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ABSTRACT

The Parker or field line tangling model of coronal heating is studied comprehensively via long-time high-resolution
simulations of the dynamics of a coronal loop in Cartesian geometry within the framework of reduced magnetohydro-
dynamics. Slow photospheric motions induce a Poynting flux which saturates by driving an anisotropic turbulent cas-
cade dominated by magnetic energy. In physical space this corresponds to a magnetic topology where magnetic field
lines are barely entangled; nevertheless, current sheets (corresponding to the original tangential discontinuities hypoth-
esized by Parker) are continuously formed and dissipated. Current sheets are the result of the nonlinear cascade that
transfers energy from the scale of convective motions (�1000 km) down to the dissipative scales, where it is finally
converted to heat and/or particle acceleration. Current sheets constitute the dissipative structure of the system, and the
associated magnetic reconnection gives rise to impulsive ‘‘bursty’’ heating events at the small scales. This picture is
consistent with the slender loops observed by state-of-the-art (E)UVand X-ray imagers which, although apparently
quiescent, shine brightly in these wavelengths with little evidence of entangled features. The different regimes of weak
and strong magnetohydrodynamic turbulence that develop and their influence on coronal heating scalings are shown
to depend on the loop parameters, and this dependence is quantitatively characterized: weak turbulence regimes and
steeper spectra occur in stronger loop fields and lead to larger heating rates than in weak field regions.

Subject headinggs: MHD — Sun: corona — Sun: magnetic fields — turbulence

Online material: mpeg animation

1. INTRODUCTION

In a previous letter (Rappazzo et al. 2007) we described sim-
ulations,within the framework of reducedmagnetohydrodynamics
(RMHD) in Cartesian geometry, aimed at solving the Parker field
line tangling (coronal heating) problem (Parker 1972, 1988). We
also developed a phenomenological model for nonlinear interac-
tions, taking into account the inertial photospheric line-tying ef-
fect, which explained how the average coronal heating rate would
depend on the only free parameter present in the simulations,
namely, the ratio of the coronal loop Alfvén crossing time and the
photospheric eddy turnover time. This paper is devoted to a more
detailed discussion of the numerical simulations and of the rela-
tionship between this work, the original Parker conjecture, and the
nanoflare scenario of coronal heating.

Parker’s book (Parker 1994) is devoted to an examination of
the basic theoremof magnetostatics, namely, that the lowest avail-
able energy state of a magnetic field in an infinitely conducting
fluid contains surfaces of tangential discontinuity, or current sheets.
It is Parker’s conjecture that the continuous footpoint displacement
of coronal magnetic field lines must lead to the development of
such discontinuities as the field continuously tries to relax to its
equilibrium state, and it is the dynamical interplay of energy ac-

cumulation via footpoint motion and the bursty dissipation in the
forming current sheets which gives rise to the phenomenon of
the high-temperature solar corona, heated by the individual bursts
of reconnection, or nanoflares.
What then does turbulence have to do with the nanoflare heat-

ing scenario? Parker himself strongly criticizes the use of the
‘‘t’’ word, the formation of the current sheets being due in his
opinion to the ‘‘requirement for ultimate static balance of the
Maxwell stresses.’’ But what better way is there to describe the
nonlinear global dynamics of amagnetically dominated plasma in
which the formation of an equilibrium state containing current
sheets is the inevitable asymptotic state (once the photospheric
driver is turned off )?
The striving of the global magnetic field toward a state con-

taining current sheets must occur through local violations of the
force-free condition, the induction of local flows, and the collapse
of the currents into ever thinner layers—a nonlinear process gen-
erating ever smaller scales. From the spectral point of view, a
power-law distribution of energy as a function of scale is ex-
pected, even though the kinetic energy is much smaller than the
magnetic energy. The last two statements are clear indications
that the word turbulence provides a correct description of the
dynamical process.
A final important issue is whether the overall dissipated power

tends to a finite value as the resistivity and viscosity of the coronal
plasma become arbitrarily small. That this must be the case is easy
to understand (see x 3.3). Suppose that for an arbitrary, continuous,

A

1 NASA Postdoctoral Fellow.
2 Also at: Dipartimento di Astronomia e Scienza dello Spazio, Università di
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footpoint displacement the coronal field were only to map the
footpoint motion, and that there were no nonlinear interactions,
i.e., the Lorentz force and convective derivatives were negligible
everywhere. In this case, the magnetic field and the currents in
the corona would then grow linearly in time, until the coronal dis-
sipation at the scale of photosphericmotions balanced the forcing.
The amplitudes of the coronal fields and currents would then be
inversely proportional to resistivity (eqs. [30]Y[31]), and the dis-
sipated power, product of resistivity and square of the current,
would also scale as the inverse power of the resistivity (eq. [33]).
In other words, the smaller the resistivity in the corona, the higher
the power dissipatedwould be. But the amplitudes cannot become
arbitrarily large, because nonlinear effects intervene to stop the in-
crease in field amplitudes, increasing the effective dissipation at
a given resistivity. Since the power cannot continue to increase
monotonically as the resistivity is decreased, it is clear that at some
point nonlinear interactions must limit the dissipated power to a
finite value, regardless of the value of the resistivity. Finite dis-
sipation at arbitrarily small values of dissipative coefficients is
another definition of a turbulent system.

All this assuming that a statistically stationary state may be
reached in a finite time, a question closely related to the presence
of finite-time singularities in three-dimensional (3D) magneto-
hydrodynamics (MHD). It now appears that magnetic field re-
laxation in an unforced situation does not lead to the development
of infinitely thin current sheets in a finite time, but rather the cur-
rent development appears to be only exponential in time (Grauer
& Marliani 2000). In forced numerical simulations, like the ones
we will describe in detail here, this is a moot point; for all intents
and purposes, a statistically stationary state is achieved at a finite
time independent of resistivity for sufficiently high resolution. In
fact, even if the growth is exponential, we can estimate that the
width of the current sheets reaches themeter-scale in a few tenths
of an Alfvén crossing time �A. A typical value is �A ¼ 40 s, so
that this initial time is not only finite, but also short comparedwith
an active region timescale. Once the steady state has been reached
this phenomenon is no longer important. The nonlinear regime is
in fact characterized by the presence of numerous current sheets,
so that while some of them are being dissipated others are being
formed, and a statistical steady state is maintained.

It therefore seems that the Parker field line tangling scenario of
coronal heating may be described as a particular instance of mag-
netically dominated MHD turbulence. Numerous analytical and
numerical models of this process have been presented in the past,
each discussing in some detail aspects of the general problem as
presented above (Parker 1972, 1988; Heyvaerts & Priest 1992;
van Ballegooijen 1986; Berger 1991; Sturrock & Uchida 1981;
Gomez & Ferro-Fontan 1992; Mikic et al. 1989; Hendrix &
Van Hoven 1996; Longcope & Sudan 1994; Dmitruk &Gómez
1999; Einaudi et al. 1996; Georgoulis et al. 1998; Dmitruk et al.
1998; Einaudi & Velli 1999).

The numerical simulations presented here bring closure to the
original question as posed in Cartesian geometry by Parker, start-
ing from a uniform axial magnetic field straddling from one
boundary plane to another, subject to continuous independent
footpoint motions in either photosphere. This does not imply
that we have fully solved the coronal heating problem as due to
footpoint dragging by the photospheric velocity field.

A number of relevant effects have been neglected. First, we
neglect the field line expansion between the photosphere and
corona, which if the photospheric flux is confined to bundles in
granular and supergranular network lanes, would allow the map-
ping of the photospheric velocity field to the coronal volume to

contain discontinuities. We are presently carrying out a dedicated
set of simulations to capture this effect. Second, the projection
of the 3D photospheric velocity to 2D coronal base motions
parallel to the photosphere also introduces compressibility in the
forcing flow, again neglected here. Third, we have considered
stationary photospheric flows. The effect of a finite eddy turn-
over time in the flow was considered by Einaudi et al. (1996)
and Georgoulis et al. (1998) in 2D and in the ‘‘3D’’ shell model
calculations of Buchlin & Velli (2007). These showed that time
dependence does not change things substantially provided the
flow pattern does not contain degenerate symmetries, a fact con-
firmed by shorter simulations we defer to a future paper. Finally,
we do not address the more realistic case of a single photosphere
with curved coronal loops, such as the simulations presented re-
cently by Gudiksen & Nordlund (2005). While this approach has
advantages when investigating the coronal loop dynamics within
its coronal neighborhood, modeling a larger part of the solar
corona numerically drastically reduces the number of points
occupied by the coronal loops. At the moment, the very low res-
olution attainable with this kind of simulation does not allow
the development of turbulence with a well-developed inertial
range. The transfer of energy from the scale of convection cells
�1000 km toward smaller scales is inhibited, because the smaller
scales are not resolved (their linear resolution is �500 km).
Thus, these simulations have not been able to shed light on the
detailed coronal statistical response nor on the different regimes
which may develop and how they depend on the coronal mag-
netic field crossing time and the photospheric eddy turnover
time.

In x 2 we introduce the coronal loop model, whose properties
are qualitatively analyzed in x 3. The results of our simulations
are described in x 4, and their turbulence properties are analyzed
inmore detail in x 5. Finally, in x 6we summarize and discuss our
results.

2. PHYSICAL MODEL

A coronal loop is a closed magnetic structure threaded by a
strong axial field, with the footpoints rooted in the photosphere.
This makes it a strongly anisotropic system, as measured by the
relativemagnitude of theAlfvén velocity associatedwith the axial
magnetic field vA � 2000 km s�1 compared to the typical pho-
tospheric velocity uph � 1 km s�1.

We study the loop dynamics in a simplifiedCartesian geometry,
neglecting field line curvature, i.e., the toroidality of loops. Our
loop is a ‘‘straightened-out’’ box, with an orthogonal square cross
section of size ‘ (along which the x- and y-directions lie) and an
axial length L (along the z-direction) embedded in an axial homo-
geneous uniformmagnetic fieldB0 ¼ B0ez. This simplified geom-
etry allows us to perform simulations with both high numerical
resolution and long time duration.

In x 2.1we introduce the equations used tomodel the dynamics.
In x 2.2 we give the boundary and initial conditions used in our
numerical simulations.

2.1. Governing Equations

The dynamics of a plasma embedded in a strong axial magnetic
field are well described by the equations of RMHD (Kadomtsev
& Pogutse 1974; Strauss 1976; Montgomery 1982). These equa-
tions are valid for a plasma with a small ratio of kinetic to mag-
netic pressures, in the limit of a large loop aspect ratio (� ¼
l/LT1, L being the length of the loop and l being the mi-
nor radius of the loop) and of a small ratio of poloidal to axial
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magnetic field (b?/B0 � �). In dimensionless form they can be
written as

@u?
@t

þ u? = :?ð Þu? ¼ �:? pþ b2
?
2

� �
þ b? = :?ð Þb?

þ cA
@b?
@ z

þ (�1)nþ1

Ren
:2n

? u?; ð1Þ

@b?
@t

¼ b? = :?ð Þu?� u? = :?ð Þb?

þ cA
@u?
@z

þ (�1)nþ1

Ren
: 2n

? b?; ð2Þ

:? = u? ¼ 0; :? = b? ¼ 0; ð3Þ

where u? and b? are the components of the velocity and mag-
netic fields perpendicular to the mean field, and p is the kinetic
pressure. The gradient operator likewise has only components
in the x-y plane perpendicular to the axial direction z, i.e.,

:? ¼ ex
@

@ x
þ ey

@

@ y
; ð4Þ

while the dynamics in the planes is coupled to the axial direction
through the linear terms /@z.

