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1. Introduction

The necessity of studying coincidence points of Fredholm operators and nonlinear (com-
pact and condensing) maps of various classes arises in the investigation of many prob-
lems in the theory of partial differential equations and optimal control theory (see, e.g.,
[3, 4, 7, 13, 17, 18, 20–22]). The use of topological characteristics of coincidence de-
gree type is a very effective tool for solving such type of problems. For inclusions with
linear Fredholm operators, a number of such topological invariants was studied in the
works [7, 8, 13, 18, 19]. In the present paper, we suggest the general construction of an
oriented coincidence index for nonlinear Fredholm operators of zero index and approx-
imable multivalued maps of compact and condensing type. A nonoriented analogue of
such index was described earlier in the authors work [17].

The paper is organized in the following way. In Section 2, we give some preliminaries.
In Section 3, we present the construction of the oriented coincidence index, first for a
finite-dimensional case, and later, on that base, we develop the construction in the case of
a compact triplet. In Section 4, using the technique of fundamental sets, we give the most
general construction of the oriented index for a condensing triplet and describe its main
properties, including its application to the existence of coincidence points. In Section 5,
we consider an example of a condensing triplet arising in the study of a mixed system,
consisting of a first-order implicit differential equation and a differential inclusion.
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2. Preliminaries

By the symbols E, E′, we will denote real Banach spaces. Everywhere, by Y we will de-
note an open bounded set U ⊂ E (case (i)) or U∗ ⊂ E× [0,1] (case (ii)). We recall some
notions (see, e.g., [3]).

Definition 2.1. A C1-map f : Y → E′ is Fredholm of index k ≥ 0 ( f ∈ ΦkC1(Y)) if for
every y ∈ Y the Frechet derivative f ′(y) is a linear Fredholm map of index k, that is,
dimKer f ′(y) <∞, dimCoker f ′(y) <∞, and

dimKer f ′(y)−dimCoker f ′(y)= k. (2.1)

Definition 2.2. A map f : Y → E′ is proper if f −1(�) is compact for every compact set
�⊂ E′.

We recall now the notion of oriented Fredholm structure on Y .
An atlas {(Yi,Ψi)} on Y is said to be Fredholm if, for each pair of intersecting charts

(Yi,Ψi) and (Yj ,Ψ j) and every y ∈ Yi∩Yj , it is

(
Ψ j ◦Ψ−1

i

)′(
Ψi(y)

)∈ CG(Ẽ
)
, (2.2)

where Ẽ is the corresponding model space, and CG(Ẽ) denotes the collection of all linear
invertible operators in Ẽ of the form i+ k, where i is the identity map and k is a compact
linear operator.

The set CG(Ẽ) is divided into two connected components. The component containing
the identity map will be denoted by CG+(Ẽ).

Two Fredholm atlases are said to be equivalent if their union is still a Fredholm atlas.
The class of equivalent atlases is called a Fredholm structure.

A Fredholm structure on U is associated to a Φ0C1-map f : U → E′ if it admits an atlas
{(Yi,Ψi)} with model space E′ for which

(
f ◦Ψ−1

i

)′(
Ψi(y)

)∈ LC(E′) (2.3)

at each point y ∈ U , where LC(E′) denotes the collection of all linear operators in E′

of the form: identity plus a compact map. Let us note that each Φ0C1-map f : U → E′

generates a Fredholm structure on U associated to f .
A Fredholm atlas {(Yi,Ψi)} on Y is said to be oriented if for each intersecting charts

(Yi,Ψi) and (Yj ,Ψ j) and every y ∈ Yi∩Yj , it is true that

(
Ψ j ◦Ψ−1

i

)′(
Ψi(y)

)∈ CG+(E). (2.4)

Two oriented Fredholm atlases are called orientally equivalent if their union is an ori-
ented Fredholm atlas on Y . The equivalence class with respect to this relation is said to
be the oriented Fredholm structure on Y .

We will need also the following result (see [3]).
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Proposition 2.3. Let f ∈ΦkC1(Y); K ⊂ Y a compact set. Then there exist an open neigh-
borhood �, K ⊂ �⊂ Y , and a finite-dimensional subspace E′n ⊂ E′such that

f −1(E′n
)∩�=Mn+k, (2.5)

where Mn+k is an n+ k dimensional manifold. Moreover, the restriction f|� is transversal to
E′n, that is, f ′(x)E+E′n = E′ for each x ∈ �.

We describe now some notions of the theory of multivalued maps that will be used in
the sequel (details can be found, e.g., in [1, 2, 9, 12]).

Let (X ,dX),(Z,dZ) be metric spaces.
Given a subset A and ε > 0, we denote by Oε(A) the ε-neighborhood of A. Let K(Z) de-

note the collection of all nonempty compact subsets of Z. Given a multivalued map (mul-
timap) Σ : X�K(Z), a continuous map, σε : X→Z, ε > 0, is said to be an ε-approximation
of Σ if for every x ∈ X , there exists x′ ∈Oε(x) such that σε(x)∈Oε(Σ(x′)).

It is clear that the notion can be equivalently expressed saying that

σε(x)∈Oε
(
Σ
(
Oε(x)

))
(2.6)

for all x ∈ X , or that

Γσε ⊂
(
ΓΣ
)
, (2.7)

where Γσε ,ΓΣ denote the graphs of σε and Σ, respectively, while the metric in X × Z is
defined in a natural way as

d
(
(x,z),(x′,z′)

)=max
{
dX(x,x′),dZ

(
z,z′)

}
. (2.8)

The fact that σε is an ε-approximation of the multimap Σ will be denoted by σε ∈ a(Σ,ε).
A multimap Σ : X � K(Z) is said to be upper semicontinuous (u.s.c.) if for every open

set V ⊂ Z, the set Σ−1
+ (V)= {x ∈ X : Σ(x)⊂V} is open in X .

An u.s.c. multimap Σ : X � K(Z) is closed if its graph ΓΣ is a closed subset of X ×Z.
We can summarize some properties of ε-approximations in the following statement

(see [9]).

Proposition 2.4. Let Σ : X � K(Z) be an u.s.c. multimap.
(i) Let X1 be a compact subset of X . Then, for every ε > 0, there exists δ > 0 such that

σ ∈ a(Σ,δ) implies σ|X1 ∈ a(Σ|X1 ,ε).
(ii) Let X be compact, Z1 a metric space, and ϕ : Z → Z1 a continuous map. Then, for

every ε > 0, there exists δ > 0 such that σ ∈ a(Σ,δ) implies ϕ◦ σ ∈ a(ϕ◦Σ,ε).
(iii) Let X be compact, Σ∗ : X × [0,1]→ K(Z) an u.s.c. multimap. Then, for every λ ∈

[0,1] and ε > 0, there exists δ > 0 such that σ∗ ∈ a(Σ∗,δ) implies that σ∗(·,λ) ∈
a(Σ∗(·,λ),ε).

