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Abstract. This paper is devoted to study the generation of analytic semi-
group for a family of degenerate elliptic operators (with unbounded coeffi-
cients) which includes well known operators arising in mathematical finance.
The generation property is proved by assuming some compensation conditions
among the coefficients and applying a suitable modification of the techniques
developed in [16]. Using the results proved in [11] concerning the generation in
the space L2(IRd), we prove the generation results in Lp(IRd) for p ∈ [1,+∞].
These results have several consequences in connection with the financial ap-
plications [3, 11].
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1. Introduction

In this paper we study the generation of analytic semigroups in Lp(IRd), with p in
[1,+∞] for a family of degenerate elliptic operators with unbounded coefficients.
These results can be employed to obtain existence, uniqueness and regularity esti-
mates for the solutions of the associated (linear or semilinear) parabolic problems,
through the well known theory of analytic semigroups (e.g. [12]). This has been
done in [3] for the so-called “no-arbitrage” operators arising in pricing contingent
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claims. We consider the following differential operator in IRd

A(x,D) =

d∑
i,j=1

ψi(x)ψj(x)ai,j(x)Di,j +

d∑
i=1

bi(x)Di − γ2(x)

(denoted simply by A in the following), where the weights ψi : IRd 7→ IR, i =
1, . . . , d, are differentiable sublinear functions vanishing in not more than a neg-
ligible set Z, the matrix {ai,j}i,j=1,...,d is bounded and uniformly elliptic, the

coefficients bi : IRd 7→ IR, i = 1, . . . , d, are measurable functions and the function
γ : IRd 7→ IR is differentiable and locally square integrable with its first derivatives.
The main difficulty to overcome here is the need of managing both the possible
unboudedness of all the coefficients and the presence of zero’s for those of the sec-
ond order terms. In general these operators do not generate analytic nor strongly
continuous semigroups (for instance the Ornstein-Uhlenbeck operator in one di-
mension, where ψ = 1, b(x) = x, γ = 0). However, we prove that choosing suitable
compensation conditions on the coefficients this become possible.

In [11] we considered the operator A defined in the whole space IRd and we

proved the generation of analytic semigroup in the space L2(IRd), by an appli-
cation of Hilbert space techniques. This was possible thanks to some preliminary
a priori estimates, which are established by an appropriate choice of some com-
pensation conditions among the coefficients of the operator. Then we obtained a
characterization of the domain of the operator in L2(IRd) by a localization proce-
dure which was adapted to the growth rate of the weights ψ’s at infinity and close
to the negligible set Z of all zeros of the ψ’s.

The aim of this paper is to pass from the L2(IRd) case to the Lp(IRd) one,
when 1 ≤ p ≤ +∞, by using a suitable modification of the Stewart’s method
[15, 16, 17]. Of course the fitting localization procedure become more complicated
here, since it now depends also on the growth rate of the zero order coefficient γ.

A first result of our semigroup generation analysis is the existence of solu-
tions of the no-arbitrage pricing problems, which is a central topic in the modern
mathematical finance. However, a general existence result can be obtained via the
probabilistic approach. So the main motivation to study these generation problems
is based on the the question of regularity of solutions. This also in order to apply
suitable numerical methods.

The paper is organized as follows. In Section 2 we introduce the notation
and recall some results about the generation of analytic semigroup in the spaces
L2(IRd) proved in [11] . In Section 3 we prove the generation of analytic semigroup

and we obtain the domain characterization in the spaces Lp(IRd), 2 < p <∞ and

L∞(IRd). This result implies the generation of analytic semigroup in the spaces

Lp(IRd) for 1 ≤ p < 2 using duality techniques.
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2. Preliminary material and notation

Let Ω be an open subset of the d-dimensional Euclidean space IRd. We denote by
C∞(Ω) the linear space of all infinitely differentiable complex-valued functions on
Ω, and we write C∞c (Ω) for the linear submanifold of C∞(Ω) of all functions with
compact support in Ω.
We denote by Wn,p(Ω) the usual Sobolev space (see, e.g., [1]), defined as the com-
pletion of C∞c (Ω) with respect to the norm

‖u‖Wn,p(Ω) ≡
∑
|α|≤n

(∫
Ω

|Dαu(x)|p dx
)1/p

writing Lp(Ω) [resp. Hn(Ω)] rather than W 0,p(Ω) [resp. Wn,2(Ω)], and using the

shorthands Wn,p and Lp for Wn,p(IRd) and Lp(IRd), respectively.
We denote by Wn,p

loc [resp. Lploc, H
n
loc] the linear space of all measurable complex-

valued functions on IRd belonging to Wn,p(Ω) [resp. Lp(Ω), Hn(Ω)] for every open

subset Ω of IRd having compact closure, and, for any fixed real-valued function
ξ ∈Wn,p

loc , we define the weighted Sobolev space Wn,p
ξ as the completion of C∞c (IRd)

with respect to the weighted norm

‖u‖Wn,p
ξ
≡ ‖ξu‖Wn,p .

