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Chapter 1
Fifty Years of Stiffness

Luigi Brugnano, Francesca Mazzia,
and Donato Trigiante

Abstract The notion of stiffness, which originated in several applications of a dif-
ferent nature, has dominated the activities related to the numerical treatment of dif-
ferential problems for the last fifty years. Contrary to what usually happens in Math-
ematics, its definition has been, for a long time, not formally precise (actually, there
are too many of them). Again, the needs of applications, especially those arising in
the construction of robust and general purpose codes, require nowadays a formally
precise definition. In this paper, we review the evolution of such a notion and we
also provide a precise definition which encompasses all the previous ones.
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2 L. Brugnano et al.
1.1 Introduction

The struggle generated by the duality short times—long times is at the heart of human
culture in almost all its aspects. Here are just a few examples to fix the idea:

e in historiography: Braudel’s distinction among the geographic, social and indi-
vidual times;1

e in the social sphere: Societies are organized according to three kinds of laws, i.e.,
codes (regulating short term relations), constitutions (regulating medium terms
relations), and ethical laws (long term rules) often not explicitly stated but reli-
giously accepted;

e in the economy sphere: the laws of this part of human activities are partially
unknown at the moment. Some models (e.g., the Goodwin model [19]), permits
us to say, by taking into account only a few variables, that the main evolution is
periodic in time (and then predictable), although we are experiencing an excess of
periodicity (chaotic behavior). Nevertheless, some experts claim (see, e.g., [18])
that the problems in the predictability of the economy are mainly due to a sort of
gap in passing information from a generation to the next ones, i.e. to the conflict
between short time and long time behaviors.?

Considering the importance of this concept, it would have been surprising if the
duality “short times—long times” did not appear somewhere in Mathematics. As a
matter of fact, this struggle not only appears in our field but it also has a name:
stiffness.

Apart from a few early papers [10, 11], there is a general agreement in placing the
date of the introduction of such problems in Mathematics to around 1960 [17]. They
were the necessities of the applications to draw the attention of the mathematical
community towards such problems, as the name itself testifies: “they have been
termed stiff since they correspond to tight coupling between the driver and the driven
components in servo-mechanism” ([12] quoting from [11]).

Both the number and the type of applications proposing difficult differential
problems has increased exponentially in the last fifty years. In the early times, the
problems proposed by applications were essentially initial value problems and, con-
sequently, the definition of stiffness was clear enough and shared among the few
experts, as the following three examples evidently show:

D1: Systems containing very fast components as well as very slow components
(Dahlquist [12]).

D2: They represent coupled physical systems having components varying with very
different times scales: that is they are systems having some components varying
much more rapidly than the others (Liniger [31], translated from French).

"Moreover, his concept of structure, i.e. events which are able to accelerate the normal flow of time,
is also interesting from our point of view, because it somehow recalls the mathematical concept of
large variation in small intervals of time (see later).

2Even Finance makes the distinction between short time and long time traders.
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1 Fifty Years of Stiffness 3

D3: A stiff system is one for which Ayqx is enormous so that either the stability
or the error bound or both can only be assured by unreasonable restrictions
on h...Enormous means enormous relative to the scale which here is t (the
integration interval) ... (Miranker [34]).

The above definitions are rather informal, certainly very far from the precise def-
initions we are accustomed to in Mathematics, but, at least, they agree on a crucial
point: the relation among stiffness and the appearance of different time-scales in the
solutions (see also [24]).

Later on, the necessity to encompass new classes of difficult problems, such as
Boundary Value Problems, Oscillating Problems, etc., has led either to weaken the
definition or, more often, to define some consequence of the phenomenon instead
of defining the phenomenon itself. In Lambert’s book [29] five propositions about
stiffness, each of them capturing some important aspects of it, are given. As matter
of fact, it has been also stated that no universally accepted definition of stiffness
exists [36].

There are, in the literature, other definitions based on other numerical difficulties,
such as, for example, large Lipschitz constants or logarithmic norms [37], or non-
normality of matrices [23]. Often is not even clear if stiffness refers to particular
solutions (see, e.g. [25]) or to problems as a whole.

Sometimes one has the feeling that stiffness is becoming so broad to be nearly
synonymous of difficult.

At the moment, even if the old intuitive definition relating stiffness to multiscale
problems survives in most of the authors, the most successful definition seems to
be the one based on particular effects of the phenomenon rather than on the phe-
nomenon itself, such as, for example, the following almost equivalent items:

D4: Stiff equations are equations where certain implicit methods . .. perform better,
usually tremendous better, than explicit ones [11].

D5: Stiff equations are problems for which explicit methods don’t work [21].

D6: If a numerical method with a finite region of absolute stability, applied to a
system with any initial condition, is forced to use in a certain interval of inte-
gration a step length which is excessively small in relation to the smoothness
of the exact solution in that interval, then the system is said to be stiff in that
interval [29].

As usually happens, describing a phenomenon by means of its effects may not
be enough to fully characterize the phenomenon itself. For example, saying that fire
is what produces ash, would oblige firemen to wait for the end of a fire to see if the
ash has been produced. In the same way, in order to recognize stiffness according
to the previous definitions, it would be necessary to apply first one> explicit method
and see if it works or not. Some authors, probably discouraged by the above de-
feats in giving a rigorous definition, have also affirmed that a rigorous mathematical
definition of stiffness is not possible [20].