(iv) Let Z1 be a metric space, Σ1 : X � K(Z1) an u.s.c. multimap. Then for every ε > 0,
there exists δ > 0 such that σ ∈ a(Σ,δ) and σ1 ∈ a(Σ1,δ) imply that σ × σ1 ∈ a(Σ×
Σ1,ε), where (σ × σ1)(x)= σ(x)× σ1(x), (Σ×Σ1)(x)= Σ(x)×Σ1(x).

In the sequel, we will use the following important property of ε-approximations.
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Proposition 2.5. Let X , X ′, Z be metric spaces; f : X → X ′ a continuous map; Σ : X �
K(Z) an u.s.c. multimap; ϕ : Z → X ′ a continuous map. Suppose that X1 ⊆ X is a compact
subset such that

Coin( f ,ϕ◦Σ)∩X1 =∅, (2.9)

where Coin( f ,ϕ ◦ Σ) = {x ∈ X : f (x) ∈ ϕ ◦ Σ(x)} is the coincidence points set. If ε > 0 is
sufficiently small and σε ∈ a(Σ,ε), then

Coin
(
f ,ϕ◦ σε

)∩X1 =∅. (2.10)

Proof. Suppose, to the contrary, that there are sequences {xn} ⊂ X1 and εn → 0, εn > 0,
such that

f
(
xn
)= ϕσεn

(
xn
)

(2.11)

for a sequence σεn ∈ a(Σ,εn).
From Proposition 2.4(i) and (ii) we can deduce that, without loss of generality, the

maps ϕσεn|X1 form a sequence of δn-approximations of ϕΣ|X1 , with δn→ 0 and hence

(
xn,ϕσεn

(
xn
))∈Oδn

(
ΓϕΣ|X1

)
. (2.12)

The graph of the u.s.c. multimap ϕΣ|X1 is a compact set (see, e.g., [12, Theorem 1.1.7]),
hence we can assume, without loss of generality, that

(
xn,ϕσεn

(
xn
))−−−−→

n→∞
(
x0, y0

)∈ ΓϕΣ|X1
, (2.13)

that is, y0 ∈ ϕΣ(x0). Passing to the limit in (2.11), we obtain that f (x0) = y0 ∈ ϕΣ(x0),
that is, x0 ∈ Coin( f ,ϕΣ), giving the contradiction. �

To present the class of multimaps which will be considered, we recall some notions.

Definition 2.6 (see, e.g., [1, 9, 10, 15]). A nonempty compact subset A of a metric space Z
is said to be aspheric (or UV∞, or ∞-proximally connected) if for every ε > 0, there exists
δ, 0 < δ < ε, such that for each n = 0,1,2, . . . , every continuous map g : Sn → Oδ(A) can
be extended to a continuous map g̃ : Bn+1 →Oε(A), where Sn = {x ∈Rn+1 : ‖x‖ = 1} and
Bn+1 = {x ∈Rn+1 : ‖x‖ ≤ 1}.
Definition 2.7 (see [11]). A nonempty compact space A is said to be an Rδ-set if it can be
represented as the intersection of a decreasing sequence of compact, contractible spaces.

Definition 2.8 (see [9]). An u.s.c. multimap Σ : X → K(Z) is said to be a J-multimap
(Σ∈ J(X ,Z)) if every value Σ(x), x ∈ X , is an aspheric set.

We will use the notions of absolute retract (AR-space) and of absolute neighborhood
retract (ANR-space) (see, e.g., [5, 9]).
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Proposition 2.9 (see [9]). Let Z be an ANR-space. In each of the following cases, an u.s.c.
multimap Σ : X → K(Z) is a J-multimap: for each x ∈ X , the value Σ(x) is

(a) a convex set;
(b) a contractible set;
(c) an Rδ-set;
(d) an AR-space.

In particular, every continuous map σ : X → Z is a J-multimap.

The next statement describes the approximation properties of J-multimaps.

Proposition 2.10 (see [9, 10, 15]). Let X be a compact ANR-space; Z a metric space;
Σ∈ J(X ,Z). Then

(i) the multimap Σ is approximable; that is, for every ε > 0, there exists σε ∈ a(Σ,ε);
(ii) for each ε > 0, there exists δ0 > 0 such that for every δ (0 < δ < δ0) and for every

two δ-approximations σδ ,σ ′δ ∈ a(Σ,δ), there exists a continuous map (homotopy)
σ∗ : X × [0,1]→ Z such that
(a) σ∗(·,0)= σδ , σ∗(·,1)= σ ′δ ;
(b) σ∗(·,λ)∈ a(Σ,ε) for all λ∈ [0,1].

Definition 2.11. Denote by CJ(X ,X ′) the collection of all multimaps G : X → K(X ′) of the
form G = ϕ ◦Σ, where Σ ∈ J(X ,Z) for some metric space Z, ϕ : Z → X ′ is a continuous
map. The composition ϕ ◦Σ will be called the representation (or decomposition, cf. [9])
of G. Denote G= (ϕ◦Σ)∈ CJ(X ,X ′).

It has to be noted that a multimap can admit different representations (see [9]).

3. Oriented coincidence index for compact triplets

We will start from the following notion.

Definition 3.1. The map f : Y → E′, the multimap G= (ϕ◦Σ)∈ CJ(X ,X ′), and the space
Y form a compact triplet ( f ,G,Y)C if the following conditions are satisfied:

(h1) f is a continuous proper map, f|Y ∈ΦkC1(Y) with k = 0 in case (i), k = 1 in case
(ii), and the Fredholm structure on Y generated by f is oriented;

(h2) G is compact, that is, G(Y) is a relatively compact subset of E′;
(h3) Coin( f ,G)∩ ∂Y =∅.

Let us mention that from hypotheses (h1), (h2), it follows that the coincidence points
set Q = Coin( f ,G) is compact.

3.1. The case of a finite-dimensional triplet. Given a triplet ( f ,G,Y)C, from Proposition
2.3 we know that there exist an open neighborhood �⊂ Y of the set Q = Coin( f ,G) and
an n-dimensional subspace E′n ⊂ E′ such that f −1(E′n)∩� =M, a manifold which is n-
dimensional in case (i) and (n+ 1)-dimensional in case (ii).

Now, suppose that the multimap G = ϕ ◦ Σ is finite-dimensional, that is, that there
exists a finite-dimensional subspace E′m ⊂ E′ such that G(Y)⊂ E′m. We can assume, with-
out loss of generality, that E′m ⊂ E′n. Then clearly Q ⊂M. Let us mention also that the
orientation on Y induces the orientation on M.



6 An oriented coincidence index

A compact triplet ( f ,G,Y)C such that G is finite-dimensional will be denoted by
( f ,G,Y)Cm and will be called finite-dimensional.

Lemma 3.2. For ( f ,G = (ϕ ◦ Σ),Y)Cm , let Oκ be a κ-neighborhood of Q. Then, Σ|Oκ

is
approximable provided that κ > 0 is sufficiently small.