It is well known that Wn,p
ξ can also be defined as the space of all measurable

functions u such that ξu ∈ Wn,p. Similarly, for any choice of the functions α, βi,
i = 1, . . . , d, δi,j , i, j = 1, . . . , d belonging to Lploc, with essinf |α| > 0, we introduce

the weighted Sobolev spaces W 1,p
(α,β) and W 2,p

(α,β,δ) defined as the completion of

C∞c (IRd) with respect to the weighted norm

‖u‖W 1,p
(α,β)

≡ ‖αu‖Lp +

d∑
i=1

‖βiDiu‖Lp

and

‖u‖W 2,p
(α,β,δ)

≡ ‖αu‖Lp +

d∑
i=1

‖βiDiu‖Lp +

d∑
i,j=1

‖δi,jDi,ju‖Lp

respectively and we introduce also the spaces W 1,p
ξ,(α,β) [resp. W 2,p

ξ,(α,β,δ)] of all mea-

surable functions u such that ξu ∈W 1,p
(α,β) [resp. ξu ∈W 2,p

(α,β,δ)], endowed with the
norms

‖u‖W 1,p
ξ,(α,β)

≡ ‖ξu‖W 1,p
(α,β)

[resp. ‖u‖W 2,p
ξ,(α,β,δ)

≡ ‖ξu‖W 2,p
(α,β,δ)

].

Lastly we denote with Lpξ the space W 0,p
ξ .

Let us now consider the formal second-order differential operator

Au ≡
d∑

i,j=1

ψi(x)ψj(x)ai,j(x)Di,ju+

d∑
i=1

bi(x)Diu− γ2(x)u. (1)
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Assumption 2.1. 1. For all i, j = 1, . . . , d, the coefficients ai,j(x) are bounded

differentiable real-valued functions on IRd such that ai,j(x) = aj,i(x), and
satisfying the strong ellipticity condition

Re

d∑
i,j=1

ai,j(x)zizj ≥ E |z|2 ∀z ∈ ICd,

for a suitable ellipticity modulus E > 0 independent of x ∈ IRd;
2. for every i = 1, . . . , d, the coefficients bi(x) are measurable real-valued func-

tions on IRd, while γ(x) is a real-valued function in L2
loc with essinf(γ) ≥ 1;

1

3. for all i = 1, . . . , d the coefficients ψi(x) are differentiable, and we have

|bi(x)| ≤ B1E
1/2η1,i(x) |ψi(x)| γ(x) ∀x ∈ IRd,

|Dj(ψi(x)ψj(x)ai,j(x))| ≤ B2E
1/2η2,i,j(x) |ψi(x)| γ(x) ∀x ∈ IRd,

(2)

for suitable constants B1 and B2 such that B1 + B2 < 2 and measurable
positive functions η1,i(x) and η2,i,j(x) satisfying

d∑
i=1

η2
1,i(x) = d

d∑
i,j=1

η2
2,i,j(x) = 1.

Assumption 2.1 allows us to reduce the analysis of the nonvariational case to the
analysis of the variational one. Indeed, introducing the sesquilinear form a(·, ·)
associated to the operator A, given by

a(u, v) ≡ â(u, v)−
∫

IRd

d∑
i,j=1

Dj(ψi(x)ψj(x)ai,j(x))Diu(x)v(x)dx,

for all u ∈ H1,p
(γ,ψ) 1 < p < ∞ and v ∈ H1,q

(γ,ψ) where q is the conjugate of p , and

writing

D(Ap) ≡
{
u∈H1,p

(γ,ψ) : ∃K(u) > 0 s.t. |a(u, ϕ)| ≤ K(u)‖ϕ‖q ∀ϕ ∈C∞c (IRd)
}
,

one can study the realization Ap : D(Ap)→ Lp of A by considering for each λ ∈ IC
such that Reλ > 0, the equation

(λ−Ap)u = f. (3)

In [11] the following results are proved:

Theorem 2.2. Under Assumption 2.1, the operator A2 : D(A2)→ L2 generates an
analytic semigroup on L2.

Moreover

1This condition could be replaced by the seemingly more general essinfγ > 0, provided to
employ a standard normalization procedure.
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Corollary 2.3. Under Assumption 2.1, for every solution u ∈ D(A2) of (3), we
have

|λ|1/2 ‖γu‖L2 ≤ K ′‖f‖L2 and |λ|1/2 ‖ψiDiu‖L2 ≤ K ′′‖f‖L2 ,

for suitably chosen K ′,K ′′ > 0 independent of λ.