It is clear that this situation is unacceptable for at least two reasons:

31t is not clear if one is enough: in principle the definition may require to apply all of them.
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4 L. Brugnano et al.

e it is against the tradition of Mathematics, where objects under study have to be
precisely defined;

e it is necessary to have the possibility to recognize operatively this class of prob-
lems, in order to increase the efficiency of the numerical codes to be used in
applications.

Concerning the first item, our opinion is that, in order to gain in precision, it
would be necessary to revise the concept of stability used in Numerical Analysis,
which is somehow different from the homonym concept used in all the other fields
of Mathematics, where stable are equilibrium points, equilibrium sets, reference
solutions, etc., but not equations or plroblems4 (see also [17] and [30]).

Concerning the second item, operatively is intended in the sense that the def-
inition must be stated in terms of numerically observable quantities such as, for
example, norms of vectors or matrices. It was believed that, seen from the applica-
tive point of view, a formal definition of stiffness would not be strictly necessary:
Complete formality here is of little value to the scientist or engineer with a real
problem to solve [24].

Nowadays, after the great advance in the quality of numerical codes,’ the use-
fulness of a formal definition is strongly recognized, also from the point of view of
applications: One of the major difficulties associated with the study of stiff differen-
tial systems is that a good mathematical definition of the concept of stiffness does
not exist [6].

In this paper, starting from ideas already partially exposed elsewhere [2, 4, 26],
we will try to unravel the question of the definition of stiffness and show that a
precise and operative definition of it, which encompasses all the known facets, is
possible.

In order to be as clear as possible, we shall start with the simpler case of initial
value for a single linear equation and gradually we shall consider more general cases
and, eventually, we shall synthesize the results.

1.2 The Asymptotic Stability Case

For initial value problems for ODEs, the concept of stability concerns the behavior
of a generic solution y(¢), in the neighborhood of a reference solution y(¢), when
the initial value is perturbed. When the problem is linear and homogeneous, the dif-
ference, e(t) = y(t) — y(¢), satisfies the same equation as y(¢). For nonlinear prob-
lems, one resorts to the linearized problem, described by the variational equation,
which, essentially, provides valuable information only when y(¢) is asymptotically
stable. Such a variational equation can be used to generalize to nonlinear problems
the arguments below which, for sake of simplicity, concerns only the linear case.

4Only in particular circumstances, for example in the linear case, it is sometimes allowed the
language abuse: the nonlinear case may contain simultaneously stable and unstable solutions.

> A great deal of this improvement is due to the author of the previous sentence.
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1 Fifty Years of Stiffness 5

Originally, stiffness was almost always associated with initial value problems
having asymptotically stable equilibrium points (dissipative problems) (see, e.g.,
Dahlquist [13]). We then start from this case, which is a very special one. Its pecu-
liarities arise from the following two facts:®

e it is the most common in applications;

e there exists a powerful and fundamental theorem, usually called Stability in the
first approximation Theorem or Poincaré-Liapunov Theorem, along with its corol-
lary due to Perron’, which allows us to reduce the study of stability of critical
points, of a very large class of nonlinearities, to the study of the stability of the
corresponding linearized problems (see, e.g., [9, 27, 35, 38]).

The former fact explains the pressure of applications for the treatment of such
problems even before the computer age. The latter one provides, although not al-
ways explicitly recognized, the mathematical solid bases for the profitable and ex-
tensive use, in Numerical Analysis, of the linear test equation to study the fixed-A
stability of numerical methods.

We shall consider explicitly the case where the linearized problem is au-
tonomous, although the following definitions will take into account the more general
case.

Our starting case will then be that of an initial value problem having an asymp-
totically stable reference solution, whose representative is, in the scalar case,

y =iy, tel0,T], Rexi<0,
y(0)=n,

where the reference solution (an equilibrium point, in this case) has been placed
at the origin. From what is said above, it turns out that it is not by chance that it
coincides with the famous test equation.

(1.2.1)

Remark 1.1 It is worth observing that the above test equation is not less general
than y’ = Ay + g(t), which very often appears in the definitions of stiffness: the
only difference is the reference solution, which becomes y(t) = fot e _S)g(s)ds,
but not the topology of solutions around it. This can be easily seen by introducing
the new variable z(¢) = y(¢) — y(¢) which satisfies exactly equation (1.2.1) and then,
trivially, must share the same stiffness. Once the solution z(#) of the homogeneous
equation has been obtained, the solution y(#) is obtained by adding to it y(#) which,
in principle, could be obtained by means of a quadrature formula. This allows us to
conclude that if any stiffness is in the problem, this must reside in the homogeneous
part of it, i.e., in problem (1.2.1).

®We omit, for simplicity, the other fact which could affect new definitions, i.e., the fact that the
solutions of the linear equation can be integrated over any large interval because of the equivalence,
in this case, between asymptotic and exponential stability.

"It is interesting to observe that the same theorem is known as the Ostrowsky’s Theorem, in the
theory of iterative methods.
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6 L. Brugnano et al.

Remark 1.2 We call attention to the interval of integration [0, T'], which depends on
our need for information about the solution, even if the latter exists for all values of ¢.
This interval must be considered as datum of the problem. This has been sometimes
overlooked, thus creating some confusion.