Proof. Consider an open bounded set N satisfying the following conditions:
(i) Q⊂N ⊂N ⊂M;

(ii) N is a compact ANR-space.
Let us note that as N we can take a union of a finite collection of balls with centers in

Q.
Let us take κ > 0 so thatOκ ⊂N . Then the statement follows from Propositions 2.10(i)

and 2.4(i). �

Now, let the neighborhood Oκ be chosen so that Σ is approximable on Oκ . From
Proposition 2.5, we know that

Coin
(
f ,ϕ◦ σε

)∩ ∂Oκ =∅ (3.1)

provided that σε ∈ a(Σ|Oκ

,ε) and ε > 0 is sufficiently small.
So, we can consider the following map of pairs of spaces:

f −ϕ◦ σε :
(
Oκ ,∂Oκ

)−→ (E′n,E′n\0
)
. (3.2)

Now we are in position to give the following notion.

Definition 3.3. The oriented coincidence index of a finite-dimensional triplet ( f ,G =
(ϕ◦Σ),U)Cm is defined by the equality

(
f ,G= (ϕ◦Σ),U

)
Cm

:= deg
(
f −ϕ◦ σε,Oκ

)
, (3.3)

where κ > 0 and ε > 0 are taken small enough and the right-hand part of equality (3.3)
denotes the Brouwer topological degree.

Now we will demonstrate that the given definition is consistent, that is, the coincidence
index does not depend on the choice of an ε-approximation σε and the neighborhood Oκ .

Lemma 3.4. Let σε and σ ′ε ∈ a(Σ|Oκ .,ε) be two approximations. Then

deg
(
f −ϕ◦ σε,Oκ

)= deg
(
f −ϕ◦ σ ′ε ,Oκ

)
(3.4)

provided that ε > 0 is sufficiently small.

Proof. Let us take any neighborhood N ′ of Q such that Q ⊂N ′ ⊂N ′ ⊂Oκ and N ′ is an
ANR-space. Then, by Propositions 2.4(i) and 2.5, we know that we can take ε > 0 small
enough to provide that σε|N ′ and σ ′ε|N ′ are δ0-approximations of Σ|N ′ and

Coin
(
f ,ϕ◦ σε

)∩ (Oκ\N ′)=∅,

Coin
(
f ,ϕ◦ σ ′ε

)∩ (Oκ\N ′)=∅.
(3.5)



Valeri Obukhovskii et al. 7

Since Σ|N ′ is approximable, we can assume that ε > 0 is chosen so small that there exists a
map γ : N ′ × [0,1]→ Z with the following properties:

(i) γ(·,0)= σε|N ′ ,γ(·,1)= σ ′ε|N ′ ;
(ii) γ(λ,·)∈ a(Σ|N ′ ,δ1) for each λ∈ [0,1], where δ1 is arbitrary small;

(iii) Coin( f ,ϕ◦ γ(·,λ))∩ ∂N ′ =∅ for all λ∈[0,1] (see Propositions 2.10(ii) and 2.5).
Each map f − ϕ ◦ γ(·,λ), λ ∈ [0,1], transforms the pair (N ′,∂N ′) into the pair (En,

En\0) for each λ∈ [0,1], and by the homotopy property of the Brouwer degree we have
deg( f −ϕ◦ σε,N ′)= deg( f −ϕ◦ σ ′ε ,N ′). Further from (3.5) and the additive property of
the Brouwer degree, we have

deg
(
f −ϕ◦ σε,Oκ

)= deg
(
f −ϕ◦ σε,N ′),

deg
(
f −ϕ◦ σ ′ε ,Oκ

)= deg
(
f −ϕ◦ σ ′ε ,N ′) (3.6)

proving equality (3.4). �

Now, if Oκ
′ ⊂Oκ , the equality

deg
(
f −ϕ◦ σε,Oκ

′
)= deg

(
f −ϕ◦ σε,Oκ

)
, (3.7)

where ε > 0 is sufficiently small, follows easily from Propositions 2.4(i), 2.5, and the ad-
ditive property of the Brouwer degree.

At last, let us mention also the independence of the construction on the choice of the
transversal subspace E′n. In fact, if we take two subspaces E′n0

and E′n1
, we may assume,

without loss of generality, that E′n0
⊂ E′n1

. As earlier, we assume that G(U) ⊂ E′m ⊂ E′n0
⊂

E′n1
. Then, from the construction, we obtain two manifolds Mn0 , Mn1 , Mn0 ⊂Mn1 and

two neighborhoods On0
κ
⊂Mn0 , On1

κ
⊂Mn1 , On0

κ
⊂ On1

κ
for κ > 0 sufficiently small. Now,

take ε > 0 small enough to provide that the degrees deg( f −ϕ ◦ σε,On1
κ ) and deg( f −ϕ ◦

σε,O
n0
κ ) are well defined. Then the equality

deg
(
f −ϕ◦ σε,On1

κ

)= deg
(
f −ϕ◦ σε,On0

κ

)
(3.8)

follows from the map restriction property of Brouwer degree.
Now, let us mention the main properties of the defined characteristic. Directly from

Definition 3.3 and Proposition 2.5, we deduce the following statement.

Theorem 3.5 (the coincidence point property). If Ind( f ,G,U)Cm �=0, then ∅�=Coin( f ,
G)⊂U .

To formulate the topological invariance property of the coincidence index, we will give
the following definition.

Definition 3.6. Two finite-dimensional triplets ( f0,G0 = (ϕ0 ◦ Σ0),U0)Cm and ( f1,G1 =
(ϕ1 ◦Σ1),U1)Cm are said to be homotopic,

(
f0,G0 =

(
ϕ0 ◦Σ0

)
,U0

)
Cm
∼ ( f1,G1 =

(
ϕ1 ◦Σ1

)
,U1

)
Cm

, (3.9)
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if there exists a finite-dimensional triplet ( f∗,G∗,U∗)Cm , where U∗ ⊂ E× [0,1] is an open
set, such that

(a) Ui =U∗ ∩ (E×{i}), i= 0,1;
(b) f∗|Ui

= fi, i= 0,1;
(c) G∗ has the form

G∗(x,λ)= ϕ∗
(
Σ∗(x,λ),λ

)
, (3.10)

where Σ∗ ∈ J(U∗,Z), ϕ∗ : Z× [0,1]→ E′, is a continuous map, and

Σ∗|Ui
= Σi, ϕ∗|Z×{i} = ϕi, i= 0,1. (3.11)

Theorem 3.7 (the homotopy invariance property). If

(
f0,G0,U0

)
Cm
∼ ( f1,G1,U1

)
Cm

, (3.12)

then
∣
∣
∣Ind

(
f0,G0,U0

)
Cm

∣
∣
∣=

∣
∣
∣Ind

(
f1,G1,U1

)
Cm

∣
∣
∣. (3.13)

Proof. Let ( f∗,G∗,U∗)Cm be a finite-dimensional triplet connecting the triplets ( f0,G0,
U0)Cm and ( f1,G1,U1)Cm . Let O∗κ ⊂ U∗ be a κ-neighborhood of Q∗ = Coin( f∗,G∗),
where κ > 0 is sufficiently small.