In order to obtain suitable estimates for the first-order derivatives we need the
following assumption:

Assumption 2.4. Under 1. and 2. of Assumption 2.1, suppose in addition that γ
is continuously differentiable and that, for all i, j = 1, . . . , d and x ∈ IRd, we have

|bi(x)| ≤ B1E
1/2η1,i(x) |ψi(x)| γ(x),

|Dj(ψi(x)ψj(x)ai,j(x))| ≤ B2E
1/2η2,i,j(x) |ψi(x)| γ(x),

2 |ψj(x)Djγ(x)ai,j(x)| ≤ B3E
1/2η3,i,j(x)γ2(x),

for suitable constants B1, B2 and B3 such that B1 + B2 + B3 < 2 and suitable

measurable functions η1,i(x), η2,i,j(x) and η3,i,j(x) on IRd satisfying
∑d
i=1 η1,i(x) =

d
∑d
i,j=1 η

2
2,i,j(x) = d

∑d
i,j=1 η

2
3,i,j(x) = 1.

We have

Theorem 2.5. Under Assumption 2.4, both γ2u and ψiγDiu belong to L2, for every
i = 1, . . . , d. More precisely, u belongs to H1

(γ2,γψ), and

‖u‖H1
(γ2,γψ)

≤ K‖f‖L2

holds true for a suitable K > 0. In particular, for every i = 1, . . . , d, also biDiu
belongs to L2, and we have

d∑
i=1

‖biDiu‖L2 ≤ d2B1E
1/2

d∑
i=1

‖ψiγDiu‖L2 .

Aiming to show that for all i, j = 1, . . . , d the single summand ψi(x)ψj(x)Di,ju(x)
belongs to L2, we need to strengthen our hypotheses on the coefficients ψi(x)’s.
Therefore, having in mind our examples, we will assume then the negligibility of
the set

Z ≡
{
x ∈ IRd : ψi(x) = 0, for some i = 1, . . . , d

}
,

of all zeros of the ψi(x)’s, and the existence of a suitable countable covering of

IRd − Z which allows us to perform a localization procedure. Such a covering will
be made by rectangles of the type

R(x0, rψ) ≡
{
x ∈ IRd : |xi − x(0)

i | ≤ r|ψi(x0)|, i = 1, . . . , d
}
,

for x0 ≡ (x
(0)
1 , . . . , x

(0)
d ) ∈ IRd − Z and r > 0.

Assumption 2.6. Under Assumption 2.4, suppose in addition that
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(i) for every i = 1, . . . , d, the differentiable function ψi(x) belongs to H1
loc and

the set Z is negligible;
(ii) there exist real numbers r1 > 0 and L > 0 such that for every 0 < r ≤ r1 we

can find a countable set Nr ⊂ IRd − Z such that
(a) the family F1 ≡ {R(x, rψ)}x∈Nr is a covering of IRd − Z;

(b) each rectangle of the family F2 ≡ {R(x, 2rψ)}x∈Nr does not contain
any element of Z and has a nonempty intersection with at most a fixed
number n0 of other rectangles of F2 itself;

(c) we have

1

L
≤ min
i=1,...,d

inf
x∈R(x0,2rψ)

|ψi(x)|
|ψi(x0)|

≤ max
i=1,...,d

sup
x∈R(x0,2rψ)

|ψi(x)|
|ψi(x0)|

≤ L,

for each x0 ∈ Nr.

Remark 2.7. Assumption 2.6 is convenient for proving the characterization result.
However, it is not easy to check it for given operators. In [11] it is proved that
2.6 is verified under a more treatable assumption, befitted with examples coming
from financial mathematics. More precisely, it was shown that the Assumption 2.8
below implies 2.6.

Assumption 2.8. Under Assumption 2.4, suppose in addition that

(i) Part (i) of Assumption 2.6 holds true;
(ii) there exist r0 > 0 (small), R0 > 0 (large), and α > 0 such that for every

x ∈
{
x ∈ IRd : dist(x, Z) < r0 or dist(x, 0) > R0

}
≡ D (r0, R0) and every i =

1, . . . , d we have

|Djψi(x)| ≤ α;

(iii) for every i = 1, . . . , d the function ψi(x) depends only on the variable xi.

Theorem 2.9. Under Assumption 2.6, the functions

ψi(x)ψj(x)Di,ju(x)

belong to L2 for all i, j = 1, . . . , d. More precisely, we have u ∈ H2
(γ2,γψ,ψ2) and

the estimate

|λ|‖u‖L2 + |λ|1/2‖u‖H1
(γ,ψ)

+ ‖u‖H2
(γ2,γψ,ψ2)

≤ K‖f‖L2

holds true for a suitable K > 0.