Having fixed problem (1.2.1), we now look for a mathematical tool which allows
us to state formally the intuitive concept, shared by almost all the definitions of
stiffness: i.e., we look for one or two parameters which tells us if in [0, T'] the
solution varies rapidly or not. This can be done easily by introducing the following
two measures for the solution of problem (1.2.1):

1 11T
ke =— max |y(1)], :——f ly(2)|dt, (1.2.2)
T nlictor” T S
which, in the present case, assume the values:
1 T*
K:L - l_eRe)»T N
¢ Ve = ReaT | VN ReMT T

where T* = [Re A| ™! is the transient time. The two measures «, ). are called con-

ditioning parameters because they measure the sensitivity of the solution subject to

a perturbation of the initial conditions in the infinity and in the /; norm.
Sometimes, it would be preferable to use a lower value of y,, i.e.,

1

Ve
This amounts to consider also the oscillating part of the solution (see also Re-
mark 1.5 below).
By looking at Fig. 1.1, one realizes at once that a rapid variation of the solution
in [0, T'] occurs when k. > y,. It follows then that the parameter
ke T
Or=—=—, (1.2.4)
Ve T
which is the ratio between the two characteristic times of the problem, is more sig-
nificant. Consequently, the definition of stiffness follows now trivially:

Definition 1.3 The initial value problem (1.2.1) is stiff if oo > 1.
The parameter o, is called stiffness ratio.

Remark 1.4 The width of the integration interval 7" plays a fundamental role in the
definition. This is an important point: some authors, in fact, believe that stiffness
should concern equations; some others believe that stiffness should concern prob-
lems, i.e., equations and data. We believe that both statements are partially correct:
stiffness concerns equations, integration time, and a set of initial data (not a specific
one of them). Since this point is more important in the non scalar case, it will be
discussed in more detail later.
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1 Fifty Years of Stiffness 7
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Fig. 1.1 Solutions and values of k. and y, in the cases = —0.2 (left plot) and = —2 (right
plot)

Remark 1.5 When . is defined according to (1.2.3), the definition of stiffness con-
tinues to be also meaningful in the case Re » = 0, i.e., when the critical point is only
marginally stable. In fact, let

) 2
A=iw=1—.
T*
Then,
T
Oc = 2w —,
T*

and the definition encompasses also the case of oscillating stiffness introduced by
some authors (e.g., [34]). Once again the stiffness is the ratio of two times. If infor-
mation about the solution on the smaller time scale is needed, an adequately small
stepsize should be used. It is worth noting that high oscillating systems (with respect
to T') fall in the class of problems for which explicit methods do not work, and then
are stiff according to definitions D4-D6.

When A =0, then k. =y, =0, = 1.

In the case Re A > 0 (i.e., the case of an unstable critical point), both parameters
ke and y. grow exponentially with time. This implies that small variations in the
initial conditions will imply exponentially large variations in the solutions, both
pointwise and on average: i.e., the problem is ill conditioned.

Of course, the case Re = 0 considered above cannot be considered as repre-
sentative of more difficult nonlinear equations, since linearization is in general not
allowed in such a case.

The linearization is not the only way to study nonlinear differential (or differ-
ence) equations. The so called Liapunov second method can be used as well (see,
e.g., [22, 27, 38]). It has been used, in connection with stiffness in [5, 13-17], al-
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8 L. Brugnano et al.

though not always explicitly named.® Anyway, no matter how the asymptotic sta-
bility of a reference solution is detected, the parameters (1.2.2) and Definition 1.3
continue to be valid. Later on, the problem of effectively estimating such parameters
will also be discussed.

1.2.1 The Discrete Case

Before passing to the non scalar case, let us now consider the discrete case, where
some interesting additional considerations can be made. Here, almost all we have
said for the continuous case can be repeated. The first approximation theorem can
be stated almost in the same terms as in the continuous case (see e.g. [28]).

Let the interval [0, T'] be partitioned into N subintervals of length £, > 0, thus
defining the mesh points: #, = >_ hj,n=0,1,..., N.

The linearized autonomous problem is now:

yn—H :/"Ll’lyl’lv n:()v'~~sN_1, yOZT?, (1.2.5)

where the {u,} are complex parameters. The conditioning parameters for (1.2.5),
along with the stiffness ratio, are defined as:

1 11
ka=— max |yl  ya=—— himax(lyl,|yi-1].
In| i=0,...,N n| T ‘1 (1.2.6)
ka
o = —.
Yd

This permits us to define the notion of well representation of a continuous prob-
lem by means of a discrete one.

Definition 1.6 The problem (1.2.1) is well represented by (1.2.5) if

ke ~ kq, (1.2.7)
Ye ™ V- (1.2.8)

In the case of a constant mesh-size &, ©, = @ and it easily follows that the con-
dition (1.2.7) requires || < 1. It is not difficult to recognize the usual A-stability
conditions for one-step methods (see Table 1.1). Furthermore, it is easily recognized
that the request that condition (1.2.7) holds uniformly with respect to 22 € C™~ im-
plies that the numerical method producing (1.2.5) must be implicit.

