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Introduction

The Einstein Equations constitute a well established dynamical scheme to represent

the gravitational phenomena. This geometrical approach �nds a convincing con�rma-

tion both an a theoretical end experimental point of view. However, a wide number

of attempts to extend such an Einstenian formulation were done over nine decades.

The �rst evidence for a generalization of the theory was originally proposed by

Einstein himself. It concerns the fact that the �eld equations link two very di�erent

objects: the curvature tensor and the energy momentum of the matter source. The

absence of a unique origin for this two ingredients is to be considered as a possible

hint for new gravitational physics. In particular, the representation of the matter

sources by macroscopic properties is a proper choice to deal with the gravitational

interaction, but it opens signi�cant questions about the microscopic features underling

this averaging methods. Indeed, a microscopic interaction between particles and

gravity could involve, as suggested in recent decades, the necessity to upgrade the

Riemannian geometry to extended features. In this thesis work, we will address the

point of view presented above by analyzing both the geometrical and matter aspects.

In Chapter 1, the discussion of a generalized cosmological dynamics, ables to ac-

count for dissipative e�ects, is analyzed �rstly in the context the matter-dominated

era of the Universe and, secondly, during the early phases of isotropic and Quasi-

Isotropic cosmological models. In this respect, we will treat the very early-Universe

evolution and the asymptotic gravitational collapse, by means of an hydrodynamical

approach to the description of viscous properties of the cosmological �uid. Such an

approach is required in view of the extreme regime the cosmological �uid feels during

the considered phases.

In Chapter 2, from the point of view of extended geometry, we discuss the role of

torsion as both a macroscopic and microscopic property of the space-time. In the

microscopic sector, we arrive to formulate a gauge theory which allows to recognize

on-shell (by means of the �eld equations) the contortion tetrad-projections as the
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gauge potentials.

The results of this two investigations in cosmology and in fundamental physics gave

rise to a number of promising issue which can get light on some open questions on both

the research �elds. As we will discuss in detail in the relative Chapters, our analysis

gives a clear picture of the physical insight contained in the addressed generalization

of the Einstein Theory. The scienti�c reliabilities of our investigation and its links

with the preexisting literature can be recognized from the published material on this

topics.
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Notation:

Greek indices µ, ν, ρ, σ, λ, τ, υ, ε run over the four coordinate labels in a general

coordinate system 0, 1, 2, 3 or t, x, y, z.

The signature is set [+, −, −, −] unless otherwise indicated.

Latin indices a, b, c, d, e, f run over the tetrad labels 0, 1, 2, 3.

Only the indices α, β, γ run over three spatial coordinate labels 1, 2, 3 or x, y, z.

Repeated indices are summed unless otherwise indicated.

A comma or a semicolon between indices denotes a derivative or a covariant deriva-

tive, respectively.

The symbol A [a
µ B

b]
ν denotes the anti-symmetrization whit respect to ab and A (a

µ B
b)
ν

denotes the symmetrization, respectively.

A dot ( ˙ ) over any quantity denotes the total time derivative of that quantity and

the symbol ∇ denotes the usual 3-dimensional Nabla Operator.

Cartesian 3-vectors are indicated by boldface type and their components are labeled

only by α, β, γ.

Units are used such that c = ~ = 1 unless otherwise indicated.

Abbreviations are used: dof indicates �degrees of freedom�; wrt indicates �whit re-

spect to�; lhs indicates �left hand side�; rhs indicates �right hand side�; eq. indicates

�equation; eqs. indicates �equations�.

The symbol [x, y] denotes the commutator and [x, y]+ the anti-commutator between

x and y, respectively.
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1 Dissipative Cosmologies

1.1 General statements

The Cosmological Standard Model (CSM) [1] well describes many parts of the Uni-

verse evolution and it takes into account the Friedmann-Lemaître-Robertson-Walker

(FLRW) metric as the highest symmetric background. The FLRW metric is based on

the assumption of homogeneity and isotropy of the Universe and it also assumes that

the spatial component of the metric can be time dependent (in particular, proportional

to the so called scale factor). In this respect, considering the mean energy-density at

large scales, i.e., greater than 100 Mpc, the Universe tends to an homogeneous distri-

bution. On the other hand, observations at small scales show a very inhomogeneous

and anisotropic matter- and energy-distribution.

The isotropic hypothesis of the Universe, stated by the Cosmological Principle

[2] is indeed not based on the large-scale observations but on the strong isotropy

of the Cosmic Microwave Background Radiation (CMBR). In cosmology, CMBR is

a form of electromagnetic radiation �lling the Universe [3]: the space between the

stars and galaxies is not black but there is an almost isotropic glow, not coming

from the agglomerates. This glow is strongest in the microwave region of the radio

spectrum and corresponds to a relic radiation comes out from the very early Universe.

The CMBR has a thermal black-body spectrum at temperature T ∼ 2.725K with

�uctuations of order O(10−4). This way, the spectrum peaks in the microwave range

frequency of O(160 GHz). The CMBR was discovery in 1964 by A. Penzias and R.

Wilson [4] and further physical characterization are obtained in [5, 6].

The CMBR is well explained by CSM. The very early stages of the Universe evo-

lution, after the Big Bang singularity, are characterized by a very hight temperature

and a uniform glow derived from its red-hot fog of hydrogen plasma. During the

expansion, Universe grew cooler, both the plasma itself and the radiation �lling it.

When the Universe reached a cool enough temperature, stable atoms could form.
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Dissipative Cosmologies

Such atoms could no longer absorb the thermal radiation and the Universe became

transparent. In particular, the CMBR shows a spatial power spectrum contains small

anisotropies which vary with the size of the region examined. As a result, in cosmol-

ogy, this radiation is considered to be the best evidence for the Big Bang CSM model.

Moreover, the CSM is con�rmed by the primordial-nucleosynthesis prediction for the

light elements, which is in agreement with direct observations.

The crucial dichotomy between the isotropy of region at red-shift zrs ∼ 103 and the

extreme irregularity of the recent Universe, zrs � 1, is at the ground of the interest in

the study of the perturbative gravitational instability for the structure formation. In

this respect, the study of the cosmological-perturbation evolution can be separated in

two distinct regimes, characterized by di�erent values of the density contrast δ. This

quantity is de�ned as the ratio of the density perturbations δρ over the background

density ρ0, i.e.,

δ = δρ / ρ0 .

In correspondence of δ much less than unity, the linear regime is addressed, on the

other hand the non-linear one occurs as soon as δ > 1, giving rise to the e�ective

structure formation. Despite the approximate hypotheses, the linear regime provides

interesting predictive informations also at low red-shift, since an analytical description

can be addressed to study the growth of the density contrast.

As matter of fact, we underline that the study of the perturbation dynamics in the

radiation-dominated early Universe requires a pure relativistic treatment, in order

to correlate the matter �uctuations with the geometrical ones. On the other hand,

the evolution during the matter-dominated era can be consistently described using

the Newtonian-approximation picture, as soon as sub-horizon sized scales are treated.

In this scheme, the fundamental result of the density-perturbation analysis is the so-

called Jeans Mass, which is the threshold value for the �uctuation masses to condense

generating a real structure. If masses greater than the Jeans Mass are addressed, den-

sity perturbations begin to diverge as function of time giving rise to the gravitational

collapse [7, 8]. Since density is assumed to be homogeneous, the concept of the Jeans

Mass can be supported by the Jeans Length. Such a value de�nes the threshold scale

over which perturbations gravitationally condense.

In this work, we present a study of the e�ects induced by the presence of vis-

cosity on the gravitational instability and on the structure formation, in the linear
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1.1 General statements

regime described above. The physical motivations for introducing viscosity into the

cosmological-perturbation dynamics are due to the fact that, as soon as the New-

tonian regime can be addressed, the gravitational collapse can induce hight matter

density values such that a dissipative analysis results to be necessary. Moreover, the

primordial Universe can be naturally characterized by viscosity in view of the very

large mean densities (much greater than the nuclear one) reached in the limit towards

the initial Big Bang. Although the physical description of such stages is very di�cult,

several studies in literature [9, 10, 11] promote the idea that Gluon Plasma, at very

hight temperatures, show strong viscous properties.

Our analysis treats the Newtonian-approximated cases, in which the viscosity di-

rectly a�ects the Jeans Mechanism, and the pure relativistic limit dealing with the

primordial Universe near the Big Bang. The stating point corresponds to the vis-

cous modi�cation of the Euler Equations and of the ideal-�uid energy-momentum

tensor, respectively, in order to describe the background dynamics (as discussed in

Section 1.2). The second step corresponds to a �rst-order perturbative theory in or-

der to get the fundamental equations governing the gravitational collapse, i.e., the

density-contrast time evolution. In particular, two regimes can be reached:

δ → 0 : the background density ρ0 grows more rapidly than perturbations δρ.

A single structure is generated in the gravitational collapse.

δ → ∞ : perturbations δρ grow more rapidly than the background density ρ0.

The sub-structure fragmentation scheme occurs.

In the Newtonian scheme, three di�erent cases are treated in presence of viscosity:

Section 1.3 - The standard Jeans Model (uniform and static background)

Section 1.4 - The gas-cloud condensation (spherically-symmetric collapsing backg.)

Section 1.5 - The expanding Universe (expanding matter-dominated Universe backg.)

As a result, we show how the presence of viscous e�ects oppose the density-contrast

growth, strongly contrasting the structure formation in the top-down mechanism,

mainly associated with the hot dark matter phenomenology [12, 13]. Such a scheme

is based on the idea that perturbation scales, contained within a collapsing gas cloud,

start to collapse (forming sub-structures) because their mass overcomes the decreasing

Jeans value of the background system. The resulting e�ect of such a gravitational
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Dissipative Cosmologies

instability consists of a progressive enhancement of the density contrast associated to

the perturbation sub-scales.

In the three cases, the larger are the viscous contributions, the larger is the damping

of the density-contrast evolution. In fact, if a gravitational-collapsing structure is

addressed (i.e., of mass greater than the Jeans one), in presence of viscosity the

density contrast (associated to a given perturbation) progressively decreases and the

fragmentation is suppressed. The main merit of this works is to be determined in

having traced a possible scenario for fragmentation processes in presence of viscosity.

We infer that the unfavored nature of the top-down mechanism, appearing when a

viscous trace is present, can survive also in the non-linear regime when dissipative

e�ects play surely an important role in the structure formation.

The pure relativistic analysis treats two di�erent cases:

Section 1.6 - The Quasi-Isotropic Model.

Section 1.7 - The pure isotropic Universe.

Near the Cosmological Singularity, the isotropic nature of the Universe corresponds

to a class of solutions of the Einstein Equations containing three physically arbitrary

functions of the space coordinates. In the case of a radiation-dominated Universe,

such a class was found by E.M. Lifshitz and I.M. Khalatnikov in 1963 [14]. In the

original work, the Quasi-Isotropic (QI) Model is treated as a Taylor expansion of

the 3-metric tensor in powers of the synchronous time. In this work, we �x the

attention on the relevance of dealing with viscous properties of the cosmological �uid

approaching the Big Bang singularity. For this purpose, we investigate the Einstein

Equations under the assumptions proper of the QI Model. We separate zeroth- and

�rst-order terms into the 3-metric tensor and the whole analysis follows this scheme of

approximation. In the search for a self-consistent solution, we prove the existence of a

QI Solution, which has a structure analogous to that provided by in the original work.

In particular, we �nd that such a solution exists only if when viscosity remains smaller

than a certain critical value. Finally, in determining the density-contrast evolution,

strong analogies about the damping of density perturbations in the Newtonian limit,

are founded.

A particular case of the QI Model corresponds to the FLRW pure isotropic approach

where the 3-metric tensor Taylor expansion is addressed only at the zeroth-order. Aim

of the work is to investigate the e�ects that viscosity has on the stability of such an
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1.1 General statements

isotropic Universe, i.e., the dynamics of cosmological perturbations is analyzed when

viscous phenomena a�ect the zeroth- and �rst-order evolution of the system. We con-

sider a background corresponding to a FLRW model �lled with ultra-relativistic vis-

cous matter and then we develop a perturbative theory which generalizes the �Landau

School� works [15, 14] to the presence of viscosity. Though the analysis is performed

for the case of a �at model, nevertheless it holds in general, as soon as the pertur-

bation scales remain much smaller than the Universe radius of curvature. As issue

of our analysis, we �nd that two di�erent dynamical regimes appear when viscous

e�ects are taken into account and the transition from one regime to the other one

takes place when the viscosity overcomes a given threshold value. However, in both

these stages of evolution, the Universe results to be stable as it expands; the e�ect

of increasing viscosity is that the density contrast begins to decrease with increasing

time when viscous e�ect is over the threshold. It follows that a real new feature arises

wrt the standard analysis, when the collapsing point of view is addressed. In fact, as

far as viscosity remains below the threshold value, the isotropic Universe approaches

the initial Big Bang with vanishing density contrast and its stability is preserved in

close analogy to the non-viscous behavior. But if the viscous e�ect overcomes its

critical value, then the density contrast explodes asymptotically to the singularity

and the isotropic Universe results unstable approaching the initial singularity. In the

non-viscous analysis, this same backward in time instability takes place only when

tensor perturbations (gravitational waves) are taken into account, since their ampli-

tude increases backward as the inverse of the cosmic scale factor.

The new feature induced by viscosity consists of having instability simply in cor-

respondence to scalar perturbations induced by �uctuations in the matter �lling the

Universe. The cosmological interest in such instability of the primordial Universe

(towards scalar perturbations) comes out reversing the picture from collapse to ex-

pansion and taking into account the time reversibility of the Einstein Equations. In

fact, if the early Universe does not emerge from the Planck era peaked around the

FLRW geometry (indeed a good degree of generality in its structure is predicted ei-

ther by classical and quantum argumentation [16]), then it can not reach (according

to our analysis) an homogeneous and isotropic stage of evolution before the viscous

e�ect become su�ciently small.
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Dissipative Cosmologies

1.2 Viscous processes in the �uid dynamics

The physical motivation in dealing with dissipative dynamics is related to the fact that

both the extreme regime of a gravitational collapse and the very early stages of the

Universe evolution are characterized by a thermal history which can not be regarded

as settled down into the equilibrium. Indeed, at su�ciently high temperatures, the

cross sections of the microphysical processes, responsible for the thermal equilibrium,

decay like O(1/T 2) and they are no longer able to restore the equilibrium during the

expansion. Thus, we meet stages where the expansion has an increasing rate and

induces non-equilibrium phenomena in the matter compression and rarefaction.

The average e�ect of having a microphysics, unable to follow the �uid expansion by

equilibrium stages, results into dissipative processes appropriately described by the

presence of bulk viscosity .

In what follows, we will discuss, in some details, how to introduce dissipative e�ects

both in the Newtonian dynamics and in the pure relativistic limit, considering an

homogeneous and isotropic picture.

Viscous e�ects in the Newtonian picture In order to describe the Newtonian

evolution of a �uid, we introduce here the Eulerian Equations governing the �uid

parameters, i.e., the density ρ, the local 3-velocity v (of components vα) and the

pressure p, in presence of a gravitational potential Φ.

Adiabatic ideal �uids are governed, in Newtonian regime, by the following set of

equations [17]: the Continuity Equation, which guarantees the energy conservation

∂tρ+∇ · (ρv) = 0 , (1.2.1)

the Euler Equation, which ensures the momentum conservation

ρ ∂tv + ρ (v · ∇)v = −∇p− ρ∇Φ , (1.2.2)

while pressure and density are linked by the Equation of State (EoS):

p = p (ρ) . (1.2.3)

In this picture, the sound speed is de�ned by the relation v2
s = δp/δρ.

Let us now introduce the e�ects of the energy dissipation during the motion of

the �uid, due to the thermodynamical non-reversibility and to internal friction (we
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1.2 Viscous processes in the �uid dynamics

neglect the thermal conductivity). To obtain the motion equations for a viscous

�uid, we have to include some additional terms in the ideal �uid description. The

Continuity Equation is derived by the time evolution of the matter density and by

the mass conservation law. This way, it remains valid for any kind of �uid.

Euler Equation, in absence of the gravitational �eld, rewrites

∂t(ρvα) = −∂β Παβ , (1.2.4)

where Παβ denotes the momentum-�ux energy tensor. If ideal �uids are addressed,

we deal with completely reversible transfer of momentum, obtaining the expression:

Παβ = p δαβ + ρ vαvβ. Viscosity is responsible for an additional term σ̃αβ due to

another irreversible momentum transfer, where non-vanishing velocity gradients are

present. For a viscous �uid we get

Παβ = p δαβ + ρ vαvβ − σ̃αβ = −σαβ + ρ vαvβ , σαβ = −p δαβ + σ̃αβ , (1.2.5)

where σαβ is the stress tensor and σ̃αβ is called the viscous stress-tensor.

The general form of σ̃αβ can be derived by a qualitative analysis of the velocity

gradients in presence of uniform rotation and volume changes of the �uid. The most

general form of the viscous stress tensor is [17]

σ̃αβ = ϑ (∂βvα + ∂αvβ − 2
3
δαβ∂γv

γ) + ζ δαβ ∂γv
γ , (1.2.6)

where the coe�cients ϑ e ζ are not dependent on velocity (the �uid is isotropic and

its properties must be described only by scalar quantities) and the term proportional

to the ϑ coe�cient vanishes for the contraction over α and β. Here, the coe�cient

ϑ is called shear viscosity while ζ denotes bulk viscosity and they are both positive

quantities.

Using the Continuity Equation, the ideal �uid Euler Equation rewrites

ρ(∂tvα + vβ ∂
βvα) = −∂αp ,

and the motion equation of a viscous �uids can now be obtained by adding the

expression ∂βσ̃αβ to the rhs of the equation above, obtaining

ρ(∂tvα + vβ ∂
βvα) = −∂αp + ∂β[ϑ (∂βvα + ∂αvβ − 2

3
δαβ∂

γvγ)] + ∂α(ζ ∂γvγ) .
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Dissipative Cosmologies

The viscous coe�cients are not constant and we will express their dependence on

the state parameters of the �uid. If we assume ϑ to be negligible (as we will discuss

later), the Euler Equation takes the following form

ρ ∂tv + ρ (v · ∇)v +∇p − ζ∇(∇ · v) = 0 , (1.2.7)

which is the well-known Navier-Stokes Equation.

This analysis is developed without considering the gravitational �eld, which has to

be introduced in the Euler Equation as usual. We have also to consider the equation

describing the gravitational �eld itself: the Poisson Equation. Let us now recall the

set of motion equations in the case of an adiabatic viscous �uid:

∂tρ+∇ · (ρv) = 0 , (1.2.8a)

ρ ∂tv + ρ (v · ∇)v +∇p − ζ∇(∇ · v) + ρ∇Φ = 0 , (1.2.8b)

∇2Φ− 4πGρ = 0 , (1.2.8c)

such a system is the starting point to analyze the gravitational instability in the

Newtonian approximation picture.

Energy-momentum tensor viscous corrections in Einstein General Relativity

In order to discuss the pure relativistic limit of the cosmological gravitational insta-

bility, let us now introduce dissipative e�ects in the matter source term of the Einstein

Equations.

The energy-momentum tensor (EMT) of a perfect �uid is standardly de�ned as

[17]:

T (P )
µν = (p+ ρ)uµuν − p gµν , (1.2.9)

where ρ is the energy density and uµ de�nes the 4-velocity.

Viscous corrections generate additional terms to the above expression. The EMT

of a viscous �uid reads

Tµν = (p+ ρ)uµuν − p gµν + τµν . (1.2.10)

Let us now discuss in some details the concept of the 4-velocity uµ. In relativistic

mechanics, an energy �ux necessarily leads to a mass �ux. This way, the de�nition

of the velocity in terms of the mass-�ux density has no direct meaning. The velocity

is therefore de�ned by the condition that, in the proper frame of any �uid element,

8



1.2 Viscous processes in the �uid dynamics

the momentum of the latter vanish and its energy can be characterized in terms of

the other thermodynamical quantities by the same expression as when dissipative

processes are absent. Hence, in the proper frame, the components τ00 and τ0α of the

tensor τµν are zero. Since, in such a frame the 3-velocity uα vanish also, we obtain,

in any frame, the equation

τµν u
µ = 0 . (1.2.11)

The required form of the tensor τµν can be established from the law if increasing

entropy. This law must be contained in the motion equations,

T νµ, ν = 0 ,

in fact the condition of constant entropy enters the dynamics of an ideal �uid [18].

The Continuity Equation of the �uid results to be

(nuµ), µ = 0 ,

where n is the particle number de�ning the particle-�ux density vector

nµ = nuµ + υµ , (1.2.12)

modi�ed for the dissipative term υµ. Using the expression above and by multiplying

the motion equations for uµ, one can get

uµ T νµ, ν = T (σuµ), µ + µ̄ υµ, µ + uµ τ νµ, ν ,

where µ̄ = (ρ + p − Ts)/n denotes the relativistic chemical potential satisfying the

thermodynamical equation

dµ̄ = (1/n)dp− (s/n)dT ,

and s is the entropy density. Finally, using the relation τµν uµ = 0, one can write such

equation as (
suµ − µ̄

T
υµ
)
, µ

= −υµ
( µ̄
T

)
, µ

+
τ νµ
T
uµ, ν . (1.2.13)

The lhs term must be the 4-divergence of the entropy �ux and the rhs term the

increase in entropy due to dissipative e�ects. The entropy-�ux density vector writes

sµ = suµ − (µ̄/T ) υµ ,

9



Dissipative Cosmologies

and τµν and υµ must be linear functions of the gradients of velocity and thermody-

namical quantities, such as to make the rhs of eq. (1.2.13) necessarily positive. This

condition, together with eq. (1.2.11), uniquely de�nes the form of the symmetric

tensor τµν :

τµν =− ϑ
(
uµ, ν + uν, µ − uνuσuµ, σ − uµuσuν, σ

)
+

+
(
ζ − 2

3
ϑ
)
uσ, σ

(
gµν − uµuν

)
. (1.2.14)

Here ϑ and ζ are the viscosity coe�cients as in the non-relativistic analysis. In this

limit, the ταβ components reduce to the ones of the 3-dimensional viscous stress-tensor

σ̃αβ.

The viscous corrections are derived by using a �at Minkowskian metric. Let us

now apply the General Covariance Principle [19] and write the EMT in presence

of a gravitational �eld, i.e., in curved space-time. Hence, we replace the ordinary

derivative with the covariant ones and we consider the generic metric tensor gµν . The

EMT rewrites now

Tµν = (p+ ρ)uµuν − p gµν + (ζ − 2
3
ϑ)uρ; ρ (gµν − uµuν)+

+ϑ (uµ; ν + uν;µ − uνuρuµ; ρ − uµuρuν; ρ) . (1.2.15)

As soon as the shear viscosity ϑ can be negligible, Tµν assumes a simpli�ed form in

terms of the so-called bulk pressure p̃:

Tµν = (p̃+ ρ)uµuν − p̃ gµν , (1.2.16a)

p̃ = p− ζ uρ; ρ . (1.2.16b)

It is worth noting that the e�ect of bulk viscosity is to generate an negative pressure

term beside the thermostatic one.

Characterization of the bulk viscosity The viscous e�ects discussed in the previ-

ous paragraphs are summarized by two di�erent kind of viscosity: shear viscosity ϑ

and bulk viscosity ζ. The Newtonian motion equations and the viscous EMT source,

introduced above, describe the unperturbed dynamics on which develop a �rst-order

perturbative theory in order to study the evolution of small �uctuations generated on

the background.

10



1.2 Viscous processes in the �uid dynamics

As already discussed, in this work, we are aimed to analyze isotropic (or almost

isotropic) and homogeneous cosmological models. In this respect, we can safely ne-

glect shear viscosity in the unperturbed dynamics. In fact, in such models, there

is no displacement of matter layers wrt each other, in the zeroth-order motion, and

this kind of viscosity represents the energy dissipation due to this e�ect. Indeed, in

presence of small inhomogeneities, such e�ects should be taken into account, in prin-

ciple. However, in this work, we are aimed to studying the behavior of scalar density

perturbations, in order to analyze the evolution of the density contrast. In this re-

spect, volume changes of a given mass scale are essentially involved and, therefore,

we concentrate our attention to bulk viscosity e�ects only.

In fact, we expect that the non-equilibrium dynamics of matter compression and

rarefaction is more relevant than friction among the di�erent layers and bulk viscosity

outcomes as a phenomenological issue inherent to the di�culty for a thermodynamical

system to follow the equilibrium con�guration. It is worth noting that such viscous

contributions can not dominate the �uid evolution because of their thermodynamical

perturbative origin. Nevertheless, we are interested in those regimes where such e�ects

are not at all negligible.

We underline that, in the pure relativistic analysis, we will �x our attention on the

relevance of dealing with bulk viscous properties of the cosmological �uid approaching

the Big Bang. Since, asymptotically near the singularity, the volume of the Universe

has a very fast time variation, we expect the bulk viscous e�ects naturally arise in the

dynamics. Furthermore, a detailed discussion regarding the motivation for neglecting

shear viscosity, in the relativistic regime, is addressed in Section 1.6.1.

The bulk-viscosity coe�cient ζ is assumed to be not constant and we want now

to discuss how to express its dependence on the state parameters of the �uid. The

presence of non-equilibrium phenomena during the �uid volume-expansion can be

phenomenologically described by such kind of viscosity. It is worth noting that the

analysis of a microphysics, unable to follow the expansion by equilibrium stages, is

a very intriguing but complicated problem. In particular, a pure kinetic theory ap-

proach [20, 2, 21] concerning the cosmological �uid and the results describing viscosity

become not applicable. In this respect, we follow the line of the fundamental viscous-

cosmology analysis due to the �Landau School� [22, 23, 24], implementing the so-called

hydrodynamical description of the �uid. Hence, we assume that an arbitrary state

is consistently characterized by the particle-�ow vector and the EMT alone [25] and

11



Dissipative Cosmologies

viscosity is �xed by the macroscopic parameters which govern the system evolution.

In the homogeneous models ζ depends only on time, and therefore, the most natural

choice is to take it as a power-law in the energy density of the �uid (for a detailed

discussions see [22]). Using such a phenomenological assumption, we express bulk

viscosity in the from

ζ = ζ0 ρ
s , (1.2.17)

where ζ0 is a constant parameter, which de�nes the intensity of the viscous e�ects,

and s is a dimensionless constant.

12



1.3 Analysis of the Jeans Mechanism in presence of viscous e�ects

1.3 Analysis of the Jeans Mechanism in presence of

viscous e�ects

The Universe is uniform at big scales but many concentrations are presented at small

ones, e.g., galaxies and clusters, where the mass density is larger than the Universe

mean-density. These mass agglomerates are due to the gravitational instability: if

density perturbations are generated in a certain volume, the gravitational forces act

contracting this volume, allowing a gravitational collapse. The only forces which

contrast such gravitational contraction are the pressure ones, which act in order to

maintain uniform the energy density.

The Jeans Mechanism analyzes what are the conditions for which density pertur-

bations become unstable to the gravitational collapse. In particular a threshold value

for the perturbation mass is founded: the so-called Jeans Mass. If density �uctua-

tions of mass greater than the Jeans one are addressed, they asymptotically diverge

in time generating the gravitational collapse.

In what follows, we generalize such a model including the e�ects of bulk viscosity

into the dynamics1 in order to analyze the perturbation evolution and possible mod-

i�cation to the Jeans Mass. As results, the �uctuation dynamics is founded to be

damped by viscous processes and the top-down mechanism of structure formation is

suppressed. In such a scheme, the Jeans Mass remain unchanged also in presence of

viscosity.

The Jeans Model [7] is based on a Newtonian approach and the e�ects of the

expanding Universe are neglected. The fundamental hypothesis of such an analysis

is a static and uniform solution for the zeroth-order dynamics

v0 = 0 , ρ0 = const. , p0 = const. , Φ0 = const. (1.3.1)

Of course, this assumption contradicts the Poisson Equation, but we follow the origi-

nal Jeans analysis imposing the so-called �Jeans swindle� [8, 2]. We underline that our

study will focus on Universe stages when the mean density is very small: in particular

the recombination era, after decoupling. This way, the e�ects of bulk viscosity on the

unperturbed dynamics can be consistently neglected in view of its phenomenological

behavior.
1NC and G. Montani, �Jeans Instability in Presence of Viscous E�ects�,

submitted to Int. J. Mod. Phys. D, Nov. 2008.
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Review on the Jeans Model In the standard Jeans Model [7], a perfect �uid

background is assumed. Setting ζ = 0 in the Newtonian motion equations (1.2.8),

one gets the following system

∂tρ+∇ · (ρv) = 0 , (1.3.2a)

ρ ∂tv + ρ (v · ∇)v +∇p + ρ∇Φ = 0 , (1.3.2b)

∇2Φ− 4πGρ = 0 . (1.3.2c)

Let now add small �uctuations to the unperturbed solution (1.3.1):

ρ = ρ0 + δρ , p = p0 + δp , Φ = Φ0 + δΦ , v = v0 + δv . (1.3.3)

Furthermore, only adiabatic perturbations are treated and the sound speed is de�ned

as v2
s = δp/δρ. Substituting such expressions in the system (1.3.2), and neglecting

second-order terms, one gets the following set of equations

∂tδρ+ ρ0∇ · δv = 0 , (1.3.4a)

ρ0 ∂tδv + v2
s ∇δρ+ ρ0∇δΦ = 0 , (1.3.4b)

∇2δΦ− 4πGδρ = 0 . (1.3.4c)

After standard manipulation, one di�erential equation for the density perturbations

can be derived:

∂2
t δρ− v2

s ∇2δρ = 4πGρ0 δρ . (1.3.5)

To study the properties of δρ, we now consider plane-wave solutions of the form

δρ (r, t) = A eiωt−ik·r , (1.3.6)

where ω and k (k = |k|) are the angular frequency and the wave number, respectively.

This way, one can obtain the following dispersion relation

ω2 = v2
sk

2 − 4πGρ0 . (1.3.7)

In this scheme, two di�erent regimes are present: if ω2 > 0 a pure time oscillatory-

behavior for density perturbations is obtained. While if ω2 < 0, the �uctuations

exponentially grow in time, in the t→∞ asymptotic limit (i.e., we choose the nega-

tive imaginary part of the angular-frequency solution) and the gravitational collapse

is addressed since also the density contrast δ = δρ/ρ0 diverges. The condition ω2 = 0
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1.3 Analysis of the Jeans Mechanism in presence of viscous e�ects

de�nes the so-called Jeans Scale KJ and the Jeans Mass MJ (which is the total mass

in a sphere of radius R = π/KJ). Such threshold quantities read

KJ = ρ0

√
4πGρ0

v2
s

, MJ =
4π

3

(
π

KJ

)3

ρ0 =
π5/2 v3

s

6G3/2ρ0
1/2

. (1.3.8)

Let us now analyze in some details the two regimes.

(1.) In the case M < MJ (i.e., ω2 > 0), δρ behave like two progressive sound waves,

with constant amplitude, propagating in the ±k directions with velocity

vw = vs
√

(1− (KJ/k)2) . (1.3.9)

In the limit k → ∞, the propagation velocity approaches the value vs, and �uctua-

tions behave like pure sound waves. On the other hand, if k → KJ , stationary waves

are addressed (i.e., vw = 0).

(2.) In the case M > MJ (i.e., ω2 < 0), density perturbations evolve like stationary

waves with a time dependent amplitude. In particular, choosing the negative imagi-

nary part of the solution for ω, the wave amplitude exponentially explodes, generating

the gravitational collapse.

Jeans Mechanism in presence of bulk viscosity Let us now analyze how viscosity

can a�ect the gravitational-collapse dynamics. As already discussed, the only viscous

process we address in an homogeneous and isotropic model is bulk viscosity and we

are able to neglect such kind of viscosity in the unperturbed dynamics, which results

to be described by the static and uniform solution (1.3.1).