Such results can be extended to the case of weighted Sobolev spaces:

Theorem 2.10. Assume that Assumption 2.4 still holds true when replacing the
first-order term of the operator A with

d∑
i=1

biDi +

d∑
i,j=1

ψiψjai,j

(Diξ

ξ
Dj +

Djξ

ξ
Di

)



Generation of analytic semigroups and domain characterization 7

and the zero-order term with

−γ2 +

d∑
i,j=1

ψiψjai,j

(Di,jξ

ξ
+ 2

DiξDjξ

ξ2

)
+

d∑
i=1

bi
Diξ

ξ
;

then the operator A has a realization A2,ξ : D(A2,ξ) → L2
ξ which generates an

analytic semigroup on L2
ξ. Moreover, for each λ ∈ IC such that Re λ > 0, the

resolvent equation λu − A2,ξu = f has, for every f ∈ L2, a unique solution u ∈
D(A2,ξ), which satisfies the estimate

|λ|‖u‖L2
ξ

+ |λ|1/2‖u‖H1,2
ξ,(γ,ψ)

+ ‖u‖H2,2

ξ,(γ2,γψ,ψ2)

≤ C‖f‖L2
ξ
,

for a suitable constant C > 0. In particular we have D(A2,ξ) = H2
ξ,(γ2,γψ,ψ2).

Remark 2.11. By using the Korn’s argument it is possible to pass from generation
results in the case of differentiable coefficients to similar result in the case of
continuous coefficients. However, in such a general setting, it is impossible to find
a general approach leading to this kind of results. This can be done in particular
cases with different procedures.

3. Generation of analytic semigroups on Lp(IRd)

In order to prove the Lp estimates we need an additional assumption. Actually
we need the existence of a suitable countable covering of IRd − Z which allows us
to perform a localization procedure. Let rγ(x0) be the minimum between r and

γ(x0)−1. Let

R(x0, rψ,γ) ≡
{
x ∈ IRd : |xi − x(0)

i | ≤ rγ(x0)|ψi(x0)|, i = 1, . . . , d
}
,

for x0 ≡ (x
(0)
1 , . . . , x

(0)
d ) ∈ IRd − Z and r > 0.

Assumption 3.1. Under Assumption 2.4, suppose in addition that

(i) Part (i) of Assumption 2.6 holds true;
(ii) There exist real numbers r1 > 0 and L > 0 such that for every 0 < r ≤ r1

we can find a countable set Nr ⊂ IRd − Z such that
(a) the family F1 ≡ {R(x, rψ,γ)}x∈Nr is a covering of IRd − Z;

(b) each rectangle of the family F2 ≡ {R(x, 2rψ,γ)}x∈Nr does not contain
any element of Z and has a nonempty intersection with at most a fixed
number n0 of other rectangles of F2 itself;

(c) we have

1

L
≤ inf
x∈R(x0,2rψ,γ)

|γ(x)|
|γ(x0)|

≤ sup
x∈R(x0,2rψ,γ)

|γ(x)|
|γ(x0)|

≤ L,

for each x0 ∈ Nr.
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Remark 3.2. As done in Remark 2.7, it is possible to find stronger conditions
that imply Assumption 3.1 and that are usually satisfied by the classical problems
arising from financial mathematics.

Lemma 3.3. Under Assumption 3.1, assume to have proved that for a p ≥ 2 the
solution u of the resolvent equation (3), related to some λ ∈ IC such that Reλ > 0

belongs to W 2,p
(γ2,γψ,ψ2) and satisfies the estimate

|λ|‖u‖Lp + |λ|1/2‖u‖W 1,p
(γ,ψ)

+ ‖u‖W 2,p

(γ2,γψ,ψ2)

≤ C ′‖f‖Lp (4)

for some C ′ > 0 and for each f ∈ Lp.

Let q ∈ (p, p∗) and let f ∈ Lq. Assume that u ∈W 1,p
(γ2,γψ) is a solution of (3).

Then u satisfies the estimate

|λ|‖u‖Lq + |λ|1/2‖u‖W 1,q
(γ,ψ)

+ ‖u‖W 1,q

(γ2,γψ)

≤ C‖f‖Lq , (5)

for every λ ∈ IC whose real part is greater than a suitable fixed positive real number
ω and for a suitable C > 0 independent of λ. Moreover if p > d we may choose
q =∞.

Proof. For each x0 ≡ (x0
1, . . . , x

0
d) ∈ IRd − Z, we also consider the change of

variables Tx0,ψ : IRd 7→ IRd defined by

Tx0,ψ(x)
def
= ((x1 − x0

1)/ |ψ1(x0)| , . . . , (xd − x0
d)/ |ψd(x0)|),

of inverse

T−1
x0,ψ

(x) = (x0
1 + |ψ1(x0)|x1, . . . , x

0
d + |ψd(x0)|xd).

Furthermore, for every r > 0 we denote by B(x0, r) the d-dimensional ball centered
at 0 with radius r and we write B(x0, rψ) for the d-dimensional ellipsoid centered
at x0 with semiaxes r |ψ1(x0)| , . . . , r |ψd(x0)|. Clearly

Tx0,ψ(B(x0, rψ)) = B(0, r) and T−1
x0,ψ

(B(0, r)) = B(x0, rψ).