To render the equation nondimensional, magnetic fields have
first been expressed in velocity units by dividing by (4��0)

1/2

(where �0 is a density supposed homogeneous and constant), i.e.,
considering the associated Alfvén velocities [b ! b/(4��0)

1/2],
and then both velocity andmagnetic fields have been normalized
to a typical photospheric velocity uph; lengths and times have been
expressed in units of the perpendicular length of the computational
box ‘ and its related ‘‘eddy turnover time’’ t? ¼ ‘/uph. As a result,
in equations (1)Y(2), the linear terms /@z are multiplied by the
dimensionless Alfvén velocity cA ¼ vA/uph, i.e., the ratio be-
tween the Alfvén velocity associated with the axial magnetic field
vA ¼ B0/(4��0)

1/2 and the photospheric velocity uph.
The index n is called dissipativity; the diffusive terms adopted

in equations (1)Y(2) correspond to ordinary diffusion for n ¼ 1
and to so-called hyperdiffusion for n > 1.When n ¼ 1, the92

?/Re
diffusive operator is recovered, so that Re1 ¼ Re ¼ Rem corre-
sponds to the kinetic and magnetic Reynolds number (consid-
ered of equal and uniform value),

Re ¼ �0‘uph

�
; Rem ¼ 4��0‘uph

�c2
; ð5Þ

where viscosity � and resistivity � are taken to be constant and
uniform (c is the speed of light).

We have performed numerical simulations with both n ¼ 1
and 4. Hyperdiffusion is used because with a limited resolution
the diffusive timescales associated with ordinary diffusion are
small enough to affect the large-scale dynamics and render very
difficult the resolution of an inertial range, even with a grid with
512 ; 512 points in the x-y plane (the highest resolution grid we
used for the plane). The diffusive time �n at the scale k associated
with the dissipative terms used in equations (1)Y(2) is given by

�n � Renk
2n: ð6Þ

For n ¼ 1 the diffusive time decreases relatively slowly toward
smaller scales, while for n ¼ 4 it decreases far more rapidly. This

allows one to have longer diffusive timescales at large spatial scales
and similar diffusive timescales at the resolution scale.Numerically,
we require that the diffusion time at the resolution scale kmin ¼
1/N , where N is the number of grid points, to be of the same order
of magnitude for both normal and hyperdiffusion, i.e.,

Re1

N 2
� Ren

N 2n
�! Ren � Re1N

2(n�1): ð7Þ

For instance, a numerical grid with N ¼ 512 points which re-
quires a Reynolds number Re1 ¼ 800 with ordinary diffusion can
implement Re4 � 1019, removing diffusive effects at the large
scales and allowing (if present) the resolution of an inertial range.
The numerical integration of the RMHD equations (1)Y(3) is

substantially simplified by using the potentials of the velocity (’)
and magnetic field ( ),

u? ¼ :< ’ezð Þ; b? ¼ :<  ezð Þ; ð8Þ

linked to vorticity and current by ! ¼ �92
?’ and j ¼ �92

? .
We solve numerically equations (1)Y(3) written in terms of

the potentials (see Rappazzo et al. 2007) in Fourier space, i.e., we
advance the Fourier components in the x- and y-directions of the
scalar potentials’ and . Along the z-direction, no Fourier trans-
form is performed so that we can impose nonperiodic boundary
conditions (specified in x 2.2), and a central second-order finite-
difference scheme is used. In the x-y plane, a Fourier pseudospectral
method is implemented. Time is discretized with a third-order
Runge-Kutta method. We use a computational box with an aspect
ratio of 10, which spans

0 � x; y � 1; 0 � z � 10: ð9Þ

2.2. Boundary and Initial Conditions

As boundary conditions at the photospheric surfaces (z ¼ 0
and L) we impose two independent velocity patterns, intended to
mimic photospheric motions, made up of large spatial scale pro-
jected convection cell flow patterns constant in time. The veloc-
ity potential at each boundary is given by

’(x; y) ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
mn �

2
mn

p X
k; l

‘�kl

2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k 2 þ l 2

p

; sin
2�

‘
kxþ lyð Þþ 2��kl

� �
: ð10Þ

We excite all the wavenumber values (k; l ) 2 Z2 included in the
range 3 � (k 2 þ l 2)1/2 � 4, so that the resulting average injection
wavenumber is kc � 3:4, and the average injection scale ‘c, the
convection cell scale, is given by ‘c ¼ ‘/kc. The quantities�kl and
�kl are two sets of random numbers, whose values range between
0 and 1, and are independently chosen for the two boundary sur-
faces. The normalization adopted in equation (10) sets the value of
the corresponding velocity rms (see eq. [8]) to 1/

ffiffiffi
2

p
, i.e.,

Z ‘

0

Z ‘

0

dx dy u2
x þ u2

y

� �
¼ 1

2
: ð11Þ

At time t ¼ 0 no perturbation is imposed inside the computa-
tional box, i.e., b? ¼ u? ¼ 0, and only the axial magnetic field
B0 is present. The subsequent dynamics are then the effect of the
photospheric forcing (eq. [10]) on the system, as described in the
following sections.
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3. ANALYSIS

In order to clarify aspects of the linear and nonlinear proper-
ties of the RMHD system, we provide an equivalent form of the
equations (1)Y(3). In terms of the Elsässer variables z� ¼ u? �
b?, which bring out the basic symmetry of the equations in terms
of parallel and antiparallel propagating Alfvén waves, they can
be written as

@ zþ

@t
¼ � z� = :?ð Þzþþ cA

@ zþ

@ z
þ (�1) nþ1

Ren
:2n

? zþ �:?P;

ð12Þ
@ z�

@t
¼ � zþ = :?ð Þz� � cA

@ z�

@ z
þ (�1) nþ1

Ren
:2n

? z� �:?P;

ð13Þ
:? = z� ¼ 0; ð14Þ

where P ¼ pþ b2
?/2 is the total pressure and is linked to the

nonlinear terms by incompressibility (eq. [14]),

: 2
?P ¼ �

X2
i; j¼1

�
@iz

�
j

��
@jz

þ
i

�
: ð15Þ

In terms of the Elsässer variables z� ¼ u? � b?, a velocity
pattern u0;L? at the upper or lower boundary surface becomes the
constraint zþþ z� ¼ 2u0;L? at that boundary. Since, in terms of
characteristics (which in this case are simply z� themselves), we
can specify only the incoming wave (while the outgoing wave is
determined by the dynamics inside the computational box), this
velocity pattern implies a reflecting condition at the top (z ¼ L)
and bottom (z ¼ 0) planes,

z� ¼ �zþ þ 2u0? at z ¼ 0; ð16Þ

zþ ¼ �z� þ 2uL? at z ¼ L: ð17Þ

The linear terms (/@z) in equations (12)Y(13) give rise to two
distinct wave equations for the z� fields, which describe Alfvén
waves propagating along the axial direction z. This wave propa-
gation, which is present during both the linear and nonlinear re-
gimes, is responsible for the continuous energy influx on large
perpendicular scales (see eq. [10]) from the boundaries into the
loop. The nonlinear terms (z� = :?)z

� are then responsible for
the transport of this energy from the large scales toward the small
scales, where energy is finally dissipated, i.e., converted to heat
and/or particle acceleration.

Awell-known important feature of the nonlinear terms in equa-
tions (12)Y(14) is the absence of self-coupling, i.e., only counter-
propagating waves interact nonlinearly, and if one of the two
fields z� is zero, there are no nonlinear interactions at all. This
fact, i.e., that counterpropagating wave packets may interact only
while they are crossing each other, lies at the basis of the so-called
Alfvén effect ( Iroshnikov 1964; Kraichnan 1965), which ulti-
mately renders the nonlinear timescales longer and slows down
the dynamics.

From this description, three different timescales arise naturally,
�A, �ph and �nl. The first timescale �A ¼ L/vA is the crossing time
of the Alfvén waves along the axial direction z, i.e., the time it
takes for an Alfvén wave to cover the loop length L. The second
timescale �ph � 5 m is the characteristic time associatedwith pho-
tospheric motions, while �nl is the nonlinear timescale.

For a typical coronal loop �AT�ph. For instance, for a coronal
loop that is long L ¼ 40;000 kmandwith anAlfvén velocity vA ¼
2000 km s�1 we obtain �A ¼ 20 s, which is small compared to
�ph � 5 m ¼ 300 s. This is the reasonwe carried out simulations
with a photospheric forcing that is constant in time (see eq. [10]),
i.e., for which formally �ph ¼ 1.

In the RMHD ordering, the nonlinear timescale �nl is bigger
than the Alfvén crossing time �A. Aswe shall see, this ordering is
maintained during our simulations, and we give analytical esti-
mates of the value of �nl as a function of the characteristic param-
eters of the system.

An important feature of equations (12)Y(14) that we use to
generalize our results is that, apart from the Reynolds numbers,
there is only one fundamental nondimensional parameter,

f ¼ ‘cvA
Luph

: ð18Þ

Hence, all the physical quantities which result from the dynamical
evolution, e.g., energy, Poynting flux, heating rate, and timescales,
must depend on this single parameter f.

3.1. Energy Equation

From equations (1)Y(3), with n ¼ 1, and considering the
Reynolds numbers equal, the following energy equation can be
derived,

@

@t

1

2
u2
? þ 1

2
b2
?

� �
¼ �: = S� 1

Re
j2 þ w2

� 	
; ð19Þ

where S ¼ B < (u < B) is the Poynting vector. As expected, the
energy balance of the system described by equation (19) is due
to the competition between the energy (Poynting) flux flowing
into the computational box and the ohmic and viscous dissipa-
tion. Integrating equation (19) over the whole box, the only rele-
vant component of the Poynting vector is the component along
the axial direction z, because in the x-y plane, periodic boundary
conditions are used and their contribution to the Poynting flux is
null. As B ¼ cAez þ b? and u ¼ u?, this is given by

Sz ¼ S = ez ¼ �cA u? = b?ð Þ: ð20Þ

Considering that the velocity fields at the photospheric bound-
aries are given by u0? and uL

?, for the integrated energy flux we
obtain

S ¼ cA

Z
z¼L

da uL? = b?
� 	

� cA

Z
z¼0

da u0? = b?
� 	

: ð21Þ

The injected energy flux therefore depends not only on the pho-
tospheric forcing and the axial Alfvén velocity (which have fixed
values), but also on the value of the magnetic fields at the bound-
aries, which is determined by the dynamics of the system inside
the computational box. The injection of energy depends on the
nonlinear dynamics which develops and vice versa.

The simplified topology investigated in this paper, i.e., a strong
axial magnetic field whose footpoints are dragged by 2D orthog-
onal motions applies to regions where emerging flux may be ne-
glected. Consider the axial component of the velocity uz field
carrying new magnetic field (bef? ) into the corona. The associated
Poynting flux is

S ef
z ¼ bef?

� 	2
uz: ð22Þ
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This flux component is negligible when S ef
z < Sz, i.e., since all

the components of the photospheric velocity fields are of the
same order, uz � uph, when

bef?
� 	2

< B0b
turb
? : ð23Þ

In x 5.2 we give an estimate of the value of the field bturb? gen-
erated by the field line dragging and will be able to quantify for
which value of bef? the emerging flux can be neglected.