What does condition (1.2.8) require more? Of course, it measures how faith-
fully the integral fOT |y(t)|dt is approximated by the quadrature formula Z,N: 1 hi -
max(|y;|, |vi—1l]), thus giving a sort of global information about the behavior of the

80ften, it appears under the name of one-sided Lipschitz condition.
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I I 1 Fifty Years of Stiffness 9

0369 Table 1.1 Condition (1.2.7)

O 370 for some popular methods Method K Condition
371 Explicit Euler 1+ hr 1+ k)| <1
m 372 Implicit Euler = = <1
373
. 14+h2/2 14-h2/2
m 374 Trapezoidal rule E=rYe T <1
N
n 376

m method producing the approximations {y;}. One of the most efficient global strate-
377 . . . . . . .
gies for changing the stepsize is based on monitoring this parameter [3, 4, 7, 8, 32,
378 p ) : . : . :
0379 33]. In addition to this, when finite precision arithmetic is used, then an interest-
I ing property of the parameter y; occurs [26]: if it is smaller than a suitably small
%80 threshold, this suggests that we are doing useless computations, since the machine
I %81 precision has already been reached.

sss 1.2.2 The non Scalar Case

386

387  In this case, the linearized problem to be considered is

o Y =Ay, t€l0, Tl yO)=n, (1.2.9)

a0 With A € R™*"™ and having all its eigenvalues with negative real part. It is clear

s91  from what was said in the scalar case that, denoting by @ (¢) = ¢4’ the fundamental

a0  Matrix of the above equation, the straightforward generalization of the definition of

a3 the conditioning parameters (1.2.2) would lead to:

o 12 ; f el . (12.10)
K, = max , == ) Oc=—. it

395 T 1el0,1] =7, Ty

396 Indeed, these straight definitions work most of the time, as is confirmed by the fol-

%7 lowing example, although, as we shall explain soon, not always.

398

89 Example 1.7 Let us consider the well-known Van der Pol’s problem,

400

401 Y1 =DX2,

402 Vo= —yi+uy( =y, 1€[0,2ul, (1.2.11)

108 YO =2, 07,

404

405 whose solution approaches a limit cycle of period T ~ 2u. It is also very well-

406 known that, the larger the parameter ;, the more difficult the problem is. In Fig. 1.2

oy W plot the parameter o.(u) (as defined in (1.2.10)) for p ranging from O to 103.

408 Clearly, stiffness increases with p.

109 Even though (1.2.10) works for this problem, this is not true in general. The

4o problem 1is that the definition of stiffness as the ratio of two quantities may require

“I"" 3 lower bound for the denominator. While the definition of . remains unchanged,

*2 " the definition of ¢ 1s more entangled. Actually, we need two different estimates of

3 sucha parameter:

414
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Fig. 1.2 Estimated stiffness x 108
ratio of Van der Pol’s problem '
(1.2.11) 16+

14}

12f

2 m

0 100 200 300 400 500 600 700 800 900 1000
i

e an upper bound, to be used for estimating the conditioning of the problem in /;
norm;
e alower bound, to be used in defining o, and, then, the stiffness.

In the definition given in [2, 4], this distinction was not made, even though the
definition was (qualitatively) completed by adding

“for at least one of the modes™. (1.2.12)

We shall be more precise in a moment. In the meanwhile, it is interesting to note
that the clarification contained in (1.2.12) is already in one of the two definitions
given by Miranker [34]:

A system of differential equations is said to be stiff on the interval (0, t) if there
exists a solution of that system a component of which has a variation on that interval
which is large compared to %,

where it should be stressed that the definition considers equations and not problems:
this implies that the existence of largely variable components may appear for at least
one choice of the initial conditions, not necessary for a specific one.

Later on, the definition was modified so as to translate into formulas the above
quoted sentence (1.2.12). The following definitions were then given (see, e.g., [26]):

1
ke(T,n)=—— max y() , ke(T) =maxk.(T,n),
Inl|l o<t<T 1
X T (1.2.13)
yC(Tv T’) = f y(t) dtv yC(T) = max yC(Tv T’)
Tlnll Jo 1
and
T
6.(T) = max <21 (1.2.14)
7] yC(Tv T’)

The only major change regards the definition of .. Let us be more clear on this
point with an example, since it leads to a controversial question in the literature: i.e.,
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I I 1 Fifty Years of Stiffness 11

0461 the dependence of stiffness from the initial condition. Let A = diag(i1, A2, ..., Ap)
0462 with ; <Oand| (| >]| 2| >---> |Am|. The solution of problem (1.2.9) is y(t) =

463 eAtr]_

464 If o. is defined according to (1.2.10), it turns out that [e?’|| = e*»! and, then,
O y(D)~ ﬁ If, however we take n = (1,0, ...,0)7, then y(¢r) = e* and y.(T)
(D466 becomes y . (T) ~ . Of course, by changmg the initial point, one may activate

467 At

each one of the modes, i.e. the functions e”’ on the diagonal of the matrix el
m469 leaving silent the others. This is the reason for specifying, in the older definition,
470 the quoted sentence (1.2.12). The new definition (1.2.14), which essentially poses
0471 as the denominator of the ratio o, the smallest value among the possible values of
ve(T, n), is more compact and complies with the needs of people working on the
I_ 473 construction of codes, who like more operative definitions. For the previous diagonal
474 example, we have that k. continues to be equal to 1, while y.(T) = ﬁ
: Having got the new definition (1.2.14) of .(T), the definition of stiffness con-

4
< i tinues to be given by Definition 1.3 given in the scalar case, i.e., the problem (1.2.9)

T dsstff i o(T) > 1.