We now start by adding the usual small �uctuations to such a solution, as eq.

(1.3.3), and in treating bulk-viscosity perturbations, we use the expansion ζ = ζ̄ + δζ

where

ζ̄ = ζ(ρ0) = ζ0ρ
s
0 = const. , δζ = δρ (∂ζ/∂ρ) + ... = ζ0 s ρ

s−1
0 δρ + ... . (1.3.10)

Substituting all �uctuations in the Newtonian motion equations (1.2.8):

∂tρ+∇ · (ρv) = 0 , (1.3.11a)

ρ ∂tv + ρ (v · ∇)v +∇p − ζ∇(∇ · v) + ρ∇Φ = 0 , (1.3.11b)

∇2Φ− 4πGρ = 0 , (1.3.11c)
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we get the �rst-order motion equations of the model

∂tδρ+ ρ0∇ · δv = 0 , (1.3.12a)

ρ0 ∂tδv + v2
s ∇δρ+ ρ0∇δΦ− ζ̄∇(∇ · δv) = 0 , (1.3.12b)

∇2δΦ− 4πG δρ = 0 . (1.3.12c)

With some little algebra, one can obtain an unique equation for density perturbations,

describing the dynamics of the gravitational collapse:

ρ0 ∂
2
t δρ− ρ0 v

2
s∇2 δρ− ζ̄∇2 ∂tδρ = 4πGρ2

0 δρ . (1.3.13)

Using the linearity of the equation above, a decomposition in Fourier expansion can

be performed. This way, plane waves solutions (1.3.6) can be addressed, obtaining a

generalized dispersion relation

ρ0 ω
2 − i ζ̄ k2 ω + ρ0(4πGρ0 − v2

sk
2) = 0 . (1.3.14)

As in the standard Jean Model, the nature of the angular frequency is responsible of

two di�erent regimes for the density-perturbation evolution. The dispersion relation

has the solution

ω = i
ζ̄k2

2 ρ0

±
√
ω̄ , ω̄ = −k

4ζ̄2

4ρ0
2

+ v2
sk

2 − 4πGρ0 , (1.3.15)

thus we obtain the time exponential-regime for ω̄ 6 0 and a damped oscillatory regime

for ω̄ > 0. It's worth noting that the pure oscillatory regime of the ideal �uid Jeans

Mechanism is lost. The equation ω̄ = 0 admits the solutions K1 and K2 which read

K1
2

=

√
2 ρ0vs
ζ̄

(
1∓

√
1−

(KJ ζ̄

ρ0vs

)2 ) 1
2
, K1, K2 > 0, K1 < K2 . (1.3.16)

The existence of such solutions gives rise to a constraint on the viscosity coe�cient:

ζ̄ 6 ζc = ρ0vs/KJ . (1.3.17)

An estimation in the recombination era2 after decoupling, yields to the value

ζc = 7.38 · 104 g cm−1 s−1 ,

2The parameters are set as follows: the usual barotropic relation p = c2ργ0 /ρ̃
γ−1 is assumed and

the constant ρ̃ can be derived from the expression expression MJ (1.3.8). Universe is dominated

by matter and we can impose the values: MJ ∼ 106M�, γ = 5/3, ρc = 1.879h2 · 10−29 g cm−3,

h = 0.7, z = 103 and ρ0 = ρc z
3 = 0.92 · 10−20 g cm−3 . Using these quantities one �nds

ρ̃ = 9.034 · 10−7 g cm−3, vs = 8.39 · 105 cms−1 and the threshold value ζc.
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1.3 Analysis of the Jeans Mechanism in presence of viscous e�ects

and confronting this threshold with usual viscosity (e.g., ζ̄Hydr. = 8.4·10−7g cm−1 s−1),

we can conclude that the range ζ̄ 6 ζc is the only of physical interest. Finally we

obtain: ω̄ 6 0 for k 6 K1, K2 6 k and ω̄ > 0 for K1 < k < K2.

Let us now analyze the density-perturbation exponential solutions in correspon-

dence of ω̄ 6 0:

δρ ∼ ew t , w = − ζ̄k
2

2ρ0

∓
√
−ω̄ . (1.3.18)

To obtain the structure formation, the amplitude of such stationary waves must grow

for increasing time. The exponential collapse for t → ∞ is addressed, choosing the

(+)-sign solution, only if w > 0, i.e., k < KJ with KJ < K1 < K2. As a result, we

show how the structure formation occurs only if M > MJ , as in the standard Jeans

Model.

The viscous e�ects do not alter the threshold value of the Jeans Mass, but they

change the perturbation evolution and the pure oscillatory behavior is lost in presence

of dissipative e�ects. In particular, we get two distinct decreasing regimes:

(1.) For K1 < k < K2 (i.e., ω̄ > 0), we obtain a damped oscillatory evolution of

perturbations:

δρ ∼ e
− ζ0k

2

2ρ0
t

cos (
√
ω̄ t) , (1.3.19)

(2.) For KJ < k < K1 and K2 < k, density perturbations exponentially decrease as

δρ ∼ ew t , w < 0 , (1.3.20)

in the limit t→∞.

1.3.1 Implication for the top-down mechanism

As shown above, since the pure oscillatory regime does not occurs, we deal with a

decreasing exponential or a damped oscillatory evolution of perturbations. This allows

to perform a qualitative analysis of the top-down fragmentation scheme [1], i.e., the

comparison between the evolution of two structures: one collapsing agglomerate with

M �MJ and an internal non-collapsing sub-structure with M < MJ . If this picture

is addressed, the sub-structure mass must be compared with a decreasing Jeans Mass

since the latter is inversely proportional to the collapsing agglomerate background

mass. This way, as soon as such a Jeans Mass reaches the sub-structure one, the

latter begins to condense implying the fragmentation. In the standard Jeans Model,
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this mechanism is always allowed since the amplitude for perturbations characterized

by M < MJ remains constant in time. On the other hand, the presence of decreasing

�uctuations in the viscous model requires a discussion on the e�ective damping and

an the e�cacy of the top-down mechanism. Of course, such an analysis contrasts

the hypothesis of a constant background density, but it can be useful to estimate the

strength of the dissipative e�ects.

We now study two cases for di�erent values of the bulk-viscosity coe�cient: ζ̄ � 1

and ζ̄ > 1. In this analysis, a perturbative validity-limit has to be set: we suppose

δρ/ρ0 ∼ 0.01 as the limit of the model and we use the recombination era parameters

(see footnote 2), in particular the initial time of the collapse is de�ned as the beginning

of the matter-dominated Universe, i.e., t0 = tMD = 1.39 · 1013 s.

(1.) In correspondence of a very small viscosity coe�cient, Fig.1, we consider

0,01

0,008

0,006

0,004

0,002

0

-0,002

t

3,5E133E132,5E132E131,5E13

Figure 1.1: Case ζ̄ = 10−5 g cm−1 s−1. Galaxy density contrast: δG - MG = 1012M� - (dashed line). Sub-

structure density contrast δS - MS = 10M� - (normal line).

a decreasing structure of mass MS = 10M� within a collapsing galaxy with mass

MG = 1012M�, the Jeans Mass is MJ = 106M�. The sub-structure wave number

KS is in the region K1 < KS < K2 and density perturbations evolve like eq. (1.3.19).

Fluctuations have to be imposed small at the initial time t0, this way, we consider

density contrasts (δG for the galaxy and δS for the sub-structure) of O(10−3). In this

scheme, the galaxy starts to collapse and the validity limit is reached at t∗ = 6.25·1013.
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1.3 Analysis of the Jeans Mechanism in presence of viscous e�ects

As a result, in Fig.1 we can show how the sub-structure survives in the oscillatory

regime during the background collapse until the threshold time value t∗. Thus, we can

conclude that, if the viscous damping is su�ciently small, the top-down fragmentation

can occur.

(2.) Let us now discuss the case ζ̄ > 1, Fig.2, by changing the sub-structure mass,

which is now MS = M�. Here, the viscosity coe�cient is greater than one and the
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Figure 1.2: Case ζ̄ = 14 g cm−1 s−1. Galaxy density contrast: δG -MG = 1012M� - (dashed line). Sub-structure

density contrast δS - MS = M� - (normal line).

damping e�ects is stronger. In fact, when the galaxy density-contrast reaches the

threshold value δG = 0.1, we obtain δS = 10−5. The top-down mechanism for struc-

ture formation results to be unfavored by the presence of strong viscous e�ects: the

damping becomes very strong and the sub-structure vanishes during the agglomerate

evolution.
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1.4 Newtonian spherically symmetric gas cloud

fragmentation

In a work by C. Hunter [26], a speci�c model for a gas-cloud fragmentation was

addressed and the behavior of sub-scales density perturbations, outcoming in the ex-

treme collapse, was analytically described. The hypotheses on which this model is

based are the homogeneity and the spherical symmetry, respectively, of the collapsing

cloud that starts at rest its fall. Furthermore, it is assumed that pressure forces are

negligible in the unperturbed dynamics and therefore a real notion of Jeans mass is

not required in this approach. According to this scheme, the Lagrangian and Eule-

rian formulations of the zeroth- and �rst-order dynamics are developed, respectively.

The result of this analysis shows that the density contrast grows, approaching the

singularity, inducing a fragmentation process of the basic �ow. It is outlined that

�rst-order pressure e�ects do not in�uence the perturbations behavior considering

an isothermal-like politropic index γ (i.e. for 1 6 γ < 4/3). On the other hand,

such e�ects increase as γ runs from 4/3 to the adiabatic value 5/3. In particular, the

case γ = 5/3, represents an exception being characterized by a density contrast which

remains constant asymptotically to the singularity.

In what follows, we investigate how the above picture is modi�ed by including, in

the gas-cloud dynamics, the presence of bulk-viscosity e�ects3. In this respect, we

generalize the Lagrangian evolution by taking into account the force acting on the

collapsing shell as a result of the negative pressure connected to the viscosity. We

construct such an extension requiring that the asymptotic dynamics of the collapsing

cloud is not qualitatively a�ected by the presence of viscosity [27]. In particular, we

analytically integrate the dynamics in correspondence to the constitutive equation

for the viscosity coe�cient (1.2.17), where the exponent is assumed to be s = 5/6.

Then, we face the Eulerian motion of the inhomogeneous perturbations living within

the cloud. The resulting viscous dynamics is treated in the asymptotic limit to the

singularity. As a result, we show that the density contrast behaves, in the isothermal-

like collapse, as in the non-viscous case. On the other hand, the perturbation damping

increases monotonically as γ runs from 4/3 to 5/3. In fact, for such adiabatic-like

3NC and G. Montani, �Gravitational Stability and Bulk Cosmology�,

AIP Conf. Proc. 966, 241 (2007).
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1.4 Newtonian spherically symmetric gas cloud fragmentation

case, we show that the density contrast asymptotically vanishes and no fragmentation

processes take place in the cloud, when the viscous corrections are su�ciently large.

In particular, we observe the appearance of a threshold value for the scale of the

collapsing perturbations depending on the values taken by the parameters ζ0 and

γ ∈ (4/3, 5/3]; such a viscous e�ect corresponds to deal with an analogous of the Jeans

Length, above which perturbations are able to collapse. However such a threshold

value does not ensure the diverging behavior of density contrast which takes place, in

turn, only when a second (greater) critical length is overcome.

Since, in the extreme collapse, it is expected that viscous processes are relevant,

our analysis suggests that the top-down scheme of structure formation can be deeply

in�uenced when non-equilibrium features of the dynamics arise. According to our

study, if such viscous e�ects are su�ciently intense, the �nal system con�guration

is not a fragmented cloud as a cluster of sub-structures but simply a single object

(a black hole, in the present case, because pressure forces are assumed negligible).

Furthermore, we discuss why the choice s = 5/6 has a physical meaning in the viscous

dynamics: we show that for s > 5/6 the background evolution would be asymptotically

a�ected by viscosity which would acquire a non-perturbative character. On the other

hand, for s < 5/6 no modi�cations occur wrt the dynamics of the non-viscous density

contrast.

Review on the non-viscous cloud fragmentation We recall here the hydrodynam-

ical analysis of a spherically symmetric non-viscous gas-cloud collapse. This model

was �rstly proposed by C. Hunter in 1962 [26] where he supposed that the gas cloud

becomes unstable wrt its own gravitation and begin to condense. The collapsing

cloud is assumed to be the dynamical background on which studying, in a Newtonian

regime, the evolution of density perturbations generated on this basic �ow. In the

Hunter model, the unperturbed �ow was supposed to be homogeneous, spherically

symmetric and initially at rest. Furthermore the gravitational forces are assumed to

be very much greater than the pressure ones, which are therefore neglected in the

zeroth-order analysis. In such an approach, the gas results to be unstable since there

are no forces which can contrast the collapse, and the condensation starts immedi-

ately.

The basic �ow is governed by the Lagrangian motion equation of a spherically sym-

metric gas distribution which collapses under the only gravitational action. Assuming
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that the initial density of the cloud is constant in space, the dynamics reads

∂2r

∂t2
= −GM

r2
, (1.4.1)

where the origin O is taken at the center of the gas, r is the radial distance, G the

gravitational constant and M the mass of the gas inside a sphere of radius r. In what

follows, we shall suppose that the gas was at a distance a from O in correspondence

to the initial instant t0; this distance a identi�es a �uid particle and will be used as

a Lagrangian independent variable so r = r(a, t). Provided that particles do not pass

trough each other, the mass M inside a sphere of radius r is not time dependent and

is a function of a only; using the integral form

M(a) =
∫ r

0
dr′ 4πρr′2 =

∫ a
0
da′ 4πρ∗(a′)a′2 , (1.4.2)

where ρ is the gas cloud density and ρ∗ = ρ(t0) the initial one, we get the relation

ρr2 ∂r

∂a
= ρ∗a2 . (1.4.3)

A �rst integration of (1.4.1) yields the expression of the radial velocity v0 = ∂r/∂t,

which reads

v0 = −[2GM (1/r − 1/a)]
1
2 , (1.4.4)

where we considered the negative solution in order to obtain a collapse. Let us now

introduce the parametrization

r = a cos2 β , (1.4.5)

where β = β(t) is a time-dependent function such that β(t0) = 0 and β(0) = π/2,

since we choose the origin of time to have t = 0 when r = 0 and t0 takes negative

values. We assume ρ0 to be uniform and we are now able to integrate eq. (1.4.4) to

get the following relation between β and t and the expression of the initial time t0:

β + 1
2

sin 2β = π
2

+ t
√

8
3
πρ0G , (1.4.6)

t0 = −
√

3π / 32ρ0G . (1.4.7)

It is more convenient to use an Eulerian representation of the �ow �eld. To this end,

using relation (1.4.5) and (1.4.3), we obtain the unperturbed radial velocity v0 and

the basic �ow density ρ0, respectively. Furthermore, solving the Poisson Equation
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1.4 Newtonian spherically symmetric gas cloud fragmentation

for the gravitational potential Φ, we get the unperturbed solutions describing the

background motion; all these quantities take the explicit forms

v0 = [v0, 0, 0] , v0 = −2rβ̇ tan β , (1.4.8a)

ρ0 = ρ̄ cos−6 β , (1.4.8b)

Φ0 = −2πρ̄G
(
a2 − r2/3

)
cos−6 β , (1.4.8c)

where the non-radial components of velocity must vanish since we are considering a

spherical symmetry.

The �rst-order perturbations to the basic �ow (higher orders analysis was made by

Hunter in two later articles [28, 29]) are investigated in the non-viscous Newtonian

limit of system (1.2.8), i.e.,

∂tρ+∇ · (ρv) = 0 , (1.4.9a)

ρ ∂tv + ρ (v · ∇)v +∇p + ρ∇Φ = 0 , (1.4.9b)

∇2Φ− 4πGρ = 0 . (1.4.9c)

The gas is furthermore assumed to be barotropic, i.e., the pressure depends only by

the background density ρ0. In this model, zeroth-order solutions (1.4.8) are already

veri�ed since the pressure gradient, in the homogeneity hypothesis, vanishes and the

pressure a�ects only the perturbative dynamics.

Let us now investigate �rst-order �uctuations around unperturbed solutions, i.e.,

we replace the perturbed quantities: (v0 + δv), (ρ0 + δρ), (Φ0 + δΦ) and also (p0 + δp)

where p0 = p (ρ0). Substituting these solutions in eq. (1.4.9b) and taking the rot of

the �nal expression, one gets, linearizing in the perturbed quantities, an equation for

the vorticity δw = ∇× δv, which stands

˙δw = −∇× [δw× v] . (1.4.10)

Using spherical coordinates [r(a, t), θ, ϕ] we are able to build the solutions for the

three components of the vorticity, getting

δw =
[
l cos−4 β + h , m cos−4 β , n cos−4 β

]
. (1.4.11)

Here l,m, n are arbitrary functions of the new variables [a, θ, ϕ] (the radial coordinate

transforms like (1.4.5)) which must satisfy the relation ∇·δw = 0 4 and h is physically

4We remember that in any coordinates system the relation div rot ≡ 0 stands.
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irrelevant since it represents a static distribution of the δw �rst component in the

space.

We are now able to �nd a solution for the perturbed velocity using the vorticity

expression; one can always consider a solution of the form

δv = V cos−2 β +∇Ψ , (1.4.12)

where Ψ, V are arbitrary functions of the coordinates and for V we assume a restric-

tion gives by the relation ∇ ·V = 0.

Let us now write three equations for the perturbed quantities δv, δρ and δΦ.

Substituting last expression for the velocity �uctuations in the Newtonian system

and eliminating the variable r trough the relation (1.4.5) we get

∂tδρ− 6 δρ β̇ tan β + ρ̄ cos−10 β D2Ψ = 0 , (1.4.13a)

Ψ̇ + δΦ +
v2
s

ρ̄
cos6 β δρ = 0 , (1.4.13b)

D2δΦ− 4πG cos4 β δρ = 0 . (1.4.13c)

Here time di�erentiation is taken at some �xed co-moving radial coordinate, vs is

the sound speed given by v2
s = δp/δρ and D2 is the Laplace operator as written in

co-moving coordinates.

A single second-order di�erential equation for δρ can be obtained from the set of

eqs. (1.4.13). This �nal equation is as follow

∂t

(
cos10 β ∂tδρ− 6 sin β cos9 β β̇ δρ

)
− 4πGρ̄ cos4 β δρ = vs

2 cos6 β D2δρ . (1.4.14)

In order to study the temporal evolution of density perturbations, we assume to

expand δρ in plane waves of the form

δρ(r, t) = ρ1 (t) e−ik·r , (1.4.15)

where 1/k (with k = |k|) represents the initial length scale of the considered �uctua-

tion. We shall now express the thermostatic pressure as a function of the basic-�ow

density by using the barotropical law

p0 = κ ργ0 , (1.4.16)

where κ, γ are constants and 1 6 γ 6 5/3. By this expression, we are able to

distinguish a set of di�erent cases related to di�erent values of the politropic index
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γ. The asymptotic value γ = 1 represents an isothermal behavior of the gas cloud

and corresponds to a constant sound speed vs; the case γ = 5/3 describes, instead, an

adiabatic behavior and it will be valid when changes are taking place so fast that no

heat is transferred between elements of the gas. We can suppose that intermediate

values of γ will describe intermediate types of behavior between the isothermal and

adiabatic ones.

The temporal evolution of density perturbations is governed by eq. (1.4.14); this

equation can not be solved in general but we can determine the asymptotic behavior

of solutions for the �nal part of the collapse as (−t)→ 0. In this limit, we develop up

to the �rst-order the eq. (1.4.6) which, once integrated, gives the time dependence

of the parameter β. For small β, we are able to approximate sinβ ≈ 1 in order to

obtain the relation

cos β3 =
√

6πGρ̄ (−t) . (1.4.17)

In this approach, we determine the asymptotic temporal evolution of the basic-�ow

unperturbed density (1.4.8b) which now reads

ρ0 ∼ (−t)−2 . (1.4.18)

Substituting this expression in eq. (1.4.14), together with eqs. (1.4.15) and (1.4.16),

we get the following asymptotic equation for the �nal part of the collapse

(−t)2 ρ̈1 −
16

3
(−t) ρ̇1 +

[
4 +

v2
0 k

2 (−t)8/3−2γ

(6πGρ̄)γ−1/3

]
ρ1 = 0 , (1.4.19)

where v2
0 = κγρ̄ γ−1. A complete solution of this equation involves Bessel functions

and reads

ρ1 = (−t)−13/6
[
C1 Jn

[
q(−t)4/3−γ] + C2 Yn

[
q(−t)4/3−γ]] , (1.4.20)

where the parameters n and q are

n = 5/ 6(4/3− γ) , (1.4.21a)

q = −v0k(6πρ̄G)1/6−γ/2 / (4/3− γ) . (1.4.21b)

In order to study the asymptotic evolution of this solution, we shall analyze the

cases 1 6 γ < 4/3 and 4/3 < γ 6 5/3 separately, since Bessel functions have di�erent

limits connected to the magnitude of their argument. In the asymptotic limit to the
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singularity, the isothermal-like case is characterized by a positive time exponent inside

Bessel functions so qt4/3−γ � 1, on the other hand, in the adiabatic-like behavior we

obtain qt4/3−γ � 1.

(1.) Isothermal-like Case: For 1 6 γ < 4/3 Bessel functions J and Y behave like

power-laws of the form Jn(x) ∼ x+n, Yn(x) ∼ x−n, for x � 1. By this approximation,

the solution (1.4.20) assumes the the following asymptotic form

ρ ISO1 ∼ (−t)−3 , (1.4.22)

which holds for all the isothermal-like γ values. This result implies that density

perturbations grow to in�nity as (−t)→ 0. Let us now study the asymptotic behavior

of the density contrast δ = ρ1/ρ. It is immediate to see that for all the values of γ in

the interval [1, 4/3), the density contrast asymptotically diverges like

δ ISO ∼ (−t)−1 , (1.4.23)

implying that perturbations grow more rapidly than the back-ground density favoring

the fragmentation of the basic structure independently on the value of the politropic

index.

(2.) Adiabatic-like Case: For 4/3 < γ 6 5/3, the argument of Bessels becomes

much gather than unity and they assume oscillating behaviors like Jn(x) ∼ x−1/2 cos(x),

Yn(x) ∼ x−1/2 sin(x), for x� 1. The solution (1.4.20) asymptotically reads

ρADB1 ∼ (−t)γ/2−17/6 cos
sin

[
v0k(−t)4/3−γ

(4/3− γ)(6πGρ̄)γ/2−1/6

]
, (1.4.24)

and therefore perturbations oscillate with ever increasing frequency and amplitude.

In this case, the density contrast assumes the form

δADB ∼ (−t)
γ
2
− 5

6 , (1.4.25)

and it is outlined how perturbations, for intermediate stages as 4/3 < γ < 5/3, collapse

before that the basic �ow completes the condensation (i.e., γ/2 − 5/6 < 0) and the

fragmentation of the background �uid is favored. On the other hand, if the gas

cloud behaves adiabatically (i.e., γ = 5/3), perturbations remain of the same order

as the basic-�ow density (1.4.18). We can conclude that, in this adiabatic-like case,

pressure forces become progressively strong during the collapse as γ increases having

a stabilizing e�ect which prevents that density perturbations grow in amplitude wrt

the unperturbed �ow. An intermediate type of behavior exists for γ = 4/3, in this

case the disturbances grow like (−t)−13/6.
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1.4 Newtonian spherically symmetric gas cloud fragmentation

Unperturbed viscous dynamics We now aim to discuss a model in order to build

the motion equations of a spherically symmetric and uniform gas cloud, including the

corrections due to the presence of dissipative processes; the hypothesis that the �uid

is initially at rest already stands here. The Lagrangian (1.4.1) describes a spherical

shell which collapses under the gravitational action. In such an approach, the shell

results co-moving with the collapsing background. This implies that there are no

displacements between parts of �uid wrt ones other since we assume an homogeneous

and isotropic �ow. Dissipative processes are therefore related to the presence of bulk

viscosity and we can safely neglect shear viscosity since it is connected with processes

of relative motion among di�erent parts of the �uid.

In order to include bulk-viscosity e�ects into the dynamics, we introduce the bulk

pressure (see eq. (1.2.16b))

p̃ = p− ζ0ρ
s uµ;µ , (1.4.26)

where uµ = (1,0) is the shell co-moving 4-velocity. In the Newtonian limit we con-

sider, the metric can be assumed as a �at Minkowskian one expressed in the usual

spherical coordinates [t, r, θ, φ] and the metric determinant g becomes g = −r4sin2θ.

In this case, for the 4-divergence uµ;µ we immediately obtain

uµ;µ = 2ṙ/r . (1.4.27)

Considering the basic-�ow density as

ρ0 = M/(4
3
πr3) , (1.4.28)

and the pressure force acting on the collapsing shell of the form

Fp̃ = p̃ 4πr2 , (1.4.29)

the Lagrangian motion equation for a viscous �uid reads now

∂2r

∂t2
= −GM

r2
− C

r3s−1

∂r

∂t
, (1.4.30)

where C = 8πζ0 (3M/4π)s.

The equation above must be integrated to obtain the evolution of the unperturbed

radial velocity v0 and density ρ0. In order to compare our viscous analysis wrt the

Hunter case, let us now require that the viscosity does not a�ect the �nal form of
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the velocity [27] and, for instance, it should be yet proportional to 1/√r (see (1.4.4)).

Substituting an expression of the form

v0 = B/
√
r (1.4.31)

into eq. (1.4.30) we see that, in correspondence to the choice s = 5/6, it is again a

solution as soon as we take the following identi�cation

B = C −
√
C2 + 2GM , (1.4.32)

where B assumes only negative values. Although this dynamics is analytically inte-

grable only for the particular value s = 5/6, the obtained behavior v ∼ 1/√r remains

asymptotically valid as r → 0 if the condition s < 5/6 is satis�ed.

Using such a solution we are able to build an explicit form of the quantity β

de�ned by eq. (1.4.5); di�erentiating this relation wrt time and taking into account

eq. (1.4.31), we obtain a di�erential equation for the variable β which admits the

solution

cos β3 = 3A (−t) , (1.4.33)

where A is de�ned to be A = −B/2a3/2. The Eulerian expressions (1.4.8) of the

unperturbed quantities hold here since they are derived simply from relations (1.4.5)

and (1.4.3); the e�ects of bulk viscosity in the zeroth-order analysis are summarized

by the new time dependence (1.4.33) of the parameter β which implies a di�erent

dynamics for the basic �ow.

First-order perturbative theory The zeroth-order motion of a viscous basic �ow

which collapses under the action of its own gravitation was discussed above. We

shall now suppose that small disturbances appear on this �eld. Perturbations are

investigated in the Newtonian limit starting from the system (1.2.8), i.e.,

∂tρ+∇ · (ρv) = 0 , (1.4.34a)

ρ ∂tv + ρ (v · ∇)v +∇p − ζ∇(∇ · v) + ρ∇Φ = 0 , (1.4.34b)

∇2Φ− 4πGρ = 0 . (1.4.34c)

Let us now investigate �rst-order �uctuations around the unperturbed solutions,

i.e., we replace the perturbed quantities: (v0+δv), (ρ0+δρ), (Φ0+δΦ) and (p0+δp) in
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eqs. (1.4.34). Taking into account the parameterization (1.4.5) and the bulk-viscosity

expansion (1.3.10), i.e.,

ζ̄ = ζ(ρ0) = ζ0ρ
s
0 , δζ = δρ (∂ζ/∂ρ) + ... = ζ0 s ρ

s−1
0 δρ + ... . (1.4.35)

eq. (1.4.34b) rewrites

∂tδv +∇(v0 · δv) + (∇× δv)× v0 = −∇δΦ − v2
s

ρ
∇δρ +

ζ̄

ρ0

∇(∇ · δv) . (1.4.36)

As in the non-viscous case, we shall now apply the rot operator to this equation in

order to get �rst the solution for the vorticity δw and then the expression for the

velocity perturbations δv. Indeed, using the vectorial identity rot[∇f ] = 0 (which

holds for each scalar function f), all terms in the rhs of eq. (1.4.36) vanish under

this operation. In particular, the term due to the viscous correction disappears from

this equation because ζ̄ is, by assumption, a space-independent function. This way,

we reach the eq. (1.4.10) for the vorticity which yields the same solution (1.4.12) as

in the non-viscous case.

We now build the equations for the perturbed quantities δv, δρ and δΦ. Substi-

tuting the expression (1.4.12) into the �rst-order perturbed Eulerian motion (1.4.36),

we obtain (using eq. (1.4.5) and the conformal spherical coordinates [a, θ, ϕ]), the

equation

ρ̄ Ψ̇ + ρ̄ δΦ + ρ̄ v2
s cos6 β δρ− ζ̄ cos2D2Ψ = 0 , (1.4.37)

which corresponds to the viscous generalization of eq. (1.4.13b). The other perturbed

equations maintain their own forms (1.4.13a) and (1.4.13c) also in the viscous case.

Our analysis follows in order to build an unique equation which describes the evolu-

tion of density perturbations. By using the procedure developed in the non-dissipative

approach, we get now the �rst-order perturbative equation

∂t(cos10 β ∂tδρ− 6 sin β cos9 ββ̇δρ)− 4πGρ̄ cos4 βδρ =

= (vs
2 cos6 β − 6 ζ̄

ρ̄
sin β cos11 β β̇) D2δρ+ ζ̄

ρ̄
cos12 β D2 ∂tδρ . (1.4.38)

Here time di�erentiation is taken at some �xed co-moving radial coordinate.

In order to study the temporal evolution of density perturbations, let us now fac-

torize perturbations δρ in plane waves by the formula (1.4.15) and use the barotropic

relation p = κργ. According to these assumptions, we are able to write the asymp-

totic form of eq. (1.4.38), near the end of the collapse as (−t)→ 0. In this case, the
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quantity cosβ is given by (1.4.33), i.e.,

cos β = (3A)1/3 (−t)1/3 , (1.4.39)

and, asymptotically, we can make the approximation sinβ ≈ 1 in order to obtain an

equation which generalizes eq. (1.4.19) in presence of viscosity;

The background motion equations were derived for a particular value of the viscosity

parameter: s = 5/6. Substituting the basic-�ow density given by eq. (1.4.8b) in the

standard expression of the bulk viscosity (1.4.35), we obtain

ζ̄ = ζ0ρ̄
5/6 cos−5β . (1.4.40)

With these assumptions, eq. (1.4.38) now reads

(−t)2 ρ̈1 −
[

16

3
− λ

3A

]
(−t) ρ̇1+

+

[
14

3
− 4πGρ̄

9A2
+
v2

0 k
2(−t)8/3−2γ

(3A)2γ−2/3
− 2λ

3A

]
ρ1 = 0 , (1.4.41)

where v2
0 = κγρ̄ γ−1 and the viscous parameter λ is given by

λ = ζ0 (ρ̄) −
1/6 k2 . (1.4.42)

1.4.1 Density-contrast viscous evolution

A complete solution of eq. (1.4.41) involves Bessel functions of �rst- and second-

species, i.e., J and Y , respectively, and it explicitly reads

ρ1 = C1G1(t) + C2G2(t) , (1.4.43)

where C1, C2 are integration constants and the functions G1 and G2 are de�ned to be

G1(t) = (−t)−
13
6

+ λ
6A Jn

[
q(−t)4/3−γ] , (1.4.44)

G2(t) = (−t)−
13
6

+ λ
6A Yn

[
q(−t)4/3−γ] , (1.4.45)

having set the Bessel parameters n and q as

n = [A2 − 2λA+ λ2 + 16πGρ̄]
1
2 / (6A(4/3− γ)) ,

q = −kv0(3A)1/3−γ / (4/3− γ) .
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We now aim, in order to study the asymptotic evolution of the solution (1.4.43),

to analyze the cases 1 6 γ < 4/3 and 4/3 < γ 6 5/3 separately, since Bessel functions

have di�erent limits connected to the magnitude of their argument.