3.2. Linear Stage

For t < �nl nonlinear terms can be neglected. Neglecting also
the diffusion terms, which play no role on large scales, equa-
tions (1)Y(3) reduce to two simple wave equations. Coupled with
the boundary conditions (eq. [10]) the solution for times longer
than the crossing time �A reads

b?(x; y; z; t) ¼ uL(x; y)� u0(x; y)

 � t

�A
; ð24Þ

u?(x; y; z; t) ¼ uL(x; y)
z

L
þ u0(x; y) 1� z

L

� �
: ð25Þ

This shows that (1) the loop velocity field is bounded by the
imposed photospheric fields and (2) the magnetic field grows
linearly in time, uniform along the loop, while mapping the pho-
tospheric velocity field in the perpendicular planes. Therefore, for
a generic set of velocities uL and u0, the resulting magnetic fields
(eqs. [24]Y[25]) give rise to nonvanishing forces in the perpendic-
ular planes which grow quadratically in time, becoming dynam-
ically important after a certain interval (Buchlin & Velli 2007).

There exists a (singular) set of velocity forcing patterns for
which the generated coronal field has a vanishing Lorentz force.
For simplicity, consider uL ¼ 0; in terms of potentials, it follows
that ¼ �’0t/�A and’ ¼ ’0(1� z/L) [whereu0? ¼ :< (’0ez)].
In this case, both b? and u? are proportional to:? < (’0ez). The
condition for the vanishing of nonlinear terms then becomes

: 92’0
� 	

< :’0 ¼ 0; with ’0 ¼ ’0 x; yð Þ: ð26Þ

This condition is then satisfied by those fields for which the
Laplacian is constant along the streamlines of the field. As ! ¼
�92’, this is equivalent to the statement that the vorticity is
constant along the streamlines. This condition is in general not
verified, unless very symmetric functions are chosen, e.g., in
Cartesian geometry, any 1D function like ’0 ¼ f (x) and, in
polar coordinates, any radial function ’0 ¼ g(r).

Generally speaking, even in such peculiar configurations non-
linear interactions will arise due to the onset of instabilities. We
defer discussion of these extreme examples to a subsequent paper,
the random photospheric fields (eq. [10]) discussed here always
giving rise to nonvanishing forces.

Inserting the linear evolution fields (eq. [24]) in the expression
for the integrated energy flux (eq. [21]), we find

S ¼ cA

Z
da uL� u0

�� ��2 t

�A
; ð27Þ

i.e., the Poynting flux S grows linearly in time until such a time
that nonlinear interactions set in.

A similar linear analysis was already performed by Parker
(1988), who noted that if this is the mechanism responsible for
coronal heating, then the energy flux Sz � S/‘ 2 must approach the
value Sz � 107 erg cm2 s�1 necessary to sustain an active region
before a saturatingmechanism,magnetic reconnection of singular
current sheets in Parker’s language, takes over.

In fact, however, the value reached by Sz depends on the non-
linear dynamics, its value self-consistently determined by solving
the nonlinear problem. An Sz too small compared with observa-
tional constraints would then rule out the Parker model.

3.3. Effects of Diffusion

The linear solution from equations (24)Y(25) has been ob-
tained without taking into account the diffusive terms. This is
justified, given the large value of the Reynolds numbers for the
solar corona. But numerically it can be important. At very low
resolution, diffusion is so important that little or no nonlinear
dynamics develop and the system reaches a balance between the
photospheric forcing and diffusion of the large-scale fields.
One can attempt to bypass the nonlinear problem by adopt-

ing a much smaller ‘‘turbulent’’ value of the Reynolds number
(Heyvaerts&Priest 1992). For this ‘‘ad hoc’’ value of theReynolds
number, the average dissipationwould be the same as in the highY
Reynolds number active turbulence limit. Linearizing equation (2)
(with n ¼ 1 and Re1 ¼ Re), we obtain

@b?
@t

¼ cA
@u?
@ z

þ 1

Re
92

?b?: ð28Þ

Taking into account that the forcing velocities are dominated by
components at the injection scale ‘c (see eq. [10]), the relation
92

?’ ¼ �(2�/‘c)
2’, where ‘c ¼ ‘/kc with the average wave-

number kc � 3:4, is approximately valid. Integrating then equa-
tion (28) over z and dividing by the length L, we obtain for b?
averaged along z

@b?
@t

¼ cA

L
uL x; yð Þ� u0 x; yð Þ

 �

� 2�ð Þ2

‘2cRe
b?: ð29Þ

Indicating with uph ¼ uL� u0, with �R ¼ ‘2cRe/(2�)
2 the diffu-

sive timescale, and with �A ¼ L/cA the Alfvén crossing time, the
solution is given by

b? x; y; tð Þ ¼ uph x; yð Þ �R
�A

1� exp � t

�R

� �� �
; ð30Þ

j x; y; tð Þj j ¼ uph x; yð Þ
�� �� 2�

‘c

� �
�R
�A

1� exp � t

�R

� �� �
: ð31Þ

The magnetic energy EM and the ohmic dissipation rate J are
given by

EM ¼ 1

2

Z
V

d 3x b2
? ¼ 1

2
‘2Lu 2

ph

�R
�A

� �2
1� exp � t

�R

� �� �2
;

ð32Þ

J ¼ 1

Re

Z
V

d 3x j 2 ¼ ‘2Lu2
ph

�R
� 2
A

1� exp � t

�R

� �� �2
;

ð33Þ

where uph is the rms of uph, and with the rms of the boundary
velocities u0 and uL fixed to 1/2 (eq. [11]), we have uph � 1.
Both total magnetic energy (eq. [32]) and ohmic dissipation
(eq. [33]) grow quadratically in time for time smaller than the
resistive time �R, while on the diffusive timescale they saturate
to the values

E sat
M ¼

‘6c2Au
2
phRe

2

L 2�kcð Þ4
; J sat ¼

‘4c2Au
2
phRe

L 2�kcð Þ2
; ð34Þ
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written explicitly in terms of the loop parameters and Reynolds
number.

Magnetic energy saturates to a value proportional to the square
of both the Reynolds number and the Alfvén velocity, while the
heating rate saturates to a value that is proportional to the Reynolds
number and the square of the axial Alfvén velocity.We have also
used equations (32)Y(33) as a check in our numerical simulations,
and during the linear stage, before nonlinearity sets in they are
well satisfied.

From equations (32)Y(33) we can estimate the saturation time
as the time at which the functions from equations (32)Y(33) reach
2/3 of the saturation values. It is approximately given by

� sat� 2�R ¼ 2‘2Re

2�kcð Þ2
: ð35Þ

In the next section we describe the results of our simulations,
which investigate the linear and nonlinear dynamics. The aver-
age values may be used in conjunction with equation (34) to de-
fine the equivalent turbulence Reynolds number.

4. NUMERICAL SIMULATIONS

In this section we present a series of numerical simulations,
summarized in Table 1, modeling a coronal layer driven by a forc-
ing velocity pattern constant in time. On the bottom and top planes
we impose two independent velocity forcings as described in
x 2.2, which result from the linear combination of large-scale
eddies with random amplitudes, normalized so that the rms of
the photospheric velocity is uph � 1 km s�1. For each simulation
a different set of random amplitudes is chosen, corresponding to
different patterns of the forcing velocities. A realization of this
forcing with a specific choice (run A) of the random amplitudes
is shown in Figures 1Y2.

The length of a coronal section is taken as the unitary length.
As we excite all the wavenumbers between 3 and 4 and the typ-
ical convection cell scale is �1000 km, this implies that each
side of our section is roughly 4000 km long. Our typical grid for
the cross sections has 512 ; 512 grid points, corresponding to
�1282 points per convective cell and, hence, a linear resolution
of �8 km.

Between the top and bottom plates a uniform magnetic field
B ¼ B0ez is present. The subsequent evolution is due to the shuf-
fling of the footpoints of the magnetic field lines by the photo-
spheric forcing.

In the different numerical simulations, keeping fixed the cross
section length (�4000 km) and axial length (�40,000 km), we
explore the behavior of the system for different values of cA, i.e.,
the ratio between the Alfvén velocity associated with the axial
magnetic field and the rms of the photospheric motions (density
is supposed uniform and constant).

TABLE 1

Summary of the Simulations

Run cA nx ; ny ; nz n Re or Re4 tmax/�A

A..................... 200 512 ; 512 ; 200 1 8 ; 102 548

B..................... 200 256 ; 256 ; 100 1 4 ; 102 1061

C..................... 200 128 ; 128 ; 100 1 2 ; 102 2172

D..................... 200 128 ; 128 ; 100 1 1 ; 102 658

E ..................... 200 128 ; 128 ; 100 1 1 ; 101 1272

F ..................... 50 512 ; 512 ; 200 4 3 ; 1020 196

G..................... 200 512 ; 512 ; 200 4 1019 453

H..................... 400 512 ; 512 ; 200 4 1020 77

I ...................... 1000 512 ; 512 ; 200 4 1019 502

Notes.—We have that cA is the axial Alfvén velocity and nx ; ny ; nz is the
number of points for the numerical grid, n is the dissipativity, n ¼ 1 indicates nor-
mal diffusion, n ¼ 4 hyperdiffusion. The next columnRe (¼Re1) or Re4 indicates,
respectively, the value of the Reynolds number or of the hyperdiffusion coefficient
(see eqs. [12]Y [13]). The duration of the simulation tmax/�A is given in Alfvén
crossing time units �A ¼ L/vA.

Fig. 1.—Streamlines of the velocity field u0?, the boundary forcing at the bot-
tom plane z ¼ 0 for run A. In lighter vortices the velocity field is directed anti-
clockwise, while in darker vortices, it is directed clockwise. The cross section
shown in the figure is roughly 4000 ; 4000 km2, where the typical scale of a
convective cell is 1000 km.

Fig. 2.—Streamlines of the velocity field uL
?, the boundary forcing at the top

plane z ¼ L for run A. The numerical grid has 512 ; 512 points in the x-y planes,
with a linear resolution of �8 km.
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Nevertheless, as shown in equation (18) the fundamental pa-
rameter is f ¼ ‘cvA/Luph, so that changing cA ¼ vA/uph is equiv-
alent to exploring the behavior of the system for different values
of f, where the same value of f can be realized with a different
choice of the quantities, provided that the RMHD approxima-
tion is valid, i.e., we are describing a slender loop threaded by a
strong magnetic field. We also perform simulations with different
numerical resolutions, i.e., different Reynolds numbers, and both
normal (n ¼ 1) and hyperdiffusion (n ¼ 4).

The qualitative behavior of the system is the same for all the
simulations performed. In the next section we describe these qual-
itative features in detail for run A and then describe the quantita-
tive differences found in the other simulations.

4.1. Run A

In this section we present the results of a simulation performed
with a numerical grid with 512 ; 512 ; 200 points, normal (n ¼ 1)
diffusion with a Reynolds number Re ¼ 800, and the Alfvén
velocity vA ¼ 200 km s�1 corresponding to a ratio cA ¼ vA/uph ¼
200. The streamlines of the forcing velocities applied in the top
(z ¼ L) and bottom (z ¼ 0) planes are shown in Figures 1Y2.
The total duration is roughly 550 axial Alfvén crossing times
(�A ¼ L/vA).