78 How does this definition reconcile with the most used definition of stiffness for

479 the linear case, which considers the “smallest” eigenvalue A, as well? The answer is

480 already in Miranker’s definition D3. In fact, usually the integration interval is chosen

461 large enough to provide complete information on the behavior of the solution. In this

g 35S until the slowest mode has decayed enough, i.e. T = 1/|A,,|, which implies

1o o—c<T=L> = ‘)“—‘ (1.2.15)

484 A | A

::Z which, when much larger than 1, coincides with the most common definition of
stiffness in the linear case. However, let us insist on saying that if the interval of in-

47 tegration is much smaller than 1/|A,,|, the problem may be not stiff even if | - | > 1.

::Z The controversy about the dependence of the definition of stiffness on the ini-

45 tial data is better understood by considering the following equation given in [29,

o PP 217-218]:

492 d 1 A . —2 1 Y1 2sint

493 dt yz/) \=1.999 0.999 )\ y» + <O.999(sint — cost)

494 whose general solution is

495

496 i (1 —0001r 1 sin?

a7 <y2 = <1>+626 1.999/)Jr cost>‘

*® " The initial condition v(0) = (2, 3T requires ¢z = 0 and, then, the slowest mode is

99 not activated: the solution rapidly reaches the reference solution. If this information

% was known beforehand, one could, in principle, choose the interval of integration

1 T much smaller than ﬁ. This, however, does not take into account the fact that

%2 the computer uses finite precision arithmetic, which may not represent exactly the

%% initial condition . To be more precise, let us point out that the slowest mode is

%4 ot activated only if the initial condition is on the line y2(0) — y1(0) — 1 =0. Any

ZZZ irrational value of y;(0) will not be well represented on the computer. This is enough
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Fig. 1.3 Estimated stiffness 3% 10"
ratio of Robertson’s problem
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to activate the silent mode. Of course, if one is sure that the long term contribution
to the solution obtained on the computer is due to this kind of error, a small value of
T can always be used. But it is rare that this information is known in advance. For
this reason, we consider the problem to be stiff, since we believe that the definition
of stiffness cannot distinguish, for example, between rational and irrational values
of the initial conditions. Put differently, initial conditions are like a fuse that may
activate stiffness.

We conclude this section by providing a few examples, which show that Defini-
tion 1.3, when o, is defined according to (1.2.14), is able to adequately describe the
stiffness of nonlinear and/or non autonomous problems as well.

Example 1.8 Let us consider the well-known Robertson’s problem:
yp = —0.04y; + 10%y,ys,
¥, =0.04y; — 10%y,y3 =3 x 107y3, €0, T1,
¥y =3 x10"y3,
y(0)=(1,0,0)"".

(1.2.16)

Its stiffness ratio with respect to the length 7' of the integration interval, obtained
through the linearized problem and considering a perturbation of the initial condi-
tion of the form (0, &, —&)7, is plotted in Fig. 1.3. As it is well-known, the figure
confirms that for this problem stiffness increases with 7.

Example 1.9 Let us consider the so-called Kreiss problem [21, p. 542], a linear and
non autonomous problem:
y =A(t)y, tel0,4n], y(@O) fixed, (1.2.17)

where

A =0T (A 0®), (1.2.18)
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Fig. 1.4 Estimated stiffness 10%
ratio of the Kreiss problem
(1.2.17)—(1.2.19)

1(%0'6 10"5 10"4 c 10"3 10"2 107"
and
cost sint —1
Q) = <—sint cost)’ Ae = < —e—1>' (1.2.19)

Its stiffness ratio with respect to the small positive parameter &, obtained by con-
sidering a perturbation of the initial condition of the form (—e, 1)7, is plotted in
Fig. 1.4. As one expects, the figure confirms that the stiffness of the problem be-
haves as _1, as tends to O.

Example 1.10 Let us consider the following linear and non autonomous problem, a

modification of problem (1.2.17), that we call “modified Kreiss problem”:9
v =A@l)y, tel0,4m], y(0) fixed, (1.2.20)
where
A) = 07" (OP AP Q. (1), (1.2.21)
and

-1 0 1 e 1
P = 1 1 ) ;o Q) = <esint esinr) , Ag= < -l > . (1.2.22)

/

Its stiffness ratio with respect to the small positive parameter &, obtained by con-
sidering a perturbation of the initial condition of the form (—&, 1)7, is shown in
Fig. 1.5. Also in this case the stiffness of the problem behaves as ~!, as tends to

0.

Remark 1.11 It is worth mentioning that, in the examples considered above, we
numerically found that
KC(Tv T’)
max ————
n ye(T,n)

9This problem has been suggested by J.I. Montijano.
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Fig. 1.5 Estimated stiffness 10’
ratio of the modified Kreiss
problem (1.2.20)—(1.2.22)

is obtained by considering an initial condition 7 in the direction of the eigenvector
of the Jacobian matrix (computed for ¢ ~ 1) associated to the dominant eigenvalue.
We note that, for an autonomous linear problem, if A is diagonalizable, this choice
activates the mode associated with 1, i.e., the eigenvalue of maximum modulus
of A.