(1.) Isothermal-like Case: In this regime, an asymptotic form of functions G

can be found as follow

GISO
1,2 = c1 (−t)−

13
6

+ λ
6A
±( 4

3
−γ)n (1.4.47)

where c1 and c2 are constants quantities. The condition which implies the density

perturbation collapse is that at least one of G functions diverges as (−t) → 0. An

analysis of time exponents yields that G1 explodes if λ < 7A − 2πGρ̄/3A but, on

the other hand, G2 is always divergent for all λ. These results imply that, in the

isothermal case, perturbations always condense.

Let us now compare this collapse with the basic �ow one; the background density

evolves like ρ0 ∼ cos−6β (see eq. (1.4.8b)) that is, using eq. (1.4.33),

ρ0 ∼ (−t)−2 . (1.4.48)

In the non-dissipative case (λ = 0), perturbations grow more rapidly wrt the back-

ground density involving the fragmentation of the basic �ow independently on the

value of γ; in presence of viscosity the density contrast assumes the asymptotic form

δ ISO ∼ (−t)−
1
6

+ λ
6A
− 1

6A
√

[A2−2λA+λ2+16πGρ̄] . (1.4.49)

Here the exponent is always negative and it does not depend on γ, this implies that

δ ISO diverges as the singularity is approached and real sub-structures are formed

involving the basic �ow fragmentation. This issue means that the viscous forces do

not have enough strength to contrast an isothermal perturbations collapse in order

to form of an unique structure.

(2.) Adiabatic-like Case: For 4/3 < γ 6 5/3, J and Y assume an oscillating

behavior. In this regime functions G read

GADB
1,2 = c̃1,2

cos
sin

[
q(−t)4/3−γ] (−t)

γ
2
− 17

6
+ λ

6A , (1.4.50)

where c̃1,2 are constants. Following the isothermal approach, we shall now analyze

the time power-law exponent in order to determine the collapse conditions. G func-

tions diverge, involving perturbations condensation, if the parameter λ is less than a
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threshold value: this condition reads λ < 17A − 3Aγ (for a given value of the index

γ). Expressing λ in function of the wave number (1.4.42), we outline, for a �xed

viscous parameter ζ0, a constraint on k which is similar to the condition appearing in

the Jeans Model. The threshold value for the wave number is given by the relation

K2
C = (17A− 3γA)ρ̄

1/6 / ζ0 (1.4.51)

and therefore the condition for the density-perturbation collapse, i.e., δρADB → ∞,

reads k < KC , recalling that, in the Jeans Model for a static background, the condition

for the collapse is k < KJ = [4πGρ0 / v
2
s ]1/2. It is to be remarked that, in absence of

viscosity (ζ0 = 0), expression (1.4.51) diverges implying that all perturbation scales

can be conducted to the collapse. On the other hand, if we consider perturbations of

�xed wave number, they decrease as (−t) → 0 for λ > 17A − 3Aγ. Thus, for each

k, there is a value of the bulk-viscosity coe�cient over which the dissipative forces

contrast the formation of sub-structures.

If k < KC , perturbations oscillate with ever increasing frequency and amplitude.

For a non-zero viscosity coe�cient, the density contrast evolves like

δADB ∼ (−t)
γ
2
− 5

6
+ λ

6A . (1.4.52)

A study of the time exponent yields a new threshold value. If λ < 5A−3Aγ, i.e., the

viscosity is enough small, sub-structures form; on the other hand, when the parameter

ζ0, or the wave number k, provides a λ-term overcoming this value, the perturbations

collapse is so much contrasted that no fragmentation process occurs. By other words,

if λ > 5A− 3Aγ, we get δADB → 0, i.e., for a given γ there is a viscous coe�cient ζ0

enough large ables to prevents the sub-structure formation.

It is remarkable that in the pure adiabatic case, γ = 5/3, dissipative processes, of

any magnitude order, contrast the fragmentation because, while the Jeans-like Length

survives, the threshold value for sub-structure formation approaches in�nity. We can

conclude that, in the case 4/3 < γ 6 5/3, the fragmentation in the top-down scheme

is deeply unfavored by the presence of bulk viscosity which strongly contrasts the

density-perturbation collapse.

Remarks on the zeroth-order cloud dynamics We now clarify why the choice

s = 5/6 is appropriate to a consistent treatment of the asymptotic viscous collapse.

We start by observing that bulk viscous e�ects can be treated in a predictive way only
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if they behave as small corrections to the thermodynamical system. In this respect,

we have to require that the asymptotic collapse is yet appropriately described by

the non-viscous background �ow. As soon as we recognize that eq. (1.4.30) can be

rewritten as follows

v0

∂v0

∂r
+

C

r3ν−1
v0 = −GM

r2
, (1.4.53)

it is easy to infer that, in the asymptotic limit as r → 0, the non-viscous behavior

v ∼ 1/√r is preserved only if s 6 5/6. In fact, in correspondence to this restriction,

the viscous correction, behaving like O(r−3s+1/2), is negligible wrt the leading order

O(r−2) when the singularity is approached; therefore, the request that the viscosity

is a small correction implies the choice s 6 5/6.

On the other hand, if we take s = 5/6−∆, with ∆ > 0, the perturbation equation

in the viscous case (1.4.41) rewrites as

(−t)2 ρ̈1 −
[

16

3
− λ

(3A)1−2∆
(−t)2∆

]
(−t) ρ̇1 +

+

[
14

3
− 4πGρ̄

9A2
+

v2
0 k

2

(3A)2γ−2/3
(−t)8/3−2γ − 2λ

(3A)1−2∆
(−t)2∆

]
ρ1 = 0 .

(1.4.54)

If we deal with the adiabatic-like case, it is immediate to verify that, as (−t)→ 0, the

viscous terms in ρ̇1 and in ρ1, respectively, are negligible and the dynamics matches

asymptotically the non-viscous results (apart from non-relevant features). In the

isothermal-like case the viscous term in ρ̇1 is again negligible, but for ∆ < 4/3 − γ

the one appearing in ρ1 could now dominate. However as (−t)→ 0 both these terms

provide higher-order corrections wrt the constants in ρ1 and eq. (1.4.54) reduces to

an equation whose solution overlaps the non-viscous behavior (we remark that, in the

case s < 5/6, the viscous parameter asymptotically disappears from the background

dynamics too).

Matching together the above considerations for the zeroth- and �rst-order, respec-

tively, we infer that s = 5/6 is the only physical value which does not a�ect the

background dynamics but makes important the viscous corrections in the asymptotic

behavior of the density contrast.

Validity of the Newtonian approximation Since our analysis addresses Newtonian

dynamics, when the cloud approaches the extreme collapse, it is relevant to precise

the conditions which ensure the validity of such a scheme. The request that the shell
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corresponding to the radial coordinate r lives in the Newtonian paradigm leads to

impose that it remains greater than its own Schwarzschild Radius, i.e.,

r(t)� 2GM(a) , (1.4.55)

where M(a) = ρ̄ (4/3πa3) and by eq. (1.4.5) together with the solution (1.4.33) we

reache the inequality

(−t)� −2
3

(
8
3
πGρ̄

)3/2
[
8πζ0ρ̄

s −
√

(8πζ0ρ̄ s)2 + 8
3
πGρ̄ a3−6s

]−1

a9/2−3s . (1.4.56)

Once �xed the fundamental parameters a, ρ̄ and ζ0, the above constraint on the

time variable states up to which limit a shell remains appropriately described by the

Newtonian approach.

About the dynamics of a physical perturbation scale l = (2π/k)cosβ2 (here cosβ2

plays the same role of a cosmic scale factor), its Newtonian evolution is ensured by

the linear behavior, as soon as, condition (1.4.56) for the background holds. More

precisely a perturbations scale is Newtonian if its size is much smaller than the typical

space-time curvature length, but for a weak gravitational �eld this requirement must

have no-physical relevance. To explicit such a condition, we require that the physical

perturbation scale is much greater than its own Schwarzschild Radius, which leads

to the inequality k � χ(−t)−1/3, where χ =
[

4/3(2π)3Gρ̄(3A)−2/3
]1/2

; combining this

result with the inequality (1.4.56), we arrive to the following constraint

k � 2π

(3A)8/3 a
, (1.4.57)

being

A = −1/2 a3s−3/2
[
8πζ0ρ̄

s −
√

(8πζ0ρ̄ s)2 + 8/3πGρ̄ a3−6s
]
. (1.4.58)

The condition (1.4.57) tells us which modes are Newtonian within the shell whose

initial radius takes the value a.
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1.5 Generalization of the Jeans Model to the

expanding Universe

In this Section, we discuss the generalization to the expanding-Universe background

of the Jeans Mechanism [2, 21, 30]. In this model, the unperturbed background

solution is assumed to be static and Uniform and we are now aimed to consider

the Universe evolution as the real zeroth-order �ow. The equations which describe

the homogeneous- and isotropic-Universe dynamics are the well-known Friedmann

Equations. Such equations are derived by Einstein Equations using a perfect �uid

EMT as the matter source of the gravitational �eld. It's worth remarking that, we can

safely address a �rst-order Newtonian scheme for astrophysical models, as soon as we

treat problems in which the energy density is dominated by non-relativistic particles

and in which the linear scales involved are small compared with the characteristic

scale of the Universe.

As soon as the Universe background dynamics is considered, the Newtonian evo-

lution of the density contrast outlines how the Jeans Mass is already the threshold

value for the gravitational collapse. In fact, δ diverges only if the perturbation mass

is grater than the Jeans one. Furthermore, di�erent modes appears in the dynamics

but they simply vanish during the Universe expansion. In what follows, we include

bulk viscous e�ects to such an analysis5. The viscosity is addressed in the �rst-order

analysis and, as in the standard Jeans Model, the key value of the Jeans Mass is not

a�ected but viscous processes modify the evolution of perturbations. In particular,

we show how bulk viscosity damps the density-contrast evolution, suppressing the

sub-structure formation as in the Jeans Mechanism.

The unperturbed dynamics: the FLRW model The homogeneous and isotropic

Universe is described by the FLRW line element

ds2 = dt2 − a2(t) d`2 , (1.5.1)

where a(t) is the scale factor of the Universe. If we consider the matter-dominated

era, the background is described by an EoS so that p ∼ 0 (p� ρ).

5NC and G. Montani, �Jeans Instability in Presence of Viscous E�ects�,

submitted to Int. J. Mod. Phys. D, Nov. 2008.
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As in the Jeans Model, we here use the power-law (1.2.17) to describe bulk viscosity,

i.e., ζ = ζ0ρ
s, which results to be proportional to a positive power of the energy density

in the matter-dominated scheme we consider. This way, being the matter density very

small, we can consistently neglect viscosity in the unperturbed dynamics.

The zeroth-order solution corresponds to the evolution of an homogeneous and

isotropic Universe �lled with the source: Tµ
ν = diag [ ρ, −p, −p, −p ]. The dynamics

equations are the energy-momentum conservation law T ν
µ; ν = 0 (for µ = 0), written

in a co-moving frame,

ρ̇ + 3
ȧ

a
(ρ+ p) = 0 , (1.5.2)

and the Friedmann Equation

ȧ2 + K =
8πG

3
ρ a2 , (1.5.3)

where K = const. is the curvature factor. In this picture, the unperturbed solutions

are, setting p = p0 = 0,

ρ0 = ρ̄
( a0

a

)3

, v0 = r
ȧ

a
, ∇Φ0 = 4

3
r πGρ0 , (1.5.4)

where ρ̄ and a0 are dimensional constants, r (r = |r|) denotes the radial coordinate

vector and, of course, a(t) satis�es (1.5.3). The solutions v0 and Φ0 are derived from

the Continuity Equation (1.2.8a) and the Poisson Equation (1.2.8c) respectively, while

the Navier-Stokes Equation results to be satis�ed since the Friedmann Equations hold.

To obtain the time dependence of the parameters involved in the model, we limit

our analysis to early times, since �uctuations arise from the recombination era and,

furthermore, the Jeans Mass is so small for recent times that it is of little interest

[21]. This way, the study is restricted to scale factors satisfy the condition a(t)� a0,

so that ȧ2 � 1, 8πρa2/3 � 1 and we can use the zero-curvature solution without

loss of generality. Setting K = 0 in the cosmological equation (1.5.3) and using the

solution for ρ0 (1.5.4), one can get the following time dependence

a ∼ t2/3 , ρ0 =
1

6πGt2
. (1.5.5)

The study of the gravitational instability is characterized by the evolution of the

density contrast and, in particular, of the small �uctuations. In this respect, we

underline that v2
s = δp/δρ takes account for �rst-order terms and we have to explicitly

write its time dependence during the Universe expansion. For a general speci�c heat
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1.5 Generalization of the Jeans Model to the expanding Universe

ratio γ, we can assume that the pressure varies as ργ0 and the speed of sound is �nd

to be

vs ∼ t1−γ . (1.5.6)

Such solutions characterize the background dynamics of the expanding Universe.

It's worth noting that, in this generalization, the unperturbed dynamics is now a

real solution of the zeroth-order equations and we do not have to apply the �Jeans

swindle� static-solution assumption.

Review of the non-dissipative case We want now to study the behavior of the

density contrast, in absence of dissipative e�ects. Since we consider small scales, i.e.,

r � a (r/a = 0), as the �uid motion equations one can assume the non-viscous

Newtonian equations, see (1.2.8),

∂tρ+∇ · (ρv) = 0 , (1.5.7a)

ρ ∂tv + ρ (v · ∇)v +∇p + ρ∇Φ = 0 , (1.5.7b)

∇2Φ− 4πGρ = 0 . (1.5.7c)

Performing now the usual perturbative theory, the resulting �rst-order motion-

equations are

∂tδρ+ 3
ȧ

a
δρ+

ȧ

a
(r · ∇)δρ+ ρ0 ∇ · δv = 0 , (1.5.8a)

ρ0 ∂tδv + ρ0

ȧ

a
δv + ρ0

ȧ

a
(r · ∇)δv + v2

s ∇ δρ+ ρ0∇ δΦ = 0 , (1.5.8b)

∇2δΦ− 4πGδρ = 0 , (1.5.8c)

where the relation δp = v2
s δρ has been used. The equations above are spatially

homogeneous [2], so one can address the usual plane-wave solutions of the form

δρ(r, t) = ρ1(t) e
i r·q
a , δv(r, t) = v1(t) e

i r·q
a , δΦ(r, t) = Φ1(t) e

i r·q
a . (1.5.9)

The factor 1/a(t) represents the wave-length reduction dues to the Universe expan-

sion: q = |q| is the co-moving weave number, being k = q/a the physical one. To

complete our analysis, in the limit r/a = 0, it is convenient to decompose the time

depending velocity �uctuations v1 into two part: one transversal and one parallel to

the q direction, respectively:

v1(t) = v⊥1 + iq ε , q · v⊥1 = 0 , ε = − i
q2

(q · v1) . (1.5.10)
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It is also useful to express ρ1 in terms of the density contrast, i.e., ρ1(t) = ρ0δ,

obtaining the following system

v̇⊥1 +
ȧ

a
v⊥1 = 0 , (1.5.11a)

ε̇+
ȧ

a
ε−

(4πGρ0a

q2
− v2

s

a

)
δ = 0 , (1.5.11b)

δ̇ − q2

a
ε = 0 . (1.5.11c)

A simple algebraic analysis of the �rst-order dynamics shows that two di�erent

types of normal modes arise. The Rotational Modes are described by v⊥1 and simply

decay as v⊥1 (t) ∼ 1/a during the Universe expansion. On the other hand, the Com-

pressional Modes are characterized by ε e δ and require a more interesting analysis.

Such modes are described by the equation

δ̈ +
2ȧ

a
δ̇ +

(v2
s q

2

a2
− 4πGρ0

)
δ = 0 , (1.5.12)

which reduces to the Jeans dispersion-relation (1.3.7) as soon as we set a = const.

and consider the physical wave number k. Taking into account the zeroth-order time

dependence (1.5.5) and (1.5.6), one �nds that the solution of eq. (1.5.12) involves

Bessel functions. As already discussed, such special functions have di�erent behavior

corresponding to small or large proper argument. If the argument is large, i.e., much

greater than one, the density contrast oscillates, on the other hand, it evolves like

δ ∼ t−1/6±5/6 , (1.5.13)

as soon as the Bessel argument is much less than unity. The condition which separates

the two regimes, implying the gravitational collapse in the limit t → ∞ (of course

choosing the positive solution for δ), can be write [2] as

v2
s q

2/a2 . 6πGρ0 , (1.5.14)

which is substantially the same as the Jeans condition derived from (1.3.7). It worth

underling that the standard Jeans condition is perfectly recast if the parameter γ of

(1.5.6) is set to the value 4/3.

In conclusion, we can infer that the dynamics of the expanding Universe does not

modify (substantially) the value of the Jeans Mass which remains the threshold to

address the gravitational collapse of structures.
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1.5.1 Bulk-viscosity e�ects on the density-contrast dynamics

We are now aimed to introducing bulk-viscosity e�ects into the dynamics. As dis-

cussed above, such a dissipative e�ect can be consistently neglected from the zeroth-

order analysis, since we are dealing with a matter-dominated Universe. This way,

the unperturbed background on which develop the perturbative theory corresponds

to the solution (1.5.4) of a Friedmann Universe.

Adding small �uctuations to the Newtonian system (1.2.8), i.e.,

∂tρ+∇ · (ρv) = 0 , (1.5.15a)

ρ ∂tv + ρ (v · ∇)v +∇p − ζ∇(∇ · v) + ρ∇Φ = 0 , (1.5.15b)

∇2Φ− 4πGρ = 0 , (1.5.15c)

and neglecting second-order terms, we get the following set of equations

∂tδρ+ 3
ȧ

a
δρ+

ȧ

a
(r · ∇)δρ+ ρ0∇ · δv = 0 , (1.5.16a)

ρ0∂tδv + ρ0

ȧ

a
δv + ρ0

ȧ

a
(r · ∇)δv + v2

s∇δρ+ ρ0∇δΦ− ζ̄∇(∇ · δv) = 0 , (1.5.16b)

∇2δΦ− 4πGδρ = 0 , (1.5.16c)

where the relation δp = v2
s δρ has been used and we recall that

ζ̄ = ζ(ρ0) ,

see eq. (1.3.10). As in the non-dissipative case, the plane-wave expansion (1.5.9) for

the �uid parameters can be addressed and, using the hypothesis r/a ∼ 0, the system

above reduces to:

ρ̇1 + 3
ȧ

a
ρ1 +

i ρ0

a
(q · v1) = 0 , (1.5.17a)

v̇1 +
ȧ

a
v1 +

i v2
s

a ρ0

q ρ1 − 4πiGa ρ1

q

q2
+

ζ̄

a2 ρ0

q (q · v1) = 0 . (1.5.17b)

Let us now follow the standard analysis and use the decomposition (1.5.10) in order

to compare our results wrt the non-dissipative ones. We �nally get

v̇⊥1 +
ȧ

a
v⊥1 = 0 , (1.5.18a)

ε̇+
( ȧ
a

+
ζ̄ q2

ρ0 a2

)
ε−

(4πGρ0a

q2
− v2

s

a

)
δ = 0 , (1.5.18b)

δ̇ − q2

a
ε = 0 . (1.5.18c)
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The Rotational Modes are not a�ected by viscosity. In fact, they are governed by

eq. (1.5.18a) which has the solution

v⊥1 (t) ∼ 1/a , (1.5.19)

as in the non-viscous analysis presented above.

The Compressional Modes Compressional Modes are in�uenced by the presence

of viscosity. In particular, combining together (1.5.18b) and (1.5.18c), we get an

equation which generalizes the compressional equation (1.5.12). It reads

δ̈ +
(

2
ȧ

a
+

ζ̄q2

ρ0 a2

)
δ̇ +

(v2
s q

2

a2
− 4πGρ0

)
δ = 0 . (1.5.20)

This is the fundamental equation which governs the evolutions of the density contrast

on an expanding Universe. Let us now write explicitly the time dependence of the

parameters involved in the model. The zeroth-order analysis still remains valid in

presence of viscosity and we can address expressions (1.5.5) and (1.5.6), as soon as we

restrict the study to early times, so that a(t)� a0. Furthermore, using the power-law

relation (1.2.17) for the bulk-viscosity coe�cient, one easily �nds

ζ̄ = ζ̄0 t
−2s , ζ̄0 = ζ0/(6πG)s . (1.5.21)

With the help of these expressions, we can isolate two constants in the eq. (1.5.20),

which �nally rewrites

δ̈ +

[
4

3 t
+

χ

t2(s−1/3)

]
δ̇ +

[
Λ2

t2γ−2/3
− 2

3 t2

]
δ = 0 , (1.5.22)

where the constants χ and Λ are

χ =
t2(s−1/3) ζ̄q2

ρ0 a2
, Λ =

tγ−1/3 vsq

a
. (1.5.23)

This equation can not be analytically solved in general. As in the previous Section,

let us now discuss the case s = 5/6. Indeed, this case is the only of physical interest

since it deals with the maximum e�ect that bulk viscosity has without dominating

the dynamics, in view of its non-equilibrium perturbative characterization. In fact,

in the collapsing limit as t→∞, if s > 5/6 the viscous term proportional to χ results

to be of higher order and dominant. On the other hand, it can be neglected in
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eq. (1.5.22), if s < 5/6. Substituting this value in the equation above, one gets the

following integrable expression

δ̈ +

[
4

3
+ χ

]
δ̇

t
+

[
Λ2

t2γ−2/3
− 2

3 t2

]
δ = 0 . (1.5.24)

The solutions are

δ(t) = t−
1
6
−χ

2

[
C1 Jn

(Λt−γ̄

γ̄

)
+ C2 Yn

(Λt−γ̄

γ̄

)]
, (1.5.25)

where Jn and Yn denote Bessel functions and

n = −
√

25 + 6χ+ 9χ2 / 6γ̄ , γ̄ = γ − 4/3 . (1.5.26)

These functions oscillate for t � Λ1/γ̄, while for t � Λ1/γ̄ the density-contrast

solution (1.5.25) evolves like

δ ∼ t−1/6−χ/2 ∓ γ̄n . (1.5.27)

A simple analysis of the exponent of such solutions shows how it is always positive,

for all values of the viscous parameter χ, as soon as we choose the (−)-sign solution.

This behavior corresponds to a gravitational collapse, if we consider the asymptotic

limit t → ∞. The threshold value which separates the di�erent regimes, implying

the growth of the density contrast, is de�ned by the relation t > Λ1/γ̄ which, using

(1.5.5), corresponds to the Jeans condition (1.3.7):

v2
s q

2/a2 . 6πGρ0 , (1.5.28)

as in the non-dissipative case. We remark that such solutions will apply only after the

recombination, with 4/3 < γ 6 5/3. In fact, in correspondence of γ = 4/3, the solutions

(1.5.25) show a singular behavior and eq. (1.5.22) requires a di�erent treatment.

As in the standard Jeans Model, the key value of the Jeans Mass is not a�ected by

bulk viscosity, i.e., gravitational collapses for δ →∞ are addressed if

k < K∗J =

√
6πGρ0

γ̄2v2
s

. (1.5.29)

The e�ect of viscous processes is to modify the evolution of perturbations. In fact,

comparing expression (1.5.27) wrt the non-dissipative behavior of growing density

contrast δ ∼ t2/3, see (1.5.13), one can show that the relation

−1/6− χ/2− γ̄n < 2/3 (1.5.30)
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is always veri�ed. We can conclude that the e�ect of bulk viscosity is to damp

the density-contrast evolution, suppressing the structure formation as in the Jeans

Mechanism.
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1.6 Quasi-Isotropic Model in presence of bulk viscosity

1.6 Quasi-Isotropic Model in presence of bulk

viscosity

The isotropic nature of the Universe corresponds to a class of the gravitational solu-

tions which involve three physically arbitrary coordinate functions. Such a class was

found by E.M. Lifshitz and I.M. Khalatnikov in 1963 [14], addressing a radiation-

dominated Universe, and then generalized to an arbitrary �uid state equation in [31].

Earlier extensions of this Quasi-Isotropic (QI) scheme were provided in [32, 33, 34, 35],

where di�erent evolutionary stages of the Universe are characterized.

The QI Model corresponds to a Taylor expansion of the 3-metric tensor in powers of

the synchronous time. However, further investigation outlined the necessity of treat-

ing generic power-law components of the 3-metric. In what follows6,7, we generalize

the original work by Lifshitz and Khalatnikov to the presence of bulk viscosity since,

asymptotically to the singularity, the Universe volume has a very fast time variation

and we naturally expect that viscous e�ects arise. Our aim is to determine the con-

ditions on the viscosity intensity which allows for the existence of a QI regime for the

radiation-dominated Universe.

As already discussed, general analyses of the Universe behavior in presence of bulk

viscosity characterize such a coe�cient as a power-law of the energy density, i.e.,

ζ = ζ0 ρ
s. As far as this phenomenological ansatz is referred to the early Universe, it

is easy to realize that the choice s = 1/2 prevents dominating viscous e�ects. On the

other hand, simple considerations, as well as the analysis presented in the works by

J.D. Barrow [36, 37, 38], indicate that the case s < 1/2 leads to negligible contributions

of the viscosity to the asymptotic regime towards the Big Bang. As a consequence,

in studying the singularity physics in the QI Model, the most appropriate form of the

power-law is ζ = ζ0

√
ρ.

In the QI non-viscous scheme, after setting the form of the 3-metric expansion, the

integration of the Einstein Equations is performed in order to obtain a solution for the

energy density, the density contrast and the 3-velocity of the perfect �uid �lling the

space-time. In order to include bulk viscous e�ects into the dynamics, we investigate

6NC and G. Montani, �Study of the Quasi-Isotropic Solution Near the Cosmological Singularity in

Presence of Bulk Viscosity�, Int. J. Mod. Phys. D 17(6), 881 (2008).
7NC and G. Montani, �On the Role of Viscosity in Early Cosmology�,

Int. J. Mod. Phys. A 23(8), 1248 (2008).

43



Dissipative Cosmologies

the Einstein Equations under the assumptions proper of the QI Model. We separate

zeroth- and �rst-order terms into the 3-metric tensor and the whole analysis follows

this scheme of approximation. In the search for a self-consistent solution, we make

use of the hydrodynamics equations, in view of �xing the form of the energy density.

As a result, we prove the existence of a QI Solution, which has a structure analogous

to that provided by Khalatnikov, Kamenshchik and Starobinsky [31]. Of course, in

our solution the power-law for the leading 3-metric term is sensitive to the viscosity

parameter ζ0. In particular, we show how the solution exists only if when ζ0 remains

smaller than a threshold value. Finally, the density contrast and its dependence on

ζ0 are determined. This behavior con�rms and generalizes the result obtained in [39]

about the damping of density perturbations by the viscous correction.

Review on the LK-QI Solution In 1963, E.M. Lifshitz and I.M. Khalatnikov [14]

�rst proposed the so-called QI Solution. This model is based on the idea that the

space contracts maintaining linear-distance changes with the same time dependence

order by order (i.e., a Taylor expansion of the 3-metric is addressed). In this approach,

the Friedmann solution becomes a particular case of a larger class of solutions existing

only for space �lled with matter [40].

The metric evolution is strongly characterized by the matter EoS. For an ultra-

relativistic perfect �uid, characterized by an EoS so that, p = ρ/3, the spatial metric

assumes the form γαβ ∼ aαβ t, asymptotically as t→ 0 (the cosmological singularity is

set by convention in t = 0), where aαβ are assigned functions of the spatial coordinates.

As a function of time, the 3-metric is expandable in powers of t. The QI Solution is

formulated in a synchronous system (i.e., g0α = 0, g00 = −1), which is not strictly a

co-moving one. The line element writes as8

ds2 = −dt2 + γαβ(t, xγ)dxαdxβ , (1.6.1)

with a spatial metric of the form

γαβ = t aαβ + t2 bαβ + ... , γαβ = t−1 aαβ − bαβ , (1.6.2)

8The whole analysis of this Section is devoted to compare, step by step, the dissipative e�ects

wrt the Landau-School analysis. In this respect, we follow the notation signature [−, +, +, + ]

(uµu
µ = −1) of the original work by Lifshitz and Khalatnikov. As you can see in eq. (1.6.6),

this choice requires a sign-modi�cation also in the EMT expression. We also use units so that

8πG = 1.
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where aαβ is de�ned as aαβaβγ = δαγ ; furthermore, the relation bαβ = aαγbγβ is ensured

by the scheme of approximation.

The Einstein Equations in the synchronous system assume the form [15]

R0
0 = 1

2
καα, 0 + 1

4
κβακ

α
β = T 0

0 − 1
2
T , (1.6.3a)

R0
α = 1

2
(κββ;α − κ

β
α;β) = T 0

α , (1.6.3b)

Rβ
α = 1

2
√
γ

(
√
γ κβα),0 + P β

α = T βα − 1
2
Tδβα , (1.6.3c)

where the extrinsic curvature tensor καβ and its contractions read

καβ = γαβ, 0 = aαβ + 2 t bαβ , (1.6.4a)

κβα = γβδ καδ = t−1 δβα + bβα , (1.6.4b)

κ = (ln
√
γ),0 = 3 t−1 + b , (1.6.4c)

and

γ = det(γαβ) ∼ t3(1 + tb) det(aαβ) . (1.6.5)

Matter is described by an ultra-relativistic perfect �uid EMT

T (P )
µν = (p+ ρ)uµuν + p gµν = 1

3
ρ (4uµuν + gµν) , (1.6.6)

which provides the following identities

T 0
0 = 1

3
ρ (−4u2

0 + 1) , T 0
α = 4

3
ρ uαu

0 , T βα = −4
3
ρ uαu

β , T = 0 . (1.6.7)

Calculating the lhs of eq. (1.6.3a) and eq. (1.6.3b) up to zeroth-order, i.e., O(1/t2),

and �rst-order, i.e., O(1/t), in 1/t, we rewrite them respectively as

− 3

4 t2
+

b

2 t
=
ρ

3
(−4u2

0 + 1) ,
1

2
(b;α − bβα;β) = −4 ρ

3
uαu0 . (1.6.8)

Because of the identity −1 = uµu
µ ∼ −u2

0 + t−1uαuβ a
αβ, it is immediate to see that

ρ ∼ t−2 and uα ∼ t2; hence, in the asymptotic limit t → 0, u2
0 ' 1 (u0 = −1).

From the �rst of eq. (1.6.8), one can �nd the �rst two terms of the energy density

expansion, while, from the second equation, the leading term of the velocity arises

ρ =
3

4 t2
− b

2 t
, uα =

t2

2
(b;α − bβα;β) . (1.6.9)

Because of eqs. (1.6.9), the expression for the density contrast δ can be found as �rst-

and zeroth-order energy-density ratio, i.e.,

δ = −2
3
b t . (1.6.10)
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This behavior implies that, as expected in the cosmological standard model, the

zeroth-order term of energy density diverges more rapidly than the perturbations

and the singularity is naturally approached with a vanishing density contrast in this

scenario.

Besides the solutions for ρ and uα, one has to consider the pure spatial components

of Gravitational Equations, i.e., eq. (1.6.3c). Up to �rst approximation, the Ricci

tensor can be written as P β
α = P̄ β

α /t, where P̄
β
α is constructed by the constant 3-tensor

aαβ. The terms of order t−2 automatically cancel out, while those proportional to t−1

give

P̄ β
α + 3

4
bβα + 5

12
b δβα = 0 . (1.6.11)

Performing the trace of this equation, a relation between the quite arbitrary six

functions aαβ and the coe�cients bαβ from the next-to-leading term of expansion can

be determined: bβα = −4/3P̄ β
α + 5/18 P̄ δβα. It is worth reminding that, in the asymptotic

limit t → 0, the matter distribution becomes homogeneous because ρ approaches a

value independent of b.