Take σ∗ε ∈ a(Σ∗|O∗κ

,ε) for ε > 0 sufficiently small. Applying Propositions 2.4 and 2.5,
we can verify that the map ϕ∗ ◦ σ∗ε : O∗κ → E′, ϕ∗ ◦ σ∗ε(x,λ) = ϕ∗(σ∗ε(x,λ),λ) is a δ′-
approximation of G∗|O∗κ

for δ′ > 0 arbitrary small and, moreover,

Coin
(
f∗,ϕ∗ ◦ σ∗ε

)∩ ∂O∗κ =∅ (3.14)

and ϕ∗ ◦ σ∗ε|Oκi
, for Oκi = O∗κ ∩Ui, i = 0,1, are δ′′-approximations of Gi|Oκi

, i = 0,1,
where δ′′ > 0 is arbitrary small.

Denoting σ∗ε|Oκi
= σi, i= 0,1, we have

∣
∣deg

(
f0−ϕ0 ◦ σ0,Oκ0

)∣∣= ∣∣deg
(
f1−ϕ1 ◦ σ1,Oκ1

)∣∣ (3.15)

(see [22]), proving the theorem. �

Remark 3.8. If the Fredholm map f is constant under the homotopy, that is, U∗ has the
form U∗ = U × [0,1], where U ⊂ E is an open set and f∗(x,λ) = f (x) for all λ ∈ [0,1],
where f ∈Φ0C1(U), then

deg
(
f −ϕ0 ◦ σ0,U

)= deg
(
f −ϕ1 ◦ σ1,U

)
(3.16)

(see [21, 22]). Hence

Ind
(
f ,G0,U

)
Cm
= Ind

(
f ,G1,U

)
Cm
. (3.17)

From Definition 3.3 and the additive property of the Brouwer degree, we obtain the
following property of the oriented coincidence index.
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Theorem 3.9 (additive dependence on the domain property). Let U0 and U1 be disjoint
open subsets of an open bounded set U ⊂ E and let ( f ,G,U)Cm be a finite-dimensional triplet
such that

Coin( f ,G)∩ (U\(U0∪U1
))=∅. (3.18)

Then

Ind( f ,G,U)Cm =
(
f ,G,U0

)
Cm

+
(
f ,G,U1

)
Cm
. (3.19)

3.2. The case of a compact triplet. Now, we want to define the oriented coincidence
degree for the general case of a compact triplet ( f ,G= (ϕ◦Σ),U)C.

From the properness property of f and the compactness of G, one can easily deduce
the following statement.

Proposition 3.10. Let ( f ,G,U)C be a compact triplet; Λ : Y → K(E′) a multimap defined
as

Λ(y)= f (y)−G(y). (3.20)

Then, for every closed subset Y1 ⊂ Y , the set Λ(Y1) is closed.

From the above assertion, it follows that, given a compact triplet ( f ,G,U)C, there exists
δ > 0 such that

Bδ(0)∩Λ(∂U)=∅, (3.21)

where Bδ(0)⊂ E′ is a δ-neighborhood of the origin.

Let us take a continuous map iδ : G(U)→ Em, where Em ⊂ E is a finite-dimensional
subspace, with the property that

∥
∥iδ(v)− v

∥
∥ < δ (3.22)

for each v ∈G(U). As iδ , we can choose the Schauder projection (see, e.g., [14]).
Now, if G has the representation G= ϕ ◦Σ, consider the finite-dimensional multimap

Gm = iδ ◦ϕ◦Σ. From (3.21) and (3.22), it follows that f , Gm and U form a finite-dimen-
sional triplet ( f ,Gm,U)Cm .

We can now define the oriented coincidence index for a compact triplet in the follow-
ing way.

Definition 3.11. The oriented coincidence index for a compact triplet ( f ,G= (ϕ◦Σ),U)C
is defined by the equality

Ind( f ,G,U)C := Ind
(
f ,Gm,U

)
Cm

, (3.23)

where Gm = iδ ◦ϕ◦Σ and the map iδ satisfies condition (3.22).
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To prove the consistency of the given definition, it is sufficient to mention that, given

two different maps i0δ , i1δ : G(U)→ E′m satisfying property (3.22), we have the homotopy
of the corresponding finite-dimensional triplets

(
f ,G0

m,U
)
Cm
∼ ( f ,G1

m,U
)
Cm

, (3.24)

where Gk
m = ikδ ◦ ϕ ◦ Σ, i = 0,1. (It is clear that the finite-dimensional space E′m can be

taken the same for both maps i0δ , i1δ .)
In fact, the homotopy is realized by the multimap G∗ : U × [0,1]→ K(E′m), defined as

G∗(x,λ)= ϕ∗
(
Σ(x,λ)

)
, where ϕ∗(z,λ)= (1− λ)i0δϕ(z) + λi1δϕ(z). (3.25)

So, from Remark 3.8, it follows that

Ind
(
f ,G0

m,U
)
Cm
= Ind

(
f ,G1

m,U
)
Cm
. (3.26)

Applying Proposition 3.10 and Theorem 3.5, we can deduce the following coincidence
point property.

Theorem 3.12. If Ind( f ,G,U)C �= 0, then∅ �= Coin( f ,G)⊂U .

The definition of homotopy for compact triplets ( f ,G0,U)C ∼ ( f ,G1,U)C has the
same form as in Definition 3.6 with the only difference that the connected triplet ( f∗,G∗,
U∗) is assumed to be compact.

Taking a finite-dimensional approximation of G∗ = ϕ∗ ◦Σ∗ as G∗m = iδ ◦ϕ∗ ◦Σ∗ and
applying Theorem 3.7 and Definition 3.11, we obtain the following homotopy invariance
property.

Theorem 3.13. If ( f ,G0,U)C ∼ ( f ,G1,U)C, then
∣
∣Ind

(
f0,G0,U0

)
C

∣
∣= ∣∣Ind

(
f1,G1,U1

)
C

∣
∣. (3.27)

Again, if f and U are constant, we have the equality

Ind
(
f ,G0,U

)
C = Ind

(
f ,G1,U

)
C. (3.28)

An analog of the additive dependence on the domain property (see Theorem 3.9) for
compact triplets also holds.

4. Oriented coincidence index for condensing triplets

In this section, we extend the notion of the oriented coincidence index to the case of
condensing triplets. At first we recall some notions (see, e.g., [12]). Denote by P(E′) the
collection of all nonempty subsets of a Banach space E′. Let (�,≥) be a partially ordered
set.

Definition 4.1. A map β : P(E′)→� is called a measure of noncompactness (MNC) in E′

if

β(coD)= β(D) for every D ∈ P(E′). (4.1)
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An MNC β is called
(i) monotone if D0,D1 ∈ P(E′), D0 ⊆D1, implies β(D0)≤ β(D1);

(ii) nonsingular if β({a}∪D)= β(D) for every a∈ E′, D ∈ P(E′);
(iii) real if A = R+ = [0,+∞] with the natural ordering, and β(D) < +∞ for every

bounded set D ∈ P(E′).