Plots of the total magnetic and kinetic energies,

EM ¼ 1

2

Z
dV b2

?; EK ¼ 1

2

Z
dV u2

?; ð36Þ

and of the total ohmic and viscous dissipation rates,

J ¼ 1

Re

Z
dV j 2; � ¼ 1

Re

Z
dV w 2; ð37Þ

along with the incoming energy rate (integrated Poynting flux)
S (see eq. [21]) are shown in Figures 3Y4. At the beginning, the
system has a linear behavior (see eqs. [24]Y[25] and [27]), char-
acterized by a linear growth in time for the magnetic energy, the
Poynting flux, and the electric current, which implies a quadratic
growth for the ohmic dissipation /(t/�A)

2, until time t � 6�A,
when nonlinearity sets in. We can identify this time as the non-

linear timescale, i.e., �nl � 6�A. The timescales of the system
will be analyzed in more detail in x 5.5.
After this time, in the fully nonlinear stage a statistically steady

state is reached, in which the Poynting flux, i.e., the energy that is
entering the system for unitary time, balances on time average the
total dissipation rate (J þ �). As a result, there is no average ac-
cumulation of energy in the box, beyond what has been accumu-
lated during the linear stage, while a detailed examination of the
dissipation time series (see inset in Fig. 4) shows that the Poynting
flux and total dissipations are decorrelated around dissipation
peaks.
In the diffusive case from equations (32)Y(35), with the val-

ues of this simulation we would obtain � sat � 50�A, E
sat
M � 6100,

and J sat � 7100; all values well beyond those of the simulation.
A value of Re ¼ 85 would fit the simulated average dissipation,
while Re ¼ 140 would approximately fit the average magnetic
energy. In any case, this would only fit the curves, but the physical
phenomena would be completely different, as we describe in the
following sections.
An important characteristic of the system is the magnetic pre-

dominance for both energy and dissipation (Figs. 3 and 4). In the
linear stage (x 3.2) while the magnetic field grows linearly in time,
the velocity field does not, and its value is roughly the sum of the
boundary forcing fields. The physical interpretation is that be-
cause we are bending the axial magnetic field with a constant
forcing, the perpendicular magnetic field grows linearly in time,
while the velocity remains limited. More formally, this is a con-
sequence of the fact that, while on the perpendicular magnetic
field no boundary condition is imposed, the velocity field must
approach the imposed boundary values at the photosphere during
both the linear and nonlinear stages.
In Figure 5 the 2D averages in the x-y planes of the magnetic

and velocity fields and of the ohmic dissipation j 2/Re are plotted
as a function of z at different times. These macroscopic quantities
are smooth and present almost no structure along the axial direc-
tion. The reason is that every disturbance or gradient along the
axial direction, at least considering the large perpendicular scales
(for the small-scale behavior see x 5), is smoothed out by the fast
propagation of Alfvén waves along the axial direction; their prop-
agation time �A is in fact the fastest timescale present (in particular
�A < �nl), and then the system tends to be homogeneous along

Fig. 4.—Run A: Integrated Poynting flux S dynamically balances the ohmic
(J ) and viscous (�) dissipation. Inset shows a magnification of total dissipation
and S for 150 � t/�A � 250.

Fig. 3.—Run A: High-resolution simulation with vA/uph ¼ 200, 512 ; 512 ;
200 grid points, and Re ¼ 800. Magnetic (EM ) and kinetic (EK ) energies as a
function of time (�A ¼ L/vA is the axial Alfvén crossing time).

RAPPAZZO ET AL.1354 Vol. 677



this direction. The predominance of the ohmic over the viscous
dissipation is due to the fact that, as we show in the next sections,
the dissipative structures are current sheets, where magnetic re-
connection takes place.

The phenomenology described in this section is general, and
we have found it in all the simulations that we have performed; in
particular, we have always found that in the nonlinear stage a
statistical steady state is reached where energies fluctuate around
a mean value and total dissipation and Poynting flux on the av-
erage balance while on small timescales decorrelate. In partic-
ular, to check the temporal stability of these features, which are
fully confirmed, we have performed a numerical simulation
(run C) with the same parameters as run A, but with a lower
resolution (128 ; 128 ; 100), a Reynolds number Re ¼ 200,
and a longer duration (t � 2000�A). On the other hand, the av-
erage levels of the energies and of total dissipation depend on the
parameters used as we describe in the next sections. Before de-
scribing these features, in x 4.1.1 we describe the current sheets’
formation, their temporal evolution, and other properties.

4.1.1. Current Sheets, Magnetic Reconnection, Global Magnetic
Field Topology, and Self-Organization

The nonlinear stage is characterized by the presence of current
sheets elongated along the axial direction (Figs. 18aY18b), which
exhibit temporal dynamics and are the dissipative structures of
the system. We now show that they are the result of a nonlinear
cascade. Figure 6 shows the time evolution of the first 11 modes
of magnetic energy for the first 20 crossing times �A for run A.
During the linear stage, the magnetic field is given by equa-
tion (24) and is the mapping of the difference between the top
(z ¼ 10) and bottom (z ¼ 0) photospheric velocities uL(x; y)�
u0(x; y), whose streamlines are shown in Figure 17a. The field
lines of the orthogonal magnetic field in the midplane (z ¼ 5) at
time t ¼ 0:63�A are shown in Figure 17b, and as expected, they
map the velocity field. The same figure shows in color the axial
current j. As shown by equation (24) (taking the curl), the large-
scale motions that we have imposed at the photosphere induce
large-scale currents in all the volume, and as described in x 3, if
there was not a nonlinear dynamics, a balance between diffusion
and forcing would be reached, where no small scale would be
formed and the magnetic field would always map the photo-
spheric velocities.

As time proceeds, themagnetic field grows and a cascade trans-
fers energy from the large scales, where the photospheric forcing
(eq. [10]) injects energy at the wavenumbers n ¼ 3 and 4, to the
small scales (Fig. 6). In physical space this cascade corresponds
to the collapse of the large-scale currents which lead to the for-
mation of current sheets, as shown in Figures 17c and 17d. In
Figures 17e and 17f we show the magnetic field lines at time
t ¼ 18:47�A, in the fully nonlinear stage, with the axial compo-
nent of the current j and of the vorticity !, respectively. The re-
sulting magnetic topology is quite complex; X- and Y-points are
not in fact easily distinguished. They are distorted and very often
a component of themagnetic field orthogonal to the current sheet
length is present, so that the sites of reconnection are more easily
identified by the corresponding vorticity quadrupoles. As shown
in Figures 17e and 17f, the more or less distorted current sheets
are always embedded in quadrupolar structures for the vorticity,
a characteristic maintained throughout the whole simulation, and
a clear indication that nonlinear magnetic reconnection is taking
place.

Figures 18a and 18b show a view from the side and the top of
the 3D current sheets at time t ¼ 18:47�A. When looked at from
the side the current sheets, which are elongated along the axial
direction, look space filling, but the view from the top shows that
the filling factor is actually small (see also Fig. 17).

Another aspect of the dynamics is self-organization. While un-
til time t ¼ 4:79�A the magnetic field lines are still approximately
a mapping of the photospheric velocities, in the fully nonlinear
stage they depart from it and have an independent topology that
evolves dynamically in time (see the electronic edition of the
Journal for the associated movie for the time evolution covering
40 crossing times from �508�A up to �548�A; notations and
simulation are the same used in Fig. 17). The reason that the
photospheric forcing does not determine the spatial shape of
the magnetic field lines is due to the bigger value of the rms
of the magnetic field b? ¼ b2

?
 �

1/2
in the volume with respect to

the rms of the photospheric forcings uph ¼ h(u0?� uL
?)

2i1/2 � 1
(eqs. [16]Y[17]).

This means that the contribution to the dynamics of the Alfvénic
perturbations propagating from the boundary are much smaller,
over short periods of time, than the self-consistent nonlinear evo-
lution due to the magnetic fields inside the domain and, therefore,

Fig. 6.—Run A: First 11 magnetic energy modes as a function of time covering
the first 20 Alfvén crossing times �A. Photospheric motions inject energy at n ¼ 3
and 4.

Fig. 5.—Run A: Two-dimensional averages in the x-y planes of the ohmic dis-
sipation j2/Re, the magnetic fields b2

?, and the velocity fields u
2
?, as a function of

z. The different colors represent 10 different times separated by�t ¼ 50�A in the
interval 30�A � t � 480�A.
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cannot determine the topology of the magnetic field. For run A
andG, both with cA ¼ 200, the ratio is b?/uph � 6 and it increases
up to b?/uph � 27 in run I with cA ¼ 1000. On the other hand,
these waves continuously transport from the boundaries the en-
ergy that sustain the system in a magnetically dominated statis-
tically steady state.

All the facts presented in this section and the properties of the
cascade and of the resulting current sheets in the presence of a
magnetic guide field outlined in x 5 lead to the conclusion that
the current sheets do not generally result directly from a geomet-
rical misalignment of neighboring magnetic field lines stirred by
their footpoints motions, but that they are the result of a non-
linear cascade in a self-organized system.

Although the magnetic energy dominates over the kinetic en-
ergy, the ratio of the rms of the orthogonal magnetic field over
the axial dominant fieldB0 is quite small. For cA ¼ 200, 400, and
1000 it is �3%, so that the average inclination of the magnetic
field lines with respect to the axial direction is just�2

�
; it is only

for the lower value cA ¼ 50 that b?/B0 � 4% and the angle is
�4�. The field lines of the totalmagnetic field at time t ¼ 18:47�A
are shown in Figures 18c and 18d. The computational box has
been rescaled for an improved viewing, and to attain the original
aspect ratio, the box should be stretched 10 times along the axial
direction. The magnetic topology for the total field is quite sim-
ple, as the line appears slightly bent. It is only in correspondence
with the small-scale current sheets that field lines on the opposite
side may show a relative inclination. But as the current sheets are
very tiny (and their width decreases at higher Reynolds numbers),
they occupy only a very small fraction of the volume, so that the
bulk of the magnetic field lines appear only slightly bent.

It is often suggested, or implicitly assumed, that current sheets
are formed because the magnetic field line footpoints are subject
to a random walk. The complexity of the footpoint trajectory
would then be a necessary ingredient. In fact, it would give rise to
a complex topology for the coronal magnetic field, leading either
to tangled field lines which would then release energy via fast
magnetic reconnection or to turbulence, so that the ‘‘complexity’’
of the footpoint motions would be responsible for the ‘‘complex’’
dynamics in the corona.

On the other hand, our simulations show that this system in
inherently turbulent and that ‘‘simple’’ footpoint motions give rise
to turbulent dynamics characterized by the presence of an inertial
range (x 5) and dynamical current sheets. In fact, our photospheric
forcing velocities (Figs. 1Y2) are constant in time and have only
large-scale components (eq. [10]), so that the footpoint motions
are ‘‘ordered’’ and do not follow any random walk. During the
linear stage, this gives rise to a magnetic field that grows linearly
in time (eq. [24]) and that is a mapping of the velocity fields (see
eq. [24] and Figs. 17a and 17b), i.e., both the magnetic field and
the current have only large-scale components. The footpoint mo-
tions of our photospheric velocities never bring twomagnetic field
lines close to one another, i.e., they never geometrically produce
a current sheet. Current sheets are produced on an ideal timescale,
the nonlinear timescale, by the cascade. Furthermore, as we show
in x 5, the statistically steady state that characterizes the nonlinear
stage results from the balance at the large scales between the in-
jection of energy and the flow of this energy from the large scales
toward the small scales, where it is finally dissipated.