Now, using the Ricci identity P̄ β
α;β = 1/2 P̄ ;β, the useful relation b

β
α;β = 7/9 b;α can

be determined; this gives the �nal expression for the 3-velocity distribution as

uα =
t2

9
b;α . (1.6.12)

This result implies that, in this approximation, the 3-velocity is a gradient �eld of a

scalar function �xed by the non perturbed metric aαβ. As a consequence, the curl of

the velocity vanishes and no rotations take place into the �uid.

Finally, it must be observed that the metric (1.6.2) allows for an arbitrary 3-space

coordinate transformation and the solution above contains only 6 − 3 = 3 arbitrary

space functions arising from aαβ. A particular choice of this functions, those which

correspond to the space of constant curvature (P̄ β
α ∼ δβα), can reproduce the pure

isotropic and homogeneous model.

1.6.1 Generalized Quasi-Isotropic line element

In order to generalize the QI Solution of the Einstein Equations for the presence of

dissipative e�ects into the evolution of the energy source, we deal with a more complex

(no longer in integer powers) form of the 3-metric (1.6.2) [32, 33, 31]. In this respect,
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1.6 Quasi-Isotropic Model in presence of bulk viscosity

we take the spatial metric of the form

γαβ = tx aαβ + ty bαβ , γαβ = t−x aαβ − ty−2x bαβ . (1.6.13)

Here, the constraints for the space contraction (i.e., x > 0), and for the consistence of

the perturbative scheme (i.e., y > x) have to be imposed for the proper development

of the model. In this approach, the extrinsic curvature and its contractions read

καβ = x tx−1 aαβ + y ty−1 bαβ , (1.6.14a)

κβα = x t−1 δβα + (y − x) ty−x−1 bβα , (1.6.14b)

κ = 3x t−1 + (y − x) ty−x−1 b , (1.6.14c)

furthermore, we calculate the following useful relation

(ln
√
γ),0 = 1

2
κ = 3

2
xt−1 + 1

2
(y − x) ty−x−1 b . (1.6.15)

We are now able to write down the �nal form of the Ricci-tensor components con-

tained in the Einstein Equations (1.6.3). These new expressions allow us to generalize

the original QI approach. Our aim is to obtain constraints and relations for the ex-

ponents x, y in order to guarantee the existence of the solution of our model. They

explicitly read

R0
0 = −3x(2− x)

4t2
+ (y − x)(y − 1)

b

2t2−y+x
, (1.6.16a)

R0
α = (b ;α − bβα;β)

y − x
2t1−y+x

, (1.6.16b)

Rβ
α =

x(3x− 2)

4t2
δβα +

(y − x)(2y + x− 2)

4t2−y+x
bβα +

+
(y − x)x

4t2−y+x
b δβα +

P̄ β
α

tx
+

P ∗βα
t2x−y

. (1.6.16c)

We note that in eq. (1.6.16c), P̄ β
α represents the 3-dimensional Ricci tensor con-

structed by the metric aαβ. On the other hand, the higher-order term P ∗βα denotes

the part of P β
α containing the 3-tensor bαβ.

The form of energy density in the viscous approach In the QI Solution, the

Universe is assumed, according to the CSM, to be described by the EMT of an ultra-

relativistic perfect �uid. In connection with the development of new cosmological

models, the discovery of the cosmic acceleration suggests matter to play an essential
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role at di�erent stages of cosmological evolution and it can obey very di�erent EoS

[41]. Thus, corrections in this sense to the original formulation of the QI Model can

be useful in this new context.

In this work, we treat the immediate generalization of LK scheme considering the

presence of dissipative processes within the �uid dynamics. As discussed in Sec-

tion 1.2, using the di�erent signature, the new EMT reads now (see eq. (1.2.16))

Tµν = (p̃+ ρ)uµuν + p̃ gµν = 1
3
ρ (4uµuν + gµν)− ζ uρ; ρ(uµuν + gµν) , (1.6.17)

p̃ = p− ζ uρ; ρ , (1.6.18)

where, of course, p = ρ/3 and ζ = ζ0 ρ
s (see eq. (1.2.17)).

Let us now write the expressions of the components of EMT (1.6.17) up to higher-

order corrections as

T 0
0 = −ρ

3
(4u2

0 − 1) + ζ0ρ
s uµ;µ (u2

0 − 1) , (1.6.19a)

T = −3 ζ0 ρ
s uµ;µ , (1.6.19b)

T βα =
ρ

3
(4uαu

β + δβα)− ζ0ρ
s uµ;µ (uαu

β + δβα) , (1.6.19c)

T 0
α = 4

3
ρ uαu

0 − ζ0ρ
s uµ;µ uαu

0 , (1.6.19d)

where the divergence of the 4-velocity reads

uµ;µ = (ln
√
γ),0 = 3

2
xt−1 + 1

2
(y − x) ty−x−1 b . (1.6.20)

Here we assume, as in the non-viscous case, the relation: u2
0 ' 1 (with u0 = −1),

whose consistence must be veri�ed a posteriori comparing the time behavior of the

quantities involved in the model. Taking into account expressions (1.6.19a) (1.6.19b),

we can recast now the Einstein Equation (1.6.3a) in the form

−3x(2− x)

4t2
+ (y − x)(y − 1)

b

2t2−y+x
= −ρ +

9x

4 t
ζ0ρ

s +
3(y − x)

4 t1−y+x
ζ0ρ

s b . (1.6.21)

In what follows, we �x the value

s = 1/2 , (1.6.22)

in order to deal with the maximum e�ect that bulk viscosity can have without dom-

inating the dynamics. As already discussed, the notion of this kind of viscosity

corresponds to a phenomenological issue of perturbations to the thermodynamical
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1.6 Quasi-Isotropic Model in presence of bulk viscosity

equilibrium [23]. In this sense, we remark that, if s > 1/2, the dissipative e�ects be-

come dominant and non-perturbative. Moreover, if we assume the viscous parameter

s < 1/2, the dynamics of the early Universe is characterized by an expansion via a

power-law a(t) ∼ t2/3γ starting from a perfect �uid Friedmann singularity at t = 0

(here γ is identify by the relation p = (γ − 1) ρ). After this �rst stage of evolution,

where viscosity does not a�ect at all the dynamics, the Universe in�ates out of our

approximation scheme (i.e., in the limit t→∞) to a viscous deSitter solution which

is characterized by a(t) ∼ eH0t, where H0 =
√
ρ0/3 = 1/3(ζ0

√
3/γ)1/(1−2s) [37, 38].

Since, in this work, we deal with the asymptotic limit t → 0, we only treat the

case s = 1/2 in order to quantitatively include dissipative e�ects in the primordial

dynamics. From eq. (1.6.21), if s = 1/2, we expand the energy density ρ in Taylor

series:

ρ =
e0

t2
+

e1 b

t2−y+x
,

√
ρ =

√
e0

t

(
1 +

e1 b

2e0

ty−x
)
, (1.6.23)

where the constants e0, e1 have to be determined combining the 00-component of

Gravitational Equations with the hydrodynamical ones comparing the terms order

by order, as treated below. We remark that, only for the case s = 1/2, all terms

coming on the lhs and the rhs respectively of eq. (1.6.21) result to have the same

time behavior up to �rst-order because of eq. (1.6.23).

Comments on the adopted paradigm We here discuss in some details the hy-

potheses at the ground of our analysis of the QI viscous Universe dynamics. In

particular, we investigated some peculiar features of the very early evolution (near

the cosmological singularity) since their presence leads to a speci�c treatment of the

viscous phenomena.

(1.) It is well known [1] the crucial role played in cosmology by the microphysical

horizon, as far as the thermodynamical equilibrium is concerned. In the isotropic

Universe, such a quantity is �xed by the inverse of the expansion rate,

`h = H−1 ≡ (a/ȧ) , (1.6.24)

a being the scale factor of the Universe and the dot identi�es time derivatives, and it

gives the characteristic scale below which the elementary-particle interactions are able

to preserve the thermal equilibrium of the system. Therefore, if the mean free-path of

particles ` is greater than the microphysical horizon (i.e., ` > H−1), no real notion of
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thermal equilibrium can be recovered at the micro-causal scale. If we indicate by n the

number density of particles and by σ the averaged cross section of interactions, then

the mean free-path of the ultra-relativistic cosmological �uid (in the early Universe,

the particle velocity is very close to speed of light) takes the form

` ∼ 1/nσ . (1.6.25)

Interactions mediated by massless gauge bosons are characterized by the cross section

σ ∼ α2 T−2 (g =
√

4πα being the gauge coupling strength) and the physical estimation

n ∼ T 3 leads to the result ` ∼ 1/α2T [1]. During the radiation-dominated era

H ∼ T 2/mPl, so that

` ∼ T

α2mPl

H−1 . (1.6.26)

Therefore in the case of T ? α2mPl ∼ O(1016GeV ), i.e., during the earliest epoch of

pre-in�ating Universe, the interactions above are e�ectively �frozen out� and they are

not able to maintain or to establish thermal equilibrium. To complete this consider-

ation we remark that, at temperatures grater than O(1016GeV ), the contributions to

the estimation above due to the mass term of the gauge bosons can be ruled out for

all known and proposed perturbative interactions.

As a consequence of this non-equilibrium con�guration of the causal regions char-

acterizing the early Universe, most of the well-established results about the kinetic

theory [2, 20, 21] concerning the cosmological �uid nearby equilibrium become not

applicable. Indeed all these analysis are based on the assumption to deal with a �nite

mean free-path of the particles and, in particular, results about the characterization

of viscosity are established when pure collisions among particles are retained. How-

ever, when the mean free-path is grater than the micro-causal horizon (which, in the

pre-in�ating Universe, coincides with the cosmological horizon), ` can be taken of

in�nite magnitude for any physical purpose.

The fundamental analysis of the viscous cosmology is due to the Landau School

[22, 23, 24]; since they were aware of these di�culties for a consistent kinetic theory,

such an analysis was essentially based on an hydrodynamical approach. A real notion

of the hydrodynamical description can be provided by assuming that an arbitrary

state is adequately speci�ed by the particle-�ow vector and the EMT alone [25]. In

particular, the entropy �ux has to be expressed as a function of these two hydrody-

namical variables without additional parameters. Following this point of view, the
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1.6 Quasi-Isotropic Model in presence of bulk viscosity

viscosity e�ects are treated on the ground of a thermodynamical description of the

�uid, i.e., the viscosity coe�cients are �xed by the macroscopic parameters which

govern the system evolution. In this respect, the most natural choice is to take such

a (shear and bulk) viscosity coe�cients as power-laws in the energy density of the

�uid (for a detailed discussions see [22]). Such a phenomenological assumption can

be reconciled, for some simple cases, with a relativistic kinetic theory approach [42],

especially in the limits of small and large energy densities.

Addressing the hydrodynamical approach, we are lead to retain the same EoS which

would characterize the corresponding ideal �uid. This fact is supported by idea that

the viscosity e�ects provide only small corrections to the thermodynamical setting

of the system. As clari�ed above, in the present analysis, we deal with the case in

which bulk viscous corrections are of the same order of the perfect �uid contributions,

in order to maximize their in�uence in the Universe dynamics. Nevertheless, since

we are treating an ultra-relativistic thermodynamical system, which is very weakly

interacting on the micro-causal scale, there are well-grounded reasons to describe it

by the EoS so that p = ρ/3.

(2.) Another important point concerning the ground assumptions of our model, is

why the shear viscosity ϑ is not addressed in the present scheme. Indeed, this kind of

viscosity accounts for the friction forces acting between di�erent portions of viscous

�uid. Therefore, as far as the isotropic character of the Universe is retained, the shear

viscosity must not provide any contributions, as discussed in [23]. On the contrary, the

rapid expansion of the early Universe suggests that an important contribution comes

out from the bulk viscosity as an averaged e�ect of a quasi-equilibrium evolution.

Indeed, our present analysis deals with small inhomogeneous corrections to the

background FLRW metric. Thus, at �rst-order in our solution, shear viscosity should

be, in principle, included into the dynamics. In this sense, it is shown in [22] that,

if the bulk-viscosity coe�cient behaves like ζ ∼ ρs, then the corresponding shear one

behaves as ϑ ∼ ρm, where m must satisfy the constraint condition m > s+ 1/2. Here

we treat the case s = 1/2, thus getting m > 1 for the ϑ coe�cient. This issue is

incompatible with the symmetries and the approximations here addressed. In fact,

the shear viscosity provides, among others, an equivalent contribution to the bulk

one, since the EMT of the viscous �uid contains the term

Tµν ∼ ... − (ζ − 2
3
ϑ)uρ; ρ(uµuν + gµν) + ... . (1.6.27)
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We now observe that, at zeroth-order, uρ; ρ ∼ O(1/t), while the �rst-order correction

in the energy density behaves like O(1/tx) and we will show the relation 1 6 x < 2 in

the next Section. Since the request x > 1 comes out from the zeroth-order analysis,

which by isotropy is independent of the shear contribution, we can conclude that, for

our model, the shear viscosity would produce the inconsistency associated to the term

O(1/tmx+1). The point is that the requestmx+1 > 2 would make such a contribution

dominant in the model, against the basic assumption. Thus, to include shear viscosity

in a QI Model, we should choose the case s < 1/2 which is out of the aim of this paper

since it is devoted to maximize the bulk e�ects in a coherent cosmological dynamics.

(3.) To conclude, we would like to discuss the question concerning the implemen-

tation of a causal thermodynamics for our cosmological model. Indeed, the hydro-

dynamical theory of a viscous �uid is applicable only when the spatial and temporal

derivatives of the velocity of the matter are small [25, 43]. This condition is neces-

sarily violated in the asymptotic limit near the cosmological singularity. This way,

viscous �uids would have to be described by using a relaxation equation similar to

the Maxwell Equation in the theory of viscoelasticity [24].

In this scheme, the EMT assumes the form

Tµν = ρ uµuν + (p+ σ) (gµν + uµuν) , (1.6.28)

where p denotes the thermostatic pressure and σ is the bulk-stress density. In the

very early Universe, the relation between σ and the relaxation time τ0 reads as follow

σ + σ̇ τ0 = ζ uρ; ρ . (1.6.29)

The relaxation time can be expressed as τ0/ζ ∼ 1/ρ : this physical assumption

follows from the fact that the transverse-wave velocity in matter has �nite (non-zero)

magnitude in the case of large values of ρ [24].

In this scheme, we are able to express the time dependence of τ0. Since, at leading

order, ρ ∼ 1/t2, we obtain, using the standard power-law for the bulk-viscosity coe�-

cient, the following behavior for the relaxation time τ0 ∼ t2−2s. In our model, we deal

with the case s = 1/2 which yields τ0 ∼ t and, if we address a power-law dependence

on σ (according the structure of the solution) such as σ̇ ∼ σ/t [24], relation (1.6.29)

rewrites as

σ = ζ̃0 ρ
s uρ; ρ . (1.6.30)
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From this analysis, we can apply the standard expression for the bulk viscous hydro-

dynamic taking into account the reparameterization ζ0 → ζ̃0 of the bulk coe�cient.

The considerations above allow us to regard the subtle paradigm of the causal

thermodynamics, having in mind that it would a�ect only qualitative details of our

analysis, but it could not alter the validity of our results.

1.6.2 The solutions

The 00-component of Einstein Equations (1.6.3a) has been used to obtain the qualita-

tive expression for the energy density ρ, when the matter �lling the space is described

by a viscous �uid EMT. We now match eq. (1.6.21) rewritten as[
− 3

4
x (2− x) + e0 − 9

4
ζ0 x
√
e0

]
t−2+

+
[

1
2
(y − x)(y − 1) + e1 − 9

8
ζ0 x e1 e

−1/2
0 − 3

4
(y − x) ζ0

√
e0

]
b ty−x−2 = 0 , (1.6.31)

with the hydrodynamical ones T νµ; ν = 0. It is worth noting that, in the non-viscous

case (ζ0 = 0), the energy-density solution is determined without exploiting the hy-

drodynamical equations, as in [31], since ρ directly comes out from the 00-component

of Gravitational Equations. In our approximation (uα is neglected wrt u0), the EMT

conservation law provides the equation

ρ,0 + (ln
√
γ),0

[
4
3
ρ− ζ0ρ

s(ln
√
γ),0
]

= 0 , (1.6.32)

which can be simpli�ed as follows[
2e0(x− 1)− 9

4
ζ0 x

2√e0

]
t−3+

+
[
e1

(
b(y − x− 2) + 2xb− 9

8
ζ0x

2b e
−1/2
0

)
+

+ 2
3
(y − x) b e0 − 3

2
x(y − x) ζ0 b

√
e0

]
ty−x−3 = 0 . (1.6.33)

Eq. (1.6.31) and eq. (1.6.33) have to be combined together and solved order by

order in the expansion in 1/t (in the asymptotic limit t→ 0). Since for the coherence

of the solution we impose y > x, by solving the leading-order identities we get

x =
1

1− 3
√

3
4
ζ0

, e0 = 3
4
x2 . (1.6.34)

The parameter ζ0 has here the restriction ζ0 6 4/3
√

3 in order to satisfy the condi-

tion x > 0. This way the exponent of the metric power-law x runs from 1 (which
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corresponds to the non viscous limit ζ0 = 0) to ∞ [39, 31]. We remark that this

constraint on ζ0 arises from a zeroth-order analysis and de�nes the existence of a vis-

cous Friedmann-like model, in which the early Universe has to expand with positive

powers of time.

Comparing now the two �rst-order identities (which involve the terms proportional

to ty−x−2 and ty−x−3), we easily get an algebraic equation for the y parameter

y2 − y(x+ 1) + 2x− 2 = 0 . (1.6.35)

The solutions are y = 2, y = x − 19. Obviously the second one does not ensure the

condition y > x; hence the �rst-order correction to the 3-metric is characterized by

the following values

y = 2 , e1 = −1
2
x3 + 2x2 − 2x . (1.6.36)

It is immediate to see that, in the non viscous case ζ0 = 0, we obtain x = 1, e0 = 3/4,

e1 = −1/2, which reproduce the energy-density solution (1.6.9).

By guaranteeing the consistence of the model, we now narrow the validity of the

parameter x to the values which satisfy the constraint x < y. Thus, from (1.6.34),

the QI Solution exists only if

ζ0 < ζ∗0 =
2

3
√

3
, (1.6.37)

i.e., the viscosity is su�ciently small. For values of the viscous parameter ζ0 that

overcome the critical one (ζ∗0 ), the QI expansion in the asymptotic limit as t → 0

can not be addressed, since perturbations would grow more rapidly than the zeroth-

order terms. As one will recognize in the next Section, the study of the perturbation

dynamics in a pure isotropic picture will yield a very similar asymptotic behavior

when viscous e�ects are taken into account [39]. The Friedmann-singularity scheme

is preserved only if we deal with limited values of the viscosity parameter, in particular

we obtain the condition ζ
(iso)
0 < ζ∗0 /3: this constraint is physically motivated if we

consider, as it is, the Friedmann model as a particular case of the QI Solution.

Comments on the total pressure sign The solution of the unperturbed

dynamics gives rise to the expression of the metric exponent x in terms of the

9We remark that in [31] (see eq. (34) and eq. (35) therein) this solution is found by imposing the

consistence of the αβ-Einstein Equation and not as a pure dynamical condition derived by the

solution of the perturbed hydrodynamical equation.
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viscous parameter ζ0 and to the zeroth-order expression of the energy density,

which reads

ρ =
3x2

4t2
+ ... . (1.6.38)

In order to characterize the e�ective expansion of the early Universe, let us now

recall the expression of the total pressure p̃ (1.6.18) at leading-order:

p̃ = 1
3
ρ+ 3

2 t
ζ0

√
ρ x , (1.6.39)

where we have used the 4-divergence (1.6.20) truncated at zeroth-order. By

using these identities, the condition p̃ > 0 yields the inequality

ζ0 6 ζ∗0 /2 , (1.6.40)

which strengths the constraint (1.6.37) and restricts the x-domain to [1, 4/3].

The request to deal with a positive (at most zero) total pressure is consis-

tent with the idea that bulk viscosity must not drastically change the standard

dynamics of the isotropic Universe. In this respect, we address the domain

ζ∗0 6 ζ∗0 /2 as a physical restriction on the initial conditions for the existence of

a well grounded QI Solution.

We here rewrite the expression of the energy density in order to analyze the density-

contrast evolution. In presence of bulk viscosity, ρ assumes the form

ρ =
3x2

4 t2
− (x3/2− 2x2 + 2x) b

tx
, (1.6.41)

and, hence, the density contrast δ can be written as

δ = −8
3

(x/4 + 1/x− 1) b t2−x . (1.6.42)

Since x runs from 1 to 2 as the viscosity increases towards its critical value, we note

that the density contrast evolution is strongly damped by the presence of dissipative

e�ects which act on the perturbations. In this sense, we remark that bulk viscosity

can damp the evolution of perturbations forward in time. This behavior implies that

the density contrast approaches the singularity, i.e., δ = 0, more weakly as t → 0

when the viscosity runs to ζ∗0 . In correspondence with this threshold value the density

contrast remains constant in time and hence it must be excluded by the possible ζ0

choices.
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The relation for the velocity and the 3-metric The 00-component of Einstein

Equations provides the solution for the energy density; to perform a complete anal-

ysis of the QI Model and to verify the consistence of our approximations, we now

investigate the solutions of the 0α-components of the Gravitational Equations and

the spatial αβ- ones.

Imposing the condition s = 1/2, the Einstein Equation (1.6.3b) reads

y − x
2 t1−y+x

(
b ;α − bβα;β

)
=

4

3
ρ uα − ζ0

√
ρ uα

(
3x

2t
+

(y − x)b

2 t1−y+x

)
. (1.6.43)

Substituting (1.6.41) in the last equation, we get the following expression for the

velocity, up to the leading-order of expansion (here in particular we neglect terms of

order O(t−1) and O(t1−x)):

uα =
2− x

2x
(b,α − bβα;β) t3−x . (1.6.44)

It is worth noting that, in our generalization, the assumption u2
0 ' 1 is well veri�ed,

since we immediately see that uαuβ ∼ t6−3x, which can be neglected in the 4-velocity

contraction uµuµ = −1; hence the approximated hydrodynamical equation (1.6.33) is

still self-consistent using this expression of uα.

Let us now write down eq. (1.6.3c): here, the �rst two leading-orders of the rhs

are O(t−2) and O(t−x) respectively only if x < 2, like in our scheme; hence uαuβ is

neglected, as seen before, O(t−2) terms cancel each other, while those proportional to

t−x give the following equation (which generalize eq. (1.6.11))

P̄ β
α + Abβα + B b δβα + C δβα = 0 , (1.6.45)

where the quantities A, B, C are de�ned as

A = 1
4

(4−x2) , B = 1
6
(2x−1)(x−2)2− 1

4
x(x−2) , C = −1

6
(2−x)(x−1) , (1.6.46)

respectively. Taking the trace of (1.6.45), we obtain the relation (A+3B) b = −P̄ − 3C

which provides the following equation

2A bβα;β = (A+B) b,α , (1.6.47)

when combined with the Ricci 3-tensor relation P̄ β
α;β = 1/2P̄ ;β.

Therefore we are now able to write down the �nal form of the 3-velocity related to

the perturbed metric-tensor trace b :

uα =
2− x
4xA

(A−B) t3−x b,α . (1.6.48)
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As it can be easily checked, the solution here constructed matches the non-viscous

one (1.6.12) if we set ζ0 = 0 and it is completely self-consistent up to the �rst two

orders in time. As in the original analysis, the present model contains only three

physically arbitrary functions of the spatial coordinates, i.e., the six functions aαβ

minus three dof ruled out by �xing suitable space coordinates. The only remaining

free parameter of the model is viscous one, ζ0.
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1.7 The pure FLRW isotropic model

In this Section, we investigate the e�ects that bulk viscosity has on the stability of

the pure isotropic Universe10,11. This scheme corresponds to a particular case of the

QI Model previously discussed. In particular, the Taylor expansion of the 3-metric

results here to be truncated only to the zeroth-order and, hence, the analysis of

the gravitational instability requires a standard perturbative theory. In this respect,

the dynamics of cosmological perturbations is analyzed when viscous phenomena

a�ect the zeroth- and �rst-order evolution of the system. We consider a background

corresponding to a FLRW model �lled with ultra-relativistic viscous matter, whose

coe�cient ζ corresponds to the choice s = 1/2 and then we develop a perturbative

theory which generalizes the E.M. Lifshitz works [14, 44] to the presence of bulk

viscosity. Though the analysis is performed for the case of a �at model, nevertheless

it holds in general as soon as the perturbation scale remains much smaller than the

Universe radius of curvature. In this respect, we deal with perturbations such that

ηq � 1 (2π/q being the size of the coordinate scale and η the conformal time variable).

Since the dynamics we consider holds near the singularity for η � 1, then we make

allowance for arbitrarily large values of q and therefore the condition for the general

validity q � 2π|K|1/2 (we recall that K indicates the FLRW curvature parameter)

can be always ful�lled.

As result, the analytic expression of the density contrast shows that, for small values

of the parameter ζ0, its behavior is not signi�cantly di�erent from the non-viscous

one derived by Lifshitz [14]. But as soon as ζ0 overcomes a critical value, the growth

of the density contrast is suppressed forward in time by viscosity and the stability

of the Universe is favored in the expanding picture. On the other hand, in such a

regime, the asymptotic approach to the initial singularity (taken at t = 0) is deeply

modi�ed by the apparency of signi�cant viscosity in the primordial thermal bath, i.e.,

the isotropic and homogeneous Universe admits an unstable collapsing picture. In our

model, this feature regards also scalar perturbations while in the non-viscous case it

appears only for tensor modes. Since a reliable estimation [1] �xes the appearance

10NC and G. Montani, �Gravitational Stability and Bulk Cosmology�,

AIP Conf. Proc. 966, 241 (2007).
11NC and G. Montani, �On the Role of Viscosity in Early Cosmology�,

Int. J. Mod. Phys. A 23(8), 1248 (2008).
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of thermal bath into the equilibrium below temperatures O(1016GeV ) and this limit

corresponds to the pre-in�ationary age, our result supports the idea that an isotropic

universe outcomes only after a vacuum phase transition settled down.

Perturbative Theory to the Einstein Equations In order to describe the temporal

evolution of the energy-density small �uctuations, we develop a perturbative theory

on the Einstein Equations. We limit our work to the study of space regions having

small dimensions compared with the scale factor of the Universe a [15]. According

to this approximation, we can consider a 3-dimensional Euclidean (time dependent)

metric as the spatial component of the background line element

ds2 = dt2 − a2 (dx2 + dy2 + dz2) . (1.7.1)

In linear approximation, perturbed Einstein Equations write as

δRν
µ − 1

2
δνµδR = 8πGδT νµ , (1.7.2)

where the term δT νµ represents the perturbation of the EMT. The perturbations of

the Ricci tensor δRν
µ can be written in terms of metric perturbations

hνµ = −δgνµ , (1.7.3)

starting from the general expression for the perturbed curvature tensor [15], i.e.,

δRσ
µνρ = 1

2
(hσµ; ρ; ν + hσρ;µ; ν − h;σ

µρ; ν − hσµ; ν; ρ − hσν;µ; ρ + h;σ
µν; ρ) . (1.7.4)

For convenience, let us now introduce a new temporal variable η, set by the relation

dt = a dη , (1.7.5)

and use the symbol (′) for its derivatives; we moreover impose, without loss of gen-

erality, that the synchronous reference system is still preserved in the perturbations

scheme

h00 = h0α = 0 . (1.7.6)

With the assumptions above, the perturbations of the Ricci tensor and of the
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curvature scalar read:

δR0
0 = − 1

2a2
h′′ − a′

2a3
h′ , (1.7.7a)

δRα
0 =

1

2a2
(h, α

′ − hα, β
′

β ) , (1.7.7b)

δRβ
α = − 1

2a2
(hγ, βα, γ + hβ, γγ, α − hβ, γα, γ − h, β, α)+

− 1

2a2
hβ
′′

α −
a′

a3
hβ
′

α −
a′

2a3
h′ δβα , (1.7.7c)

δR = − 1

a2
(hγ, αα, γ − h, γ, γ)−

1

a2
h′′ − 3a′

a3
h′ . (1.7.7d)

By using these expressions, we are able to rewrite the lhs of Einstein Equations

(1.7.2) through the metric perturbations hαβ .

Dynamical Representation of Perturbations Since we use an Euclidean back-

ground metric (1.7.1), we can expand the perturbations in plane waves of the form

eiq·r, where q (of components qα (q = |q|)) is the dimensionless co-moving wave vector

being the physical one k = q/a (k = |k|). Here we investigate the gravitational stabil-
ity properly described by the behavior of the energy-density perturbations expressible

only by a scalar function; in this sense we have to choose a scalar representation of

the metric perturbations [14, 15]. Such a picture is made by the scalar harmonics

Q = eiq·r , (1.7.8)

from which the following tensors

Qβ
α = 1

3
δβαQ , P β

α = [1
3
δβα −

qαqβ

q2
]Q , (1.7.9)

can be constructed. We can now express the time dependence of the gravitational

perturbations through two functions λ(η), µ(η) and write the tensor hβα in the form

hβα = λ(η)P β
α + µ(η)Qβ

α , h = µ(η)Q . (1.7.10)

Review of the Lifshitz analysis In the standard analyses the Universe is assumed,

in its primordial expansion, to behave like a perfect �uid. This hypothesis can be

expressed writing the EMT tensor in the form (1.2.9), i.e.,

Tµ
ν (P ) = (ρ+ p)uµu

ν − p δνµ , (1.7.11)
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where uµ is its 4-velocity, expressed in the co-moving system we consider

u0 = 1/a uα = 0 . (1.7.12)

Using the synchronous character of the perturbed metric, perturbations to the

above EMT write

δT 0
0 = δρ , δTα0 = a (p0 + ρ0) δu

α , δT βα = −δβα v2
sδρ , (1.7.13)

where the standard expansions ρ = ρ0 + δρ and p = p0 + δp are used and δuα is

the 3-velocity perturbation (being v2
s = δp/δρ). In this scheme, using the expression

above for the 4-velocity and eq. (1.7.6), one obtain the relation

δu0 = 0 . (1.7.14)

Let us now consider the primordial stages of the Universe expansion, i.e., η � 1,

when the radiation-like density dominates the matter one. The EoS is p0 = ρ0/3,

from which the relations (for a �at Universe K = 0) arise

ρ0 = Ca−4 , a = a1η , v2
s = 1/3 , (1.7.15)

where C is an integration constant and a1 =
√

8πGC/3. Such expression generalize

to conformal time the standard ones (1.5.4). In this approximation, we can obtain

the basic equations which describe the temporal evolution of the perturbations. Ex-

pressing eq. (1.7.7) through the representation (1.7.10) and using expressions (1.7.13)

in the form

δT βα = −δβαv2
sδT

0
0 , (1.7.16)

the perturbed Einstein Equations give, for α 6= β and for contraction over these

indexes, two equations for the metric perturbations, respectively

λ′′ +
2

η
λ′ − q2

3
(λ+ µ) = 0 , µ′′ +

3

η
µ′ +

2q2

3
(λ+ µ) = 0 . (1.7.17)

Furthermore, taking the 00-components of (1.7.2), we can express the energy density

directly from the adopted functions λ and µ, in the form

δρ =
Q

24πGa2

[
q2(λ+ µ) +

3a′

a
µ′
]
. (1.7.18)

Among the solutions, there are some which can be removed by a simple trans-

formation of the reference system (compatible with its synchronous character) and

61



Dissipative Cosmologies

therefore they do not represent any real physical change in the metric. The corre-

sponding expression for the metric perturbations can be established, a priori, through

a coordinates transformation [15], taking into account the constraint (1.7.6):

h̄βα = f , β0, α

∫
dη

a
+

a′

a2
f0 δ

β
α +

(
f , βα + fβ, α

)
, (1.7.19)

where f0, fα are arbitrary (small) functions of the coordinates.