1.2.3 The Non Scalar Discrete Case

As for the scalar case, what we said for the continuous problems can be repeated,
mutatis mutandis, for the discrete ones. For brevity, we shall skip here the details
for this case, also because they can be deduced from those described in the more
general case discussed in the next section.

1.3 Boundary Value Problems (BVPs)

The literature about BVPs is far less abundant than that about IVPs, both in the
continuous and in the discrete case. While there are countless books on the latter
subject presenting it from many points of view (e.g., stability of motion, dynami-
cal systems, bifurcation theory, etc.), there are many less books about the former.
More importantly, the subject is usually presented as a by product of the theory of
IVPs. This is not necessarily the best way to look at the question, even though many
important results can be obtained this way. However, it may sometimes be more use-
ful to look at the subject the other way around. Actually, the question is that IVPs
are naturally a subclass of BVPs. Let us informally clarify this point without many
technical details which can be found, for example, in [4].

IVPs transmit the initial information “from left to right”. Well conditioned IVPs
are those for which the initial value, along with the possible initial errors, decay
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moving from left to right. FVPs (Final Value problems) are those transmitting in-
formation “from right to left” and, of course, well conditioning should hold when
the time, or the corresponding independent variable, varies towards —oo. More pre-
cisely, considering the scalar test equation (1.2.1), the asymptotically stability for
IVPs and FVPs requires Re 0 and Re > 0, respectively. BVPs transmit infor-
mation both ways. Consequently, they cannot be scalar problems but vectorial of
dimension at least two. We need then to refer to the test equation (1.2.9). It can be
affirmed that a well conditioned linear BVP needs to have eigenvalues with both
negative and positive real parts (dichotomy, see, e.g., [1, 4]). More precisely: the
number of eigenvalues with negative real part has to match the amount of informa-
tion transmitted “from left to right”, and the number of eigenvalues with positive
real part has to match the amount of information traveling “from right to left”. For
brevity, we shall call the above statement continuous matching rule. Of course, if
there are no final conditions, then the problem becomes an IVP and, as we have
seen, in order to be well conditioned, it must have all the eigenvalues with negative
real part. In other words, the generalization of the case of asymptotically stable [VPs
is the class of well conditioned BVPs because both satisfy the continuous matching
rule. This is exactly what we shall assume hereafter.

Similar considerations apply to the discrete problems, where the role of the imag-
inary axis is played by the unit circumference in the complex plane. It is not sur-
prising that a numerical method will well represent a continuous autonomous linear
BVP if the corresponding matrix has as many eigenvalues inside the unit circle as
the number of initial conditions and as many eigenvalues outside the unit circle as
the number of final conditions (discrete matching rule).

Remark 1.12 The idea that IVPs are a subset of BVPs is at the root of the class of
methods called Boundary Value Methods (BVMs) which permits us, thanks to the
discrete matching rule, to define high order and perfectly A-stable methods (i.e.,
methods having the imaginary axis separating the stable and unstable domains),
which overcome the Dahlquist’s barriers, and are able to solve both IVPs and BVPs

(see, e.g., [4]).

Remark 1.13 From this point of view, the popular shooting method, consisting of
transforming a BVP into an IVP and then applying a good method designed for
IVPs, does not appear to be such a good idea. As matter of fact, even a very well
conditioned linear BVP, i.e. one which satisfies the continuous matching rule, will
be transformed in a badly conditioned IVP, since the matrix of the continuous IVP
shall, of course, contain eigenvalues with positive real part. This will prevent the
discrete matching rule to hold.

1.3.1 Stiffness for BVPs

Coming back to our main question, stiffness for BVPs is now defined by generaliz-
ing the idea already discussed in the previous sections.
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As in the previous cases, we shall refer to linear problems, but the definitions
will also be applicable to nonlinear problems as well. Moreover, according to what
is stated above, we shall only consider the case where the problems are well con-
ditioned (for the case of ill conditioned problems, the arguments are slightly more
entangled, see e.g. [7]). Then, let us consider the linear and non autonomous BVP:

y =A(t)y, te€l0,T], Boy(0)+ Biy(T)=n, (1.3.1)

where y(t),n R™ and A(z), B, By R"™*™. The solution of the problem (1.3.1)
is

yt)=d0Q 'y,

where @ (¢) is the fundamental matrix of the problem such that ®(0) =1, and Q =
B, + Bp®(T), which has to be nonsingular, in order for (1.3.1) to be solvable.!?

As in the continuous IVP case, the conditioning parameters are defined (see
(1.2.13)) as:

1
ke(T,n) =— max |y@®)], ke(T)=maxk.(T,n),
7]l 0<t<T n (13.2)

1 T
Ye(T,n) = —f y() dt, Ye(T) = max y.(T, n).
Tlinll Jo ri
Consequently, the stiffness ratio is defined as (see (1.2.14)):

T
o.(T) = max M,
1 y(T,n)

and the problem is stiff if 0.(7") > 1. Moreover, upper bounds of «.(T) and y.(T)
are respectively given by:

1 T
ke(T) < max [P, Ye(T) < —f e Q dr. (1.3.3)
0<t<T T Jo

Thus, the previous definitions naturally extend to BVPs the results stated for
IVPs. In a similar way, when considering the discrete approximation of (1.3.1), for
the sake of brevity provided by a suitable one-step method over a partition 7 of the

interval [0, T'], with subintervals of length h;, i =1, ..., N, the discrete problem
will be given by
Vnt1 = Ryyn, n=0,...,N—1, Boyo+ Biyn =n, (1.3.4)

whose solution is given by

n—1 N-—1
Y= (H Ri) Oy'n. Onv=Bo+ B[] Ri.