Consider the change of variables

ũ(x)
def
= (u ◦ T−1

x0,ψ
)(x),

and let θ(x) be any smooth cut-off function such that{
θ(t) = 1 if t ∈ [0, 1]
θ(t) = 0 if t ∈ [2,+∞[

,

for each 0 < r ≤ r0 we can define a cut-off function on IRd by setting

θr(x)
def
= θ

(
|x|
r

)
,

and we can consider the function

v(x) = θr(x)ũ(x).
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Clearly v ∈ Lp satisfies the following equation

d∑
i,j=1

ψ̃i(x)ψ̃j(x)

ψi(x0)ψj(x0)
ãi,j(x)Di,jv(x) +

d∑
i=1

b̃i(x)

ψi(x0)
Div(x)− γ̃2v(x)− λv(x)

= θr(x)f̃(x) +

d∑
i=1

b̃i(x)

ψi(x0)
Diθr(x)ũ(x)

+

d∑
i,j=1

ψ̃i(x)ψ̃j(x)

ψi(x0)ψj(x0)
ãi,j(x)[ũ(x)Di,jθr(x) +Diθr(x)Dj ũ(x) +Djθr(x)Diũ(x)],

whose right side h̃ satisfies

h̃ ∈ Lp(B(0, 2r)) and h̃ = 0 on ∂B(0, 2r).

On the other hand, by the assumption of the lemma the solution v ∈ Lp satisfies
the estimate

|λ|‖v‖Lp + |λ|1/2‖v‖W 1,p
(γ,ψ)

+ ‖v‖W 2,p

(γ,ψγ,ψ2)

≤ C1‖h̃‖Lp ,

for a suitable C > 0 independent of λ.
Furthermore we can also prove that

‖h̃‖Lp ≤ C2

[
‖f̃‖Lp(B(0,2r)) +

1

r2
‖ũ‖Lp(B(0,2r)) +

1

r
‖Dũ‖Lp(B(0,2r))

+
1

r
‖γ̃ũ‖Lp(B(0,2r))

]
,

for a suitable C2 > 0 where the last estimate comes from equation (2).
Combining the above estimates, we obtain

|λ|‖ũ‖Lp(B(0,r)) + |λ|1/2
[
γ(x0)‖ũ‖Lp(B(0,r)) + ‖Dũ‖Lp(B(0,r))

]
+γ2(x0)‖ũ‖Lp(B(0,r)) + γ(x0)‖Dũ‖Lp(B(0,r)) + ‖D2ũ‖Lp(B(0,r))

≤ C

[
‖f̃‖Lp(B(0,2r)) +

1

r2
‖ũ‖Lp(B(0,2r)) +

1

r
‖Dũ‖Lp(B(0,2r))

+
1

r
γ(x0)‖ũ‖Lp(B(0,2r))

]
, (6)

where we suppose r small enough in order that Assumption 3.1 holds. Now, if we
take q ∈ (p, p∗) and δ(q) = d/q − d/p+ 1, for every ε > 0 there exists (see [13, p.
66]) C(ε) > 0 such that

‖ũ‖Lq(B(0,r)) ≤ εrδ(q)‖Dũ‖Lp(B(0,r)) + C(ε)rδ(q)−1‖ũ‖Lp(B(0,r)), (7)

and

‖Dũ‖Lq(B(0,r)) ≤ εrδ(q)‖D2ũ‖Lp(B(0,r)) + C(ε)rδ(q)−2‖ũ‖Lp(B(0,r)). (8)
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Combining estimates (7) and (8) we have

1

r2
‖ũ‖Lq(B(0,r)) +

1

r
‖Dũ‖Lq(B(0,r))

≤ 1

r2

[
εrδ(q)‖Dũ‖Lp(B(0,r)) + C(ε)rδ(q)−1‖ũ‖Lp(B(0,r))

]
+

1

r

[
εrδ(q)‖D2ũ‖Lp(B(0,r)) + C(ε)rδ(q)−2‖ũ‖Lp(B(0,r))

]
.

and, rearranging the terms,

1

r2
‖ũ‖Lq(B(0,r)) +

1

r
‖Dũ‖Lq(B(0,r))

≤ C(ε)rδ(q)−3‖ũ‖Lp(B(0,r)) + εrδ(q)−2‖Dũ‖Lp(B(0,r)) + εrδ(q)−1‖D2ũ‖Lp(B(0,r)).

Taking into account (6), the above estimate implies

1

r2
‖ũ‖Lq(B(0,r)) +

1

r
‖Dũ‖Lq(B(0,r))

≤
[
C(ε)rδ(q)−3(|λ|+ γ(x0)2)−1 + εrδ(q)−2(|λ| 12 + γ(x0))−1 + εrδ(q)−1

]
[
‖f̃‖Lp(B(0,2r)) +

1

r2
‖ũ‖Lp(B(0,2r)) +

1

r
‖Dũ‖Lp(B(0,2r)) +

1

r
γ(x0)‖ũ‖Lp(B(0,2r))

]
.