As the system is self-organized and the magnetic energy in-
creases at higher values of the axial magnetic fields, different
static or time-dependent (with the characteristic photospheric
time �300 s) forcing functions very likely will not be able to
determine the spatial shape of the orthogonal magnetic field. In
our more realistic simulation with cA ¼ 1000, the ratio b?/uph

is in fact �27. Other forcing functions are currently being inves-
tigated, and time-dependent forcing functions are likely to mod-
ulate with their associated timescale the rms of the system, like
total energy and dissipation.

5. TURBULENCE

Before analyzing in detail further aspects of our simulations,
namely, inertial spectra, anisotropies, and scaling laws, let us
briefly justify the statement that the time-dependent Parker prob-
lem, i.e., the dynamics of a magnetofluid threaded by a strong
axial field whose footpoints are stirred by a velocity field, is an
MHD turbulence problem. The fact that, at the large orthogonal
scales, the Alfvén crossing time �A is the fastest timescale so that
during the linear stage the fields evolve as equations (24)Y(25)
means that the photosphere’s role is to contribute an anisotropic
magnetic forcing function that stirs the fluid, with an orthogonal
length typical of the convective cells (�1000 km) and an axial
length that is given by the loop length L. Typically, forced MHD
turbulence simulations (e.g., see Biskamp 2003 and references
therein) are performed using a three-periodic numerical cube with
a volumetric forcing function which mimics some physical pro-
cess injecting energy at the large scales.
Solutions from equations (24)Y(25) can be approximately

obtained by introducing the magnetic forcing function Fm in
equation (2),

Fm ¼ uL(x; y)� u0(x; y)

�A
; ð38Þ

and implementing three-periodic boundary conditions in our elon-
gated (0 � x; y � 1, 0 � z � L) computational box. During the
linear stage, this forcing would give rise, apart from the small
velocity field (eq. [25]), to the same magnetic field. During the
nonlinear stage, as �A < �nl, it would still give rise to a similar in-
jection of energy. This property was the basis for the body of pre-
vious 2D calculations (Einaudi et al. 1996; Dmitruk et al. 1998;
Georgoulis et al. 1998)
In particular, the photospheric motions imposed at the bound-

aries for the Parker problem take the place of and represent a dif-
ferent physical realization of the forcing function generally used
for the three-periodic MHD turbulence box. In the Parker model,
the equivalent forcing stirs the magnetic field, while in standard
simulations the forcing stirs both velocity and magnetic fields or
mostly the velocity field. Themain differences between ‘‘standard’’
MHD turbulence simulations and the problem at hand are that
(1) the peculiarity of the low-frequency photospheric forcing
leads to magnetic energy largely dominating over the kinetic
energy in the system and (2) the forcing involves line-tying of
the magnetic field with three-periodic boundary conditions. Line-
tying inhibits the inverse cascade for the magnetic field, as de-
scribed in x 5.4. Equivalently, one may say that line-tying hinders
magnetic reconnection by rendering it less energetically favorable
due to the increased field line curvature it requires compared to the
unbound system. This property is fundamental to the anomalous
scaling laws and enhanced overall heating rates that are found
below.
In MHD, the cascade takes place preferentially in planes or-

thogonal to the local mean magnetic field (Shebalin et al. 1983).
The small scales formed are not uniformly distributed in this plane,
rather they are organized in dynamical current-vortex sheets ex-
tended along the direction of the local main field. These current
sheets with associated quadrupolar vorticity filaments form the dis-
sipative structures of MHD turbulence (e.g., Biskamp & Müller
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2000; Biskamp 2003 and references therein). In our case, be-
cause the axial field is strong, the current sheets are elongated
along the axial direction to the point of being quasi-uniform along
the loop axis (Fig. 18).

5.1. Spectral Properties

In order to investigate inertial range spectra, we have carried
out four simulations (runs F, G, H, and I in Table 1) with a reso-
lution of 512 ; 512 ; 200 grid points using amild power (n ¼ 4)
for hyperdiffusion equations (12)Y(13). In turbulence, the funda-
mental physical fields are the Elsässer variables z� ¼ u? � b?.
Their associated energies,

E� ¼ 1

2

Z
dV z�

� 	2
; ð39Þ

are linked to kinetic and magnetic energies, EK and EM , and to
the cross helicity HC,

H C ¼ 1

2

Z
dV u? = b?; ð40Þ

by

E� ¼ EK þ EM � H C: ð41Þ

Nonlinear terms in equations (12)Y(15) are symmetric under the
exchange zþ $ z�, while the linear terms describe an Alfvénic
propagation for the fields zþ. As the boundary conditions from
equations (16)Y(17) are also substantially symmetric, given that
the two forcing velocities have the same rms values (=1/

ffiffiffi
2

p
), it is

then expected that H CTE so that none of the two energies
prevails Eþ � E� � E, where E ¼ EK þ EM is the total energy.
In Figure 7 the ratio H C/E is shown as a function of time for run
G. Cross helicity has a maximum value of 5% of total energy, and
its time average is �1%, and similar values are found for all the
simulations. Furthermore, perpendicular spectra of E and E� in
simulations F, G, H, and I, overlap each other, so that as expected
we can also assume that

	zþk � 	z�k � 	zk; ð42Þ

where 	zk is the rms value of the Elsässer fields z� at the perpen-
dicular scale k.

In the following we always consider the spectra in the orthog-
onal x-y plane integrated along the axial direction z, unless other-
wise noted. Furthermore, as they are isotropic in the Fourier kx-ky
plane we will consider the integrated 1D spectra, so that for total
energy

E ¼ 1

2

Z L

0

dz

Z ‘

0

Z
dx dy u2 þ b2

� 	
¼ 1

2

Z L

0

dz ‘ 2
X
k

ûj j2þ b̂
�� ��2� �

k; zð Þ ¼
X
n

En;

n ¼ 1; 2; : : : ; ð43Þ

where similar to equation (10), n indicates ‘‘rings’’ in k-space.
Figure 8 shows the total energy spectra En averaged in time, ob-
tained from the hyperdiffusive simulations F, G, H, and I with
dissipativity n ¼ 4 (eqs. [12]Y[13]) and, respectively, cA ¼ 50,
200, 400, and 1000. An inertial range displaying power-law
behavior is clearly resolved. The spectra visibly steepen, increas-
ing the value of cA, with spectral index ranging from 1.8 for cA ¼
50 up to �2.7 for cA ¼ 1000. The spectra are clearly always
steeper than the well-known (strong) MHD inertial range tur-
bulence spectra k�5/3

? or k�3/2
? .

This steepening is certainly not a numerical artifact; the use of
hyperdiffusion gives rise to a hump at high wavenumber values,
known as the bottleneck effect (Falkovich 1994), which when
present flattens the spectra. Furthermore, we use the same value
of dissipativity (n ¼ 4) used byMaron & Goldreich (2001) who
find the same Iroshnikov-Kraichnan spectral slope (�3/2), also
confirmed in recent higher resolution simulations performed by
Müller & Grappin (2005) with standard n ¼ 1 diffusion. In our
simulations, a hump or flattening at highwavenumbers is best vis-
ible in run Hwith cA ¼ 400, whichmight be due to the bottleneck
effect, but a more probable interpretation involves a transition
from weak to strong turbulence at the smaller scales within the
inertial range, which requires a preliminary discussion of strong
versus weak turbulence in MHD.

Recently, a lot of progress has beenmade in understandingMHD
turbulence both in the condition of so-called strong (Goldreich &
Sridhar 1995, 1997; Cho & Vishniac 2000; Biskamp & Müller
2000; Müller et al. 2003; Müller & Grappin 2005; Boldyrev

Fig. 7.—Run G: Ratio between cross helicityH C and total energyE as a func-
tion of time;HCTE shows that the system is in a regime of balanced turbulence.

Fig. 8.—Total energy spectra as a function of the wavenumber n for simula-
tions F, G, H, and I. For higher values of cA ¼ vA/uph, the ratio between the Alfvén
and photospheric velocities corresponds to steeper spectra, with spectral index, re-
spectively, 1.8, 2, 2.3, and 2.7.
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2005, 2006; Mason et al. 2006) and weak turbulence (Ng &
Bhattacharjee 1997; Goldreich & Sridhar 1997; Galtier et al.
2000; Galtier & Chandran 2006). Weak turbulence has been in-
vestigated mainly through analytical methods. The total energy
spectrum can be characterized by a k�2

? power law, which is easily
found phenomenologically by considering that the Alfvén effect
occurs along the field while the cascade proceeds in the orthogonal
direction (Ng & Bhattacharjee 1997). While our MHD simula-
tions, evenwith our line-tying boundary conditions and anomalous
energetic regime (b dominating over u except at the smallest
scales), confirm the presence of the k�2

? spectrum for a range of
loop parameters, steeper spectra are also found nearly reaching
k�3
? , clearly linked to the strength of the axial field B0, which is

an effect we discuss more in detail in x 5.2.
The formation of an inertial range is crucially related to the an-

isotropy of the cascade, where a relationship between spectral ex-
tent in the perpendicular and parallel directions known as ‘‘critical
balance’’ may be derived. To understand this feature, consider
the timescale Tk, the energy transfer time at the corresponding
scale k, characterizing the nonlinear dynamics at that scale. The
timescale Tk does not necessarily coincide with the eddy turnover
time �k ¼ k/	zk because of the Alfvén effect. Spatial structures
along the axial direction result from wave propagation (at the
Alfvén speed cA) of the orthogonal fluctuations. In other words,
the cascading of turbulence in two different planes separated by a
distance ‘k leads to formation of scales in the parallel direction
whose smallest size can be (Goldreich & Sridhar 1995; Cho et al.
2002; Oughton et al. 1994)

‘k(k) � cATk; ð44Þ

the critical balance condition. The timescale Tk will be smaller
at smaller scales, so that smaller perpendicular scales create smaller
axial scales.