Among the known examples of MNC satisfying all the above properties we can con-
sider the Hausdorff MNC

χ(D)= inf
{
ε > 0 : D has a finite ε-net

}
, (4.2)

and the Kuratowski MNC

α(D)= inf
{
d > 0 : D has a finite partition with sets of diameter less than d

}
. (4.3)

Let again Y = U ⊂ E, or U∗ ⊂ E× [0,1], open bounded sets, f : Y → E′ a map; G :
Y → K(E′) a multimap, β an MNC in E′.

Definition 4.2. Maps f , G and the space Y form a β-condensing triplet ( f ,G,Y)β if they
satisfy conditions (h1) and (h3) in Definition 3.1, and (h2β) a multimap G = ϕ ◦ Σ ∈
CJ(Y ,E′) is β-condensing with respect to f , that is,

β
(
G(Ω)

)
� β

(
f (Ω)

)
(4.4)

for every Ω⊆ Y such that G(Ω) is not relatively compact.

Our target is to define the coincidence index for a β-condensing triplet ( f ,G,U)β. To
this aim, let us recall the following notion (see, e.g., [1, 7, 8, 12, 16]).

Definition 4.3. A convex, closed subset T ⊂ E′ is said to be fundamental for a triplet
( f ,G,Y)β if

(i) G( f −1(T))⊆ T ;
(ii) for any point y ∈ Y , the inclusion f (y)∈ co(G(y)∪T) implies that f (y)∈ T .

The entire space E′ and the set coG(Y) are natural examples of fundamental sets for
( f ,G,U)β.

It is easy to verify the following properties of a fundamental set.

Proposition 4.4. (a) The set Coin( f ,G) is included in f −1(T) for each fundamental set T
of ( f ,G,U)β.

(b) LetT be a fundamental set of ( f ,G,U)β, and P ⊂ T , then the set T̃ = co(G( f −1(T))∪
P) is also fundamental.

(c) Let {Tα} be a system of fundamental sets of ( f ,G,U)β. The set T = ∩αTα is also
fundamental.

Proposition 4.5. Each β-condensing triplet ( f ,G,U)β, where β is a monotone, nonsingular
MNC, admits a nonempty, compact fundamental set T .
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Proof. Consider the collection {Tα} of all fundamental sets of ( f ,G,U)β containing an
arbitrary point a ∈ E′. This collection is nonempty since it contains E′. Then, taking
T =∩αTα �= ∅, we obviously have

T = co
(
G
(
f −1(T)

)∪{a}), (4.5)

and hence

β
(
f
(
f −1(T)

))≤ β(T)= β
(
G
(
f −1(T)

))
, (4.6)

so G( f −1(T)) is relatively compact and T is compact. �

Everywhere from now on, we assume that the MNC β is monotone and nonsingular.
Now, if T is a nonempty compact fundamental set of a β-condensing triplet ( f ,G =

(ϕ ◦ Σ),Y)β, let ρ : E′ → T be any retraction. Consider the multimap G̃ = ρ ◦ ϕ ◦ Σ ∈
CJ(Y ,E′). From Proposition 4.4(a), it follows that

Coin( f ,G̃)= Coin( f ,G). (4.7)

Hence, f , G̃, and Y form a compact triplet ( f ,G,Y)C. We will say that ( f ,G,Y)C is a
compact approximation of the triplet ( f ,G,Y)β.

Definition 4.6. The oriented coincidence index of a β-condensing triplet ( f ,G,U)β is
defined by the equality

Ind( f ,G,U)β := Ind
(
f ,G̃,U

)
C, (4.8)

where ( f ,G̃,U)C is a compact approximation of ( f ,G,U)β.

To prove the consistency of the above definition, consider two nonempty, compact
fundamental sets T0 and T1 of the triplet ( f ,G= ϕ ◦Σ,U)β with retractions ρ0 : E′ → T0

and ρ1 : E
′ → T1, respectively.

If T0 ∩ T1 = ∅, then by Proposition 4.4(a) and (c), Coin( f ,G̃0) = Coin( f ,G̃1) =
Coin( f ,G̃)=∅, where G̃i = ρi ◦ϕ◦Σ, i= 0,1. Hence, by Theorem 3.12, Ind( f ,G̃0,U)C =
Ind( f ,G̃1,U)C = 0. Otherwise, we can assume, without loss of generality, that T0 ⊆ T1. In
this case, consider the map ϕ : Z× [0,1]→ E′, given by ϕ(z,λ)= ρ1 ◦ (λϕ(z) + (1− λ)ρ0 ◦
ϕ(z)) and the multimap G∈ CJ(U × [0,1],E′), G(x,λ)= ϕ(Σ(x),λ).

The compact triplet ( f ,G,U × [0,1])C realizes the homotopy

(
f ,G̃0,U

)
C ∼

(
f ,G̃1,U

)
C. (4.9)

Indeed, the only fact that we need to verify is that

Coin( f ,G)∩ (∂U × [0,1]
)=∅, (4.10)

where f (x,λ)≡ f (x) is the natural extension.
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To the contrary, suppose that there exists (x,λ)∈ ∂U × [0,1] such that

f (x)= ρ1 ◦
(
λϕ(z) + (1− λ)ρ0 ◦ϕ(z)

)
(4.11)

for some z ∈ Σ(x). But in this case, x ∈ f −1(T1) and hence ϕ(z) ∈ T1. Since also ρ0 ◦
ϕ(z)∈ T1, we have

λϕ(z) + (1− λ)ρ0 ◦ϕ(z)∈ T1 (4.12)

and so

f (x)= λϕ(z) + (1− λ)ρ0 ◦ϕ(z)∈ co
(
G(x)∪T0

)
(4.13)

and we obtain f (x)∈ T0 and x ∈ f −1(T0), implying ϕ(z)∈ T0 and ρ0 ◦ϕ(z)= ϕ(z). We
conclude that f (x)= ϕ(z)∈G(x) giving the contradiction.

Definition 4.7. Two β-condensing triplets ( f0,G0,U0)β and ( f1,G1,U1)β are said to be
homotopic:

(
f0,G0,U0

)
β ∼

(
f1,G1,U1

)
β, (4.14)

if there exists a β-condensing triplet ( f∗,G∗,U∗)β satisfying conditions (a), (b), (c) of
Definition 3.6.

Theorem 4.8 (the homotopy invariance property). If

(
f0,G0,U0

)
β ∼

(
f1,G1,U1

)
β, (4.15)

then

∣
∣Ind

(
f0,G0,U0

)
β

∣
∣= ∣∣Ind

(
f1,G1,U1

)
β

∣
∣. (4.16)

Proof. Let T∗ be a nonempty compact fundamental set of the triplet ( f∗,G∗ = (ϕ∗ ◦
Σ∗),U∗) connecting ( f0,G0,U0)β with ( f1,G1,U1)β. It is easy to see that T∗ is funda-
mental also for the triplets ( fk,Gk,Uk)β, k = 0,1. Let ρ∗ : E′ → T∗ be any retraction, and

( f∗,G̃∗ = ρ∗ ◦ϕ∗ ◦ σ∗,U∗)C the corresponding compact approximation of ( f∗,G∗,U∗)β.