In the assumption η q � 1, the eq. (1.7.17) admit, to the leading-order, the solu-

tions

λ =
3C1

η
+ C2 , µ = −2q2

3
C1 η + C2 , (1.7.20)

where the �ctitious solutions (1.7.19), which in our ultrarelativistic approach assume

the form λ − µ = const (f0 = 0, fα = Pα) and λ + µ ∼ 1/η2 (f0 = Q, fα = 0),

are excluded. The �nal expressions for the gravitational perturbations and for the

density contrast δ = δρ/ρ0 can be obtained substituting this solutions in eq. (1.7.10)

and (1.7.18)

hβα =
3C1

η
P β
α + C2(Qβ

α + P β
α ) (1.7.21)

δ =
q2

9
(C1η + C2η

2)Q . (1.7.22)

Here the constants C1, C2 must satisfy the conditions expressing the smallness of

the perturbations at the moment η0 when they arise; assuming that harmonics Q are

of the unity order magnitude, the inequalities λ � 1, µ � 1 give the constraints

C1 � η0 � 1 and C2 � 1.

The expression of the cosmological perturbation (1.7.22) contains terms which in-

crease, in an expanding Universe, proportionally to positive powers of the scale-factor

a = a1η. This expansion can not, nevertheless, imply the gravitational instability: if

we consider the magnitude order η ∼ 1/q, the conditions satis�ed by the constants

C1, C2 imply that the density perturbation remains small even in the higher-order of

approximation. This behavior of the cosmological �uctuation yields the gravitational

stability of the primordial Universe; the only stability we can found in a non-viscous

Universe [14] is provided by the tensor perturbations hαβ and takes place approaching

backward the Big Bang.

Unperturbed viscous cosmology As already discussed, the presence of dissipative

processes within the Universe dynamics, as it is expected at temperatures above
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O(1016GeV ), can be expressed by an additional term in the standard ideal �uid

EMT (see eqs. (1.2.16)):

Tµν = (p̃+ ρ)uµuν − p̃ gµν , p̃ = p− ζ uρ; ρ , (1.7.23)

Furthermore, in a co-moving system the 4-velocity can be expressed as u0 = 1/a, uα =

0 and the viscous pressure p̃ assumes the form

p̃ = p− 3 ζ0 ρ
s a
′

a2
. (1.7.24)

Let us now consider the earlier stages of a �at Universe corresponding to η � 1.

The Universe zeroth-order dynamics is described by the energy conservation equation

and the Friedmann one (see eq. (1.5.2) and eq. (1.5.3)), written using the conformal

time, i.e.,

ρ′ + 3
a′

a
( ρ+ p̃ ) = 0 ,

a′

a2
=
√

8/3πGρ . (1.7.25)

As discussed in the previous Section, in this analysis, we assume s = 1/2, in order

to deal with the maximum e�ect that bulk viscosity can have without dominating

the Universe dynamics since it corresponds to a phenomenological issue of perturba-

tions to the thermodynamical equilibrium [36, 37]. The solutions of the zeroth-order

dynamics, for s = 1/2 and p = p0 = ρ0/3, assume the form

ρ0 = Ca−(2+2ω) , a = a1 η
1/ω , ω = 1− χ ζ0 , (1.7.26)

being C an integration constant, χ =
√

54πG and a1 = (8ω2πCG/3)1/2ω. We also

obtain the relation

p̃0 =
ρ0

3
− 3 ζ0 ρ

s
0

a′

a2
. (1.7.27)

Since we consider an expanding Universe, the factor a must increase with positive

power of the temporal variable (i.e., ω > 0) thus we obtain the constraint

0 6 ζ0 < 1/χ , (1.7.28)

which ensures this feature.

Perturbative theory in the viscous case Let us now perturb the viscous EMT.

Using the synchronous character of the perturbed metric we get the following expres-

sions

δT 0
0 = δρ , δTα0 = a (p̃0 + ρ0) δu

α , (1.7.29a)

δT βα = δβα
[
−Σ2δρ+ ζ

(
δuγ,γ + h′/2a2

)]
, (1.7.29b)

63



Dissipative Cosmologies

where

Σ2 ≡ v2
s − 3ζ0 sρ

s−1
0 a′/a2 . (1.7.30)

The presence of viscosity does not in�uence the expression of the Ricci tensor and

its perturbations, thus we can still keep expressions (1.7.7) and use the perturbed

form of the EMT to build up the equations which describe the dynamics of hβα and

δρ. It is convenient to choose, as �nal equations, the ones obtained from the Einstein

ones for α 6= β and for contraction over α and β, which read respectively(
hγ, βα, γ + hβ, γγ, α − hβ, γα, γ − h, β, α

)
+ hβ

′′

α + 2a′

a
hβ
′

α = 0 , (1.7.31)

1
2

(
hγ, αα, γ − h, γ, γ

)(
1 + 3Σ2

)
+ h′′+

+
a′

a

(
2 + 3Σ2 − 12πG

a

a′
ζ
)
h′+

− 3ζ

2a(p̃0 + ρ0)

(
h, α

′

, α − hγ, α
′

α, γ

)
= 0 .

(1.7.32)

Taking the 00-component of Gravitational Equations, the expression of the density

perturbations (1.7.18) can be addressed, i.e.,

δρ =
1

16πGa2
(hγ, αα, γ − h, α, α + 2a′

a
h′) . (1.7.33)

Furthermore the form of �ctitious solutions (1.7.19) is the same also in presence of

dissipative processes because they are founded by a transformation of synchronous

reference system.

Substituting in eq. (1.7.31) and eq. (1.7.32) the zeroth-order solutions (1.7.26) and

the scalar representation of the metric perturbations (1.7.10), we can get, respectively,

two equations for λ, µ which read

λ′′ +
2

ωη
λ′ − q2

3
(λ+ µ) = 0 , (1.7.34)

µ′′ +
(2 + 3Σ2

ωη

)
µ′−

(12π
√
CGζ0

a1+ω
1 η1+1/ω

)
µ′+

+ q2

3
(λ+ µ)

(
1 + 3Σ2

)
+

q2ζ0η (µ′ + λ′)

4
√
C/3aω1 − 3ζ0/ω

= 0 .

(1.7.35)

1.7.1 The problem of the singularity

Let us now study the gravitational-collapse dynamics of the primordial Universe near

the initial Big Bang, in the limit η � 1. As in Lifshitz work [14], we analyze the
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case of perturbation scales su�ciently large to use the approximation ηq � 1. In

our scheme, eqs. (1.7.34) and (1.7.35) admit asymptotic analytic solutions for the

functions λ and µ; in the leading-order λ takes the form

λ =
C1

η2/ω−1
+ C2 , (1.7.36)

where C1, C2 are two integration constants. Substituting this expression in eq.

(1.7.35) we get, in the same order of approximation, the behavior of the function

µ as

µ =
C̃1

η1/ω−3
+ C2 , (1.7.37)

where we have excluded the non-physical solutions (1.7.19) as written in the form

λ− µ = const. The constant C̃1 is given by the expression C̃1 = A/B(3− 1/ω), A and

B being constants having the form

A =
C1 q

2

3

(
1 + 3Σ2

)
+

C1(1− 2/ω)q2ζ0

4
√
C/3aω1 − 3ζ0/ω

, B =
12π
√
CGζ0

a1+ω
1

.

Let us now write the �nal form of perturbations, pointing out their temporal de-

pendence in the viscous Universe. The metric perturbations (1.7.10) become

hβα =
C1

η2/ω−1
P β
α +

C̃1

η1/ω−3
Qβ
α + C2

(
Qβ
α + P β

α

)
, (1.7.38)

and, by (1.7.33) and (1.7.26), the density contrast reads

δ = F [C1η
3−2/ω + C2η

2 + C3η
3−1/ω + C̃1η

5−1/ω], (1.7.39)

where C3 = 3A/q2ωB and F = ω2Qq2/9.

As in the non viscous case, we have now to impose the conditions expressing the

smallness of perturbations at a given initial time η0. The inequalities hβα � 1 and

δ � 1 yield only two fundamental constraints for the integration constants:

C1 � η
2/ω−1
0 , C2 � 1 , (1.7.40)

for any ω-value within the interval (0, 1]. Furthermore, we �nd an additional condition

which involves the wave number q and the integration constant C; in particular a

rough estimation for ω < 1/3 of the inequalities C̃1 � η
1/ω−3
0 and C3 � η

1/ω−3
0

yields the condition q � (GCη0)−1/2ω which ensures the smallness of the cosmological

perturbations.
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Using the hypothesis η � 1, we can get the asymptotic form of the corrections

to the cosmological background. The exponents of the variable η can be positive

or negative according to the value of the viscous parameter ω(ζ0). This behavior

produces two di�erent regimes of the density-contrast evolution:

(1.) Case 0 6 ζ0 < 1/3χ : Here perturbations increase forward in time. This

behavior corresponds qualitatively to the same picture of the non-viscous Universe

(obtained setting ζ0 = 0) in which the expansion can not, nevertheless, imply the

gravitational instability: if we consider the magnitude order η ∼ 1/q, the constraints

on C1, C2 imply that δ remains small even in the higher order of approximation. This

behavior yields the gravitational stability of the primordial Universe.

(2.) Case 1/3χ < ζ0 < 1/χ : In this regime, the density contrast is suppressed

behaving like a negative power of η. When the density contrast results to be increas-

ing, the presence of viscosity induces a damping of the perturbation evolution in the

direction of the expanding Universe, so the cosmological stability is forti�ed since the

leading η powers are smaller than the non-viscous ones obtained setting ζ0 = 0.

In this case, density �uctuations decrease forward in time but the most interesting

result is the instability which the isotropic and homogeneous Universe acquires in

the direction of the collapse toward the Big Bang. For ζ0 > 1/3χ the density contrast

diverges approaching the cosmological singularity, i.e., for η → 0. In this regime,

scalar perturbations destroy asymptotically the primordial Universe symmetry. The

dynamical implication of this issue is that an isotropic and homogeneous stage of the

Universe can not be generated, from generic initial conditions, as far as the viscosity

becomes smaller than the critical value

ζ(iso)
0 = 1/3χ . (1.7.41)

It worth underlining that this threshold value, by considering suitable units such

that 8πG = 1 in the Einstein Equations, can be rewritten as ζ(iso)
0 = 2/9

√
3. This

conditions corresponds to

ζ(iso)
0 = 1

3
ζ∗0 , (1.7.42)

where ζ∗0 is the validity threshold of the QI Model, see eq. (1.6.37). In this respect,

we underline that the perturbed FLRW model, here proposed, corresponds to a spe-

cial case of the QI general analysis and this characterization is summarized by the

constraint above.
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1.8 Concluding remarks

In this Chapter, we have discussed the dynamics of the gravitational collapses both in

Newtonian approximation and in the pure relativistic limit in presence of bulk viscos-

ity. All the models proposed have been analyzed in a �rst-order perturbative regime

starting from the background-�uid evolution and then adding small non-homogeneous

�uctuations into the dynamics. The viscosity has been expressed, following an hy-

drodynamical description of the �uid, as a power-law of the the energy (or matter)

density and the e�ects on the Newtonian motion equations and on the EMT source

have been analyzed.

Five di�erent cases have been studied: three distinct unperturbed solutions of the

Newtonian dynamics, where viscosity has been assumed to a�ect only the �rst-order

analysis, and two pure relativistic models.

� In Section 1.3, the standard Jeans Model with a static and uniform background-

solution has been analyzed. The main result, in dealing with the viscous general-

ization, has been to show how bulk viscosity damps the density contrast evolution,

maintaining unchanged the threshold value of the Jeans Mass. Such an e�ect sup-

presses the sub-structure formation in the top-down fragmentation mechanism. In

particular, a new decreasing regime for perturbations has been found. The presence

of such a behavior has induced to the study of the top-down scheme for small and

strong viscous e�ects. In the �rst case, the density-perturbation amplitude of a sub-

structure remains substantially constant during the main structure collapse. On the

other hand, if viscous e�ects are su�ciently strong, the sub-structure vanish in the

linear perturbative regime, unfavoring the fragmentation.

� In Section 1.4, our analysis outlined how the presence of bulk viscosity in-

duces a deep modi�cation of the extreme gravitational collapse relative to an uniform,

spherically-symmetric and dust-like gas cloud. While the isothermal-like collapse is

characterized by sub-structure formation even when viscous e�ects are taken into

account, the adiabatic-like one undergoes an opposite asymptotic regime as soon as

the viscosity become su�ciently intense. Though bulk viscosity does not a�ect (by

hypothesis) the extreme collapse of the background �ow, nevertheless its presence

changes drastically the dynamics of perturbations which are damped at the point

to generate vanishing density contrasts. Thus, in the adiabatic case, the fate of a

collapsing cloud is sensitive to the viscous e�ects by itself induced. In particular,
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bulk viscosity is able to restore a kind of Jeans length for the cloud perturbations;

scales above this threshold begin to collapse but, if below the second threshold, no

sub-structures formation takes place.

� In Section 1.5, the e�ects induced by the presence of bulk viscosity have been

analyzed in the generalization of the Jeans Model, in treating an expanding Universe

background. In this case, the static and uniform background solution for the unper-

turbed evolution, proper of the Jeans analysis, has been generalized by the dynamics

of an homogeneous and isotropic Friedmann Universe. In this scheme, a Jeans-like

relation has been obtained and a considerable damping of the density-contrast growth

has been found.

� In Section 1.6, the QI Solution in the asymptotic limit near cosmological sin-

gularity has been studied. The investigation started from the modi�cation of the

Einstein Equations, induced by a viscous matter term and then proceeded by the

integration of the new Gravitational Equations matched together with the hydrody-

namical ones, order by order in the 1/t expansion. As a main result, we have shown

that the QI Solution exists only for particular values of the bulk-viscosity coe�cient.

When the dissipative e�ects become too relevant, we are not able to construct the so-

lution following the line of the original Lifshitz-Khalatnikov model. In fact, when the

viscosity coe�cient approaches a threshold value, the approximation scheme breaks

down and the model becomes non self-consistent. By requiring that the viscosity

parameter be under its critical value, we have also outlined how the behavior of the

density contrast is deeply in�uenced by the presence of bulk viscosity. In fact, as far

as dissipative e�ects are taken into account, the density-contrast contraction (δ → 0

as t→ 0), is damped until remaining constant if such a parameter assumes its critical

value.

We conclude by stressing that our result is relevant near the singularity, where the

volume of the QI Universe changes rapidly and as a consequence, the cosmological

�uid has to follow this rapid variation by subsequent stages of thermal equilibrium.

Then bulk viscosity emerges from the average non-equilibrium e�ects and it is ex-

pected to be increasingly relevant, when the singularity is approached.

� In Section 1.7, the main issue of our investigation is to have shown that the

isotropic Universe acquires, backward in time, a regime of instability corresponding to

su�ciently high values of the viscous parameter. Such a window of instability implies

that, if the Universe was born su�ciently far from the homogeneous and isotropic
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stage, then bulk viscosity (i.e., the absence of a stable thermal equilibrium) works

against isotropization mechanisms and the in�ation becomes the scenario from which

a FLRW geometry arises (at least on a given scale). The explanation of this result is

in the real physical meaning of the bulk viscosity: such viscous e�ects come out from

the di�culty that microphysics �nds to restore the thermal equilibrium against the

rapid Universe expansion. As a natural consequence of this physical context, bulk

viscosity makes unfavored the establishment of an homogeneous stage from a general

cosmological dynamics. On the other hand in a FLRWUniverse, already settled down,

we expect that, as we �nd, the viscous e�ects depress the density contrast because the

particles inside the inhomogeneous �uctuations undergo dissipative processes which

frozen the growth of the structures.

Despite of the reliable feature of our results, the present investigation, as well as

the whole previous literature on this subject, relies on a phenomenological ground; in

fact the description of the viscous e�ects is based on the constitutive equation relating

the viscosity coe�cient to a power-law of the system energy-density. This statement

appears well-grounded, but nevertheless it requires to be carefully considered in a

precise derivation of the viscosity coe�cient from a real kinetic theory of matter. We

will address for such a point in a further investigation, which will be aimed to yield

an upgrading of the present cosmological issue.
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2 Torsion E�ects in

Non-Einsteinian Space-Time

2.1 General statements

Torsion represents the most natural extension of General Relativity (GR) and it

attracted interest over the years in view of its link with the fundamental properties

of particle motion.

The torsion �eld was taken into consideration chie�y by É. Cartan [45, 46, 47].

The usual version of Einstein-Cartan Theory (ECT) [48, 49] is based on the standard

Einstein-Hilbert Action, where the scalar curvature is a function of both metric and

torsion. From variational principles, �eld equations are obtained in presence of matter

and it can be pointed out that, in such a theory, torsion is not really a dynamical

�eld in the same sense as the metric �eld. Recent studies on the coupling of torsion

with spin matter are those in [48, 49, 50, 51, 52, 53]. In the U4 theory [48], torsion

corresponds to the rotation gauge potential, and it is related to the intrinsic angular

momentum of matter. In Poincaré Gauge Theory (PGT) [54, 55, 56], torsion and bein

vectors are the gauge �elds that account for local Poincaré transformations. These

descriptions predict a non-propagating torsion �eld, so that only a contact interaction

is expected, because the equations of motion are algebraic rather than di�erential.

After reviewing the most popular approaches to torsion gravity, we will propose

a microscopic and macroscopic paradigm to describe the role of the torsion �eld, as

far as a propagating feature of the resulting dynamics is concerned. In both these

schemes, the dynamics of torsion will acquire particular features that imply interesting

perspectives about it detection.

The two proposals deal with distinct schemes: a macroscopic approach, based on

the construction of suitable potentials for the torsion �eld, and a microscopic one,
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which relies on the identi�cation of torsion with the �elds which enter the dynamics

of a generalized gauge theory picture of the Lorentz Group. We analyze in some

details both points of view and their implications on the coupling between torsion and

matter. In particular, in the macroscopic case, we analyze the test-particle motion to

determine the physical trajectories. On the other hand, in the microscopic scheme, a

study of the coupling between torsion and fermion �elds is performed.

In Section 2.2, a general overview on several approaches to torsion �eld is discussed.

After introducing the basic concepts and de�nitions, an analysis of the Einstein metric

gravity and of the ECT is addressed. Then we focus the attention on the propagat-

ing description of the torsion �eld including torsion potentials into the dynamics.

Such (classical) macroscopic features are at the ground of our subsequent analysis.

A discussion on the several gauge approaches to gravity follows. In particular, we

consider the ordinary tetradic formalism of gravity, PGT and teleparallel theory as

the main microscopic approaches. At the end of this Section, we introduce an analysis

of the early Universe in presence of torsion as a possible link between the dissipative

cosmologies developed in the previous Chapter.

In Section 2.3, the macroscopic approach is developed by some assumptions about

the form of the torsion tensor: the completely anti-symmetric and trace part of the

tensor are considered to derive from two local torsion potential. As original result,

the motion equation of test particles are determined as the Autoparallels and both

the non-relativistic limit of these trajectories and of the tidal e�ects show that the

torsion trace potential enters all the equations in the same way as the gravitational

one.

In Section 2.4, propagating torsion will be also derived form a microscopic point of

view. In fact, we propose a gauge theory of the group SO(3, 1) on �at Minkowskian

space-time which allow us to identify new connections with torsion, as soon as we

postulate to direct generalize the picture on curved space-time. The comparison of

First- and Second-Order Approaches will be explained in the linearized regime, where

the role of the gravitational �eld as a source for torsion will be compared with the

spin-current term of the Second-Order Formalism. An analysis of the e�ects of the

new connections in �at space-time is also addressed giving a modi�cation of the well-

known Pauli Equation.

Note - During this Chapter, we denote with the symbol (˜) all torsion-dependent

tensor quantities.
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2.2 The torsion �eld: an overview

As well known, in non-�at spaces the concept of the parallel transport of vector

�elds needs the introduction of connections which also de�ne the covariant derivative.

By means of connections, we can de�ne the equation of the parallel transport as

follows: on a general 4-dimensional manifold M4, given a curve γ(t) passing for a

point P ∈M4, the parallel transported vector of the vector �eld V ρ(P ) along γ(t) is

the solution of the equation

dV ρ

dt
= −Γ̃ρµνV

ν γ̇ µ , (2.2.1)

where the Γ̃ρµν 's denote general a�ne connections. Moreover, the general covariant

derivative ∇̃µ of a tensor �eld V ρ
ν (x) is de�ned as

∇̃µV
ρ
ν = ∂µV

ρ
ν + Γ̃ρµσV

σ
ν − Γ̃σµνV

ρ
σ , (2.2.2)

where ∂µ indicates the ordinary partial derivative. In fact, in order to compute the

derivative of a vector, it must be evaluated at two di�erent space-time points and it

is therefore necessary to transport the displaced vector back to its original position

for comparison. In particular, if the vector V ρ is parallel transported along the

in�nitesimal dxµ, the change due to this transport is given by −Γ̃ρµνV
νdxµ, which

leads to the correct de�nition of the covariant derivative. In this respect, one may

de�ne the curvature tensor as the result of parallel transporting a vector V ρ around

a closed path ξµ,

∆V ρ = 1
2
V ν R̃ρ

σµν

∮
ξµdxσ . (2.2.3)

Let us now suppose to transport the in�nitesimal vector lρ along mρ and compare

that wrt transporting mρ along lρ. We de�ne the vector Aρ = lρ +mρ− Γ̃ρµνl
µmµ and

the vector Bρ = mρ + lρ − Γ̃ρµνm
µlµ. Their di�erence is Cρ = 2Γ̃ρ[µν]l

µmµ. One can

easily realize that the vectors Aρ and Bρ do not form a close parallelogram if Γ̃ρ[µν] 6= 0

[48, 57]. The non-closure of parallelograms in space-time is due to the anti-symmetric

part of general a�ne connections which de�ne the torsion tensor

T ρ·µν = Γ̃ρ[µν] . (2.2.4)

In general, connections Γ̃ρµν are non-tensor quantities, on the other hand, their anti-

symmetric part transforms like a tensor, as fas as the most general metric-compatible

form of connections are concerned.
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Because of this property, the presence of a torsion �eld denies the Equivalence

Principle of its importance; indeed, we are not referring to the equivalence between

inertial and gravitational mass, which is preserved since the theory remains geometric,

but to the formulation of the Equivalence Principle [58] according to which, once

de�ned an inertial frame in a point, the physical laws are the same as those of special

relativity. In presence of torsion, the latter, behaving like a tensor, can not be set

to zero by a convenient coordinate choice. Therefore, since we expect torsion to be

source of some �force�, it is not possible to de�ne an inertial frame in any point, which

is a necessary condition for the applicability of the principle.

The metric tensor, connections and the Einstein tensor Let us now introduce

a metric de�ned by the square modulus of a vector V ρ as

‖V ‖2 = gµνV
µV ν , (2.2.5)

here gµν denotes the symmetric metric tensor de�ning the square of the in�nitesimal

interval ds as

ds2 = gµνdx
µdxν . (2.2.6)

It is possible to establish a relation between connections, torsion and metric tensor

of the form [57, 59]

Γ̃ρµν = 1
2
gρσ [∂µgνσ − ∂σgµν + ∂νgµσ] + 1

2

[
T ρ·µν − T ρµ·ν − T ρν·µ

]
= Γρµν +Kρ·µν . (2.2.7)

Here Γρµν denote the Christo�el Symbols (which are symmetric in the lower two in-

dices) and Kρ·µν identi�es the contortion tensor de�ned as

Kρ·µν = 1
2

[
T ρ·µν − T ρµ·ν − T ρν·µ

]
, (2.2.8)

and it is anti-symmetric in the last two indices. A space endowed with a�ne con-

nections (2.2.7) is called Einstein-Cartan (EC) Space U4. In such a space, using

the de�nition of connections (2.2.7), one can write the curvature tensor [57, 59] in

presence of torsion, it reads

R̃σ
µνρ = ∂ν Γ̃σµρ − ∂ρ Γ̃σµν + Γ̃σγν Γ̃γµρ − Γ̃σγρ Γ̃γµν . (2.2.9)

Such a curvature, can be easily expressed through the Riemannian tensor Rσ
µνρ (cur-

vature tensor depending only on metric), the covariant derivative ∇µ (torsionless case
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of eq. (2.2.2)) and contortion as

R̃σ
µνρ = Rσ

µνρ +∇ν Kσ·µρ −∇ρKσ·µν +Kσ·γν Kγ·µρ −Kσ·γρKγ·µν . (2.2.10)

Similar formulas can be written for the Ricci tensor and for the scalar curvature with

torsion:

R̃µρ = R̃ν
µνρ = Rµρ +∇σ Kσ·µρ −∇ρKσ·µσ +Kσ·γσ Kγ·µρ −Kσ·µγ Kγ·σρ , (2.2.11)

(it is worth remark that it is not symmetric) and

R̃ = gµρ R̃µρ = R + 2∇σ Kµ·σµ −Kσµσ·Kµγ·γ +Kµγσ Kµσγ . (2.2.12)

We underline that Rµρ and R are the Riemannian quantity derived by the curvature

tensor Rσ
µνρ which is constructed in the same way as eq. (2.2.9) but using Christo�el

Symbols as connections. In this scheme, the Einstein tensor in presence of torsion is

de�ned according the standard picture as

G̃µν = R̃µν − 1
2
gµν R̃ , (2.2.13)

and, by such a de�nition, one can show [48] that the anti-symmetric part of the

Einstein tensor is related to torsion �eld by the following relation

G̃[µν] = (∇ρ + 2T σρσ·) T ρµν· . (2.2.14)

The non-metricity tensor It is worth noting that more general a�ne connections

can be implemented. We underline that, in order to maintain the correct behavior of

the covariant derivative (2.2.2), any tensor Aρνµ can be added to connections [59]. A

particular choice corresponds to de�ne the a�ne-connection coe�cients as

∗
Γρµν= Γ̃ρµν + 1

2

[
Qρµν· −Qρνµ· +Qρ·νµ

]
, (2.2.15)

where we have introduced the tensor of non-metricity de�ned as

Q·νρµ =
∗
∇µ g

νρ , (2.2.16)

here
∗
∇µ denotes the covariant derivative

∗
∇µ V

ρ = ∂µV
ρ+

∗
Γρµν V

ν . We remark that

non-metricity does not preserve lengths and angles under parallel displacement. To

conclude, we summarize the space characterization is presence of the tensor quantities

introduced above

General Linear space L4
Qµνρ=0−→ Einstein-Cartan space U4

Tµνρ=0−→ Riemann space V 4
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2.2.1 Einstein metric gravity: the Einstein-Hilbert Action

Guiding principles in the development of the Lagrangian density for the gravitational

�eld are the Equivalence Principle and the General Covariance. The latter imposes the

action be invariant under di�eomorphisms, i.e., general coordinate transformations,

while the former states that, by a coordinate transformation, the metric tensor can

always be reduced to a Minkowskian one locally, thus �rst derivatives of the metric

can be made to vanish in any local region. Therefore, if combined together, they

forbid the existence of a sensible action for the gravitational �eld with only �rst-order

derivatives. Hence, second-order derivatives have to be contained in the Lagrangian,

but only trough a surface term, to avoid the appearance of third-order derivatives in

the equations of motion.

Let us consider a 4-dimensional torsionless space-time manifold endowed with a

metric gµν , the simplest Lagrangian satisfying the above mentioned properties is the

Einstein-Hilbert (EH) [19, 58, 60] one,

LEH =
√
−g R , (2.2.17)

where g denotes the metric tensor determinant and R is the torsionless scalar cur-

vature discussed above and it is expressed only with the Christo�el Symbols. Using

such a Lagrangian density, we write down the well-known EH Action

SEH = −1
2

∫
d4x
√
−g R . (2.2.18)

By varying the action wrt the metric tensor, the Einstein Equations come out

δSEH = −1
2

∫
d4x (Rµν − 1

2
gµνR)δgµν . (2.2.19)

once we should require the variation of the metric and of its �rst derivatives vanish on

the boundary [61, 62]. Hence, in general, a term is added to the Lagrangian density,

in order to cancel the surface piece.

This approach corresponds to the Second-Order Formalism where the metric tensor

is treated like an independent �eld and variation wrt gµν are performed. Indeed, the

additional equations we obtain from the variation of the EH Action wrt Γρµν imply

them be equal to Christo�el Connections.
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2.2.2 Einstein-Cartan Theory and non-dynamical torsion

Completely neglected in the �rst formulation of the theory of GR by Einstein, the

introduction of torsion was later implemented by Einstein himself [63], A.S. Eddington

[64], E. Schrödinger [65] and principally É. Cartan [45, 46, 47], who connects torsion

with the spin angular-momentum.

In the original ECT, the geometric Lagrangian density is assume to be composed

by the curvature scalar R̃, generalizing the EH Action in presence of torsion, and the

matter Lagrangian is taken into account simply through the minimal coupling rule:

ηµν → gµν , ∂µ → ∇̃µ. The minimal substitution can be applied to matter �eld only,

but not to gauge �elds of internal symmetry groups [48]. This way, the gravitational

action corresponds to the EH Action written in the EC Space, i.e.,

SEC = S̃EH = −1
2

∫
d4x
√
−g R̃ =

= −1
2

∫
d4x
√
−g gνρ δµσ

(
∂µΓ̃σνρ − ∂νΓ̃σµρ − Γ̃εµρΓ̃

σ
νε + Γ̃ενρΓ̃

σ
µε

)
. (2.2.20)

Being ϕ the matter �eld, after the minimal coupling procedure generating the total

Lagrangian density L = L(ϕ, ∂µϕ, g, ∂g, T ), one can de�ne the usual EMT through

eq. (2.2.19) as

T µν = δL/δgµν . (2.2.21)

In the same way, one can suppose [48] to de�ne an analogous quantity related to the

torsion (or contortion) �eld, i.e.,

s ·µνρ = δL/δT ρ·µν . (2.2.22)

Such a tensor in constructed from the matter �elds ϕ but may also depend on metric

and torsion [59]. If Dirac fermion minimally coupled to torsion are considered, s ·µνρ

corresponds to the spin energy-potential.

Considering now the variational principle δ(SEC + SM + ST ) = 0, where SM and

ST are de�ned as

SM = 1
2

∫
d4x
√
−g LM , ST = 1

2

∫
d4x
√
−g s ·µνρ T ρ·µν , (2.2.23)

here LM = LM(ϕ, ∂µϕ) denotes the matter Lagrangian density, one obtains, according

to the previous expressions, the following variations

δSM = 1
2

∫
d4x
√
−g T µν δgµν , (2.2.24)
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δST = 1
2

∫
d4x
√
−g s ·µνρ δT ρ·µν , (2.2.25)

and the �eld equation of the system can be derived. Using the de�nition (2.2.21), one

obtains

Gµν − (∇ρ + 2T σ
ρσ·) [T̄ µνρ + T̄ ρµν + T̄ ρνµ] = T µν , (2.2.26a)

Tµνρ = 2 (sρ[µν] + s[µ gν]ρ) , (2.2.26b)

where sµ = s ·µρρ and T̄ µνρ is the modi�ed torsion tensor de�ned as

T̄ µνρ = T µνρ + T ν ·σσ gµρ − T µ ·σσ gνρ , (2.2.27)

and, of course, Gµν is the torsionless case of eq. (2.2.13). In vacuum eq. (2.2.26b)

give the results Tµνρ = 0. One can easily see that torsion is proportional to the spin

energy-potential and in vacuum it vanishes. In this picture, torsion obeying to an

algebraic equation, instead of a di�erential one, and it acquires a non-propagating

dynamics. Torsion is inextricably bound to matter and cannot propagate through

the vacuum as a wave or via any interaction of non-vanishing range. At the same

time, we can underline that, because of such a character, one is able to substitute

everywhere spin for torsion and cast out e�ectively torsion from the formalism. In

particular, using eq. (2.2.25) and (2.2.26b), torsion leads to the contact spin-spin

interaction which can be expressed by the classical potential V (s) ∼ s2.