i=0 i=0

100bserve that, in the case of IVPs, Bo=1and B =0,sothat Q =1.
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The corresponding discrete conditioning parameters are then defined by:

kg (7, ) = ——= max  yul, Kq(7w) = maxq(m, n),
In]l 0<n=N ]
N (1.3.5)
1
m(m)szhimax(nw il yalo) = maxyaGr,m),
i=1
and

K4 (7, )
04(T) = max ———.
n ya(m,n)
According to Definition 1.6, we say that the discrete problem!! (1.3.4) well rep-
resents the continuous problem (1.3.1) if

kg () ~ kc(T), Va () = ye(T). (1.3.6)

Remark 1.14 1t is worth mentioning that innovative mesh-selection strategies for
the efficient numerical solution of stiff BVPs have been defined by requiring the
match (1.3.6) (see, e.g., [3, 4, 7, 8, 26]).

1.3.2 Singular Perturbation Problems

The numerical solution of singular perturbation problems can be very difficult be-
cause they can have solutions with very narrow regions of rapid variation character-
ized by boundary layers, shocks, and interior layers. Usually, the equations depend
on a small parameter, say , and the problems become more difficult as tends to 0.
It 1s not always clear, however, how the width of the region of rapid variation is
related to the parameter ¢. By computing the stiffness ratio o.(T), we observe that
singularly perturbed problems are stiff problems. Moreover, as the following exam-
ples show, the parameter o.(T) provides us also with information about the width
of the region of rapid variation.

The examples are formulated as second order equations: of course, they have to
be transformed into corresponding first order systems, in order to apply the results
of the previous statements.

Example 1.15 Let us consider the linear singularly perturbed problem:
ey +1y' = —en’cos(nt) — wesin(mt), y(—=1)=-2, y(1)=0, (1.3.7)

whose solution has, for 0 < ¢ <« 1, a turning point at t = 0 (see Fig. 1.6). The exact
solution is y(#) = cos(wt) +exp((t — 1)//€) + exp(—(t + 1)/ /%).

In Fig. 1.7 we plot an estimate of the stiffness ratio obtained by considering two
different perturbations of the boundary conditions of the form (1, 0)” and (0, T

Tt is both defined by the used method and by the considered mesh.
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Fig. 1.6 Problem (1.3.7),
e=10"8 2r

1.5

0.5

y(t)

-0.5F

-1.5¢
2t

Fig. 1.7 Estimated stiffness 10°
ratio of problem (1.3.7)

10%

107

The parameter € varies from 1071 to 10714, We see that the (estimated) stiffness
parameter grows like v&—!.

Example 1.16 Let us consider the following nonlinear problem:

9 , 7w . (mt
ey’ +exp(y)y — 5 sm<7> exp2y)=0, y(0)=0, y(1)=0. (1.3.8)
This problem has a boundary layer at t = 0 (see Fig. 1.8). In Fig. 1.9 we plot an
estimate of the stiffness ratio obtained by considering two different perturbations
of the boundary conditions of the form (1, 0)" and (0, HT. The parameter & varies
from 1 to 1073, We see that the (estimated) stiffness parameter grows like ~!, as ¢

tends to O.

Example 1.17 Let us consider the nonlinear Troesch problem:

y =uwsinh(uy), y0)=0, y()=1L1 (1.3.9)
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Fig. 1.11 Estimated stiffness 10"
ratio of Troesch’s problem
(1.3.9)
10"}
=
e}
10°
10° :
0 10 20 30 40 50

This problem has a boundary layer near t = 1 (see Fig. 1.10). In Fig. 1.11 we plot
the estimate of the stiffness ratio obtained by considering two different perturbations
of the boundary conditions of the form (1, 0)" and (0, 1)T. The parameter p is
increased from 1 to 50 and, as expected, the stiffness ratio increases as well: for
w = 50, it reaches the value 1.74 x 1012,

Acknowledgements The authors wish to thank the reviewers, for their comments and sugges-
tions.

References

1. Ascher, U.M., Mattheij, R M.M., Russell, R.D.: Numerical Solution of Boundary Value Prob-
lems for Ordinary Differential Equations. STAM, Philadelphia (1995)

2. Brugnano, L., Trigiante, D.: On the characterization of stiffness for ODEs. Dyn. Contin. Dis-
crete Impuls. Syst. 2, 317-335 (1996)

3. Brugnano, L., Trigiante, D.: A new mesh selection strategy for ODEs. Appl. Numer. Math.
24, 1-21 (1997)

4. Brugnano, L., Trigiante, D.: Solving Differential Problems by Multistep Initial and Boundary
Value Methods. Gordon & Breach, Amsterdam (1998)

5. Butcher, J.C.: The Numerical Analysis of Ordinary Differential Equations. Wiley, Chichester
(1987)

6. Cash, J.R.: Efficient numerical methods for the solution of stiff initial-value problems and
differential algebraic equations. Proc. R. Soc. Lond. A 459, 797-815 (2003)

7. Cash,J.R., Mazzia, F.: A new mesh selection algorithm, based on conditioning, for two-point
boundary value codes. J. Comput. Appl. Math. 184, 362-381 (2005)