By Hoelder inequality we get

1

r2
‖ũ‖Lq(B(0,r)) +

1

r
‖Dũ‖Lq(B(0,r))

≤
[
C(ε)r−2(|λ|+ γ(x0)2)−1 + εr−1(|λ| 12 + γ(x0))−1 + ε

]
[
‖f̃‖Lq(B(0,2r)) +

1

r2
‖ũ‖Lq(B(0,2r)) +

1

r
‖Dũ‖Lq(B(0,2r)) +

1

r
γ(x0)‖ũ‖Lq(B(0,2r))

]
.

Finally, if we take:

• ε > 0 a small number to be chosen later
• r0 = (|λ| 12 + γ(x0))−1

• r = αr0, where α is a number to be chosen later,

then we obtain

1

α2
(|λ| 12 + γ(x0))2‖ũ‖Lq(B(0,r0)) +

1

α
(|λ| 12 + γ(x0))‖Dũ‖Lq(B(0,r0))

≤
[
C(ε)

1

α2
+ ε

1

α
+ ε

] [
‖f̃‖Lq(B(0,2r0)) +

1

α2
(|λ| 12 + γ(x0))2‖ũ‖Lq(B(0,2r0))

+
1

α
(|λ| 12 + γ(x0))‖Dũ‖Lq(B(0,2r0)) +

1

α
(|λ| 12 + γ(x0))γ(x0)‖ũ‖Lq(B(0,2r0))

]
(9)
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So if q < ∞, by changing variable back, summing up to the covering and using
assumption 3.1, we have

1

α2
(|λ|‖u‖Lq + ‖γ2u‖Lq +

1

α
(|λ|1/2‖Du‖Lq + ‖γDu‖Lq )

≤ 2L4n0

[
C(ε)

1

α2
+ ε

1

α
+ ε

] [
1

α2
(|λ|‖u‖Lq + ‖γ2u‖Lq )

+
1

α
(|λ|1/2‖γu‖Lq + ‖γ2u‖Lq ) +

1

α
(|λ|1/2‖Du‖Lq + ‖γDu‖Lq ) + ‖f‖Lq

]
.

The statement follows from the above estimate choosing ε = 1
8L4n0

and α =

4C(ε)L4n0. If q = ∞ the argument is easier. Actually by changing variable back
and by localizing around the points where u(x), γ2(x)u(x), Du(x), ψ(x)Du(x) and
γ(x)ψ(x)Du(x) attain the maximum, the result follows directly from (9) without
using a covering argument. �

Remark 3.4. Assume f ∈ L∞. Arguing as in [15] from the proof of the previous
lemma it is possible to get an estimate for the second derivatives. Actually, starting
from equation (6), by Hoelder inequality and choosing a suitable r = α(|λ| 12 +
γ(x0))−1, one gets that for each q > d:

sup
x0∈IRd

(|λ| 12 + γ(x0))
d
q ‖ψ2D2u‖Lq(B(x0,r0ψ)) ≤ C‖f‖L∞ . (10)

Remark 3.5. Estimate (4) implies the uniqueness of the solution of (3) in W 1,q
γ2,γψ.

Lemma 3.6. Under the assumptions of Lemma 3.3 we have that u ∈W 2,q
γ2,γψ,ψ2 and

‖ψ2D2u‖Lq ≤ C‖f‖Lq .

Proof. Using the notation of the previous lemma we have that the function ũ(x)
satisfies the following equation in B(x0, 2r)

d∑
i,j=1

ψ̃i(x)ψ̃j(x)

ψi(x0)ψj(x0)
ãi,j(x)Di,j ũ(x)) = −

d∑
i=1

b̃i(x)

ψi(x0)
Diũ(x)− γ̃2ũ(x) + f̃(x) = h̃(x).

Noting that the second order differential operator

ũ(x) 7→
d∑

i,j=1

ψ̃i(x)ψ̃j(x)

ψi(x0)ψj(x0)
ãi,j(x)Di,j ũ(x)

is a strongly elliptic operator in B(0, 2r) and, thanks to known regularity results
(see [6] and also [9, Theor. 17.2, p.67], [10, 8.3, p.173]) it follows that ũ(x) ∈
W 2,q(B(0, r)) and

‖ D2ũ‖Lq(B(x0,2r) ≤ C‖h̃‖Lq(B(x0,2r).

