following
integral equation

Q(x) = −
s(t1)∫
x

Γq(q, ε)Q(y) dy + ε0(ṡ(t1)− ṡ(t2))−

−
s(t1)∫
x

Γε(q, ε)Γ(y, t)(t1 − t2) dy +

s(t2)∫
s(t1)

Γ(q, ε)(y, t2) dy,

with suitable t ∈ (t1, t2), and q.
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Using Gronwall’s Lemma we have

|Q(x)| ≤ |t1 − t2|[1 +C5(T )]
(
ε0S(t1, t2) + C6t

(n+1)/2
2 + C7t

(n−1)/2
1

)
≡

≡ A(t1, t2)|t1 − t2|. (3.22)

Note that the function A(t1, t2) depends on S(t1, t2) and then it will be determined
later. However we can note here that A(t1, t2) is unbounded when t1 → 0. 2

The regularity of p(x, t) follows from (2.3), taking into account Lemma 3.1.

Proof of Theorem 2.1-a) Take any σ ∈ Σ. We have immediately that σ̃(t)

defined in (2.18) satisfies

α1t
n+1 ≤ σ̃(t) ≤ α2t

n+1, (3.23)

where α1, α2 are defined by (3.1), (3.3) and

β1t
n ≤ ˙̃σ(t) ≤ β2t

n, (3.24)

where β1, β2 are defined by (3.4), (3.5). Moreover, noting that

1√
σ

√
σ∫

0

R(ε(x, t)) dx = R(ε(x, t)) ≡ R(t), (3.25)

with x suitable value in (0,
√
σ), we have for 0 < t1 < t2 < T :

| ˙̃σ(t1)− ˙̃σ(t2)| = 2
ε0

∣∣∣∣p0(t1)
R(t1)

− p0(t2)
R(t2)

+ ρg

(√
σ(t1)
R(t1)

−
√
σ(t2)
R(t2)

)
+

+
1

R(t1)

√
σ(t1)∫
0

R(ε(x, t1))

√
σ(t1)∫
x

Γ(q, ε)(y, t1) dy dx−

− 1
R(t2)

√
σ(t2)∫
0

R(ε(x, t2))

√
σ(t2)∫
x

Γ(q, ε)(y, t2) dy dx
∣∣∣∣. (3.26)

Let us estimate now the terms in the right-hand side of (3.26). We have:

|p0(t1)− p0(t2)| = |ṗ0(t)| |t1 − t2|, t ∈ [t1, t2],∣∣∣∣ 1
R(t1)

− 1
R(t2)

∣∣∣∣ ≤ k′0Γ0|t1 − t2|,

|Γ(q, ε)(x, t1)− Γ(q, ε)(x, t2)| ≤ {Γq(q, ε)(x, t)A(t1, t2) +
+ΓΓε(q, ε)(x, t)}|t1 − t2|,

|
√
σ(t1)−

√
σ(t2)| = σ̇(t)

2
√
σ(t)
|t1 − t2| ≤

β2

2
√
α1
t
(n−1)/2
1 |t1 − t2|.
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Then

| ˙̃σ(t1)− ˙̃σ(t2)| ≤ 2
ε0

{
kM sup

t∈[t1,t2]
|ṗ0(t)|+ kMα2

km2
ΓqA(t1, t2)tn+1

2

+ρg
kMβ2√
α1

t
(n−1)/2
1 +C8(T )

}
|t1 − t2| ≡

≡ S(t1, t2)|t2 − t2|. (3.27)

Recalling (3.22), we have

S(t1, t2) =
2
ε0
kM supt∈[t1,t2] |ṗ0(t)|+C9(T )t(n−1)/2

1 + C10(T )

1− kMα2
km

ΓqTn+1(1 +C5(T ))
, (3.28)

for T sufficiently small.
Note that (3.28) gives an estimate for the Lipschitz constant of ˙̃σ(t) away

from t = 0. In fact both terms ṗ0(t) and t(n−1)/2 are unbounded for t = 0.
The definition of A(t1, t2) (see (3.22) in Lemma 3.1) follows immediately

from (3.28). Note that the behaviour of A(t1, t2) is the same as the behaviour of
S(t1, t2).