Then ( f∗,G̃∗,U∗)C realizes a compact homotopy connecting the triplets ( fk,ρ∗ ◦ ϕk ◦
Σk,Uk)C, k=0,1 which are compact approximations of ( fk,Gk,Uk)β, k=0,1, respectively.

By Theorem 3.13, we have

∣
∣Ind

(
f0,ρ∗ ◦ϕ0 ◦Σ0,U0

)
C

∣
∣= ∣∣Ind

(
f1,ρ∗ ◦ϕ1 ◦Σ1,U1

)
C

∣
∣ (4.17)

giving the desired equality (4.16). �

Remark 4.9. Let us mention that in case of invariable f and U :

U∗ =U × [0,1]

f∗(x,λ)≡ f (x), ∀λ∈ [0,1],
(4.18)
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the condition of β-condensivity for a triplet ( f ,G∗,U × [0,1])β may be weakened: for the
existence of a nonempty, compact fundamental set T , it is sufficient to demand that

β
(
G∗
(
Ω× [0,1]

))
� β

(
f (Ω)

)
(4.19)

for every Ω⊆U such that G∗(Ω× [0,1]) is not relatively compact.
In fact, it is enough to notice that in this case f −1∗ (T)= f −1(T)× [0,1] and to follow

the line of reasoning of Proposition 4.5.
Taking into consideration the corresponding property of compact triplets, we can pre-

cise the above property of homotopy invariance.
If ( f ,G∗,U × [0,1])β is a β-condensing triplet, where G∗ has the form (c) of Definition

3.6, then

Ind
(
f ,G0,U

)
β = Ind

(
f ,G1,U

)
β, (4.20)

where Gk =G∗(·,{k}), k = 0,1.

From relation (4.7) and Theorem 3.12, the following theorem follows immediately.

Theorem 4.10 (coincidence point property). If Ind( f ,G,U)β �= 0, then ∅ �= Coin( f ,
G)⊂U .

As an example of application of Theorems 4.8 and 4.10, consider the following coin-
cidence point result.

Theorem 4.11. Let f ∈Φ0C1(E,E′) be odd; G∈ CJ(E,E′) β-condensing with respect to f
on bounded subsets of E, that is, β(G(Ω)) � β( f (Ω)) for every bounded set Ω⊂ E such that
G(Ω) is not relatively compact.

If the set of solutions of one-parameter family of operator inclusions

f (x)∈ λG(x) (4.21)

is a priori bounded, then Coin( f ,G) �= ∅.

Proof. From the condition it follows that there exists a ball �⊂ E centered at the origin
whose boundary ∂� does not contain solutions of (4.21). Let ϕ◦Σ be a representation of
G. If G∗ : �× [0,1]→ K(E′) has the form

G∗(x,λ)= ϕ∗
(
Σ(x),λ

)
, ϕ∗(z,λ)= λϕ(z), (z,λ)∈�× [0,1], (4.22)

then f ,G∗, and �× [0,1] form a β-condensing triplet ( f ,G∗,�× [0,1])β.
In fact, suppose that β(G∗(Ω)) ≥ β( f (Ω)) for some Ω ⊂�. Since G∗(Ω× [0,1]) =

co(G(Ω)∪ {0}), we have β(G(Ω)) ≥ β( f (Ω)) implying that G(Ω), and hence G∗(Ω×
[0,1]), is relatively compact.

So the triplet ( f ,G∗,�× [0,1])β induces a homotopy connecting the triplets ( f ,G,
�)β and ( f ,0,�)β. Since the triplet ( f ,0,�)β is finite-dimensional, from the odd condi-
tion on f and the odd field property of the Brouwer degree, it follows that ( f ,0,�)β is an
odd number.
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Then, from the equality Ind( f ,G,�)β = Ind( f ,0,�)β, it follows that Ind( f ,G,�)β �=
0 and we can apply the coincidence point property. �

In conclusion of this section, let us formulate the additive dependence on the domain
property for β-condensing triplets.

Theorem 4.12. Let U0 and U1 be disjoint open subsets of an open bounded set U ⊂ E. If
( f ,G,U)β is a β-condensing triplet such that

Coin( f ,G)∩ (U\(U0∪U1
))=∅, (4.23)

then,

Ind( f ,G,U)β = Ind
(
f ,G,U0

)
β + Ind

(
f ,G,U1

)
β. (4.24)

5. Example

Consider a mixed problem of the following form:

A
(
t,x(t),x′(t)

)= B
(
t,x(t),x′(t), y(t)

)
, (5.1)

y′(t)∈ C
(
t,x(t), y(t)

)
, (5.2)

x(0)= x0, y(0)= y0, (5.3)

where A : [0,a]×Rn ×Rn → Rn, B : [0,a]×Rn ×Rn ×Rm → Rn are continuous maps;
C : [0,a]×Rn×Rm �Rm is a multimap, and x0 ∈Rn; y0 ∈Rm.

By a solution of problem (5.1)–(5.3), we mean a pair of functions (x, y), where x ∈
C1([0,a];Rn), y ∈ AC([0,a];Rm) satisfy initial conditions (5.1), (5.3) for all t ∈ [0,a]
and inclusion (5.2) for a.a. t ∈ [0,a].

It should be noted that problem (5.1)–(5.3) may be treated as the law of evolution
of a system x(t), whose dynamics is described by the implicit differential equation (5.1)
and the control y(t) is the subject of the feedback relation (5.2). Our aim is to show that,
under appropriate conditions, the problem of solving problem (5.1)–(5.3) can be reduced
to the study of a condensing triplet of the above-mentioned form (see Section 4).

Consider the following condition:
(A) for each (t,u,v)∈[0,a]×Rn×Rn, there exist continuous partial derivatives A′u(t,u,

v), A′v(t,u,v), and moreover, detA′v(t,u,v) �= 0.

Proposition 5.1. Under condition (A), a map f : C1([0,a];Rn)→ C([0,a];Rn)×Rn de-
fined as

f (x)(t)= (A(t,x(t),x′(t)
)
,x(0)

)
(5.4)

is a Fredholm map of index zero, whose restriction to each closed bounded set D ⊂ C1([0,a];
Rn) is proper.

Proof. (i) At first, let us prove that f is a Fredholm map of index zero. It is sufficient

to show that the map f̃ : C1([0,a];Rn)→ C([0,a];Rn), f̃ (x)(t)= A(t,x(t),x′(t)) is Fred-
holm of index n.
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Let us note that f̃ is a C1 map and, moreover, its derivative can be written explicitly:

(
f̃ ′(x)h

)
(t)= A′u

(
t,x(t),x′(t)

)
h(t) +A′v

(
t,x(t),x′(t)

)
h′(t) (5.5)

for h∈ C1([0,a];Rn). The linear operator f̃ ′(x) : C1([0,a];Rn)→ C([0,a];Rn) is a Fred-
holm operator of index n. In fact, introducing the auxiliary operators

f̃ ′u (x) : C1([0,a];Rn
)−→ C

(
[0,a];Rn

)
,

(
f̃ ′u (x)h

)
(t)= A′u

(
t,x(t),x′(t)

)
h(t), t ∈ [0,a],

f̃ ′v (x) : C1([0,a];Rn
)−→ C

(
[0,a];Rn

)
,

(
f̃ ′v (x)h

)
(t)=A′v

(
t,x(t),x′(t)

)
h′(t), t ∈ [0,a],

(5.6)

we can write

f̃ ′(x)h= f̃ ′u (x)h+ f̃ ′v (x)h. (5.7)

The operator f̃ ′u (x) is completely continuous since it can be represented as the composi-
tion of a completely continuous inclusion map i : C1([0,a];Rn)→ C([0,a];Rn) and a con-
tinuous linear operator M : C([0,a];Rn)→ C([0,a];Rn) (Mh)(t)= A′u(t,x(t),x′(t))h(t).