The statement follows changing variable back, summing up to the covering and
applying the results of Lemma 3.3. �
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Theorem 3.7. Assume that 3.1 holds. Then for each 2 ≤ q ≤ ∞ the operator
Aq : D(Aq)→ Lq generates an analytic semigroup on Lp. Moreover if q <∞ for
every solution u ∈ D(Aq) of (3), we have

|λ|‖u‖Lq + |λ| 12 ‖u‖W 1,q
(γ,ψ)

+ ‖u‖W 2,q

(γ2,γψ,ψ2)

≤ C‖f‖Lq (11)

for every λ ∈ IC whose real part is greater than a suitable fixed positive real number
ω and for a suitable C > 0 independent of λ.
If q =∞ then for every solution u ∈ D(A∞) of (3), we have

|λ|‖u‖L∞ + |λ| 12 ‖u‖W 1,∞
(γ,ψ)

+ ‖u‖W 1,∞
(γ2,γψ)

≤ C‖f‖L∞ (12)

for every λ ∈ IC whose real part is greater than a suitable fixed positive real number
ω and for a suitable C > 0 independent of λ.

Proof. This Theorem is true for p = 2. Let q ∈ (2, 2∗] where 2∗ is the Sobolev
exponent. Let u be a solution of (3) and assume that f ∈ L2 ∩ Lq. By applying
Lemmata 3.3 and 3.6 we have that (11) holds.
If f ∈ Lq, we consider a sequence of functions fn ∈ L2 ∩Lq converging to f in Lq.
Then the sequence of associated solutions un is a Cauchy sequence in W 2,q

(γ2,γψ,ψ2)

converging to a function u that is a solution of (3). Moreover this solution is unique
by Remark 3.5. Therefore the result is proved for any q ∈ (2, 2∗].
If q ∈ (2∗, (2∗)∗) one can prove the result iterating the previous argument. After
a finite number of steps the statement follows. �

Using duality techniques one may prove a generation result in Lp with 1 ≤ p < 2.

Theorem 3.8. Assume 3.1 holds. Let 1 ≤ p < 2, then the operator Âp : D(Ap)→ Lp

generates an analytic semigroup on Lp.

Proof. The statement follows if we show that a solution of (3) for 1 ≤ p < 2 exists
and is unique, and moreover

|λ|‖u‖Lp ≤ C‖f‖Lp (13)

for every λ ∈ IC whose real part is greater than a suitable fixed positive real number
ω and for a suitable C > 0 independent of λ.

Assume first f ∈ Lp ∩ L2 so one has the existence of a solution of (3). Let Â the
operator in variational form

Âu ≡
d∑

i,j=1

Dj(ψi(x)ψj(x)ai,j(x)Diu) +

d∑
i=1

bi(x)Diu− γ2(x)u,

and let Â∗ its adjoint.
Define the function space H = {g ∈ Lp′ : ‖g‖Lp′ = 1} where p′ is the conjugate of
p. Then

‖u‖Lp = sup
g∈H

∫
ugdx.
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For each g ∈ H, let vg be the solution of the equation

(Â∗ − λ)vg = g. (14)

By Theorem 3.7

|λ|‖vg‖Lp′ ≤ C‖g‖Lp′ ≤ C.
Therefore

‖u‖Lp = sup
g∈H

∫
u(Â∗ − λ)vgdx = sup

g∈H

∫
(Â − λ)uvgdx = sup

g∈H

∫
fvgdx

≤ C|λ|−1|‖f‖Lp .

Note that the duality argument implies directly the uniqueness of a variational
solution of (3). We have only to prove the existence in the general case. If f ∈ Lp
we can find a sequence of function fn ∈ Lp ∩ L2 converging to f ∈ Lp. By the
previous estimate we have that the solutions un are a Cauchy sequence in Lp. Using
the regularity of the coefficients, it is not difficult to prove that the functions un
converge to the solution u of (3) that satisfies estimate (13). �

Remark 3.9. If one assumes more regular coefficients, one may characterize the
domain also in the case p < 2. Precisely for every solution u ∈ D(Ap) of (3) we
have

|λ|‖u‖Lp + |λ| 12 ‖u‖W 1,p
(γ,ψ)

+ ‖u‖W 2,p

(γ2,γψ,ψ2)

≤ C‖f‖Lp (15)

or

|λ|‖u‖L1 + |λ| 12 ‖u‖W 1,1
(γ,ψ)

+ ‖u‖W 1,1

(γ2,γψ)

≤ C‖f‖L1 (16)

according to wether 1 < p < 2 or p = 1, for every λ ∈ IC whose real part is greater
than a suitable fixed positive real number ω and for a suitable C > 0 independent
of λ.
Briefly let f ∈ Lp ∩ L2 (the general case follows as before from standard density
arguments). So for every g in H there exists a solution vg of (14) and by Theorem
3.7 we have

|λ|‖vg‖Lp′ + |λ| 12 ‖vg‖W 1,p′
(γ,ψ)

+ ‖vg‖W 2,p′
(γ2,γψ,ψ2)

≤ C (17)

if 1 < p < 2 or

|λ|‖vg‖L∞ + |λ| 12 ‖vg‖W 1,∞
(γ,ψ)

+ ‖vg‖W 1,∞
(γ2,γψ)

≤ C

if p = 1.
Now (15) easily follows from (17) and estimates

‖u‖Lp ≤ ‖vg‖Lp′‖f‖Lp
‖u‖

W 1,p′
(γ,ψ)

≤ ‖vg‖W 1,p′
(γ,ψ)

‖f‖Lp

‖u‖W 2,p

(γ2,γψ,ψ2)

≤ ‖vg‖W 2,p′
(γ2,γψ,ψ2)

‖f‖Lp .