Figure 9 shows a snapshot at time t � 145�A of the 2D spec-
trum E(n?; nz) for run I in bilogarithmic scale, where nz and n?
are, respectively, the axial and orthogonal wavenumbers. Con-
sider vertical cuts at n? ¼ const: it is clearly visible that from
n? ¼ 1 up to n? � 20 the wavenumbers with nz > 1 are scarcely
populated compared to the respective wavenumbers with nz � 1

(the parallel spectrum also has the nz ¼ 0 component, in Figure 9
the vertical coordinate is nz þ 1). However, note also how the
loci of maximum parallel wavenumber do not precisely follow
the critical balance line, rather they are offset at larger n?; in our
case, the hypothetical length of the axial structures (from critical
balance) can be longer than the characteristic length of the sys-
tem, which in our case is the length of the coronal loop L. But in
the range of perpendicular wavenumbers for which

‘k(k) > L; ð45Þ

boundary conditions, i.e., line-tying, intervene and the cascade
along the axial direction is strongly inhibited. In our simula-
tions this occurs roughly at n? � 20. Beyond n? � 20, the spec-
trum is roughly constant along n? ¼ const up to a critical value
where it drops.
Interestingly enough, the slope of the 1D spectrum for run I

(Fig. 8) diminishes its value around n? � 20. The reason is that
the condition ‘k(k) > L, with ‘k(k) defined by critical balance,
turns out to play a major role in the ‘‘strength’’ or ‘‘weakness’’ of
the cascade; for n? P 20 the system is in a weak turbulent regime,
while for n? k 20 a transition to strong turbulence is observed.
In our runs, larger values of cA, i.e., of the parameter f (eq. [18]),

lead to larger magnetic energy and total energies, while the kinetic
energy remains smaller than magnetic energy and increases much
less (increasing its value by a factor of 6 from cA ¼ 50 to 1000).
In particular, Figure 10 shows total energy at the injection scales
(see x 2.2), i.e., the sum of themodes n ¼ 3 and 4 (see eq. [43]) of
total energy,

Ein ¼ E3 þ E4 ð46Þ

as a function of the nondimensional Alfvén velocity cA. Their
growth is less than quadratical in cA, which implies that the rms
of the velocity andmagnetic fields at the injection scale (or equiv-
alently the Elsässer fields 	zin) grow less than linearly. Hence, as
cA is increased the ratio
, a measure of the relative strength of the
nonlinear interactions at the injection scale, decreases; at different
values of cA, different regimes of weak turbulence are therefore

Fig. 10.—Total energy at the injection scale (modes 3 and 4), time averaged
for the four simulations F, G, H, and I with different Alfvén velocities. The dashed
line shows the curve Ein / c2A, while the solid line shows Ein as a function of cA
as obtained from eq. (66) for � ¼ 0 corresponding to a Kolmogorov spectrum.
The actual growth of Ein, both simulated and derived from eq. (66), shows that the
growth is less than quadratical but higher than in the simple Kolmogorov case.

Fig. 9.—Run I: Snapshot of the 2D spectrum E(n?; nz) in bilogarithmic scale
at time t � 145�A. Respectively, n? and nz are the orthogonal and axial wave-
numbers. The 2D spectrum is shown as a function of n? and nz þ 1, to allow the
display of the nz ¼ 0 component.
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realized at the larger scales of the inertial range, as the different
spectra in Figure 8 confirm.

The presence of a ‘‘double’’ inertial range, with a weak-type
power-law index at larger scales and a flatter strong-type power-
law index at smaller scales, would not affect the overall cascade
rate and, therefore, the scalings of loop heating with loop param-
eters. These are set at the larger scales and are therefore depen-
dent on the cascade rate determined by the weak-type scaling law,
for which a physically motivated phenomenological derivation
is presented below. We stress that the possible existence of a
‘‘double’’ inertial range, surmised here with scaling laws and
somewhat tenuous numerical evidence, does not appear to have
been predicted before and requires substantiating evidence from
higher numerical resolution simulations which are planned for the
near future.

5.2. Phenomenology of the Inertial Range
and Coronal Heating Scalings

We now introduce a phenomenological model to determine
the energy transfer timescale Tk and, as a consequence, the prop-
erties of the cascade. This timescale, and therefore the different
spectra which result, can only depend on the single nondimen-
sional quantity defining our system, namely, f ¼ ‘cvA/Luph

(eq. [18]). The simulations show that as this parameter is in-
creased, the spectra steepen, leading to a weakened cascade. We
revert here to dimensional quantities for the scalings, so that we
can quantify the resulting coronal heating rates.

The Alfvén effect is based on the idea that two counter-
propagating Alfvén waves interact only for the time �k ¼ ‘k/vA,
leading to a transfer energy time longer that the ‘‘generalized’’
eddy turnover time

�k ¼
k
	zk

: ð47Þ

The ratio between these two timescales


 ¼ �A
�k

¼
‘k 	zk

kcA
ð48Þ

gives a measure of their relative strength. Iroshnikov (1964) and
Kraichnan (1965) proposed that the energy transfer time Tk, be-
cause of the Alfvén effect, is longer than the eddy turnover time
and is given by

Tk � �k
�k
�A
; ð49Þ

where however they considered an isotropic situation, so that
the Alfvén time was given by the propagation time over the scale
of the Alfvénic packet. For weak turbulence, however, ‘k> L, so
that the Alfvén time must be based on the scale L, �A ¼ L/vA.

In addition, we must allow line-tying which acts to slow the
destruction of eddies on a given scale kmore effectively than the
standard randomencounter effect �k/�A (Dobrowolny et al. 1980).
We can therefore assume a subdiffusive behavior for zþ z�

nonlinear encounters leading to

Tk � �k
�k
�A

� ��
; ð50Þ

with values � > 1 and depending in some way on the parameter
f (recall that � ¼ 0 and 1 correspond, respectively, to anisotropic
Kolmogorov and Kraichnan cases [the latter leading to a k�2 iner-
tial range spectrum]).

Our simulations then close this Ansatz by determining how �
depends on f ; integrating over the whole volume (‘ ; ‘ ; L), the
energy cascade rate may now be written as

� � ‘ 2L�
	z2k
Tk

: ð51Þ

Using equation (50), the energy transfer rate is given by

� � ‘2L�
	z2k
Tk

� ‘2L�
L

vA

� �� 	z�þ3
k

k�þ1
: ð52Þ

Identifying, as usual, the eddy energy with the band-integrated
Fourier spectrum 	z2k � k?Ek? , where k?� ‘/k, from equa-
tion (52) we obtain the spectrum

Ek? / k
� 3�þ5ð Þ= �þ3ð Þ
? ; ð53Þ

where for � ¼ 0 (1) the �5/3 (�3/2) slope for the anisotropic
Kolmogorov (Kraichnan) spectra are recovered, but steeper spec-
tral slopes up to an asymptotic value of �3 are obtained with
higher values of �.

Correspondingly, from equations (51)Y(52), the scaling rela-
tions for 	zk and Tk follow

	zk �
�

‘2L�

� �1= �þ3ð Þ vA
L

� ��= �þ3ð Þ
k �þ1ð Þ= �þ3ð Þ; ð54Þ

Tk �
‘2L�

�

� � �þ1ð Þ= �þ3ð Þ
vA
L

� �2�= �þ3ð Þ
k2 �þ1ð Þ= �þ3ð Þ: ð55Þ

Recently, Boldyrev (2005) has proposed a similar model, which
aims to overcome some discrepancies between previous models
and numerical simulations, that self-consistently accounts for the
formation of current sheets, for the cascade of strong turbulence.
His energy transfer time is given by

Tk ¼
k
	zk

vA
	zk

� ��
; ð56Þ

but he suggests the interval 0 � � � 1 as appropriate to strong
turbulence.

As pointed out above in x 3, the solutions of equations (12)Y(14)
depend only on the nondimensional parameter f ¼ ‘cvA/Luph

(eq. [18]) and so � (eq. [50]) is only a function of f,

� ¼ �
‘cvA
Luph

� �
: ð57Þ

We estimate the value of � from the slope of the total energy
spectra (eq. [53]), as described in Rappazzo et al. (2007). As
shown in Figure 8, different values of cA ¼ vA/uph (i.e., f ), rang-
ing from 50 up to 1000, correspond to spectral slopes from��1.8
up to ��2.7. These in turn correspond (through eq. [53]) to val-
ues of � ranging from �0.33 up to �10.33.

How do the above results affect coronal heating scalings? The
energy that is injected at the large scales by photospheric motions
andwhose energy rate (�in) is given quantitatively by the Poynting
flux (eq. [21]) is transported (without being dissipated) along the
inertial range at the rate � (eq. [52]), to be finally dissipated at the
rate �d . In a stationary state, all these fluxes must be equal

�in ¼ � ¼ �d: ð58Þ
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The injection energy rate (eq. [21]) is given by S, the Poynting
flux integrated over the photospheric surfaces,

�in ¼ S ¼ �vA

Z
z¼L

da uL
? = b?

� 	
�
Z
z¼0

da u0? = b?
� 	� �

: ð59Þ

Two-dimensional spatial periodicity in the orthogonal planes
allows us to expand the velocity and magnetic fields in Fourier
series, e.g.,

u? x; yð Þ ¼
X
r; s

ur; se
ikr; s = x; ð60Þ

where

kr; s ¼
2�

‘
r; s; 0ð Þ; r; s 2 Z ð61Þ

The surface-integrated scalar product of u? and b? at the bound-
ary is then given byZ

dau? = b? ¼
X
r; s

ur; s =

Z ‘

0

Z ‘

0

dx dyb?e
ikr; s = x

¼ ‘ 2
X
r; s

ur; s = b�r;�s; r; s 2 Z ð62Þ

This integral is clearly dominated by large scales, consistent with
observations of photospheric motions. In our case (eq. [10]),
boundary velocities only have components for wavenumbers
(r; s) 2 Z2 with absolute values between 3 and 4, 3 � (r 2 þ
s2)1/2 � 4. Then in equation (62), only the corresponding com-
ponents of b? are selected.

At the injection scale, which is the scale of convective motions
‘c � 1000 km, a weak turbulence regime develops, so that the
cascade along the axial direction z is limited, and in particular, the
magnetic field b? can be considered approximately uniform along
z at the large orthogonal scales. Then from equation (59)we obtain

�in ¼ S � �vA

Z
da uL? � u0?
� 	

= b?: ð63Þ

Introducing uph ¼ uL
?� u0?, using equation (62), and integrat-

ing over the surface, we can now write

�in ¼ S � ‘2�vAuph	z‘c ; ð64Þ

where we have approximated the value of 	b‘c , the rms of the
magnetic field at the injection scale ‘c, with the rms of the Elsässer
variable, because the system is magnetically dominated, i.e.,
	z‘c ¼ (	u2

‘c
þ 	b2

‘c)
1/2 � 	b‘c . We now have an expression for �in,

where the only unknown variable is 	z‘c , as ‘c, �, vA, and uph are
the parameters characterizing our model of a coronal loop.

The transfer energy rate � does not depend on k. Considering
then k ¼ ‘c in equation (52), we have

� � �‘2L�þ1

‘�þ1
c v�A

	z�þ3
‘c

: ð65Þ

Equations (64) and (65) showanother aspect of self-organization.
Both �in and �, respectively, the rate of the energy flowing in the
system at the large scales and the rate of the energy flowing from
the large scales toward the small scales, depend on 	z‘c , the rms of

the fields at the large scale. This shows that the energetic balance
of the system is determined by the balance of the energy fluxes �
and �in at the large scales. The small scales will then dissipate the
energy that is transported along the inertial range (see eq. [58]).
This implies that, beyond a numerical threshold, total dissipation
(dissipation integrated over the whole volume) is independent of
the Reynolds number. In fact, beyond a value of the Reynolds
number for which the diffusive time at the large scale is negligible,
i.e., when the resolution is high enough to resolve an inertial range,
the large-scale balance between � and �in is no longer influenced by
diffusive processes. Of course, this threshold is quite low with re-
spect to the high values of the Reynolds numbers for the solar
corona, but it is still computationally very demanding.
An analytical expression for the coronal heating scalings may

be obtained from equations (64) and (65), yielding the value of
	z�‘c for which the balance �in ¼ � is realized,

	z�‘c
uph

� ‘cvA
Luph

� ��þ1ð Þ= �þ2ð Þ
: ð66Þ

Substituting this value in equation (65) or equivalently in equa-
tion (64) we obtain the energy flux