Now, it is sufficient to show that the operator f̃ ′v (x) is a Fredholm operator of index n.
Let us represent this operator as the composition of the differentiation operator d/dt :

C1([0,a];Rn)→ C([0,a];Rn) and the operator L : C([0,a];Rn)→ C([0,a];Rn), (Lz)(t)=
A′v(t,x(t),x′(t))z(t). It is well known that the operator d/dt is a Fredholm operator of
index n. Since the matrix A′v(t,x(t),x′(t)) is invertible, the operator L is invertible too.

Hence, the operators f̃ ′v (x) and, therefore, f̃ ′(x) are Fredholm of index n and f ′(x) is a
Fredholm map of index zero. So, f is a nonlinear Fredholm map of index zero.

(ii) Now, let D ⊂ C1([0,a];Rn) be a closed bounded set. Denoting the restriction of

f̃ on D by the same symbol, let us demonstrate its properness. Let � ⊂ C([0,a];Rn)

be any compact set, and let {xn}n∈N ⊂ f̃ −1(�) be an arbitrary sequence. Without loss

of generality, we may assume that f̃ (xn)→ z ∈�. Since the sequence {xn} is bounded
in C1([0,a];Rn) we may also assume, without loss of generality, that the sequence {xn}
tends, in C([0,a];Rn), to some ω ∈ C([0,a];Rn). Further, from the representation

A
(
t,ω(t),x′n(t)

)= A
(
t,xn(t),x′n(t)

)
+
[
A
(
t,ω(t),x′n(t)

)−A
(
t,xn(t),x′n(t)

)]
(5.8)

it follows that the sequence zn = A(·,ω(·),x′n(·)) tends to z in C([0,a];Rn). From the in-
verse mapping theorem it follows that x′n =Ψ(zn), where Ψ : C([0,a];Rn)→ C([0,a];Rn)
is a continuous map, implying that x′n tends to Ψ(z) in C([0,a];Rn). So, the sequence

{xn}n∈N is convergent in the space C1([0,a];Rn) and, hence, the set f̃ −1(�) is compact.
The properness of f easily follows. �
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Now we will describe the assumptions on the map B and the multimap C.
Denoting by the symbol Kv(Rm) the collection of all nonempty compact convex sub-

sets of Rm, we suppose that the multimap C : [0,a]×Rn ×Rm → Kv(Rm) satisfies the
following conditions:

(C1) the multifunction C(·,u,w) : [0,a]→ Kv(Rm) has a measurable selection for all
(u,w)∈Rn×Rm;

(C2) the multimap C(t,·,·) : Rn ×Rm → Kv(Rm) is upper semicontinuous for a.a.
t ∈ [0,a];

(C3) the multimap C is uniformly continuous in the second argument, in the follow-
ing sense: for each ε > 0, there exists δ > 0 such that

C(t,u,w)⊂Wε
(
C(t,u,w)

) ∀(t,w)∈ [0,a]×Rm (5.9)

whenever ‖u−u‖ < δ (where Wε denotes the ε-neighborhood of a set);
(C4) there exists a function γ ∈ L1

+([0,a]) such that

∥
∥C(t,u,w)

∥
∥ := sup

{‖c‖ : c ∈ C(t,u,w)
}≤ γ(t)

(
1 +‖u‖+‖w‖). (5.10)

For a given function x ∈ C1([0,a];Rn) consider the multimap Cx : [0,a]×Rm→ Kv(Rm)
defined as Cx(t,w) = C(t,x(t),w). From [12, Theorem 1.3.5], it follows that for each
w ∈ Rm the multifunction Cx(·,w) admits a measurable selection. Furthermore, from
(C2) and (C3), it follows that for a.a. t ∈ [0,a] the multimap Cx(t,w) depends upper
semicontinuously on (x,w). Applying known results on existence, topological structure,
and continuous dependence of solutions for Carathéodory-type differential inclusions
(see, e.g., [2, 6, 12]) we conclude the following.

Proposition 5.2. For each given x ∈ C1([0,a];Rn), the set Πx of the Carathéodory solu-
tions of the Cauchy problem

y′(t)∈ C
(
t,x(t), y(t)

)
,

y(0)= y0
(5.11)

is an Rδ-set in C([0,a];Rm). Moreover, the multimap Π : C1([0,a];Rn)→ K(C([0,a];Rm)),
Π(x)=Πx is upper semicontinuous.

Now, we will assume that the maps A and B satisfy the following Lypschitz-type con-
dition:

(AB) there exists a constant q, 0≤ q < 1, such that

∣
∣B(t,u,v,w)−B(t,u,v,w)

∣
∣≤ q

∣
∣A(t,u,v)−A(t,u,v)

∣
∣ (5.12)

for all t ∈ [0,a], u,v,v ∈Rn, w ∈Rm.
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Consider the continuous map σ̃ : C1([0,a];Rn)×C([0,a];Rm)→ C([0,a];Rn) defined
as

σ̃(x, y)(t)= B
(
t,x(t),x′(t), y(t)

)
(5.13)

and the multimap Σ̃ :C1([0,a];Rn)→K(C1([0,a];Rn)×C([0,a];Rm)), Σ̃(x)= {x}×Π(x).
From Propositions 5.2 and 2.9, it follows that Σ̃ is a J-multimap, and hence the com-

position G̃= σ̃ ◦ Σ̃ : C1([0,a];Rn)→ K(C([0,a];Rn)) is a CJ-multimap. It is clear that the
set G̃(x) consists of all functions of the form B(t,x(t),x′(t), y(t)), where y ∈Π(x).

Define now the CJ-multimap G : C1([0,a];Rn)→ K(C([0,a];Rn)×Rn) by

G(x)= G̃(x)× {x0
}
. (5.14)

The solvability of problem (5.1)–(5.3) is equivalent to the existence of a coincidence point
x ∈ C1([0,a];Rn) for the pair ( f ,G).

If U ⊂ C1([0,a];Rn) is an open bounded set, then to show that ( f ,G,U) form a con-
densing triplet with respect to the Kuratowski MNC, it is sufficient to prove the following
statement.

Proposition 5.3. The triplet ( f̃ ,G̃,U) is α-condensing with respect to the Kuratowski MNC
α in the space C([0,a];Rn).