Similarly for (16).
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Example. Consider the PDE for the price of a European contingent claim in the
multifactor case, under the so-called no-arbitrage assumption

Dtv +Av = 0,

where

Av =
1

2
Tr ((σdiagx) (Di,jv) (σdiagx)∗) + (r − ρ)(1− ε)

d∑
i=1

xiDiv − rv,

with terminal condition v(x, T ) = g(x) (see, e.g., [18]). Here (diagx) is the diagonal
matrix with the components of x ≡ (x1, . . . , xd) on the main diagonal, r is the
interest rate of a reference riskless asset in the market, σ is a given d-order matrix
such that, writing σ∗ for the transpose of σ, the matrix σ∗σ is positive definite,
ρ ≡ ρ(x, t) is the dividend rate and ε ≡ ε(x, t) is the tax rate on dividends. The
solution v ≡ v(x, t) represents the no-arbitrage price of a contingent claim having
payoff g ≡ g(x) at the expiration time T . In the case d = 1, ρ = 0, ε = 0 and
g(x) = (x − E)+, where E is the maturity price of the option, we obtain the
well-known Black and Scholes equation described in [4]. Also multifactor models,
such as the ones appearing in [8], options on futures contracts, and swaps can be
treated in our framework ([3, 18]), along with the example below.

Example. We consider here the structure model of interest rate derivatives. For
the so-called affine single-term structure model the interest rate is modeled by the
stochastic process (Xt)t≥0 satisfying the differential equation

dXt = (α1(t) + α2(t)Xt) dt+ (β1(t) + β2(t)Xt) dWt. (18)

Suitably choosing the coefficients α1(t), α2(t), β1(t) and β2(t), different term-
structure models can be obtained. In particular two models fitting our framework
can be obtained by choosing

1. α1 = α2 = β1 = 0 [7]
2. β1 = 0 [5].

The price of a zero-coupon bond maturing at date T is the solution of the Cauchy
problem

Dtv +Av = 0,

with the end terminal condition v(x, T ) = 1, where

Av =
1

2
(β1 + β2x)2Dx,xv + (α1 + α2x)Dxv.

We remark in addition that our results allow us to treat also multifactor models
with time-dependent coefficients (see [8, 3]), and also semilinear perturbations of
the above equations.

Example. The following equation, coming from nonlinear filtering, is considered in
[2, 14]:

Dt = Dx,x + xDxv − x2v, t > 0, x ∈ IR
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with initial condition v(0, x) = g(x). It can be easily checked that the second
order operator defined by the right-hand side of the above equation satisfies our
assumptions.
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Birkhäuser-Verlag, Berlin 1995.

[13] V.G. Maz’ja, Sobolev spaces. Springer-Verlag, Berlin 1985.

[14] S.J. Sheu, Solution of certain parabolic equations with unbounded coefficients and its
applications. Stochastics 10 (1983), 31-46.

[15] B. Stewart, Generation of analytic semigroups by strongly elliptic operators. Trans.
Amer. Math. Soc. 199 (1974), 141-162.

[16] B. Stewart, Generation of analytic semigroups by strongly elliptic operators under
general boundary conditions. Trans. Amer. Math. Soc. 259 (1980), 299-310.

[17] V. Vespri, Analytic semigroups, degenerate elliptic operators and applications to non-
linear cauchy problems. Ann. Mat. Pura Appl. (4) 155 (1989), 353-388.

[18] P. Wilmott, J. Dewynne and S. Howison, Option pricing: mathematical models and
computation. Oxford Financial Press, Oxford 1993.



16 M. Giuli, F. Gozzi, R. Monte and V. Vespri

Massimiliano Giuli
Dipartimento di Sistemi ed Istituzioni per l’Economia
P.zza del Santuario 19
67040 Roio Poggio (AQ)
Italy
e-mail: giuli@ec.univaq.it

Fausto Gozzi
Dipartimento di Scienze Economiche e Aziendali
Viale Pola 12
00198 Roma
Italy
e-mail: fgozzi@luiss.it

Roberto Monte
Dipartimento di Studi Economico-Finanziari e Metodi Quantitativi
Via Columbia 2
00133 Roma
Italy
e-mail: monte@sefemeq.uniroma2.it

Vincenzo Vespri
Dipartimento di Matematica Ulisse Dini
Viale Morgagni 67A
50134 Firenze
Italy
e-mail: vespri@math.unifi.it