8. Cash, J.R., Sumarti, N., Mazzia, F.,, Trigiante, D.: The role of conditioning in mesh selection
algorithms for first order systems of linear two-point boundary value problems. J. Comput.
Appl. Math. 185, 212-224 (2006)

9. Corduneanu, C.: Principles of Differential and Integral Equations. Chelsea, New York (1971)

10. Crank, J., Nicolson, P.: A pratical method for numerical evaluation of solutions od partial
differential equations of the heat-conduction type. Proc. Camb. Philos. Soc. 43, 50-67 (1947)

11. Curtiss, G.F., Hirshfelder, J.O.: Integration of Stiff equations. Proc. Natl. Acad. Sci. US 38,
235-243 (1952)

Book ID: 213096_1_En, Chapter ID: 1, Date: 2010-08-17, Proof No: 1, UNCORRECTED PROOF



m 1

O« ©

13.

924 14.
o~

926 15.

~ g5 L6

m 929 i;

0930 19,
931

I 932 20.

|— o33 2l

o S

935 23.
< 936 24,

937
o3 25.
939 26.
940
941 27.
942
o4z 28
944 2.
945
946 30.
947
oag 3L
949
950 3y
951
952 33.
953
954 34,
955 135
956
957 36.
os8  37.
959 38.
960
961
962
963
964
965
966

Fifty Years of Stiffness 21

Dahlquist, G.: Problems related to the numerical treatment of Stiff differential equations. In:
Giinther, E., et al. (eds.) International Computing Symposium, 1973, pp. 307-314. North Hol-
land, Amsterdam (1974)

Dahlquist, G.: A special stability problem for linear multistep methods. BIT 3, 27-43 (1964)
Dahlquist, G.: Error analysis for a class a methods for stiff nonlinear initial value problems.
In: Num. Anal., Dundee. Lect. Notes in Math., vol. 506, pp. 60-74. Springer, Berlin (1975)
Dahlquist, G.: On stability and error analysis for stiff nonlinear problems. Part 1. Report Trita-
NA-7508 (1975)

Dahlquist, G.: G-stability is equivalent to A-stability. BIT 18, 384401 (1978)

Dahlquist, G.: 33 Years of instability, Part I. BIT 25, 188-204 (1985)

Galbraith, J.K.: A Short History of Financial Euphoria. Whittle Direct Book (1990)
Goodwin, R.H.: A growth cycle. In: Feinstein, C.H. (ed.) Socialism, Capitalism and Economic
Growth. Cambridge University Press, Cambridge (1967)

Guglielmi, N., Hairer, E.: Stiff delay equations. Scholarpedia 2(11), 2850 (2007)

Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II. Springer, Berlin (1996).
2nd rev. edn

Hahn, W.: Stability of Motions. Springer, New York (1967)

Higham, D.J., Trefethen, L.N.: Stiffness of ODE. BIT 33, 286-303 (1993)

Hindmarsh, A.C.: On Numerical Methods for Stiff Differential Equations—Getting the Power
to the People. Lawrence Livermore Laboratory report, UCRL-83259 (1979)

Hundsdorfer, W.H.: The numerical solution of stiff initial value problems: an analysis of one
step methods. CWI Tracts 12, Amsterdam (1980)

Iavernaro, F., Mazzia, F., Trigiante, D.: Stability and conditioning in numerical analysis. JNA-
1AM 1, 91-112 (2006)

Lakshmikantham, V., Leela, S.: Differential and Integral Inequalities. Academic Press, New
York (1969)

Lakshikantham, V., Trigiante, D.: Theory of Difference Equations. Numerical Methods and
Applications, 2nd edn. Marcel Dekker, New York (2002)

Lambert, J.D.: Numerical Methods for Ordinary Differential Equations. Wiley, New York
(1991)

Le Veque, R.J.: Finite Difference Methods for Ordinary and Partial Differential Equations:
Steady-State and Time-Dependent Problems. STAM, Philadelphia (2007)

Liniger, W.: Solution Numériques des Equations Différentielle et au derivées partielle. Unpub-
lished Lecture Notes of a course taught at Swiss Federal Institute of Technology, Lausanne,
Switzerland (1972-1973)

. Mazzia, F.,, Trigiante, D.: A hybrid mesh selection strategy based on conditioning for boundary

value ODEs problems. Numer. Algorithms 36(2), 169—-187 (2004)

Mazzia, E., Trigiante, D.: Efficient strategies for solving nonlinear problems in BVPs codes.
Nonlinear Studies (in press)

Miranker, W.L.: The Computational Theory of Stiff Differential Equations. Pubblicazioni IAC
Roma Ser. III N. 102 (1975)

. Rouche, N., Mawhin, J.: Equations Differentielle Ordinaire, vol. 2. Masson et Cie, Paris

(1973)

Shampine, L.F., Thompson, S.: Stiff systems. Scholarpedia 2(3), 2855 (2007)

Soderlind, G.: The logarithmic norm. History and modern theory. BIT 46, 631-652 (2006)
Yoshizawa, T.: Stability Theory by Liapunov’s Second Method. The Mathematical Soc. of
Japan (1966)

Book ID: 213096_1_En, Chapter ID: 1, Date: 2010-08-17, Proof No: 1, UNCORRECTED PROOF