It is worth noting that we can relate an analogous quantity as s ·µνρ but related to

the contortion �eld. In this case, one can recognized it as the proper spin angular-

momentum tensor. Denoting such a tensor with τ ρµν , after some manipulation, one

can recast eq. (2.2.26b) in the form

T ρµν + δρµT σνσ· − δρνT σµσ· = τ ρµν . (2.2.28)

2.2.3 Propagating torsion: the torsion potentials

Since, in the �rst instance, it is reasonable to expect torsion to behave as any other

interaction �eld, i.e., propagating into vacuum, the non-dynamical torsion feature of

the U4 theory is unsatisfactory and, in the following, possible theories to overcome

this problem are discussed.

(1.) Following the Brans-Dicke [57] analysis, one can perform the transformation

Gµν → φGµν , using the dimensionless scalar �eld φ. In this picture, using the EH

78



2.2 The torsion �eld: an overview

Action expressed above, the vacuum torsion equation reads

Tµνρ = (1/φ) φ[, µ gν]ρ . (2.2.29)

As soon as a Lagrangian with the usual kinetic terms for the scalar �eld is assumed,

φ results to be a propagating �elds, then the torsion �eld itself propagates.

(2.) As another example, one can introduce the alternative Lagrangian

SG = −1
2

∫
d4x
√
−g (R̃ + C1 R̃µνR̃

µν) , (2.2.30)

where C1 is a constant. The use of quadratic terms is expected in gauge theories

and is required for renormalization [66, 67]. For these reasons, the expression above

would be included in more general and complete formulations. The equations for the

torsion �eld are obtained by varying the torsion and by keeping the metric tensor

�xed. They read [68]

T̄ µνρ = C1 Rρ[µν] , (2.2.31)

where

Rµνρ = −(∇ρ + 2T ρσ·σ )R̃µν + gµρ(∇ε + 2T σ
εσ·)R̃

εν + 2R̃ν
ε T ρεµ . (2.2.32)

Since the curvature tensor contains the �rst derivative of the torsion, equations above

show that torsion, in vacuum, obeys second-order di�erential equations and therefore

it propagates.

(3.) A more complete form for the action has been examined in [69]. The gener-

alization of eq. (2.2.30) can be written as

SG = −1
2

∫
d4x
√
−g (R̃ + C1R̃

2 + C2 R̃µνR̃
µν + C3 R̃µνR̃

νµ) . (2.2.33)

The resulting �eld equation for the torsion �eld is analogous the the one obtained in

the previous case and also here torsion propagates.

(4.) Another physical approach is based in the idea that torsion is derivable from

a scalar potential [70, 71, 72, 73, 74, 75, 76]. As an example, one can consider

T ρµν = φ,µδ
ρ
ν − φ,νδρµ (2.2.34)

and de�ne the source according to the following expression

δST = −1
2

∫
d4x
√
−g ρ δφ . (2.2.35)
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Variations wrt the potential φ yield the equation

∇̃µ∇̃µ φ = −48ρ . (2.2.36)

Such an expression shows, again, that torsion behaves like a dynamical �eld. The

reason that torsion propagates is due to the fact that, when it is assumed to be

derived from a potential, the Lagrangian (the curvature scalar) contains products

bilinear in the �rst derivative of the potential and therefore the �eld equations are

of second di�erential order. The advantage of this approach is that we may retain

the curvature scalar as the Lagrangian and are not forced into adopting much more

complicated quadratic Lagrangians and their associated equations.

Many other approaches for propagating torsion are present in literature, see [57, 77]

and references therein. In particular, more general actions can describe a dynamical

torsion �eld and they result to be quadratic in such a �eld. A discussion and an

application to cosmology is addressed in Section 2.2.5. This approach is analyzed,

among others, in [78, 79, 80, 81, 56].

In what follows we focus the attention on the particular approach of the torsion po-

tentials since we aim to implement such a formalism to construct the motion equations

for a test particle.

The torsion potentials Torsion is a three-index tensor, anti-symmetric in the �rst

two indices; according to group theory, it can be decomposed in a completely anti-

symmetric part, a trace part and a third part with no special symmetry properties

[82]. In our analysis, we here consider only the �rst two terms and we assume they

to be derived from the exterior derivative of two potentials [83, 76],

Bµνρ ≡ T[µνρ] = ∇[µVνρ] , (2.2.37a)

T (tr)
µνρ = 1

3
(gνρ∂µφ− gµρ∂νφ) , (2.2.37b)

where Vµν(x) is an anti-symmetric tensor, while φ(x) is a scalar (of course ∇̃µ is

de�ned by eq. (2.2.2)). These potentials play a role analogous to that of metric in

the symmetric part of connections .
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In this picture, contortion and connections rewrite as

Kµνρ = Bµνρ + 2 T (tr)
µνρ , (2.2.38a)

Γ̃µνρ = Γµνρ + ∂[µVνρ] + 2
3
((∂ρφ)gµν − (∂νφ)gµρ) , (2.2.38b)

respectively. As already discussed, the introduction of the potential for the anti-

symmetric part of torsion [75, 84] has its main motivation in obtaining a propagating

�eld in vacuum. As far as the expression (2.2.37b) for the trace part is concerned, it is

worth noting that the same expression is addressed in [75] but in a di�erent scenario.

In fact, in Hojman et al. article, such a term is introduced to get a coupling of torsion

to electromagnetic �eld which do not break gauge symmetry. As already mentioned,

another mechanism to obtain propagation can be developed; it consists, in analogy

to Yang-Mills theory, in introducing square terms in curvature and torsion in the

EH Action. Here we make the di�erent choice of using torsion potentials which, we

believe, has these advantages: (i) the simplicity of the EH Action is preserved as soon

as the minimal substitution Γµνρ → Γµνρ + Kµνρ is addressed; (ii) both Riemannian

connections and torsion are similarly treated since as the former is derived from

metric, the latter is derived from potentials; (iii) in the limit of small and slow varying

φ, the total action is equivalent to the low-energy limit of string-theory Lagrangian,

as already mentioned in [57] (and reference therein), suggesting torsion potentials to

be a necessary ingredient in more general theories.

Field equations for the torsion potential To calculate �eld equations, we now

introduce the usual EH Action (2.2.20), i.e.,

S̃EH = −1
2

∫
d4x
√
−g gνρ δµσ

(
∂µΓ̃σνρ − ∂νΓ̃σµρ − Γ̃εµρΓ̃

σ
νε + Γ̃ενρΓ̃

σ
µε

)
. (2.2.39)

Using torsion potentials, such an expression can be split up in its Riemannian part

plus torsion-depending terms

S̃EH = −1
2

∫
d4x
√
−g (R−BµνρBµνρ − 2

3
(∂µφ)2) . (2.2.40)
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We obtain �eld equations by variational principles: variations wrt gµν , Vµν and φ

yield, respectively,

Rµν − 1
2
gµνR + 1

2
gµνBρσεBρσε − 3BµσεBν

σε+

+ 8
3

(1
2
gµν(∂ρφ)2 − gµρgνσ(∂ρφ)(∂σφ)) = 0 , (2.2.41)

∇µB
µνρ = 0 , (2.2.42)

∇µg
µν∂νφ = 0 . (2.2.43)

The �rst of equations above consists of the (Riemannian) Einstein tensor, as in GR,

plus four terms all quadratic in the torsion potentials. This way, if we are interested in

solving the �rst-order dynamics for little values of torsion potentials, we can neglect

such quadratic terms and fall back in the GR �eld equations; the resulting metric

can be replaced in eq. (2.2.42) and eq. (2.2.43) to �nd, at �rst-order, the torsion

potentials.

One can easily check that, in eqs. (2.2.42) and (2.2.43), the goal of a propagating

description for torsion has been achieved obtaining two second-order PDE 's for both

potentials.

To conclude, we write down the gauge transformations for the tensor potential

Vµν → V ′µν = Vµν +∇µYν −∇µYν , (2.2.44)

by which, setting Yν such that ∇µV
′µ
ν = 0, it's easy to see that eq. (2.2.42) rewrites

as

∇ρ∇ρV ′µν −Rσ
ρµνV

′ρ
σ +RµσV

′σ
ν +RνσV

′σ
µ −Rσ

ρνµV
′ρ
σ = ∆DR(V ′µν) = 0 , (2.2.45)

where ∆DR is the deRham operator which generalize the Laplace operator in non-�at

spaces. It is easy to show that a �eld V ′µν obeying eq. (2.2.45) is characterized by

only one polarization in the iperplane normal to its propagation direction, i.e., only

one dof . It is worth noting that, as far as eq. (2.2.43) is concerned, a massless

Klein-Gordon �eld equation is recovered, so that the potential φ can be considered

as a geometrical manifestation of this �eld.

2.2.4 Gauge approach to gravity

Gauge theories describe all physical interactions, but the gravitational one. Many

attempts to construct a gauge model of gravitation exist, in particular the papers by

82



2.2 The torsion �eld: an overview

Utiyama [50] and by Kibble [51] were the starting points for various gauge approaches

to gravitation. As a result, PGT [85, 86, 52, 48, 87, 54, 55, 56, 53, 88, 89] is a

generalization of the Einstein scheme of gravity, in which not only the EMT, but

also the spin of matter plays a dynamical role when coupled to spin connections, in

a non-Riemannian space-time. Anyway, up to now, neither PGT nor other gauge

approaches to the gravitational interaction have led to a consistent quantum scheme

of the gravitational �eld [90].

As we will discuss, the role of fermion is very important in GR and, to include

spinor �elds consistently, it is necessary to extend the framework of the standard

theory of gravitation, as already realized by Hehl et al. [48]: this necessity is strictly

connected with the non existence in GR of an independent concept of spin angular-

momentum for physical �elds. The ECT accounts for both mass and spin of matter

as sources of the gravitational �eld and represent a description of gravity which is

more suitable than GR from a microscopical point of view. In fact, fundamental

interactions other than gravity are usually described within a theoretical framework

where symmetries and conservation laws are properly encoded. In GR, contrastingly,

matter can be described by point particles, �uids and light rays. This fundamental

di�erence notwithstanding, spin e�ects are negligible for macroscopic matter, so that

the observational predictions of ECT are regarded as the same as GR, from a phe-

nomenological point of view [55]. Furthermore, ECT is a special case of PGT which

is much more general and encompasses also propagating spin connections.

2.2.4.1 Tetradic formalism and spin connections

In what follows, we want to analyze the internal symmetries of the space-time in the

standard tetradic approach: the usual orthonormal basis e a
µ (tetrads) for the local

Minkowskian tangent space-time is introduced for a 4-dimensional manifold.

The gauge freedom of the ordinary metric gravity corresponds to the invariance

under di�eomorphisms [19], i.e., the General Covariance Principle. In this respect,

we underline that 10 metric �elds enters the dynamics and the di�eomorphism in-

variance reduces such 10 metric components to 2 dof . On the other hand, if the

tetrad formulation of gravity is addressed, the gauge freedom of di�eomorphisms is

maintained under world-indices (µ) transformations but another, independent, gauge

invariance appears considering the Lorentz tetrad-indices (a) transformations. Tetrad
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vectors exhibits new dof related to independent rotations not speci�ed by the metric

structure: this allows to consider 16 �elds for the model. It is worth noting that

6 gauge �elds can be �xed using 6 new �rst-class constraints derived by new gauge

invariance and, as discussed above, the maintained di�eomorphism invariance reduces

the metric components to 2 dof (i.e., the graviton). In this picture, the dynamics of

the gravitational �eld reduces to that of tetrads.

In the tetrad formalism, the relations between tetrads and the metric gµν are

gµν = ηab e
a
µ e b

ν , e a
µ eµb = δab , e a

µ eνa = δνµ , (2.2.46)

where ηab is the local Minkowski metric (by which one can raise or lower tetrad indices)

and the tetrad projection of a generic tensor results to be

V b
a = eµae

b
ν V

ν
µ . (2.2.47)

Local Lorentz transformations usually act on the tetrad basis as

e a
µ

L→ Λa
b e

b
µ , (2.2.48)

where Λa
b denotes the Lorentz matrix. It worth noting that an the in�nitesimal local

Lorentz transformations can be de�ned as

Λb
a = δba + εba , (2.2.49)

using the in�nitesimal Lorentz rotational parameter εab (x). Under such a transforma-

tion, tetrads behave like

e a
µ

L→ e a
µ + εabe

b
µ . (2.2.50)

Given e a
µ , the metric tensor gµν is uniquely determined and all metric properties of

the space-time are expressed by the tetrad �elds, accordingly, but the converse is not

true: there are in�nitely many choices of the local basis that reproduce the same

metric tensor, because of the local Lorentz invariance.

In the tetrad formalism, starting from the de�nition of the geometric covariant

derivative (in the torsionless case, it is implemented using the Christo�el Symbols

Γρµν), one can de�ne the projected covariant derivative of a vector �eld

∇aV
b = ∂aV

b + Γbac V
c . (2.2.51)

Writing ∇aV
b = eµae

b
ν ∇µV

ν , one deduces the relation

Γcab = eµ[ae
b
ν e

ν
c]Γ

ρ
µν − e

µ
be

c
[µ,a] . (2.2.52)
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After some little algebra [57], one can recast such a results, in terms of the so-called

spin connections ω ab
µ = e c

µ Γabc , written as

ω ab
µ = eνa∇µe

b
ν = e c

µ γ
ba
c , (2.2.53)

where γbac are the Ricci rotation coe�cients [15] de�ned by the relation

γabc = eµce
ν
b∇µeνa , (2.2.54)

here ∇µ denotes the usual coordinate covariant derivative.

It is worth noting that the introduction of the tetrad formalism is related to the

presence of spinor �elds in the dynamics, since spinors transform like a particular

representation S of the Lorentz Group (LG), i.e., ψ → Sψ. The covariance of the

spin derivative ∂µψ is ensured by the same spin connections ω ab
µ [57]. This way, one

is able to de�ne a Lorentz covariant derivative, i.e., ∂µ → D(S)
µ

D(S)

µ = ∂µ + Γ(S)

µ , Γ(S)

µ = 1
2
ω ab
µ Σab , (2.2.55)

here Σab are the generators of the LG de�ned considering the spin-1/2 representation

so that

Σab = i
2
[γa, γb] . (2.2.56)

On the other hand, spin connections ω ab
µ are introduced to restore the correct Dirac

algebra in curved (torsionless) space-time, i.e.,

D(S)

µ γν = 0 , Γ(S)

µ = −1
4
γρ∇µγρ = 1

2
ω ab
µ Σab . (2.2.57)

By other words, a treatment of spinors in curved space-time can leads to the intro-

duction of those connections which re�ect the covariance under the LG. In fact, when

spinor �elds are taken into account, their transformations under the local Lorentz

symmetry imply that the Dirac Equation is endowed with non-zero spin connections,

even in �at space-time.

Comment on the spinor �elds: topology The problem of spinor �elds on �at

space-time is well established [91] and it gives rise to a consistent formulation of the

Dirac Equation. The analysis of the fermion dynamics in non-inertial Minkowski

frame treating, the Lorentz transformation as frame-preserving di�eomorphisms, is

discussed in [92, 93]. On the other hand, in Riemannian curved space-time, without
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torsion, the Dirac fermion dynamics is treated in standard tetrad gravity, see [94] and

reference therein, but without a complete constraint theory. In particular, in [95], it

has been shown that spinning particles (in a semi-classical picture the γ matrices are

described by the Grassmann variables) do not couple with torsion since the constraint

algebra is not close in presence of torsion �eld.

The de�nition of spinor �elds on �at Minkowski space-time is motivated by the

fact that the latter are described by a spinor representation of the LG. However, the

LG does not act in a natural way on a curved space-time, so clearly this character-

istic property of spinor �elds can not be carried over in a direct manner to curved

spaces. Thus, the notion of fermions requires a particular treatment and the de�ni-

tion of the so-called spin bundle, since there is no natural action of the full group of

di�eomorphisms of spinor �elds.

Let us start from the basic notions1. A manifold is a topological space which looks

locally like Rm, but not necessarily so globally [96]. By introducing a chart, we give

a local Euclidean structure to a manifold, which enables us to use the conventional

calculus of several variables. A �bre bundle is, so to speak, a topological space which

looks locally like a direct product of two topological spaces. Many theories in physics,

such as general relativity and gauge theories, can be described naturally in terms of

�bre bundles. In fact, physical �elds are assumed to be geometrically represented by

sections of �ber bundles functorially associated with some jets prolongation of the

relevant principal bundle by means of left actions of Lie groups on manifolds, usually

tensor spaces. Such an approach enables to functorially de�ne the Lie derivative of

physical �elds with respect to gauge-natural lifts of (prolongations of) in�nitesimal

principal automorphisms of the underlying principal bundle.

The basic idea is to start with the notion of the tangent bundle TM , de�ned as

the sum over all point p in M of all the tangent spaces TpM of an m-dimensional

manifold M . The manifold M over which TM is constructed is called the base space.

Let us now de�ne the chart Ui as an open covering of M , on which we consider the

coordinates xµ. The space TUi, de�ned according the previous notation, result to

be 2m-dimensional di�erentiable manifold and we are naturally led to the concept of

projection. In the context of the theory of �bre bundles, TpM is called the �bre at

point p. It is obvious by construction, that if M = Rm, the tangent bundle itself is

1Only for this paragraph the notation does not follow global notations already introduced.

86



2.2 The torsion �eld: an overview

expressed as a direct product Rm×Rm. However, this is not always the case and the

non-trivial structure of the tangent bundle measures the topological non-triviality of

M .

In this scheme, the �bre coordinates are rotated by an element of GL(m,R) when-

ever we change the coordinates. Such a group is called the structure group of TM .

This way, �bres are interwoven together to form a tangent bundle, which consequently

may have quite a complicated topological structure.

The tangent bundle is an example of a more general framework called �bre bundle.

A (di�erentiable) �bre bundle consists of the following elements: (i) a di�erentiable

manifold E called the total space; (ii) a di�erentiable manifold M called the base

space; (iii) a di�erentiable manifold F of dimension k called the �bre; (iv) a projection

π : E →M ; (v) a Lie Group G called the structure group; (vi) a set of open covering

Ui of M with a di�eomorphism φi : Ui × F → π−1Ui such that πφi(p, f) = p; (vii)

setting φi(p, f) = φi,p, the map φi,p : F → Fp is a di�eomorphism.

Considering not only a single chart, on Ui ∩ Uj, we can de�ne useful the functions

tij(p) = φ−1
i,pφj,p : F → F to be an element of the structure group G. Then φi and

φj are related by a smooth map tij as φj(p, f) = φi(p, tijf). Functions tij are called

the transition functions. Strictly speaking, the de�nition of a �bre bundle should be

independent of the special covering Ui of M . If all the transition functions can be

taken to be identity maps, the �bre bundle is called a trivial bundle, which is the

direct productM×F . Given a �bre bundle, the possible set of transition functions is

obviously far from unique. This way, let Ui be a covering of M we can de�ne φi and

φ̃i as two sets of di�eomorphism giving rise to the same �bre bundle. In this respect,

we can set t̃ij(p) = φ̃−1
i,p φ̃j,p.

A spinor �eld onM is a section of a spin bundle. A section is de�ned by s : M → E

and it is a smooth map which satis�ed πs : M → M , i.e., the identity map. Since

GL(m,R) has no spinor representation, we need to introduce an orthonormal frame

bundle whose structure group is SO(m). The presence spin bundle tells us whether

a manifold admits a spin or not. Let TM be a tangent bundle with dimM = m and

the structure group G is taken to be O(m). If, furthermore, M is orientable, G can

be reduced down to SO(m). The set of t̃ij de�nes a spin bundle PS(M) over M , and

M is said to admit a spin structure (of course, M may admit many spin structures

depending on the choice of t̃ij).

It is interesting to note that not all manifolds admit suitable spin structures. Non-
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admittance of spin structures is measured by the topological invariant known as Sec-

ond Stie�el-Whitney Class w2. In particular, the condition w2 = 0 on an orientable

manifold M , is necessary and su�cient to ensure the existence of a spin structure on

M , but we do not want to address a detailed discussion about this (see [96, 19]).

In conclusion, one can infer that, let TM be the tangent bundle over an orientable

manifold M so that each �bers is di�eomorphic to the proper LG, there exists a spin

bundle overM if and only if the transition functions satisfy the relation t̃ij t̃jk t̃ki = 1. A

spinor may then be de�ned as a point in the �ber of the spin bundle. By other words,

a more physical interpretation of this condition can be given as follows: a space-time-

orientable manifold M admits a spin structures if and only if on any closed 2-surface

L in M there exists a set of n− 1 continuous �elds of tangent vectors to M , linearly

independent at every point of L. In this case, no obstructions to spin structures can

occur [97, 98].

We want to remark that, in what follows, we use the standard treatment of the

spinor �elds, addressed at the begin of this Section, without enters the details of the

well-grounded topology approach.

Structure Equations The picture derived by using spin connections (2.2.53), sug-

gests in appearance the description of gravity as a gauge model [99, 100]. As discussed

above, spin connections are a suitable bein projection of Ricci rotation coe�cients,

ω ab
µ = e c

µ γ
ba
c , (2.2.58)

and this formalism leads to the following de�nition of the curvature tensor:

R ab
µν = ∂νω

ab
µ − ∂µω ab

ν + Fabcdefω cd
µ ω ef

ν , (2.2.59)

which is the I Cartan Structure Equation and Fabcdef are the LG structure constants.

The EH Action consists of the lowest-order non-trivial scalar combination of the

Riemann curvature tensor and the tetrad �elds, i.e.,

SG(e, ω) = −1
2

∫
det(e) d4x e µ

a e
ν
b R

ab
µν . (2.2.60)

Variation wrt connections leads to the II Cartan Structure Equation,

∂µe
a
ν − ∂νe a

µ − ω ab
µ eνb + ω ab

ν eµb = 0 , (2.2.61)
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which links the tetrad �elds to the spin connections: the solutions have, of course, the

form (2.2.58). Furthermore, variation wrt tetrads, leads to the dynamical Einstein

�eld equations. This approach corresponds to the First-Order Formalism where the

tetrad vectors and connections are treated like independent �elds.

Gauge model? Since ω ab
µ = e c

µ γ
ba
c, it is worth underlining that such connections

behave like ordinary vectors under general coordinate transformations (i.e., world

transformations). In the standard approach, spin connections transform like Lorentz

gauge vectors under in�nitesimal local Lorentz transformations Λb
a = δba + εba,

ω ab
µ

L→ ω ab
µ − ∂µεab + 1

4
Fabcdefεcdω ef

ν (2.2.62)

and the Riemann tensor is preserved by such a change; therefore, in �at space-time,

one can deal with non-zero gauge connections, but a vanishing curvature. In both �at

and curved space-time, the connections ω ab
µ exhibit the right behavior to play the

role of Lorentz gauge �elds and GR exhibits the features of a gauge theory. On the

other hand, the presence of the tetrad �eld, introduced by the General Covariance

Principle, is an ambiguous element for the gauge paradigm. This scenario would

be appropriate if the theory were based on two independent degrees of freedom.

Since spin connections ω ab
µ can be uniquely determined as functions of tetrad �elds,

this correlation opens a puzzle in the interpretation of these connections as the only

fundamental �elds of the gauge scheme.

2.2.4.2 Poincaré Gauge Theory

The �rst paper that formulates gravitation as a gauge theory was the work by R.

Utiyama in 1956 [50]. It is sometimes argued that gravity is already a gauge theory

of the group of di�eomorphisms [101], but the �rst attempt at making gravity a local

gauge theory in more modern sense was made in such a work by Utiyama. As is the

ordinary tetrad approach to gravity, Utiyama assumed the gauge group as Lorentz

one. As previously discussed, by going to the tetrad, one assumes that the e�ect of

the Lorentz transformation is to rotate such a base. However, nowadays we see some

di�culties with the details. In order to relate the gauge connections to the a�ne ones,

Utiyama essentially assumed the a�ne connection to be symmetric. Moreover, his

conservation law seems only to contain orbital angular-momentum, but the biggest

problem is this: the LG relates to orbital angular momentum while, in GR, the source
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is the EMT. A major improvement was made by T.W.B Kibble [51] who solved these

problems by taking the underlying symmetry group to be the inhomogeneous LG, or

the Poincaré Group. In fact, after Kibble's work, Utiyama (with Fukuyama) used the

inhomogeneous Lorentz invariance to show that a symmetric second rank tensor was

required as the gauge �eld [102].

In what follows, we analyze the proposal to connect the presence of torsion with

the local nature of the Poincaré symmetry. PGT can be described from both a gauge

and a geometrical point of view and particular attention will be payed to the physical

meaning of �eld equations, which predict a contact interaction, i.e., a non-propagating

gauge �eld.

Global Poincaré transformations Let us start by considering that the only space

where the Poincaré generators are de�ned is the �at Minkowski one. We implement

now an in�nitesimal global Poincaré transformation, including the translation εµ,

xµ → x′µ = xµ + εµν x
ν + εµ , (2.2.63)

and the consequent transformation law for spinor �elds

ψ(x)
P→ (1 + εµ∂µ + 1

2
εµν Σµν)ψ(x) , (2.2.64)

where the Σµν are the generators of the LG and, of course, ∂µ corresponds to the

translation operator. If the matter Lagrangian density is assumed to depend on

the spinor �eld and on its derivatives only, i.e., L = L(ψ, ∂µψ), and if the motion

equations are assumed to hold, the conservation law

∂µJ
µ = 0 , (2.2.65)

is found, where

Jµ = 1
2
ενρMµ

νρ − ενT µν . (2.2.66)

Here the canonical EMT and angular-momentum tensor are de�ned, according to the

analysis discussed in the ECT (see eq. (2.2.21)), as

T µν =
∂L
∂ψ,µ

∂νψ − δµνL , (2.2.67)

Mµ
νρ = (xνT

µ
ρ − xρT µν ) +

∂L
∂ψ,µ

Σνρψ , (2.2.68)
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respectively. Because the parameters in eq. (2.2.66) are constant, according to the

Nöether Theorem, conservation laws for the energy-momentum current and for the

angular-momentum current, together with the related charges, are established (if the

integration on the boundaries of the 3-space brings vanishing contributions):

∂µT
µ
ν = 0 ⇒ P ν =

∫
d3xT 0ν , (2.2.69)

∂µM
µ
νρ = 0 ⇒ Mνρ =

∫
d3xM0

νρ . (2.2.70)

Gauge approach In the original analysis, Kibble [51] consider the non-symmetric

nature of the a�ne connection introducing torsion in the space-time and shows that

spin gives rise to an anti-symmetric part. Kibble work and that of Sciama [49] are

discussed in more detail by Hehl et al. who give the most comprehensive formulation

of a local PGT of gravity in [48].

When transformations are locally implemented, i.e., the parameters εµν and εµ are

functions of space and time, eqs. (2.2.66)-(2.2.70) do not hold any more. In order to

maintain invariance, the ordinary partial derivative must be replaced by the gauge

covariant derivative,

∂a → D̂a = eµa(∂µ + 1
2
Γ̂ ab
µ Σab) . (2.2.71)

This way, the Poincaré Group has the four translation operators and six rotation op-

erators. Tetrads eµa become the translation gauge potential and Γ̂ ab
µ are the rotation

gauge potential.

The Lagrangian density depends on the covariant derivative of the �elds, instead

of the ordinary one, L = L(ψ, D̂aψ). Covariant derivatives (2.2.71) do not commute,

but satisfy the commutation relations

[D̂a, D̂b] = eµae
ν
b(

1
2
F cd
µν Σcd − F c

µν D̂c) , (2.2.72)

where F ab
µν are the Lorentz rotation �eld strength de�ned, in according to (2.2.59)

(here the Γ̂ ab
µ 's play the role of the spin connections ω ab

µ ) as

F ab
µν = R ab

µν . (2.2.73)

The quantities F c
µν are the translation �eld strength de�ned trough the torsion �eld

as

−F c
µν = T c

µν . (2.2.74)
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The gauge covariant translation operator changes the commutation relations wrt the

Minkowski space results; in particular the algebra does not close, as shown above.

Covariant energy-momentum and spin currents can be found, in analogy with the

global case. In particular, we underline that the expression of the translation �eld

strength as torsion in eq. (2.2.74) leads to the same analysis of the ECT dealing with

a contact spin-spin interaction proper of a non-propagating torsion.

The comparison of gauge model wrt the tetrad formalism of gravity leads to the

identi�cation of the rotational gauge �elds Γ̂ ab
µ , which accounts for local Lorentz

transformations, with the spin connections ω ab
µ , and of the �elds eµa, which describe

translations, with the components of the tetrad �eld. This way, the identi�cations of

the Lorentz �eld strength with curvature and that of the translation �eld strength

with torsion, are straightforward.

As outlined in the U4 theory by Hehl et. al [48], it is possible to infer the in-

adequacy of special relativity to describe the behavior of matter �elds under local

Poincaré transformations. Global Poincaré transformations preserve distances be-

tween events and the metric properties of neighboring matter �elds: comparing �eld

amplitudes before performing the transformation, and then transforming the result,

or comparing the transformed amplitudes of the �elds is equivalent. This property

is known as rigidity condition, as matter �elds behave as rigid bodies under this

kind of transformations. On the contrary, it can be shown that the action of local

Poincaré transformations can be interpreted as an irregular deformation of matter

�elds, thus predicting di�erent phenomenological evidences for the �eld and for the

transformed one. The compensating gauge �elds e a
µ and Γ̂ ab

µ , introduced to restore

local invariance, describe geometrical properties of the space-time.

Other gauge theories In a work by K. Hayashi and T. Shirafuji [103], they further

examined PGT, but addressing the notion of quadratic Lagrangians. They considered

the irreducible decompositions (under the LG) of the torsion tensor as follows. The

trace of the torsion is de�ned as

Tµ = T ρµρ· . (2.2.75)

Using the Young table method they also de�ne the traceless part

tµνρ = Tµνρ + Tνρµ − 1
3
(Tν gµρ + Tµ gνρ) + 2

3
Tρ gµν , (2.2.76)
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and anti-symmetric part as

aσ = 1
3
εσµνρT µνρ . (2.2.77)

The most general Lagrangian quadratic in these irreducible parts of the torsion can

be addressed as follows

LT = A tµνρt
µνρ + 4B TµT µ + C aµ a

µ . (2.2.78)

They repeat this procedure for the curvature scalar getting �ve terms quadratic in

the curvature tensor, or combinations and contractions of such quantities. Adding

the scalar invariant R̃ a ten parameter Lagrangian for the PGT has been obtained.

Advantages of this general framework are that torsion propagates, and the use of

terms quadratic in the �eld strength mimics conventional gauge theory.

2.2.4.3 Teleparallelism

An interesting limit of PGT is Weitzenböck or teleparallel geometry, de�ned by the

requirement

R ab
µν = 0 . (2.2.79)

Teleparallel geometry (see, for example, [54] for a hand-on review and all the refer-

ences therein) can be interpreted, to some extents, as complementary to Riemannian:

curvature vanishes and torsion remains to characterize the parallel transport. The

physical interpretation of such a geometry relies on the fact that there is a one-

parameter family of teleparallel Lagrangians which is empirically equivalent to GR

[104, 88].

Lagrangian and �eld equations Within this framework, the gravitational �eld

is described by tetrads e a
µ and Lorentz connections ω ab

µ , where (2.2.79) has to be

taken into account. For our purposes, it is useful to consider the class of Lagrangians

quadratic in torsion, i.e.,

LTP = b LT + λµνabR
ab

µν + LMatter , (2.2.80)

where λµνab are Lagrange multipliers introduced to ensure condition (2.2.79) in the

variational formalism and LT is now de�ned as

LT = ATabcT abc +BTabcT bac + CTaT a = βabcT abc , (2.2.81)
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where

βabc = a(ATabc +BT[bac] + Cηa[bTc]) , (2.2.82)

here a, b, A, B, C are constant parameters and ηab denotes the Lorentz metric.