Proof. Take any subset Ω ⊂ U , and let α( f̃ (Ω)) = d. From the definition of Kuratowski

MNC, it follows that taking an arbitrary ε > 0 we may find a partition of the set f̃ (Ω) into

subsets f̃ (Ωi), i= 1, . . . ,s, such that diam( f̃ (Ωi))≤ d + ε. Since the embedding C1([0,a];
Rn)↩C([0,a];Rn) is completely continuous, the image ΩC of Ω under this embedding is
relatively compact. It is known (see, e.g., [2, 12]) that an u.s.c. compact-valued multimap
sends compact sets to compact sets, then we can conclude that the set Π(Ω) is relatively
compact. It means that taking a fixed δ > 0 and any Ωi, we may divide the sets ΩiC and
Π(Ω) into a finite number of subsets Ωi jC, j = 1, . . . , pi, and balls Dik(zik), k = 1, . . . ,ri,
centered at zik ∈ C([0,a];Rm), respectively, such that for each t ∈ [0,a]; u1(·),u2(·) ∈
Ωi jC, v ∈Rn; w1(·),w2(·)∈Dik(zik), we have

∣
∣A
(
t,u1(t),v

)−A
(
t,u2(t),v

)∣∣ < δ,
∣
∣B
(
t,u1(t),v,w1(t)

)−B
(
t,u2(t),v,w2(t)

)∣∣ < δ.
(5.15)

Now, the set G̃(Ω) is covered by a finite number of sets Γi jk, i= 1, . . . ,s; j = 1, . . . , pi; k =
1, . . . ,ri of the form

Γi jk =
{
B
(·,x(·),x′(·), y(·)) : x ∈Ωi jC, y ∈Dik

(
zik
)}
. (5.16)
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Let us estimate the diameters of these sets. Taking arbitrary x1,x2 ∈Ωi jC and y1, y2 ∈
Dik(zik) and applying (5.15), and condition (AB), for any t ∈ [0,a], we have

∣
∣B
(
t,x1(t),x′1(t), y1(t)

)−B
(
t,x2(t),x′2(t), y2(t)

)∣∣

<
∣
∣B
(
t,x1(t),x′1(t),zik(t)

)−B
(
t,x2(t),x′2(t),zik(t)

)∣∣+ 2δ

≤ ∣∣B(t,x1(t),x′1(t),zik(t)
)−B

(
t,x1(t),x′2(t),zik(t)

)∣∣

+
∣
∣B
(
t,x1(t),x′2(t),zik(t)

)−B
(
t,x2(t),x′2(t),zik(t)

)∣∣+ 2δ

≤ q
∣
∣A
(
t,x1(t),x′1(t)

)−A(t,x1(t),x′2(t)
)∣∣+ 3δ

≤ q
∣
∣A
(
t,x1(t),x′1(t)

)−A
(
t,x2(t),x′2(t)

)∣∣

+ q
∣
∣A
(
t,x2(t),x′2(t)

)−A(t,x1(t),x′2(t)
)∣∣+ 3δ

< q(d+ ε) + qδ + 3δ.

(5.17)

Now, if q = 0, it means, by the arbitrariness of the choice of δ > 0, that α(G̃(Ω))= 0 and

then the triplet ( f̃ ,G̃,U), and therefore ( f ,G,U), is compact. Otherwise, let us take ε > 0
and δ > 0 so small that

qε+ (q+ 3)δ < (1− q)d. (5.18)

Then, q(d+ ε) + qδ + 3δ = μd, where 0 < μ < 1 and, hence diamΓi jk ≤ μd, implying that

α
(
G̃(Ω)

)≤ μα
(
f̃ (Ω)

)
. (5.19)

�

The proved statement implies that the coincidence index theory, developed in the pre-
vious sections, can be applied to the study of the solvability of problem (5.1)–(5.3). More-
over, it is easy to see that the coincidence point set Coin( f ,G) of a condensing triplet
( f ,G,U)β is a compact set. In case when problem (5.1)–(5.3) is a model for a control
system, this approach can be used also to obtain the existence of optimal solutions. As an
example, we can consider the following statement.

Proposition 5.4. Under the above conditions, suppose that the mapA is odd:A(t,−u,−v)=
A(t,u,v) for all t ∈ [0,a]; u,v ∈Rn and the set of functions x ∈ C1([0,a];Rn) satisfying the
family of relations

A
(
t,x(t),x′(t)

)= λB
(
t,x(t),x′(t), y(t)

)
, λ∈ [0,1],

y′(t)∈ C
(
t,x(t), y(t)

)
,

x(0)= x0, y(0)= y0

(5.20)

is a priori bounded. Then, there exists a solution (x∗, y∗) of problem (5.1)–(5.3) minimizing
a given lower-semicontinuous functional

l : C1([0,a];Rn
)×C

(
[0,a];Rm

)−→R+. (5.21)
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Proof. The application of Theorem 4.11 yields that the set Q = Coin( f ,G) is nonempty
and compact. It remains only to notice that the set of solutions {(x, y)} of (5.1)–(5.3) is
closed and it is contained in the compact set Q×Π(Q) ⊂ C1([0,a];Rn)×C([0,a];Rm).

�
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[10] L. Górniewicz, A. Granas, and W. Kryszewski, On the homotopy method in the fixed point index
theory of multi-valued mappings of compact absolute neighborhood retracts, Journal of Mathemat-
ical Analysis and Applications 161 (1991), no. 2, 457–473.

[11] D. M. Hyman, On decreasing sequences of compact absolute retracts, Fundamenta Mathematicae
64 (1969), 91–97.

[12] M. Kamenskii, V. Obukhovskii, and P. Zecca, Condensing Multivalued Maps and Semilinear Dif-
ferential Inclusions in Banach Spaces, de Gruyter Series in Nonlinear Analysis and Applications,
vol. 7, Walter de Gruyter, Berlin, 2001.

[13] S. V. Kornev and V. Obukhovskii, On some versions of the topological degree theory for nonconvex-
valued multimaps, Trudy Matematicheskogo Fakul’teta. Novaya Seriya 8 (2004), 56–74 (Rus-
sian).

[14] M. A. Krasnosel’skiı̆ and P. P. Zabreı̆ko, Geometrical Methods of Nonlinear Analysis, Fundamental
Principles of Mathematical Sciences, vol. 263, Springer, Berlin, 1984.

[15] A. D. Myshkis, Generalizations of the theorem on a fixed point of a dynamical system inside of a
closed trajectory, Matematicheskiı̆ Sbornik. Novaya Seriya 34(76) (1954), 525–540 (Russian).



Valeri Obukhovskii et al. 21

[16] V. Obukhovskii, Some fixed point principles for multivalued condensing operators, Trudy Matem-
aticheskogo Fakul’teta. Voronezhskij Gosudarstvennyj Universitet (1970), no. 4, 70–79 (Rus-
sian).

[17] V. Obukhovskii, P. Zecca, and V. Zvyagin, On coincidence index for multivalued perturbations on
nonlinear Fredholm maps and some applications, Abstract and Applied Analysis 7 (2002), no. 6,
295–322.

[18] T. Pruszko, A coincidence degree for L-compact convex-valued mappings and its application to
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