Hence from (3.23),(3.24), (3.27) and (3.28) T (Σ) = Σ.
Next we show that T is a contractive operator in the C1-norm.

Given σ1, σ2 ∈ Σ, and the corresponding q1, q2, ε1, ε2, recalling the definition
of T ,

ε0
2
| ˙̃σ1 − ˙̃σ2| ≤

[
π2t

n + ρg
√
α2t

(n+1)/2 +
kMΓ0α2

2
tn+1 +

+
kMΓ0α2

2k2
m

tn+1
]
k′0|ε1 − ε2|+

α2kM
2km

tn+1|Γ(q1, ε1)− Γ(q2, ε2)|+

+
[
kM
km

Γ0(
√
α2t

(n+1)/2 +
1
2
|√σ1 −

√
σ2|) + ρgkM

]
|√σ1 −

√
σ2|. (3.29)

Noting that

|Γ(q1, ε1)− Γ(q2, ε2)| ≤ Γq|q1 − q2|+ Γε|ε1 − ε2|,

|ε1 − ε2| ≤ |Γ(q1, ε1)− Γ(q2, ε2)|t+
Γ0

b1(t)
|√σ1 −

√
σ2|,

|q1 − q2| ≤
ε0
2

∣∣∣∣ σ̇1√
σ1
− σ̇2√

σ2

∣∣∣∣+ a2(t)|Γ(q1, ε1)− Γ(q2, ε2)|+

+Γ0|
√
σ1 −

√
σ2|,

|√σ1 −
√
σ2| ≤

1
2
√
α1t(n+1)/2 |σ1 − σ2|,
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from which:

‖q1 − q2‖t ≤
1

1− ΓεT −
√
A2(T )Γq

[
ε0

2
√
α1
t−(n+1)/2‖σ̇1 − σ̇2‖t +

+
(

Γ0Γε
1− ΓεT

α2

2
√
α1β1

t(1−n)/2 +

+
1

2
√
α1

(
Γ0 +

ε0
√
α2

2
√
α1

)
t−(n+1)/2

)
‖σ1 − σ2‖t

]
, (3.30)

‖ε1 − ε2‖t ≤
Γq

1− ΓεT −
√
A2(T )Γq

[
ε0

2
√
α1
t(1−n)/2‖σ̇1 − σ̇2‖t +

+
(

Γ0Γε
1− ΓεT

α2

2
√
α1β1

t(3−n)/2 +
(

Γ0

2
√
α1

+
ε0
√
α2

4α1
+

+
1

1− ΓεT
Γ0

Γq

√
α2√
α1β1

)
t(1−n)/2

)
‖σ1 − σ2‖t

]
, (3.31)

with T such that
1− ΓεT −

√
A2(T )Γq > 0. (3.32)

Finally, from (3.30), (3.31), then (3.29) reduces to

‖ ˙̃σ1 − ˙̃σ2‖t ≤ C11(T )(t(n+3)/2 + t+ t(n+1)/2)‖σ̇1 − σ̇2‖t +
+C12(T )(t(n+5)/2 + t2 + t(n+3)/2 + t+ t(n+1)/2 + 1)‖σ1 − σ2‖t +
C13 t

−(n+1)/2‖σ1 − σ2‖t ≤ C(T )t(1−n)/2‖σ̇1 − σ̇2‖t. (3.33)

The constants C11, C12, C13 depend on the data and on T .
(3.33) shows that T is continuous in the C1-norm for any T and in particular,

recalling that 0 ≤ n < 1, is contractive for T small enough, such that

C(T )T (1−n)/2 < 1. (3.34)

Note that the maximum existence time T is defined recalling also (3.16), (3.20),
(3.28), (3.32).

Global existence follows extending the solution after T .
We can consider a problem like Problem I in QT = {(x, t) : 0 < x < s(t), T0 < t <

T}, T0 < T , prescribing initial data at t = T0 obtained from the previous solution.
Then ε(x, t) solves

ε(x, t) =



ε0 −
t∫

s−1(x)

Γ(q, ε)(x, τ) dτ, x ∈ [s(T0), s(t)],

ε(x, T0)−
t∫

T0

Γ(q, ε)(x, τ) dτ, x ∈ [0, s(T0)],



436 Elena Comparini and Paola Mannucci NoDEA

and q(x, t), p(x, t) can be expressed by

q(x, t) = ε0ṡ(t)−
s(t)∫
x

Γ(q, ε) dy,

p(x, t) = p0(t)−
x∫

0

q(y, t)
k(ε(y, t))

dy + ρgx.