Variations of (2.2.80) wrt e a
µ , ω

ab
µ and λµνab lead to the following �eld equations [54]:

4∇ρ(bβa
µρ)− 4bβbcµTbca + eµabLT = T µa , (2.2.83a)

4∇ρλ
µρ
ab − 8bβµ[ab] = τµab , (2.2.83b)

R ab
µν = 0 , (2.2.83c)

where τµab is the spin current introduced in the ECT. Eq. (2.2.83c) ensures (2.2.79)

from variational principles, on the other hand, eq. (2.2.83a) is a dynamical equation

for eµa. The only role of (2.2.83b) is to determine the Lagrange multipliers λµνab and

the non-uniqueness of such coe�cients is related to an extra gauge freedom in the

theory. In fact, the gravitational Lagrangian (2.2.80) is, by construction, invariant

under the local Poincaré transformations and, up to a four-divergence, under the

transformations [105]

δλµνab = ∇ρε
µνρ

ab , (2.2.84)

where the gauge parameter εµνρab = −εµνρba is completely anti-symmetric. The λ-

transformations can be recasted in

δλαβab = ∇0ε
αβ
ab +∇γε

αβγ
ab , δλ0β

ab = ∇γε
βγ
ab , (2.2.85)

where εµνab = εµν0
ab (the invariance of eq. (2.2.83b) follows directly from Rµν

ab = 0).

One can show that the only independent parameters of the λ symmetry are εαβab,

so that the six parameters εαβγab are not independent of ε
αβ
ab and can be completely

discarded, leaving 18 independent gauge parameters, which can be used to �x 18

multipliers λµνab, whereupon the remaining 18 multipliers are determined by the in-

dependent �eld equations (2.2.83b) (at least locally). The gauge structure of such a

one-parameter teleparallel theory is believed to be still problematic.

Orthonormal frames If a manifold is paralellizable (which is a quite strong topo-

logical restriction), the vanishing of curvature implies that the parallel transport is

path independent, so that the resulting tetrads are globally well de�ned. In such an
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orthonormal teleparallel frame, the connection coe�cients vanish:

ω ab
µ = 0 . (2.2.86)

This construction is not unique, but it de�nes a class of orthonormal frames, related

to each other by global Lorentz transformations. In such a frame, the covariant

derivative reduces to the partial one and the torsion takes the simple form:

T a
µν = ∂µe

a
ν − ∂νe a

µ . (2.2.87)

Eq. (2.2.86) de�nes a particular solution of the condition R ab
µν = 0. Since a local

Lorentz transformation of the tetrad �elds induces a non-homogeneous change in the

connection, i.e.,

e a
µ → Λa

ce
c
µ ⇒ ω ab

µ → Λa
cΛ

b
d ω

cd
µ + Λa

c∂µΛbc , (2.2.88)

it follows that the general solution of R ab
µν = 0 has the form ω ab

µ = Λa
c∂µΛbc. Thus,

the choice (2.2.86) breaks local Lorentz invariance, and represents a gauge �xing

condition.

Discussion In eq. (2.2.80), the teleparallel condition is ensured by the presence of

the Lagrange multiplier. Eq. (2.2.83b) merely serves to determine the multiplier,

while the non-trivial dynamics is completely contained in eq. (2.2.83a). So far,

teleparallel theory (on parallelizable manifolds) may also be described by imposing

the gauge condition (2.2.86) directly in the action. The resulting theory is de�ned

in terms of the tetrad �elds only and may be thought of as the gauge theory of

translations.

The consistency of teleparallel gravity when spinning matter is taken into account

has also been discussed within the framework of the teleparallel limit of PGT [106,

107]. In [106], an inconsistency, due to frame dependence, was illustrated to arise

for every gauge theory of the Poincaré Group that admits a teleparallel limit in the

absence of spinning matter. Furthermore, in [107], a restricted class of transformations

was found, according to which the frame invariance of the gravitational Lagrangian

does not lead to inconsistencies, even as far as Standard Model for Particles are

concerned, and experimental aspects were analyzed.
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2.2.5 Torsion and cosmology: outlooks

An advanced topic concerning the Cosmological Dynamics is the analysis dealing

with the presence of the torsion �eld during early Universe evolution (as discussed

in [59]) and the study of possible links with the e�ects induced by dissipative pro-

cesses discussed in the previous Chapter. In fact, introducing a non-vanishing average

spin axial current Jµ and a related torsion �eld in the relativistic dynamics of the

early Universe, a generalized Friedmann Equation for the primordial evolution can

be derived. For particular values of the parameters related to torsion �eld, the pri-

mordial singularity can be prevented. In this respect, a parallel study of the modi�ed

cosmological equations, in presence of viscous e�ects, can be performed.

It is worth noting that a �classical action of torsion� can be used only in some special

sense. In the ECT, torsion does not have dynamics and therefore can only lead to

the contact interaction between spins. On the other hand, the spin of the particle is

essentially quantum characteristic. Therefore, the classical torsion can be understood

only as the result of a semi-classical approximation in some quantum theory.

Let us now suppose that in the early Universe, due to quantum e�ects of matter,

the average spin axial current does not vanish

Jµ = 〈ψ̄γ5γµψ〉 . (2.2.89)

Furthermore, torsion is assumed to be completely anti-symmetric and we de�ne the

pseudotrace axial vector

Sµ = εσνρµ Tσνρ . (2.2.90)

The EC Action, with this additional current is [108]

SEC =
∫
d4x
√
−g

[
−1

2
(R + κSµ S

µ ) + Sµ J
µ
]
. (2.2.91)

The arbitrary coe�cient κ has been included into the dynamics, but it could be

suitably included into the de�nition of the global current (2.2.89). Torsion does not

have its own dynamics and, on shell, it simply reads

Sµ = Jµ / κ . (2.2.92)

Replacing expression (2.2.92) back into the action (2.2.91), one gets

SEC =
∫
d4x
√
−g

[
−1

2
R + 1

2κ
Jµ J

µ
]
. (2.2.93)
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For the sake of simplicity, let us consider the conformally �at metric

gµν = ηµν a
2(η) ,

where ηµν is the Minkowsky metric and η is the conformal time. Using eq. (2.2.89),

the current Jµ has to be replaced by Jµ = a−4 Ĵµ, where Ĵµ is constant. By the

de�nition
4

3κ
ηµν Ĵ

µĴν = K = const. , (2.2.94)

one can get the action and the corresponding motion equation for the scale factor a.

They read, respectively

S = −3
∫
dη
∫
d3x

[
(∇a)2 −K/a2

]
,

d2a

dη2
=
K

a3
. (2.2.95)

The last equation can be rewritten in terms of physical time t, where a(η)dη = dt:

a2ä+ aȧ2 = Ka−3 . (2.2.96)

By standard manipulation, the integral solving this equation is∫
a2 da√
Ca2 −K

= t− t0 , (2.2.97)

where C is the integration constant.

The integral above has di�erent solutions depending on the signs of K and C.

According to this fact, di�erent cases can be addressed:

(1.) K > 0, spin current time-like: Analyzing eq. (2.2.97) one can show that

C > 0 and a(t) has minimal value

a > a0 =
√
K/C > 0 . (2.2.98)

As a result, the presence of the global time-like spinor current, in the ECT, prevents

the singularity. Indeed, since such a global spinor current can appear only as a result

of some quantum e�ects, one can consider this as an example of quantum elimination

of the Big Bang singularity.

The �nal explicit solution of eq. (2.2.97) reads

arccosh

(√
C
K
a

)
+ a

√
a2 − K

C
= 2C3/2

K
(t− t0) . (2.2.99)
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In the limit t → ∞ the asymptotic behavior a ∼ t2/3 is reached. The importance of

torsion is seen only at small distances and times and for the scale factor comparable to

a0 =
√
K/C. At this scale torsion prevents singularity and provides the cosmological

solution with bounce.

(2.) K < 0, spin current space-like: For any value of C, singularities occur. If

C > 0, the solution is

a

C

√
1 + C

|K|a
2 − |K|1/2

C3/2 ln
[√

C
|K| a+

√
1 + C

|K| a
2
]

= 2 (t− t0) , (2.2.100)

while in case of negative C the the solution reads

− a

|C|

√
1−

∣∣C
K

∣∣ a2 +
∣∣ K
C3

∣∣1/2 arcsin

(√∣∣C
K

∣∣ a) = 2 (t− t0) , (2.2.101)

while if C = 0 one gets

a(t) =
[

3 |K| (t− t0)
]1/3

∼ t1/3 . (2.2.102)

(3.) K = 0, spin current light-like: In this case C > 0 and the solution is

a(t) =
[

2
√
C (t− t0)

]1/2

∼ t1/2 , (2.2.103)

which is, of course, exactly the same solution as one meets in the theory without

torsion.
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2.3 Propagating torsion: e�ects on the

gravitational potential

Working in the Lagrangian framework and using a geometric theory in vacuum with

propagating torsion, we establish the principle of minimal substitution to derive test-

particle motion equation. In particular, we obtain, as result2, that they move along

Autoparallels. We then calculate the analogous of the geodesic deviation for these

trajectories and analyze their behavior in the non-relativistic limit, showing that a

part of the torsion �eld has a phenomenology which is indistinguishable from that of

the gravitational Newton �eld

In this analysis, we follow the torsion-potential approach to describe a propagating

torsion. In this respect, we recall that the anti-symmetric and trace parts of the

torsion tensor are considered as derived from local potential �elds: a tensor quantity

Vµν(x) and a scalar one φ(x). In presence of torsion and requiring that the non-

metricity Qµνρ be vanishing, a�ne connections write as eq. (2.2.7), i.e.,

Γ̃µνρ = Γµνρ +Kµνρ , (2.3.1)

where, we remind that Γµνρ are the Christo�el Symbols and Kµνρ is de�ned using eq.

(2.2.8). Expressing now the torsion �eld trough the potentials as in eqs. (2.2.37),

connections read

Γ̃µνρ = Γµνρ + ∂[µVνρ] + 2
3
((∂ρφ)gµν − (∂νφ)gµρ) . (2.3.2)

2.3.1 Test-particle motion

The problem of determining the test-particle motion equations can be approached by

several point of view. In particular, the one proposed by A. Papapetrou [109] consists

in obtaining the equations of motion from the conservation law of the EMT. According

to us this approach has some unsatisfactory aspects. First of all, some ambiguities are

generated concerning the derivation of the conservation law since it can be evaluated

both using the Nöether theorem and Ricci identities, but, in presence of torsion, the

results can be di�erent [110]. Secondly, once the conservation law is obtained, we

2NC, O.M. Lecian and G. Montani, �Macroscopic and Microscopic Paradigms for the Torsion Field:

from the Test-Particle Motion to a Lorentz Gauge Theory�,

Ann. Fond. L. deBroglie 32(2/3), 281 (2007).
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have to explicitly write the expression of the EMT which is rather di�cult, especially

in the case of presence of non-Riemannian quantities as torsion. In fact, the EMT

probably depends on spin and it is not clear to give a semi-classical expression of it,

being spin a purely quantum quantity.

Another approach to test-particle motion equations is developed by S. Hojman

[111] and consists in de�ning all compatible scalar quantities to be involved in the

test-particle action and then the equations of motion are obtained by variations wrt

the particle coordinates. This approach has one of the same unsatisfactory aspects

of the previous one since, taking into account the test-particle spin, we need again to

address a semi-classical expression for the spin-depending part of the action.

Furthermore, equations of motion can be derived using the shortest-path principle,

assuming that the test-particle trajectory from a point A to another point B cor-

responds to the least length among all the curves joining A with B. Although this

method seems simple and appreciable, it is completely regardless of the presence of

torsion because this property of the space does not contribute to the length of a path

and does not appear in the motion equation of any test particle.

The minimal substitution In view of the consideration above, the presence of a

tensor quantity as torsion, which has a role in the parallel transport of vector �elds

in space, should have some e�ects on the motion and therefore the correct method is

to implement the minimal substitution (d/dτ)→ (∇̃/dτ).

According to this rule, the motion equations in curved space are derived from that

of special relativity
duµ

dτ
= 0 , (2.3.3)

where uµ denotes the 4-velocity, for which ∇̃uµ/dτ = 0 is obtained. Using eq. (2.3.2),

such an expression can be rewritten as

∇̃uρ

dτ
=
duρ

dτ
+ Γρµνu

µuν + 2
3
gρσ(gµν∂σφ− gµσ∂νφ)uµuν = 0 . (2.3.4)

When we discuss the preferred curves in presence of torsion, we must distinguish two

di�erent classes of curves, both of which reduce to the Geodesics in correspondence

of the torsionless limit of standard GR. (i) The Autoparallels (straightest lines), de-

scribed by eq. (2.3.4), are curves whose tangent vector is parallelly transported along

itself. Note that only the symmetric part (but torsion dependent) of connections
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enters (2.3.4). (ii) The Extremal Curves (shortest or longest lines) are those curves

which are of extremal length wrt the metric of the manifold. The length between two

points depends only on the metric �eld and not on the torsion tensor. Therefore, the

di�erential equation for the extremals can be derived from δ
∫
ds = 0 exactly in the

corresponding Riemannian space obtaining the Geodesics,

duρ

dτ
+ Γρµνu

µuν = 0 . (2.3.5)

In a U4 space the Autoparallels and the Geodesics coincide if and only if the torsion

is totally anti-symmetric. The Autoparallels (2.3.4) are the simplest generalization of

the �at-space motion equation, which is suitable to take into account torsion or other

non-Riemannian quantities.

New action principle and non-holonomic map This approach is proposed in

[112, 113] and is based on the idea that it is possible to introduce a new action

principle such that, starting from a modi�ed action

SM = −M
2

∫ τ2
τ1
dτ ẋ2 , (2.3.6)

where τ is the proper time, Autoparallels are obtained as the right trajectories.

The key point is that a space-time with torsion can be obtained by a non-holonomic

mapping from a �at space-time. We refer to such a mapping when the object of non-

holonomity,

Ω a
µν = ∂[µ e

a
ν] , (2.3.7)

does not vanish. This quantity measures the non-commutativity of the tetrad basis

and enters the de�nition of the tetrad projection of a�ne connections as [57, 48]

Γ̃abc = −Ωabc + Ωbca − Ωcab −Kabc . (2.3.8)

In this scheme, the relation between the old paths, i.e., xa(τ) and the new one, i.e.,

qµ(τ), can be written in the following integral form

qµ(τ) = qµ(τ1) +
∫ τ

τ1
dτ ′eµa(q(τ

′))ẋa(τ ′) , (2.3.9)

where eµa(q(τ
′)) represents the non-holonomic mapping. As already discussed, the

space-time is characterized by open (non-close) parallelograms; as a consequence,

variations of test-particle trajectories cannot be performed keeping δxa(τ) vanishing
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at endpoints. In fact, the variation δSqµ(τ), images of δxa(τ) under a non-holonomic

mapping, are generally non-vanishing. This way, they can be chosen to be zero at the

initial point but then they are non-vanishing at the �nal point. This behavior is due

to torsion. In this scheme, the variation associated to qµ(τ) assume the form:

δSqµ(τ) =
∫ τ

τ1
dτ ′
[(
δSeµa(q(τ

′))
)
ẋa(τ ′) + eµa(q(τ

′))δẋa(τ ′)
]
. (2.3.10)

Let us now take into account the auxiliary non-holonomic variation, de�ned as

δ̄qµ(τ) ≡ eµa(q(τ))δxa(τ) , (2.3.11)

which, di�erently from δSqµ(τ), vanishes at endpoints and forms closed paths in the

q-space. We can now evaluate the relation

d
dτ
δSqµ(τ) =

(
δSeµa(q(τ))

)
ẋa(τ) + eµa(q(τ))δẋa(τ) =

=
[
δSeµa(q(τ))

]
ẋa(τ) + eµa(q(τ)) d

dτ

[
e a
ν (q(τ))δ̄qν(τ)

]
,

(2.3.12)

which, substituting the expressions

δSeµa = −Γ̃µλνδ
Sqλeµa ,

d
dτ
e a
ν = Γ̃µλν q̇

λe a
µ , (2.3.13)

can be rewritten as

d
dτ
δSqµ = −Γ̃µλνδ

Sqλq̇ν + Γ̃µλν q̇
λδ̄qν + d

dτ
δ̄qµ . (2.3.14)

Introducing the parameter δSbµ, i.e., the di�erence between δSqµ and δ̄qµ, the equa-

tion above reads

d
dτ
δSbµ = −Γ̃µλνδ

Sbλq̇ν + 2T µλν q̇
λδ̄qν . (2.3.15)

The variation of the action (2.3.6), written in terms of the new paths qµ(τ), under

δSqµ = δ̄qµ + δSbµ reads now

δSSM = δS
(
− M

2

∫ τ2
τ1
dτ gµν q̇

µq̇ν
)

=

= −M
∫ τ2
τ1
dτ
(
gµν q̇

νδS q̇µ + 1
2
∂µgλρδ

Sqµ q̇λq̇ρ
)
. (2.3.16)

Using the relation [δS, d/dτ] = 0, which follows from (2.3.9), we can integrate the

δSq−term and, by the identity ∂µgνλ = Γ̃µνλ + Γ̃µλν , we get

δSSM = −M
∫ τ2
τ1
dτ
[
− gµν

(
q̈ν + Γνλρq̇

λq̇ρ
)
δ̄qµ+

+
(
gµν q̇

ν d
dτ
δSbµ + Γ̃µλρδ

Sbµq̇λq̇ρ
)]
. (2.3.17)
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It is straightforward now to obtain �rst the motion equation in absence of torsion,

i.e., δSbµ(τ) ≡ 0,

q̈ν + Γνλρ q̇
λq̇ρ = 0 , (2.3.18)

that corresponds to the Geodesics (2.3.5). On the other hand, taking into account

the torsion �eld, with the help of (2.3.15), we can get the Autoparallels (2.3.4) in

presence of torsion

q̈ν + Γ̃νλρ q̇
λq̇ρ = 0 . (2.3.19)

Autoparallels from a modi�ed action As demonstrated by Papapetrou in [109]

the Autoparallel motion can be derived from the EMT (Tµν) conservation law at

the lowest order of a multipole expansion around the world line. We now give a

possible modi�cation of the test-particle action, such that this result could be partially

obtained. To this end, we assume the test-particle action of the form

SM =
∫
dτ gµνu

µuν e−φ/4 , (2.3.20)

where φ correspond to the torsion scalar potential, see eq. (2.3.2). Taking into account

the generic identity

δS =
∫
d4x
√
−g (gT µν δgµν + φT δφ) , (2.3.21)

we now calculate the action variations wrt gµν and φ, respectively:

gT µν = δSM
δgµν

=
∫

dτ√−g u
µuνe−φ/4 δ(x− x0) ,

φT = δSM
δφ

= −1
4

∫
dτ√−g gµν u

µuνe−φ/4 δ(x− x0) .
(2.3.22)

Following the work by Hammond [114], we consider the motion of a test particle,

which negligibly perturbs the background geometry in which it lives and we start

from the identity

(
√
−g gT µν), ν =

√
−g gT µν; ν −

√
−g Γµρσ

gT ρσ . (2.3.23)

Let us now integrate the last expression over a volume dV , where the test-particle

contribution to the EMT is the only non-negligible one. Taking into account the

Bianchi Identity, one can derive the conservation law [114]

gT µν; ν = 8
3
∂µφ φT , (2.3.24)
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and discarding all surface terms, we get

d
u0dτ

∫
dV
√
−g gT µ0 = 8

3
∂µφ

∫
dV
√
−g φT − Γµρσ

∫
dV
√
−g gT ρσ . (2.3.25)

By (2.3.22), this identity can be rewritten in the following form

duρ

dτ
= −Γρµνu

µuν − 2
3
gρσ(∂σφ)gµνu

µuν , (2.3.26)

and, if we multiply the lhs and the rhs of this equation by uρ, we obtain the identity

0 = uρ ∂
ρφ . (2.3.27)

Taking into account the Autoparallels (2.3.4), we immediate recognize that it matches

the results (2.3.26) and (2.3.27).

2.3.2 Non-relativistic limit and the role of torsion potentials

On the basis of the minimal-substitution rule we have introduced, test particles are

found to follow Autoparallel trajectories (2.3.4). Such trajectories can be rewritten

as

d2xρ

dτ 2
= −Γρµν

dxµ

dτ

dxν

dτ
−Kρ·µν

dxµ

dτ

dxν

dτ
. (2.3.28)

We remind that the anti-symmetric part of the torsion contribution vanishes; it only

contributes as a source for the metric through (2.2.41). In what follows, we will study

the non-relativistic limit of Autoparallels and we will calculate the analogous of the

Geodesic Deviation in order to characterize the role of torsion in the Tidal Forces.

Non-relativistic limit of Autoparallels In order to calculate the non-relativistic

limit, the following hypotheses can be stated:

(i) the 3 -velocity is much smaller than c, so we can assume uα � 1;

(ii) the gravitational �eld and torsion potential φ are static and weak.

Since we want to keep only �rst order terms, by virtue of these assumptions, we will

neglect all second-order terms in the quantities above. After some calculations, we

obtain the Autoparallels as

duα
dt

= −1
2
∂αh00 − 2

3
∂αφ , (2.3.29)
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where we have introduced the metric perturbation

hµν = gµν − ηµν , (2.3.30)

ηµν being the Minkowsky metric. Now we recall that, in GR, we get the expression

duα
dt

= −1
2
∂αh00 , (2.3.31)

which allows one to identify h00 with the gravitational potential Φ,

1
2
h00 = Φ . (2.3.32)

As one can see from eq. (2.3.29), the �force� due to the torsion potential is present

in the same form of the gravitational �eld h00; in addition, as for the order we are

interested in, and reminding of the supposed �eld's static nature, eq. (2.2.43) for the

�eld φ reduces to

∆φ(x) = 0 , (2.3.33)

which recasts the gravitational �eld one

∆h00(x) = 4πρ . (2.3.34)

Deviation of Autoparallels Since test particles move along Autoparallels, we are

able to calculate the relative acceleration between two such objects. Assuming two

particles initially very close to each other, we obtain the expression

∇2sρ

dτ 2
= −Rρ

µνσ s
µuνuσ +−Kρ·σν(ds

ν

dτ
uσ + dsσ

dτ
uν)− (∇µKρ·σν) sµuσuν . (2.3.35)

Here sµ is an in�nitesimal vector representing the relative displacement between the

two particles. Substituting in the equation above the expression of the contortion

tensor (2.2.38a), we get

∇2sρ

dτ 2
= −Rρ

σνµs
σuµuν − 2

3

[
δρµ (∂νφ) + gρεgµν (∂εφ)

](
dsν

dτ
uµ + dsµ

dτ
uν
)
+

−2
3

[
δρµ∇σ (∂νφ) + gρεgµν∇σ (∂εφ)

]
sσuµuν .

(2.3.36)

This equation represents the generalization of the Geodesic Deviation

∇2sρ

dτ 2
= −Rρ

σνµs
σuµuν , (2.3.37)
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of standard GR to a theory with torsion. Once again, we note that the completely

anti-symmetric part of torsion contributes to the �eld equation only as a source.

In order to perform the non-relativistic analysis, we still keep the hypotheses (i)

and (ii) above and we furthermore state that:

(iii) the 4-velocity can be written as uρ ∼ (1, 0, 0, 0);

(iv) the particle accelerations are compared at the same time, i.e., s0 = ds0/dτ = 0.

Within this scheme, substituting the expansion (2.3.30), only terms containing hµν

or φ as factors multiplied times sα are non-negligible. This way, eq. (2.3.36) reduces

to

d2sα

dt2
' −Rα

β00 s
β − 2

3
ηαβ sγ ∂κβφ , (2.3.38)

this way, the Tidal Field becomes

Gα = −Rβ00α s
β − 2

3
δβα s

γ ∂γ∂βφ . (2.3.39)

From the non-relativistic limit of GR, we can identify

Rβ00α = ∂β∂αΦ , (2.3.40)

where Φ is the gravitational potential. The �nal expression for the Tidal Field writes

as follows:

Gα = −sβ ∂α∂βΦ− 2
3
sβ ∂α∂βφ . (2.3.41)

We can conclude that, in the non-relativistic limit, torsion produces a Tidal-Force

e�ect analogous to that produced by the gravitational �eld.

It is worth noting that, since the �elds h00 and φ (in the non-relativistic limit) obey

the Poisson PDE 's (2.3.33) and (2.3.34) and enter eq. (2.3.29) and eq. (2.3.41) in

the same way, it is impossible to distinguish the e�ect of the torsion �eld from that

of the gravitational one. This fact, together with the small intensity of torsion forces,

makes them even more di�cult to be detected.
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2.4 The microscopic role of torsion

This Section is devoted to introduce a gauge theory of the group SO(3, 1) in order

to describe, on shell, a dynamical torsion3,4,5. Using the tetradic formalism, in Sec-

tion (2.2.4.1), we have introduced the spin connections ωabµ as functions of tetrads,

i.e.,

ω ab
µ = eνa∇µe

b
ν . (2.4.1)

As already discussed, this correlation yields to a non-suitable interpretation of these

connections as real gauge �elds of SL(2, C).

In �at Minkowskian space-time, the study appears well grounded since an appro-

priate description of the LG can be addressed. As a result, we formulate a model in

which gauge �elds of the group SO(3, 1) of spin-1, denoted by A ab
µ , are added to the

spin connections ω ab
µ and new general connections,

ω̄ ab
µ = ω ab

µ + A ab
µ , (2.4.2)

enters the dynamics. In the case of �at space-time, spin connections can be chosen

to vanish and the e�ects of connections A ab
µ (which do not depend on tetrads) on

one-electron atom spectral lines are discussed.

If a curved space-time is addressed, we postulate the direct generalization of the

picture described above. In this scheme, the function of the ω ab
µ 's is to restore the

Dirac algebra, as in eq. (2.2.57). On the other hand, the connections A ab
µ are treated

in order to �nd a relation to the contortion �eld. Indeed, an identi�cation can be

only stated a posteriori using the �eld equations. In this respect, we underline that

further analyses can be developed to relate the dynamics of the propagating torsion

addressed in [59, 73, 77, 75, 111, 57] to the A ab
µ Lagrangian. In particular, if the

quadratic torsion Lagrangians can be stated in terms of a Yang-Mill one.

Since, in our approach, the introduction of the gauge model is related to the fact

that spinors behave as a representation of the LG, translations are not included in

3NC, O.M. Lecian and G. Montani, �Fermion Dynamics by Internal and Space-Time Symmetries�,

Mod. Phys. Let. A, in press.
4NC, O.M. Lecian and G. Montani, �Lorentz Gauge Theory and Spinor Interaction�,

Int. J. Mod. Phys. A 23(8), 1282 (2008).
5NC, O.M. Lecian, G. Montani, �Macroscopic and Microscopic Paradigms for the Torsion Field:

from the Test-Particle Motion to a Lorentz Gauge Theory�,

Ann. Fond. L. deBroglie 32(2/3), 281 (2007).
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this gauge picture. In this respect, it is worth recalling that the teleparallel theory of

gravity can be treated physically as a gauge theory of translations. In fact, teleparallel

gravity can be understood within the framework of metric-a�ne gravitational theories

[82] and it is picked up from such other models by reducing the a�ne symmetry group

to the translation subgroup, i.e., by imposing vanishing curvature and non-metricity.

2.4.1 Spinors and SO(3,1) gauge theory on �at space-time

Let us now analyze the formulation of the gauge model in a �at Minkowskian space-

time. The choice of �at space is due to the fact that the Riemann curvature tensor

vanishes and, consequently, the usual spin connections ω ab
µ can be set to zero choosing

the gauge e a
µ = δ a

µ (in general, the ω ab
µ 's are allowed to be non-vanishing quantities).

The introduction of the SO(3, 1) connections A ab
µ , leads to the identi�cation

ω̄ ab
µ = A ab

µ . (2.4.3)

In a 4-dimensional �at space-time, the metric tensor reads gµν = ηabe
a
µ e

b
ν and spin-1/2

�elds are described by the usual Lagrangian density

LF = i
2
ψ̄γaeµa∂µψ − i

2
eµa∂µψ̄γ

aψ . (2.4.4)

Let us now consider an in�nitesimal SO(3, 1) local transformation S = S(Λ(x)),

described by the anti-symmetric parameter εab (x):

S = I − i
4
εab Σab , (2.4.5)

Σab = i
2

[γa, γb] , [Σcd,Σef ] = iFabcdef Σab . (2.4.6)

In analogy with the formalisms of particle physics and renormalization techniques

[115, 116], a suitable coupling constant could be attributed to the symmetry. Anyhow,

because of the technical character of this analysis, here we prefer follow the notation

of the great majority of the works [19, 59]. Nonetheless, it is worth remembering that

such a coupling constant should be very small, as this kind of interaction has not

been detected experimentally yet [117]. For some issues related to the use of such a

coupling constant, see also [118].

The transformations (2.4.5) act on the spinor in the standard way:

ψ(x)→ S ψ(x) , ψ̄(x)→ ψ̄(x) S−1 , (2.4.7)
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and γ matrices are assumed to transform like vectors, i.e.,

S γa S−1 = (Λ−1)ab γ
b . (2.4.8)

The gauge model In this approach, when ω ab
µ = 0, the gauge invariance is restored

by the substitution of a new covariant derivative, i.e., ∂µ → D(A)
µ , in the Lagrangian

(2.4.4):

D(A)

µ ψ = (∂µ − i
4
Aµ)ψ = (∂µ − i

4
A ab
µ Σab)ψ , (2.4.9)

which behaves correctly as γµD(A)
µ ψ → S(Λ)γµD(A)

µ ψ. In fact, the new gauge �eld

Aµ = A ab
µ Σab transforms under the following law: Aµ → S Aµ S

−1 − 4i S ∂µ S
−1 and

the connections

A ab
µ 6= ω ab

µ (e c
ν ) (2.4.10)

behave like

A ab
µ → A ab

µ − ∂µεab + 4F ab
cdef ε

ef A cd
µ , (2.4.11)

i.e., as natural Yang-Mill �elds associated to the SO(3, 1) group. A Lagrangian

associated to the gauge connections can be constructed by the introduction of the

gauge �eld strength

F ab
µν = ∂µA

ab
ν − ∂νA ab

µ + 1
4
FabcdefA cd

µ A ef
ν , (2.4.12)

which is not invariant under gauge transformations, as usual in Yang-Mills gauge

theories, but the gauge invariant Lagrangian for the model

LA = −1
4
F ab
µν F µν

ab , (2.4.13)

can be introduced: in �at a space-time, the only real dynamical �elds are the new

connections.

In this scheme the total Lagrangian density Ltot = LF (D(A)
µ ψ) + LA, reads

Ltot = i
2
ψ̄γaeµa∂µψ− i

2
eµa∂µψ̄γ

aψ + 1
8
eµc ψ̄ [γc,Σab]+A

ab
µ ψ − 1

4
F ab
µν F µν

ab . (2.4.14)

An interaction term is of course generated and the interaction Lagrangian density can

be equivalently written as

Lint = −JµabA
ab
µ , (2.4.15)

with

Jµab = −1
4
εcdab e

µ
c j

(ax)
d , j

(ax)
d = ψ̄ γ5γd ψ , (2.4.16)

where j (ax)
d denotes the spin axial current, since we can evaluate the following relation

[γc,Σab]+ = 2 εcabd γ5 γ
d. (2.4.17)
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Field equations The total action of the model is derived by Ltot and it reads

(Flat)Stot =
∫
det(e)d4x ( i

2
ψ̄γaeµa∂µψ − i

2
eµa∂µψ̄γ

aψ+

−JµabA
ab
µ − 1

4
F ab
µν F µν

ab) . (2.4.18)

It is straightforward to verify that this expression naturally �ts all the features of a

Yang-Mills gauge description. In fact, the covariant derivative (2.4.9) assures invari-

ance under a gauge transformation for the spinor part of the action, and the term

(2.4.13) also is invariant under such transformations. According to this picture, it will

be natural to obtain the typical �eld equations of a Yang-Mills theory. Furthermore,

it is worth remarking that the introduction of di�erent irreducible pieces of F ab
µν with

di�erent weights would spoil such gauge description. Since we are dealing with �at

space-time, tetrad vectors are not dynamical �elds, but only projectors from the tar-

get space to the general physical space, then they will appear only in the expression

of the invariant volume of the space-time and in scalar products: no variation wrt

them will be needed for �eld equations. Actually the only real dynamical �eld are

the connections A ab
µ . In fact, if, in analogy with GR, the curvature saturated on bein

vectors is considered as an action for the model, a trivial theory is obtained.