S � � ‘2�vAu
2
ph

‘cvA
Luph

� ��þ1ð Þ= �þ2ð Þ
: ð67Þ

As stated in equation (58), in a stationary cascade all energy fluxes
are equal on the average; S� is then the energy that for unitary time
flows through the boundaries in the coronal loop at the convection
cell scale and that from these scales flows toward the small scales.
This is also the dissipation rate and, hence, the coronal heating
scaling, i.e., the energy which is dissipated in the whole volume
for unitary time. As shown in equation (57), the power � depends
on the parameters of the coronal loop, and its value is determined
numerically with the aforementioned technique.
The observational constraint with which to compare our results

is the energy flux sustaining an active region. The energy flux at
the boundary is the axial component of the Poynting vector Sz (see
x 3.1). This is obtained by dividing S� (eq. [67]), the Poynting flux
integrated over the surface, by the surface ‘2,

Sz ¼
S�

‘2
� �vAu

2
ph

‘cvA
Luph

� ��þ1ð Þ= �þ2ð Þ
; ð68Þ

where � is not a constant, but a function of the loop parameters
(eq. [57]). The exponent in equation (68) goes from 0.5 for � ¼ 0
up to the asymptotic value 1 for larger �. We determine � numer-
ically, measuring the slope of the inertial range (Fig. 8) and invert-
ing the spectral power index (eq. [53]). We have used simulations
F, G, H, and I to compute the values of �, because they implement
hyperdiffusion, resolve the inertial range, and then are beyond
the numerical threshold below which total dissipation does not
depend on the Reynolds number. These simulations implement
vA ¼ 50, 200, 400, and 1000, and the corresponding� are�0.33,
1, 3, and 10.33. The corresponding values for the power (�þ
1)/(�þ 2) (eq. [68]) are �0.58, 0.67, 0.8, and 0.91, close to the
asymptotic value 1. The axial component of the Poynting vec-
tor Sz is shown in Figure 11 (diamonds) as a function of the ax-
ial Alfvén velocity vA. To compute the value of Sz for vA ¼
2000 km s�1 we have estimated � � 0:95, although for values
close to 1 Sz does not have a critical dependence on the value of
the exponent.
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In Figure 11we compare the analytical functionSz (eq. [68])with
the respective value determined from our numerical simulations
(stars), i.e., with the total dissipation rate by the surface and con-
verted to dimensional units [(J þ �)/‘2, see eq. (37)]. For the nu-
merical simulation values, the error bar is defined as 1 standard
deviation of the temporal signal. The analytical and computational
values are in good agreement for all four simulations considered,
and for the more realistic value vA ¼ 2000 km s�1, the dissipated
flux is�1:6 ; 106 erg cm�2 s�1. This value is in the lower range of
the observed constraint 107 erg cm�2 s�1.

The solid line in Figure 11 corresponds to the function Sz for
� ¼ 0 (which is approximately realized for vA P 50 km s�1),
which means that a Kolmogorov spectrum would be present, and
Sz / v3/2A . The computed and analytical values of Sz for higher vA
are always beyond this curve, because� increases its values, and a
more efficient dissipation takes place. This is due to the fact that
higher values of � correspond to higher values of the energy trans-
fer time and, consequently, a longer linear stage, higher values of
the fields at the large scales (eq. [66]), and hence a higher value
of the energy rates (see eqs. [64], [65], and [67]). So, a weaker
turbulent regime, to which corresponds less efficiency in the non-
linear terms, corresponds to a higher total dissipation, contrary to
what intuitionwould suggest (an only apparent paradox, as shown
above).

In the last paragraph of x 3.1 we have shown that when the
condition from equation (23) is satisfied the emerging flux can be
neglected. But in equation (23) we have to specify the value of
the magnetic field bturb? self-consistently generated by the non-
linear dynamics. This value is given by equation (66) as themag-
netic field dominates (	z�‘c � bturb? ). By substitution we can now
estimate that the emerging flux is negligible when the emerging
component of the magnetic field satisfies

bef? < B0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘c
L

� ��þ1ð Þ= �þ2ð Þ
uph

vA

� �1= �þ2ð Þ
s

: ð69Þ

In the asymptotic state�31, the condition reduces to bef? /B0 <
(‘c/L)

1/2. For a coronal loopwithL � 40;000 km, as ‘c � 1000 km
this implies that emerging flux does not play a role if bef? /B0 < 1/6.

5.3. Transition to Turbulence and Dissipation
vs. Reynolds Number

Turbulence is a characteristic of highYReynolds number sys-
tems (e.g., Frisch 1995). For a sufficiently high viscosity, non-
linear dynamics is strongly suppressed, our system relaxes to
a diffusive equilibrium (x 3.3), and no significant small scale is
formed. Increasing the Reynolds number, the diffusive time at the
injection scale (eq. [6]) �d � Re‘2c increases. At a certain point
it will be big enough not to influence the dynamics as the large
scales, an inertial range will then be resolved, and total dissipa-
tion will not depend any longer on the Reynolds numbers. In fact,
for higher values of Re the inertial range will extend to higher
wavenumbers, but the energy flux will remain the same.

At higher Reynolds numbers, smaller scales are resolved, and
each scale will contribute with its characteristic time Tk to the
temporal structure of the rms of the system. Figure 12 shows to-
tal dissipation as a function of time for simulations A, B, C, and
G, on the same time interval and on the same scale. At increas-
ingly higher values of the Reynolds numbers, smaller and smaller
temporal structures are added to the signal. Ideally, the temporal
structure of total dissipation at higher Reynolds numbers is well
described by shell model simulations. For smaller values of Re,
the signal is completely flat (see Fig. 13). This behavior identifies
a transition to turbulence.

Figure 13 shows total dissipation as a function of time for the
same four simulations shown in Figure 12, plus two other sim-
ulations with lower Reynolds numbers, respectively, Re ¼ 100
and 10 for the complete time interval. For the lowest value of Re
no dynamics is present, so that the threshold value for the transi-
tion to turbulence can be set to Re � 100. For higher values of Re
dissipation grows. An inertial range is barely solvedwith a resolu-
tion of 512 ; 512 grid points in the x-y planes, so that the simu-
lation with Re ¼ 800 can be considered at the threshold. On the
other hand, simulation G implements hyperdiffusion, so that an
inertial range is solved, and the dynamics is not affected by diffu-
sion. The presence of a sufficiently extended inertial range im-
plies in fact that we are beyond the numerical threshold where
dissipation does not depend on the Reynolds number (x 5.2).

Fig. 11.—Analytical (eq. [68]) and numerically computed dissipated flux as a
function of the axial Alfvén velocity vA. The solid line shows the Poynting flux
(eq. [68]) as a function of vA in the case � ¼ 0, corresponding to a Kolmogorov-
like cascade. To higher values of vA correspond a higher dissipation rate, because
a weak turbulence regime develops.

Fig. 12.—Transition to turbulence, total ohmic and viscous dissipation as a
function of time for simulations A, B, C, and G (displayed on the same scales).
All the simulations implement cA ¼ 200, but different Reynolds numbers, from
Re ¼ 200 up to 800. Run G implements hyperdiffusion. For Reynolds numbers
lower than 100, the signal is completely flat and displays no dynamics; at higher
Reynolds numbers, smaller temporal structures are present.
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The threshold value can be identified to a sufficient extent at
Re ¼ 800, i.e., for a numerical grid of 512 ; 512 points. The
number of points to use along the axial direction should be enough
to allow for the formation of all the small scales due to the ‘‘critical
balance’’ (Fig. 9), but a larger number of points would only result
in a waste of computational time.

5.4. Inverse Cascade and Line-tying

Two-dimensional simulations (Einaudi et al. 1996; Georgoulis
et al. 1998) have shown an inverse cascade for the magnetic en-
ergy, corresponding in physical space to the coalescence of mag-
netic islands. In the 3D case a dominant magnetic field along
the axial direction is present, giving rise to a field line tension
that tends to inhibit an inverse cascade, as motions linked to the
coalescence would bend the field lines of the total magnetic field,
which are mostly elongated along the axial direction (Fig. 18).
On the other hand, field line tension depends on the strength of
the axial field, becoming stronger for a stronger field.

In Figures 14 and 15 the first four modes of magnetic energy
for simulations F and I, with cA ¼ 50 and 1000, respectively, are
plotted as a function of time. Energy is injected at wavenumbers
n ¼ 3 and 4. Modes associated to wavenumbers 1 and 2 grow to
higher values than at the injection scale in run F, while in run I they
are always limited to lower values. In runs G and H, with cA ¼
200 and 400, respectively, an intermediate behavior is found, but
none of the modes n ¼ 1 or 2 ever becomes bigger than the in-
jection energy modes.

5.5. Timescales

In the previous sections we have always affirmed that the
Alfvén crossing time �A ¼ L/vA is the fastest timescale in the
system and that, in particular, it is smaller than the nonlinear
timescale �nl, which we can identify with the energy transfer
time (eq. [55]) at the injection scale �nl ¼ T‘c . In Figure 3 it is
already clear that the nonlinear timescale is longer that �A; in
fact, it shows that the timescale over which energy has sub-
stantial variations is bigger than the Alfvén crossing time.

The same behavior is identified in Figures 14Y15, which show
the time evolution of the magnetic energy modes for runs F and I.

These aremore relevant quantities, because to realize aweakMHD
turbulence regime, it is required that the energy transfer time Tk is
bigger than the crossing time �A at the injection scale k ¼ ‘c and
for a limited range of smaller scales down to some lower bound k�,
k� � k � ‘c. The magnetic energy modes at the injection scale
(n ¼ 3 and 4) change their values on scales bigger than �A, and
for a larger value of the Alfvén velocity, the nonlinear timescale
is longer with respect to the crossing time (Figs. 14Y15). We can
roughly estimate �nl � 5�A for run Fwith cA ¼ 50 and �nl � 20�A
for run I with cA ¼ 1000.
Using our scaling relations we can derive an analytical esti-

mate for the energy transfer time Tk. Substituting the energy rate
(eq. [67]) in equation (55) we obtain

Tk � �A�
�þ1
c

� 	1= �þ2ð Þ k
‘c

� �2 �þ1ð Þ= �þ3ð Þ
; ð70Þ

Fig. 13.—Total ohmic and viscous dissipation as a function of time for simu-
lations A, B, C, D, E, and G; all of them implement cA ¼ 200 but different
Reynolds numbers. The threshold beyond which dissipation is independent of the
Reynolds number can be identified around Re ¼ 800, corresponding to a numeri-
cal resolution of 512 ; 512 points in the orthogonal planes.

Fig. 14.—Run F: In this simulation with cA ¼ 50 an inverse cascade at the
wavenumbers n ¼ 1 and 2 is realized. Energy is injected at wavenumbers n ¼ 3
and 4.

Fig. 15.—Run I: Simulation performed with cA ¼ 1000. The increased mag-
netic field line tension inhibits an inverse cascade for the orthogonal magnetic
field.
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where �c ¼ ‘c/uph. In particular, the ratio over the Alfvén cross-
ing time is

Tk

�A
� �c

�A

� ��þ1ð Þ= �þ2ð Þ k
‘c

� �2 �þ1ð Þ= �þ3ð Þ
; ð71Þ

and as �c > �A, then self-consistently Tk > �A. For our loop
‘c � 1000 km and uph � 1 km s�1, so that �c � 1000 s. For runs
F and I shown in Figures 14 and 15, the loop length is always
L ¼ 40000 km, while the Alfvén velocities are, respectively,
vA ¼ 50 and 1000 km s�1 and the corresponding crossing times
are �A ¼ 800 and 40 s. Using the values of � computed in x 5.2
(respectively, � ¼ 0:33 and 10.33) we can then roughly estimate
from equation (71) the nonlinear timescale �nl ¼ Tk¼‘c and its ra-
tio with the Alfvén crossing time,

�nl
�A

¼ T‘c
�A

� �c
�A

� ��þ1ð Þ= �þ2ð Þ
: ð72Þ

For runs F and I we find �nl/�A ¼ 1:2 and 22.3, in agreement with
the simulations.