Noting that estimates proved in Lemma 3.1 and Theorem 2.1 hold also in QT , we
get the result. 2

Remark 3.1 Note that the assumption 0 ≤ n < 1 implies that ṗ0(0) is singular,
and consequently ṡ and q have the same behaviour at t = 0.
This corresponds to the physical assumption of high pressure gradient.

4 Case n ≥ 1
In this case the functions Ai(t), Bi(t), i = 1, 2 in the definition of Σ are

A1(t) =
(

2km
ε0

ρg

)2

t2 ≡ α1t
2, (4.1)

A2(t) = α2t
2, (4.2)

where α2 is the unique positive root of

2km
ε0

[
π2

n+ 1
Tn−1 +

ρg
√
α2

2
+

Γ0α2

6km
T

]
= α2, (4.3)

B1(t) =
(

2km
ε0

ρg

)2

t ≡ β1t, (4.4)

B2(t) =
2kM
ε0

(
π2T

n−1 +
α2Γ0T

2km
+ ρg

√
α2

)
t ≡ β2t, (4.5)

for any t ∈ (0, T ), with T fixed, S(t1, t2) will be specified later.
Lemma 3.1 still holds in the case n ≥ 1 taking into account that

√
α1t ≤ s(t) ≤

√
α2t, t ≥ 0, (4.6)

β1

2
√
α2
≤ ṡ(t) ≤ β2

2
√
α1
, t ≥ 0, (4.7)

where αi, βi, i = 1, 2, are defined by (4.1)-(4.5).



Vol. 4, 1997 Penetration of a wetting front in a porous medium interacting with the flow 437

The estimates on the solution in this case are the following

qm(t) ≡ ε0β1

2
√
α2
− Γ0

√
α2t ≤ q(x, t) ≤

ε0β2

2
√
α1
≡ qM , (4.8)

0 ≤ qx(x, t) ≤ Γ0, (4.9)
−Γ0 ≤ εt(x, t) ≤ 0, (4.10)
|εx(x, t)| ≤ c1(T ), in QT , (4.11)
|q(x, t1)− q(x, t2)| ≤ (1 + c2(T ))(ε0S(t1, t2) + c3(T ))|t1 − t2|, (4.12)

with S(t1, t2) to be determined.

Proof of Theorem 2.1-b

The proof of T (Σ) ⊂ Σ follows the same steps as in previous case taking into
account (4.1)-(4.5). Moreover

S(t1, t2) =

(2/ε0)kM sup
t∈[t1,t2]

|ṗ0(t)|+ c4(T )

1− (kM/km)α2Γq(1 + c2(T ))T 2
. (4.13)

Hence, in this case, from (2.13), S(t1, t2) remains bounded in t1 = 0.
As far as the continuity of operator T is concerned, we may use the same

techniques as in the case 0 ≤ n < 1 and taking into account of (3.33) and noting
that C13 is a constant,

‖ ˙̃σ1 − ˙̃σ2‖t ≤ (c(T )t+ C13)‖σ̇1 − σ̇2‖t. (4.14)

Expression (4.14) shows that the operator T is continuous on Σ but in general not
contractive. 2

Remark 4.1 The boundedness of ṗ0(0) yields q(x, t) ∈ C1,α(QT ) and s(t) ∈
C1+α([0, T ]). Note that now we have to introduce into the definition of the space
Σ the condition σ̇(0) = 0.

In this case, ṡ(0) can be obtained by differentiating (2.16):

ṗ0(0) = ṡ(0)
[
ε0ṡ(0)
k(ε0)

− ρg
]
.

Remark 4.2 In the case n ≥ 1, non-uniqueness is a consequence of non-Lipschitz
continuity with respect to σ of the right hand-side of (2.18), due to the term ρg

√
σ.

Uniqueness can be proved if gravity is neglected. In fact, taking into account

(4.14) and recalling that C13 =
ρgkM
ε0
√
α1

, we note that the operator T is contractive

for T sufficiently small.
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