Variation of eq. (2.4.18) wrt tetrad �elds would provide the total EMT account-

ing for the dynamics and interactions of the vector �eld A ab
µ and the spinor �elds,

respectively. Variation wrt new connections leads to the dynamical equations

D(A)

µ F µν
ab = Jνab , (2.4.19)

which are the Yang-Mills Equations for the non-Abelian gauge �eld on �at space-

time. The source of this gauge �eld is the conserved spin-density of the fermion

matter. Variation wrt the spinor �elds, leads to the usual Dirac interaction equations

for the spinor �eld and for the adjoint �eld.

Field equations illustrate that the dynamics for a spinor �eld in an accelerated

frame di�ers from the standard Dirac dynamics for the spinor-gauge �eld interaction

term, i.e., spinor �elds are not free �elds any more. For the analysis of the Dirac

Equation in non-inertial systems in �at space-time, see also [92].

2.4.2 The generalized Pauli Equation

The aim of this Section is investigating the e�ects that the gauge �elds A ab
µ can

generate in a �at space-time. In particular, we treat the interaction between connec-
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tions A ab
µ and the 4-spinor ψ of mass m, in order to generalize the well-known Pauli

Equation, which corresponds to the motion equation of an electron in presence of an

electro-magnetic �eld [115, 59].

The implementation of the gauge model in �at space, i.e., ∂µ → D(A)
µ leads to the

fermion Lagrangian density

LF = i
2
ψ̄γaeµa∂µψ − i

2
eµa∂µψ̄γ

aψ − mψ̄ψ + Lint , (2.4.20)

and, to study the interaction term, let us now start from the explicit expression

Lint = 1
4
ψ̄ εcabd γ5 γ

dAabc ψ . (2.4.21)

Here a = {0, α} and we consider the role of the gauge �elds by analyzing its com-

ponents A0α
0 , Aαβ0 , A0α

γ , Aαβγ . We now impose the time-gauge condition Aαβ0 = 0

associated to this picture and neglect the term A0α
0 since it sums over the completely

anti-symmetric symbol ε00αd ≡ 0. The interaction Lagrangian density rewrites now

Lint = ψ†C0 γ
0γ5γ

0 ψ + ψ†Cα γ
0γ5γ

α ψ , (2.4.22)

with the following identi�cations

C0 = 1
4
εγαβ0A

αβ
γ , Cα = 1

4
εγ0βαA

0β
γ . (2.4.23)

Varying now the total action built up from the fermion Lagrangian density wrt ψ†,

we get the Modi�ed Dirac Equation

(i γ0γ0∂0 + Cα γ
0γ5γ

α + i γ0γα∂α + C0 γ
0γ5γ

0)ψ = mγ0 ψ , (2.4.24)

which governs the 4-spinor ψ interacting with the gauge �elds described here by the

C0 and Cα.

Stationary solutions Let us now look for stationary solutions of the Dirac Equation

expanded as

ψ(r, t)→ ψ(r) e−iEt, ψ =

(
χ

φ

)
, ψ† = (χ† , φ† ) ,

where E denotes the spinor total energy and the 4-component spinor ψ(r) is expressed

in terms of the two 2-spinors χ(r) and φ(r) (here r denotes the radial vector and

r =| r |). Using now the standard representation of the Dirac matrices,

γα =

(
0 σα

−σα 0

)
γ0 =

(
1 0

0 −1

)
γ5 =

(
0 1

1 0

)
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where σα denote Pauli matrices, the Modi�ed Dirac Equation (2.4.24) splits into two

coupled equations (here we write explicitly the 3 -momentum pα = i∂α):

(E − σαCα)χ − (σα p
α + C0)φ = mχ , (2.4.25a)

(E − σαCα)φ − (σα p
α + C0)χ = − mφ . (2.4.25b)

The low-energy limit Let us now investigate the non-relativistic limit by splitting

the spinor energy in the form

E = E +m . (2.4.26)

Substituting this expression in the system (2.4.25), we note that both the |E| and
|σαCα| terms are small in comparison wrt the mass term m, in the low-energy limit.

Then, eq. (2.4.25b) can be solved approximately as

φ = 1
2m

(σα p
α + C0)χ . (2.4.27)

It is immediate to see that φ is smaller than χ by a factor of order p/m (i.e., v/c where

v is the magnitude of the velocity): in this scheme, the 2-component spinors φ and χ

form the so-called small and large components, respectively [119].

Substituting the small components (2.4.27) in eq. (2.4.25a), after standard manip-

ulation we �nally get

E χ = 1
2m

[
p2 + C2

0 + 2C0 (σα p
α) + σαC

α
]
χ . (2.4.28)

This equation exhibits strong analogies with the electro-magnetic case. In particular,

it is interesting to investigate the analogue of the so-called Pauli Equation used in

the spectral analysis of the energy levels as in the Zeeman e�ect [119]:

E χ =
[

1
2m

(p2 + e2A2 + 2eAαpα) + µB(σαB
α) − eΦ(E)

]
χ , (2.4.29)

where µB = e/2m is the Bohr magneton (here e denotes the electron charge) and

Aα are the vector-potential components, Bα being the components of the external

magnetic �eld and Φ(E) the electric potential.

Corrections for one-electron atoms Let us now neglect the second order term C2
0

in eq. (2.4.28) and implement the symmetry

∂µ → ∂µ +AU(1)
µ + A ab

µ Σab , (2.4.30)
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with a vanishing electromagnetic vector potential, i.e., Aα = 0. In such a way, we

introduce a Coulomb central potential

V (r) = Ze2/4πεor , (2.4.31)

where Z is the atomic number and εo is the vacuum dielectric constant. Substituting

now E → E−V (r) in eq. (2.4.28), we can derive the total Hamiltonian of the system:

Htot = H0 +H ′ , (2.4.32)

where

H0 =
p2

2m
− Ze2

(4πε0)r
, H ′ = H1 +H2 , (2.4.33)

H1 = C0 (σα p
α) / m , H2 = σαC

α / 2m , (2.4.34)

which characterize the electron dynamics in a one-electron atom. The solutions of the

unperturbed Hamiltonian are the well-known modi�ed two-component Schrödinger

wave function

H0 ψn `m`ms = En ψn `m`(r) χ1/2 ,ms , En = −m (Zα)2 / 2n2 , (2.4.35)

using the unperturbed basis |n; `m` sms〉.
Since H1 and H2 have to be treated like perturbations, the gauge �elds can be

considered as independent, in the low-energy (linearized) regime. The analysis of

H1 can be performed substituting the operator σα pα with Jα p
α, where Jα denote

the components of the total angular-momentum operator (in fact, Lα pα = 0). H1 is

diagonal in the basis |n; ` s j mj〉 and according to basic tensor analysis, we decompose

the term Jα p
α into spherical-harmonics components. In particular, the Cartesian

tensor operator pα can be factorized into three components V (k)
q where q = 0,±1

(k = 1 for any vectorial operator) and, by the harmonics formalism, we can use the

following identi�cation V
(k)
q = Ym=q

l=k . This way, we can decompose the corrective

matrix element 〈H1〉 into

〈H1〉 =
c`jC0

m
mj 〈n′; `′ s′ j′m′j | V

(1)
0 |n; ` s j mj〉 +

+
c`jC0

m

√
(j ∓mj)(j ±mj + 1) 〈n′; `′ s′ j′m′j | V

(1)
±1 |n; ` s j mj ± 1〉 , (2.4.36)

where c`j are the Clebsch-Gordan coe�cients to change the basis |n; `m` sms〉 into
|n; ` s j mj〉. The terms above can be evaluated using the Wigner-Eckart Theorem.
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Wigner-Eckart Theorem : Such a fundamental theorem of the quantum me-

chanics [120] states that matrix elements of a generic spherical tensor operator

on the basis of angular-momentum eigenstates can be expressed as the product

of two factors:

〈α′; j′m′j | V (k)
q |α; j mj〉

WE≡ 〈j k; mj q |j k; j′m′j〉
〈α′ j′ || V (k)

q ||α j〉√
2j + 1

,

(2.4.37)

The �rst one is is just the Clebsch-Gordan coe�cient for adding j and k to get

j′, while the second one is independent of angular momentum orientation and

we indicate with the double bar a matrix element not depending on mj and

m′j and on the geometry of the system. By other words, the Wigner-Eckart

Theorem says that operating with a spherical tensor operator of rank k on

an angular-momentum basis is like adding a state with angular momentum k

to the state. The matrix element one �nds for the spherical tensor operator

is proportional to a Clebsch-Gordan coe�cient, which arises when considering

adding two angular momenta. The selection rules for the tensor operator matrix

elements (2.4.37) can be now easily derived using the angular-momentum sums.

In fact, in order to have non-vanishing Clebsch-Gordan coe�cients, we obtain

the triangular relation | j − k |≤ j′ < j + k and the constraint m′j = mj + q.

Let us now apply the Wigner-Eckart formula to our elements (2.4.36). For each

harmonics components, we get

〈V (1)
0 〉 ∼ 〈j 1; mj 0 |j 1; j′m′j〉 ,

〈V (1)
+1 〉 ∼ 〈j 1; mj (+1) |j 1; j′ (m′j + 1)〉 ,

〈V (1)
−1 〉 ∼ 〈j 1; mj (−1) |j 1; j′ (m′j − 1)〉 ,

obtaining the following selection rules

j′ = j + 1 , m′j = mj . (2.4.38)

These conditions correspond to have the same parity P = (−1)mj for the in- and

out-state. Anyhow, since Jα pα is a pseudo-scalar operator and it connects states of

opposite parity, no transition is eventually allowed.

The analysis of H2 requires a di�erent approach. We assume that the gauge �elds

are directed along the z direction. This way, only the component C3 is considered and,
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for the sake of simplicity, we impose that only one between A02
1 and A01

2 contributes,

in order to recast the correct dof . The e�ect of C3 corresponds to that of an external

�magnetic�-like �eld generated by the �elds A0β
γ , which can be considered the vector

bosons (spin-1 and massless particles) of such an interaction. H2 is now diagonal in

the unperturbed basis |n; `m` sms〉 and produce an energy-level split of the order

∆E =
C3

m
ms , (2.4.39)

where ms = ±1/2. Nevertheless, since we are dealing with spin-1 and massless gauge

bosons, the usual electric-dipole selection rules [119] can be used. This way, we have

to impose ∆ms = 0 and no correction to the well-known transitions results to be

detectable.

Collecting all the results together, we conclude that no new spectral line arises.

Because of this properties of the Hamiltonian, it is not possible to evaluate an upper

bound for the coupling constant of the interaction.

2.4.3 Curved space-time and the role of torsion

The considerations developed for a �at space-time are assumed here to be directly

generalized in curved space-time. This way we postulate the presence of the general

connections ω̄ ab
µ = ω ab

µ + A ab
µ , where spin connections ω ab

µ allow one to recover the

proper Dirac algebra for Dirac matrices.

In what follows, within the framework of curved space-time, the relation between

the gauge �elds A ab
µ and the geometrical properties of metric-compatible space-times

will be investigated. In particular, in the Second-Order Approach, the possibility of

identifying the contortion �eld with the new connections will be investigated. While,

in the First-Order Approach, the geometrical hypotheses for the introduction of tor-

sion as a gauge �eld will be addressed. The two approaches will be compared in the

linearized regime.

First-Order Approach Within the framework of First-Order Approach [121], con-

sidering a space-time in presence of torsion �eld T ρ·µν , the II Cartan Structure Equation
(2.2.61) rewrites

∂µe
a
ν − ∂νe a

µ − ω̃ ab
µ eνb + ω̃ ab

ν eµb = e a
ρ Γ̃ρ[µν] = T a

µν . (2.4.40)
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The total connections ω̃ ab
µ , solution of this equation, are

ω̃ ab
µ = ω ab

µ +K ab
µ , (2.4.41)

where K ab
µ is the projected contortion �eld, derived by the standard relation

Kρ·µν = 1
2

[ T ρ·µν − T ρµ·ν − T ρν·µ ] , (2.4.42)

while the ω ab
µ 's are the standard spin connections of eq. (2.4.1). As a result, new

torsion dependent connections ω̃ ab
µ enters the dynamics. In GR, nevertheless, such

connections do not describe any physical �eld: after substituting the solutions (2.4.41)

into the EH Action 6, one �nds that connections K ab
µ appear only in a non-dynamical

term, unless spinors are taken into account. In this case, such connections become

proportional to the spin density of the matter, thus giving rise to the ECT, where the

already discussed spin-spin contact term arises.

To establish a suitable geometrical interpretation of the gauge �elds A ab
µ , let us

now introduce general connections ω̄ ab
µ for our model and postulate the following

interaction term

Sconn = 2
∫

det(e) d4x eµae
ν
b ω̄

[a
µc A

bc]
ν . (2.4.43)

In such an approach, the action describing the dynamics of the �elds A ab
µ is derived

form the gauge Lagrangian (2.4.13), i.e.,

SA = −1
4

∫
det(e) d4x F ab

µν F µν
ab , (2.4.44)

while the action that accounts for the generalized connections can be taken as the

gravitational action SG (2.2.60), but now the projected Riemann tensor (2.2.59) is

constructed by the general connections ω̄ ab
µ . Such a new fundamental Lorentz invari-

ant can be denoted by R̄ ab
µν , and it reads

R̄ ab
µν = ∂νω̄

ab
µ − ∂µω̄ ab

ν + Fabcdef ω̄ cd
µ ω̄ ef

ν , (2.4.45)

6Let S (qα, Qβ) be an action depending on two sets of dynamical variables, qα andQβ . The solutions

of the dynamical equations are extrema of the action wrt both the two sets of variables: if the

dynamical equations ∂S/∂qα = 0 have a unique solution, q
(0)
α (Qβ) for each choice of Qβ , then

the extrema of the pullback S (qα (Qβ) , Qβ) of the action to the set of solution are precisely the

extrema of the total total action S (qα, Qβ). For an application of this theorem, see, for example

[122].
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yielding

S̄G(e, ω̄) = −1
2

∫
det(e) d4x eµae

ν
bR̄

ab
µν . (2.4.46)

Collecting all terms together, i.e., Stot = S̄G + SA + Sconn, one can get the total

action for the model. Two cases can now be distinguished according to the absence

or presence of spinors.

(1.) If fermion matter is absent, variation of the total action wrt connections ω̄ ab
µ

gives the Generalized II Cartan Structure Equation

∂µe
a
ν − ∂νe a

µ − ω̄ ab
µ eνb + ω̄ ab

ν eµb = A ab
µ eνb − A ab

ν eµb , (2.4.47)

which admits, of course, the solutions

ω̄ ab
µ = ω ab

µ + A ab
µ , (2.4.48)

As a result, confronting the expression above with the solution (2.4.41), the new gauge

�elds A ab
µ mimic the dynamics of the contortion �eld K ab

µ , once �eld equations are

considered. Since solution (2.4.48) is unique, the total action Stot can be pulled back

to the given solutions to obtain the reduced action for the system.

(2.) If the fermion matter contribution is taken into account in the total ac-

tion (i.e., we add to Stot the fermion action derived by (2.4.4)) variation wrt total

generalized connections leads to additional terms in the rhs of eq. (2.4.47), i.e.,

∂µe
a
ν − ∂νe a

µ − ω̄ ab
µ eνb + ω̄ ab

ν eµb =

= A ab
µ eνb − A ab

ν eµb − 1
4
εabcd e

c
µ ebν j

d
(ax) + 1

4
εabcd e

c
ν ebµ j

d
(ax) , (2.4.49)

being jd(ax) = ψ̄ γ5γ
d ψ the spin axial current introduced above. The presence of

spinors prevents one to identify connections A ab
µ as the only torsion-like components,

since all the terms in the rhs of the II Cartan Structure Equation (which, in this

picture, is generalized by eq. (2.4.49)) have to be interpreted as torsion. This way,

both the gauge �elds and the spin axial current contribute to the torsion of space-

time. It is worth noting that, if the �elds A ab
µ vanishes, we obtain the usual result of

PGT [54, 55], i.e., the ECT, in which torsion is directly connected with the density of

spin and does not propagate [103]. In our scheme, we obtain the the unique solution

for eq. (2.4.49):

ω̄ ab
µ = ω ab

µ + A ab
µ + 1

4
εabcd e

c
µ j

d
(ax) . (2.4.50)
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Substituting such an expression in the total action, variations leads to dynamical

equations where the spin density of the fermion matter is present in the source term

of the connections, and the Einstein Equations contain in the rhs not only the EMT

of the matter, but also a four-fermion interaction term. The dynamical equations

of spinors are formally the same as those ones of the ECT with the addition of the

interaction with the connections A ab
µ .

As a result, the EC contact interaction is recovered in the limit of vanishing A ab
µ ,

which modi�es profoundly the dynamics of the gravitational �eld both in absence

and in presence of fermion matter. In particular, in the �rst case, the connections

A ab
µ are in strict relation with the torsion tensor modifying the Riemannian structure

of ordinary space-time, while, in the second case, the presence of fermions already

modi�es the structure of space-time and the new connections contribute to the torsion

tensor with a boson term. Moreover, the bosonic and fermionic parts of torsion

interact, the latter being a source for the boson part of torsion, and the former the

mediator of the interaction between two-fermion torsion terms. In the most general

metric structure, curvature, torsion and non-metricity are present (see for example

[123] for the relation between Riemannian curvature and generalized curvature). In

[124], the most general parity-conserving quadratic Lagrangian has been established

for this metric structure, in terms of the irreducible pieces of non-metricity, torsion

and curvature, and a cosmological term is also included.

Second-Order Approach Let us now consider the space-time as a curved manifold,

in presence of torsion, in which the tetrad basis is formed by dynamical �elds, which

describe pure gravity.

The Ricci rotation coe�cients write usually as (2.2.54) and we remind that the

symbol ∇̃µ denotes the covariant derivatives implemented with torsion-dependent

a�ne connections. In curved space-time, the validity of the Dirac Equation is ensured

as far as the Dirac algebra is valid in the non-Minkowskian metric, i.e.,

[ γa, γb ]+ = 2Iηab . (2.4.51)

The a�ne connection coe�cients are written of the following form,

Γ̃µνρ = Γµνρ −Kµ·νρ , (2.4.52)
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2.4 The microscopic role of torsion

where Γµνρ are the usual Christo�el symbols. As in the torsionless case of eq. (2.2.57),

we now aim to look for a geometrical covariant-derivative operator D̃(S)
µ which guar-

antees the relation

D̃(S)

µ γν = 0 . (2.4.53)

If we deal with a generic geometrical object, such an operator is found to be

D̃(S)

µ A = ∇̃µA− [ Γ̃(S)

µ , A ] . (2.4.54)

This way, we obtain the relation

D̃(S)

µ ψ = ∂µψ − Γ̃(S)

µ ψ , (2.4.55)

for spinor �elds, which yields the following matter lagrangian density

LF = i
2
ψ̄γaeµaD̃

(S)

µ ψ − i
2
eµaD̃

(S)

µ ψ̄γaψ . (2.4.56)

Substituting the a�ne connections (2.4.52) in (2.4.54) with A = γν , after standard

manipulation, one �nds

Γ̃(S)

µ = Γ(S)

µ + Γ(K)

µ = 1
2
ω ab
µ Σab + 1

2
K ab
µ Σab , (2.4.57)

where ω ab
µ are the usual spin connections ω ab

µ = e c
µ γ

ba
c. The connections Γ̃(S)

µ de�ned

by (2.4.54) split up into two di�erent terms: the connections Γ(S)
µ , which restore the

Dirac algebra in the physical space-time (as in the standard tetrad approach to gravity,

see eq. (2.2.55)) and torsion dependent connections Γ(K)
µ , respectively.

In �at space, we have R = 0 and we can choose the ω ab
µ 's to vanish. Such a

scenario matches the result of eq. (2.4.9), i.e., D̃(S)
µ = D(A)

µ , so that torsion-dependent

connections Γ
(K)
µ can be interpreted as the gauge �elds

K ab
µ = A ab

µ , (2.4.58)

because they are non-vanishing quantities even in �at space-time, as requested for

any gauge �eld.

Since gauge connections are primitive objects, the total action Stot must depend on

the independent �elds ψ, e a
µ , and A

ab
µ , such as

Stot =
∫
det(e)d4x (−1

2
eµae

ν
bR

ab
µν + LF − 1

4
F ab
µν F µν

ab ) , (2.4.59)
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which is the generalization on curved space-time of eq. (2.4.18) and LF is now de�ned

by eq. (2.4.56). Variation wrt bein vectors, leads to the bein projection of the Einstein

Equations, with a Yang-Mills tensor Tµν as source

eνaRµν − 1
2
eνagµνR = eνaTµν , (2.4.60)

while variation wrt connections A ab
µ brings Yang-Mills equations, with the spinor

current density as a source: eq. (2.4.19). Finally, the Dirac Equation in curved

space-time is derived by variations wrt spinors.

This picture allows one to obtain the expression for conserved quantities. Since the

current density de�ned in (2.4.19), admits the conservation law

DµJ
µ
ab = 0 , (2.4.61)

a conserved (gauge) charge can be de�ned

Qab =
∫
d3xJ0

ab = const. , (2.4.62)

where this quantity is a conserved one if one assumes that the �uxes through the

boundaries of the space integration vanish.

Remarks Since, in the First-Order Approach, the gravitational �eld plays the role of

source for torsion, it should be compared with the �current� term of the Second-Order

Formalism. We will restrict our analysis to the linearized regime in the transverse-

traceless (TT) gauge.

For small perturbations hµν of a �at-Minkowskian metric ηµν

gµν = ηµν + hµν , (2.4.63)

the tetrad �elds rewrite as the sum of the Minkowskian bein projection δ a
µ and the in-

�nitesimal perturbation ξ a
µ , eaµ = δ a

µ +ξ a
µ and the following �rst-order identi�cations

hold

ηµν = δ a
µ δνa , hµν = δµaξ

a
ν + δνaξ

a
µ . (2.4.64)

The linearized spin connections ω ab
µ = eνa∇µe

b
ν rewrite

ω ab
µ = δνb

(
∂ν ξ

a
ν − Γ(ξ)ρµν δ

b
ρ

)
, (2.4.65)

where Γ(ξ)ρµν are the linearized Christo�el symbols

Γ(ξ)ρµν = 1
2
δρσ(ξσµ, ν + ξσν, µ − ξµν, σ) . (2.4.66)
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2.4 The microscopic role of torsion

Because of the interaction term (2.4.43) postulated in the First-Order Approach,

it is possible to solve the Generalized II Cartan Structure Equation and to express

connections as a sum of pure gravitational connections plus other contributions, both

in absence and in presence of spinor matter. From the Einstein Lagrangian density

in the TT gauge,

LG = (∂ρhµν) (∂ρhµν) , (2.4.67)

the spin-current density associated with the spin angular momentum operator M τ
ρσ

can be evaluated for a Lorentz transformation of the metric. In fact, if we consider

the transformation

gµν → ∂µx
ρ′ ∂νx

σ′ gρ′σ′ , (2.4.68)

where x′ρ = xρ + ερτx
τ , then the current reads

M τ
ρσ = ∂LG

∂hµν,τ
Σερσυ
µν hευ = (ηµcξν,τc + ηνcξµ,τc ) Σερσυ

µν

(
ηεfξ

f
υ + ηυfξ

f
ε

)
, (2.4.69)

where

Σερσυ
µν = ηγ[ρ

(
δεγδ

σ]
µ δ

υ
ν + δεµδ

υ
γδ

σ]
ν

)
. (2.4.70)

The two quantities (2.4.65) and (2.4.69) do not coincide: in fact, (2.4.65) is linear

in the ξ a
µ terms, because the interaction term (2.4.43) is linear itself, while (2.4.69)

is second order in ξ a
µ by construction. As suggested by the comparison with gauge

theories, and with eq. (2.4.69) in particular, the interaction term should be quadratic.

In this case, however, it would be very di�cult to split up the solution of the II

Cartan Structure Equation as the sum of the pure gravitational connections plus

other contributions.
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2.5 Concluding remarks

This Chapter is aimed at investigating the possibility to describe torsion as a prop-

agating �eld, from both a macroscopic and microscopic point of view after having

described, in some details, several approach to torsion gravity in Section 2.2.

� In Section 2.3, we have exposed the formulation of a macroscopic geometrical

theory, which is able to predict propagating torsion. Starting from the static ECT,

we have introduced two torsion potentials. To determine the equation of motion

of a test particle in presence of this new geometric quantity, we have established

a principle of minimal substitution which implies that Autoparallels are the right

trajectories. Finally, we have analyzed the analogue of the Geodesic Deviation for

Autoparallels and studied the non-relativistic limit of this deviation. Within this

scheme, Autoparallel deviation illustrates that the torsion scalar potential enters the

dynamics just the same way as the gravitational �eld, thus letting us envisage an

arduous experimental detection.

� In Section 2.4, we have developed a gauge theory of the group SO(3, 1), in

�at space-time, by choosing vanishing spin connections. In treating spinor �elds, a

covariant derivative that accounts for the new gauge �elds has been formulated. The

analysis, in �at space, has been addressed considering the non-relativistic limit of

the interaction between spin-1/2 �elds and the gauge ones. This way, a generalization

of the so-called Pauli Equation has been formulated and applied to a one-electron

atom in presence of a Coulomb central potential. Energy-level modi�cations are

present but selection rules do not allow for new detectable spectral lines. Then,

we directly generalize this picture in curved space-time and a mathematical relation

between the new connections and the contortion �eld has been found from the II

Cartan Structure Equation if a (unique) interaction term between the gauge �elds

and generalized internal connections is introduced. Moreover, the predictions of First-

and Second-Order Approaches have been compared in the linearized regime. The

two results did not match, in this approximation, thus suggesting one to introduce a

quadratic interaction term. Despite many formal di�erences from PGT, a pure contact

interaction for spinor �elds has been recovered for vanishing Lorentz connections, for

which the II Cartan Structure Equation provides non-zero torsion even when gauge

bosons are absent. From this point of view, PGT can be qualitatively interpreted as

the First-Order approximation of our scheme.
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During this work, we have exposed some peculiar features of space-time and matter

source. The latter has been extended by including viscous processes into the dynamics

and the e�ects on the gravitational instability have been analyzed. Concerning the

space-time symmetries, we have focused the attention on the non-symmetric proper-

ties of the a�ne connection, i.e., on the torsion �led. In this respect, we have analyzed

the macroscopic e�ects on a test-particle motion and whether such a �eld a�ects the

gravitational potential in the non-relativistic limit. From a microscopic point of view,

we have identi�ed a posteriori the torsion with new gauge internal connections and

the e�ects induced on a one-electron atom spectral lines are discussed in �at space-

time.

In what follows, we want to brie�y discuss some interesting developments of the mod-

els here proposed.

First of all, the analysis dealing with the presence of the torsion �eld during early

Universe evolution should be linked with the study of the e�ects induced by dissipative

processes in the primordial eras. Furthermore, a very intriguing problem is how induce

propagating torsion including such a quantity directly in the gravitational Lagrangian.

In this scheme, further analyses will be performed in order to relate torsion with the

gauge �led of Lorentz Group.

The dissipative-cosmology analysis, can be improved by studying the generalization

of the Lemaître-Tolman-Bondi (LTB) dust solution. An extension of the model can be

analyzed by keeping the usual inhomogeneous spherically symmetric LTB line element

and replacing the dust matter source with an imperfect �uid with a generic Equation

of State. The Gravitational Equations, in the co-moving reference frame, can be

reduced to a set of di�erential equations: such a system involves the state parameters

of the �uid, the scale factor and the curvature, which enter as function of time and

of the radial coordinate. In particular, the new matter source requires an additional

123



Outlooks

equation (namely, the 2-2 component of the Einstein Equations) with respect to the

standard LTB analysis with dust. The presence of inhomogeneities implies a very

complex and intriguing scenario, whose analysis requires both analytical an numerical

techniques. Another complication due to the inhomogeneity is the presence of the so-

called shear viscosity. In fact, this kind of dissipative e�ect is related to the matter

friction generated during the �uid evolution. The form of the EMT is then extended

to include into the dynamics this e�ect, which generates an additional traceless term.

Another natural development, within the context of dissipative cosmology, consists

of pursuing the characterization of the EMT matter source of Gravitational Equations

in the so-called Knudsen Regime of non-interacting particles. In fact, at temperature

T > O(1016GeV ), the particle mean free-path overcomes the causal horizon scale

acquiring a divergent behavior. Following the hydrodynamic procedure, concerning

kinetic approach, the structure of the EMT can be derived starting from the relativis-

tic Boltzmann Equation. In this scheme, the non-equilibrium transport phenomena of

the gas �ow can be described by a set of generalized hydrodynamic equations, where

the well-known Navier-Stokes and Fourier laws are replaced by a new set of constitu-

tive equations, which incorporate the non-local stress relation phenomena in addition

to the dissipative e�ects. Starting from these equations, the matter term can be con-

structed using the standard thermodynamical laws. A well-grounded source term of

the Gravitational Equations is very important for the study of the very early Universe

and for many interesting applications to the perturbative dynamics of gravitational

collapses.
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This manuscript is devoted to introduce a gauge theory of the Lorentz Group based
on the ambiguity emerging in dealing with isometric diffeomorphism-induced Lorentz

transformations. The behaviors under local transformations of fermion fields and spin

connections (assumed to be ordinary world vectors) are analyzed in flat space-time and
the role of the torsion field, within the generalization to curved space-time, is briefly

discussed. The fermion dynamics is then analyzed including the new gauge fields and

assuming time-gauge. Stationary solutions of the problem are also studied in the non-
relativistic limit, to study the spinor structure of an hydrogen-like atom.
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Abstract: Torsion represents the most natural extension of General
Relativity and it attracted interest over the years in view of its link with
fundamental properties of particle motion. The bulk of the approaches
concerning the torsion dynamics focus their attention on their geomet-
rical nature and they are naturally led to formulate a non-propagating
theory.

Here we review two different paradigms to describe the role of the
torsion field, as far as a propagating feature of the resulting dynamics is
concerned. However, these two proposals deal with different pictures,
i.e., a macroscopic approach, based on the construction of suitable
potentials for the torsion field, and a microscopic approach, which relies
on the identification of torsion with the gauge field associated with the
local Lorentz symmetry. We analyze in some detail both points of view
and their implications on the coupling between torsion and matter will
be investigated. In particular, in the macroscopic case, we analyze
the test-particle motion to fix the physical trajectory, while, in the
microscopic approach, a natural coupling between torsion and the spin
momentum of matter fields arises.
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We analyze the dynamical behavior of a quasi-isotropic universe in the presence of a
cosmological �uid endowed with bulk viscosity. We express the viscosity coefficient as
a power law of the �uid energy density: ζ = ζ0 εs. Then we �x s = 1/2 as the only
case in which viscosity plays a signi�cant role in the singularity physics but does not
dominate the universe dynamics (as required by its microscopic perturbative origin).
The parameter ζ0 is left free to de�ne the intensity of the viscous effects.

In spirit of the work by Lifshitz and Khalatnikov on the quasi-isotropic solution, we
analyze both Einstein and hydrodynamic equations up to �rst and second order in time.
As a result, we get a power law solution existing only in correspondence to a restricted
domain of ζ0.
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