Equation (71) can also be used to estimate the extension of the
weak turbulence inertial range. The region for which the weak
turbulence condition Tk > �A is satisfied is

k > k� ¼ ‘c
�A
�c

� ��þ3ð Þ= 2(�þ2)½ �
: ð73Þ

Figure 16 shows the temporal spectrum of magnetic energy
for run G with cA ¼ 200, i.e., we perform the Fourier transform
of the magnetic energy as a function of time and then plot its
squared modulus. We use run G because it is the one for which
we have saved more frequently the rms quantity, which means
that the plot covers a wider range at high frequencies. The power
spectrum is roughly constant up to �/�A � 0:2, which corre-
sponds to t/�A � 5, in agreement with our scaling (eq. [72]),
which for this case gives �nl/�A � 3:3. Beyond this critical point,
the power spectrum exhibits a power law which fits ��2, in agree-
ment with shell model simulations (Buchlin & Velli 2007).

6. DISCUSSION AND CONCLUSIONS

We would like first to clarify a few concepts that might other-
wise result in misunderstandings of the work that we have pre-
sented. The concept of turbulence is used to describe different
processes in different research fields, so that its use, without spec-
ifications, can be vague and misleading. It is in fact very often
used to describe chaotic behaviors at the small scales, often linked
to the intermittent dissipation of energy. Although this aspect is
present in our simulations, when we say that the Parker problem
is an MHD turbulence problem, we refer mainly to the property
of turbulence to transfer energy from large to small scales, namely,
to its ability to transport the energy from the scale of photospheric
motions (�1000 km), where it is injected, down to the small dis-
sipative scales (possiblymeters), without dissipating it at the inter-
mediate scales. This property is clearly identified by the presence
of an inertial range with a power-law spectrum, which extends
from the injection scale to the dissipative scale.

Furthermore, turbulence, magnetic reconnection, and ohmic
heating associated to currents are sometimes presented as alter-
native and/or mutually exclusive coronal heating models. This
contraposition is artificial. Current sheets are in fact the dissipative
structures of MHD turbulence, and magnetic reconnection at the
loci of current sheets is observed in virtually every MHD turbu-
lence simulation in both 2D and 3D (see, e.g., Biskamp 2003 and
references therein). Nanoflares are then naturally associated with
the time and space intermittency of the small-scale deposition of
energy (as shown in the 2D case byGeorgoulis et al. 1998), which
is due to the cascade which leads to the formation and dissipation
of current sheets and to which we refer collectively with the term
MHD turbulence.

In summary, the main results presented in this paper are the
following.

1. The time-dependent Parker problem may be seen as an
MHD turbulence problem, where the large-scale forcing function
is realized by the photospheric motions.

2. This system is genuinely turbulent, in the sense that small-
scale formation is not driven passively by the randomwalk of the
footpoints, rather it is a property of the Maxwell stresses devel-
oping in the coronal volume. Current sheets therefore do not
generally result directly from a ‘‘geometrical’’ misalignment of
neighboring magnetic field lines stirred by their footpoint (ran-
dom) motions, they are the result of a nonlinear cascade in a self-
organized system.

3. Nanoflares are naturally associatedwith the intermittent dis-
sipation of the energy that, injected at the large scales by photo-
spheric motions, is transported to the dissipative scales through
a cascade and is finally dissipated through nonlinear magnetic
reconnection.

4. Beyond a threshold, which is low compared to the coronal
Reynolds numbers, but still computationally very demanding,
total dissipation is independent of the Reynolds numbers. This
threshold corresponds to a numerical resolution of �512 ; 512
grid points in the planes orthogonal to the dominant axial mag-
netic field.

5. As the loop parameters vary, different regimes of turbulence
develop; strong turbulence is found for weak axial magnetic fields
and long loops, leading to Kolmogorov-like spectra in the perpen-
dicular direction, while weaker and weaker regimes (steeper spec-
tral slopes of total energy) are found for strong axial magnetic
fields and short loops. There is no single universal scaling law (see
eq. [68]), as a consequence the scaling of the heating rate with
axial magnetic field intensity, which depends on the spectral index

Fig. 16.—Temporal spectrum of magnetic energy for run G, where �A ¼ 1/�A
is the frequency corresponding to the Alfvén crossing time. The intermediate part
of the spectrum exhibits a ��2 power law.
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of total energy for given loop parameters, must vary from B3/2
0 for

weak fields to B2
0 for strong fields at a given aspect ratio.

6. For a loop 40,000 km long, with an Alfvén velocity vA ¼
2000 km s�1 and a numerical density of 1010 cm�3, whose foot-
points are subject to photospheric motions of uph � 1 km s�1 on
a scale of ‘c � 1000 km, the energy flux entering the system and
being dissipated is Sz � 1:6 ; 106 erg cm�2 s�1. On the other

hand, for a coronal loop typical of a quiet-Sun region that has
the same parameters as the previous case but with a length of
100,000 km and vA ¼ 500 km s�1, the resulting Poynting flux is
Sz � 7 ; 104 erg cm�2 s�1.

The most advanced EUV and X-ray imagers (e.g., those on
board SOHO, TRACE, STEREO, and Hinode ) have space

Fig. 17.—Run A: (a) Streamlines of the boundary velocity fields u0
? � uL

? constant in time. (bYe) Axial component of the current j (in color) and field lines of the
orthogonal magnetic field in the midplane (z ¼ 5), at selected times covering the linear and nonlinear regimes up to t ¼ 18:47�A. ( f ) Axial component of the vorticity !
(in color) and field lines of the orthogonal magnetic field in the midplane at time t ¼ 18:47�A. During the linear stage the orthogonal magnetic field is a mapping of the
boundary forcing [cf. (a) and (b)]. After the collapse of the large-scale currents (bYd ), which in Fourier space correspond to a cascade of energy (see Fig. 6), the topology
of the magnetic field departs from the boundary velocity mapping and evolves dynamically in time. (eY f ) Current sheets are embedded in quadrupolar vorticity structure,
a clear indication of nonlinear magnetic reconnection. [This figure is available as an mpeg animation in the electronic edition of the Journal.]
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resolutions (�800 km) of the order of the granulation cells.
Hence, they do not resolve the small scales where current sheets,
magnetic reconnection, and all the dynamical features of the sys-
tem take place. Their resolution is roughly 1/5 the length of the
perpendicular cross section of our numerical box (�4000 km).
Hence, even if the system is highly dynamical on small scales
(see Fig. 17 and the electronic edition of the Journal for the as-
sociated movie), integrating over these scales has the effect of
‘‘averaging’’ the small-scale dynamics. In particular, small-scale
reconnection cannot be detected, magnetic field lines will appear
only slightly bent (Fig. 18), and their dynamicswill appear slower
(a modulation of the nonlinear timescale with the thermodynam-
ical timescales). The topological and dynamical effects associated
with magnetic reconnection should be taken into account when

modeling the thermodynamical and observational properties of
coronal loops (Schrijver 2007), recalling that most of the dynam-
ics take place at subresolution scales while we observe the inte-
grated emission.

Two density current fields that have the same ‘‘steady’’ inte-
grated ohmic dissipation, balanced by a corresponding Poynting
flux (see x 3.3, eq. [37], and Fig. 4), but with different spatial dis-
tributions will have different emissions. Consider the first with
only large-scale components, as the one that would result from a
diffusive process (x 3.3), while in the second the current has only
small-scale components, as in the simulations that we have pre-
sented. In the second case the filling factor is small (Figs. 17 and
18) so that the density of current has a far larger value, and this
would correspond to two very different thermodynamical and

Fig. 18.—RunA: (a, c) Side and (b, d ) top views of (a, b) current sheets and (c, d ) field lines of the totalmagnetic field at time t ¼ 18:47�A (same time as in Figs. 17eY17f ).
For an improved visualization, the box size has been rescaled, but the axial length of the computational box is 10 times longer that the perpendicular cross section length. The
rescaling of the box artificially enhances the structures’ inclination. To restore the original aspect ratio, the box should be stretched 10 times along z. (aYb) Two isosurfaces of
the squared current j2. The isosurface at the value j2 ¼ 2:8 ; 105 is represented in partially transparent yellow, while red displays the isosurface with j2 ¼ 8 ; 105, well
below the maximum value of the current at this time j2max ¼ 8:4 ; 106. As is typical of current sheets, isosurfaces corresponding to higher values of j2 are nested inside
those corresponding to lower values. For this reason the red isosurface appears pink. Although from the side view the sheets appear space filling, the top view shows that the
filling factor is small. (cYd ) Field lines of the total magnetic field (orthogonal plus axial), and in the midplane (z ¼ 5), field lines of the orthogonal component of the
magnetic field.
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observational outcomes. But the highly dynamical effects asso-
ciated with the second case will be averaged and the result will be
less dynamical when integrated. Still the integrated observables
should be very distinct between the two cases.

Finally, while our simulations give an accurate description of
the time-dependent Parker problem, with the limitations on the
photospheric forcing field described in x 1, the use of the reduced
MHD equation is justified only for slender loops threaded by a
strong axial magnetic field. For short loops, or loops that have an
orthogonal component of the magnetic field comparable to the
axial component, the full set of MHD equations should be imple-
mented. For the slender loops thatwe have simulatedwe observe a
modest accumulation of energy, which subsequently is released
via nanoflares. On the other hand, shorter loops, loops in a more
complicated geometry, or loops subject to loop-loop interactions
andmore generally loops affected by the neighboring coronal en-
vironment might exhibit the ability to accumulate more energy
(e.g., Low 2006) and then release it in larger flares, possibly via a
‘‘secondary instability’’ (Dahlburg et al. 2005) or fast magnetic
reconnection (Cassak et al. 2006).

MHD has proved to be a useful tool to investigate the proper-
ties of the turbulent cascade (Biskamp 2003). MHD is very well
known to give an approximate description of the plasma dynam-
ics at large scales and low frequencies. In MHD turbulence, it is
generally supposed that at the small scales a ‘‘dissipative mech-
anism’’ is present. Most of the properties of the turbulent cascade
do not depend on the details of the dissipativemechanism, whether
it is described by the diffusive operator present in equations (1)Y(2)
or more properly by a kinetic mechanism.

In particular, in our case the timescales associated at the scale k
(eq. [70] for weak turbulence and eq. [56]) for the strong case)
decrease for smaller scales. In this way the small-scale dynamics
is characterized by high-frequency phenomena, and then it is not
well described by MHD, but rather a kinetic model would be
more appropriate. It is then possible that (self-consistently) at the
small scales particle acceleration plays an important role in the
dissipation of energy, a physical process that should be investi-
gated through kinetic models. Nevertheless, the coronal heating
rates (eq. [68]), like the cascade properties over an extended range
of scales, are independent of the details of the dissipation mech-
anism. They are determined by the balance, at the large scales (see
x 5.2), between the rate of the energy flowing into the loop from
the boundaries due to the work done by photospheric motions on
the magnetic field line footpoints at the scale of the convective
cells and the rate at which the energy flows along the inertial range
from the large scales toward the small scales.
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